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aDepartment of Mathematics, Science, and Social Studies Education, University of Georgia, Athens, GA, USA;
bDepartment of Mathematics, Oregon State University, Corvallis, OR, USA; cDepartment of Curriculum and
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ABSTRACT
Generalization is a critical component of mathematical reasoning, with researchers recommending
that it be central to education at all grade levels. However, research on students’ generalizing
reveals pervasive difficulties in creating and expressing general statements, which underscores the
need to better understand the processes that can support more productive generalizations. In
response, we report on results from 146 interviews with 93 participants in middle school through
college in the domains of algebra, advanced algebra, trigonometry/pre-calculus, and combinatorics
while solving complex problems. Our findings yielded the Relating-Forming-Extending (RFE)
Framework, which distinguishes multiple related forms and types of generalizing. We also present
two aspects of mental activity that promote generative generalizations: operative activity, and
building and refining activity.

Introduction

Generalizing is widely acknowledged to be a critical component of mathematical activity.
Researchers argue that not only does generalization serve as the means for constructing new
knowledge, but that mathematical thought cannot occur in its absence (e.g., Kaput, 1999; Mason,
Burton, & Stacey, 2010; Mata-Pereira & da Ponte, 2017; Peirce, 1902; Sfard, 1995; Vygotsky,
1986). For these reasons, Davydov (1972/1990) noted that “[d]eveloping children’s generalizations
is regarded as one of the principal purposes of school instruction” (p. 10). Accordingly, research-
ers have studied the importance of generalization for promoting algebraic reasoning (Amit &
Klass-Tsirulnikov, 2005; Cooper & Warren, 2008; Dougherty, Bryant, Bryant, Darrough, &
Pfannenstiel, 2015; Radford, 2006, 2008), geometric thinking (Lehrer, Kobiela, & Weinberg, 2013;
Pytlak, 2015), and functional thinking (Ellis, 2011; Rivera & Becker, 2007), among other areas.
Current curricula and standards documents also emphasize the importance of generalization, with
curricular materials including tasks designed to promote generalization (e.g., Hirsch, Fey, Hart,
Harold, & Watkins, 2015; Lappan, Phillips, Fey, & Friel, 2014), and the Common Core State
Standards in Mathematics highlighting generalization in both the content and practice standards
(National Governors Association Center/Council of Chief State School Officers, 2010).

The ability to productively generalize has been identified as a characteristic of mathematically-
capable students (Amit & Neria, 2008), but research on students’ generalizing reveals pervasive
difficulties. Students experience challenges in creating general statements that are mathematically
correct (English & Warren, 1995; Kieran, 1992; Lannin, 2005), attending to patterns that are gen-
eralizable (Blanton & Kaput, 2002; !Cade!z & Kolar, 2015; Lee, 1996; Radford, 2003, 2006, 2008;
Rivera & Becker, 2008), and using generalized language (Mason, 1996). When they are able to
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generalize patterns, students struggle to shift from recursive patterns to generating a rule to deter-
mine the nth case (English & Warren, 1995; Moss, Beatty, McNab, & Eisenband, 2006;
Schliemann, Carraher, & Brizuela, 2001). Reporting the results of 5 years of performance assess-
ments on generalization given to more than 60,000 students, Rivera (2008) found a stable ceiling
value of only a 20% success rate in students’ abilities to correctly construct general formulas.
These challenges underscore the fact that much remains to be understood about the nature of
student generalizing and the processes that support more productive generalizations.

Definitions of generalization vary, but most characterize it as a claim that some property holds
for a set of mathematical objects or conditions that is larger than the set of individually verified
cases (Carraher, Martinez, & Schliemann, 2008). For instance, Harel and Tall (1991) described
generalization as the process of “applying a given argument in a broader context” (p. 38), and
Radford (2006) argued that the generalization of a pattern involves identifying a commonality
based on some particulars and then extending that commonality to all terms. More recent socio-
cultural examinations situate generalization within activity and context, describing it as an act
that can be distributed across multiple agents or that can occur collectively (Ellis, 2011; Reid,
2002; Tuomi-Gr€ohn & Engestr€om, 2003). Due to the nature of our data set, for the purposes of
this study we follow the cognitive perspective to define generalizing as an activity in which learn-
ers engage in at least one of the following actions: (a) identifying commonality across cases
(Dreyfus, 1991), (b) deriving broader results from particular cases to form general relationships,
rules, concepts, or connections (Ellis, 2007a; Kaput, 1999), and/or (c) extending one’s reasoning
beyond the range in which it originated (Carraher et al., 2008; Dubinsky, 1991; Harel & Tall,
1991; Radford, 2006). Following Ellis (2007a), we call these three processes generalizing, and we
reserve the term generalization for the outcomes of these processes.

The need to better understand students’ generalizing activity

The majority of the research on students’ generalizing in mathematics has occurred in the
domains of early algebra (e.g., Carraher et al., 2008; Cooper & Warren, 2008; Dougherty et al.,
2015; El Mouhayar, 2018a; Mulligan & Mitchelmore, 2009), patterns (Amit & Neria, 2008; Becker
& Rivera, 2006; Cooper & Warren, 2008; Jureczko, 2017; Moss et al., 2006; Mulligan &
Mitchelmore, 2009; Radford, 2002, 2006; Rivera, 2010; Rivera & Becker, 2008; Steele, 2008;
Warren, Miller, & Cooper, 2013), and linearity (e.g., Carraher et al., 2008; Ellis, 2007a, 2007b;
Radford, 2008; Rivera & Becker, 2008). There have been some studies examining students’ gener-
alizing in topics beyond linear function, such as quadratics (Amit & Neria, 2008; Ellis, 2011; Lee
& Wheeler, 1987; Rico, 1996; Rivera & Becker, 2007), advanced algebra (Mason, Drury, & Bills,
2007), calculus (e.g., Font & Contreras, 2008; Harel & Tall, 1991; Park & Lee, 2016) and combina-
torics (Lockwood, 2011; Lockwood & Reed, 2016; Tillema & Gatza, 2017), but in general, less is
known about how students generalize beyond the domains of patterning and early algebra. In
particular, fewer studies have addressed students’ generalizing activity in domains such as
advanced algebra, pre-calculus, trigonometry, and discrete mathematics, particularly in upper sec-
ondary school and at the undergraduate level.

In addition, the manner in which typical pattern generalization tasks are presented tend to
have a strong regulating effect on students’ generalizing (Doerfler, 2008). These tasks often pro-
vide figural cues and expected progressions that encourage a narrow range of potential generaliza-
tions. In contrast, more open-ended generalizing tasks that are not restricted by pre-determined
goals could provide valuable information about how students generalize when engaging in the
types of problem-solving activities they are likely to encounter in school mathematics (see Rivera
& Becker, 2016, for an example). Thus, there remains a need to better understand how students
construct generality not only in more varied and advanced mathematical domains, but also in
more open-ended problems.
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In response to the need to study generalization in open-ended tasks, Ellis (2007a) explored the
generalizations middle-school students made in a teaching experiment setting investigating ratios
and linear functions. This work yielded a generalization taxonomy, which categorized three major
forms of generalizing activity: Relating, Searching, and Extending. Ellis’ taxonomy provides the
foundation for the current study, but it was restricted to a small group of students studying one
early algebra topic. We seek to build on this work while considering the need to (a) better under-
stand generalizing in more varied and advanced domains, and (b) identify what aspects of math-
ematical activity are productive for generalization across domains. Consequently, we developed
the following research questions:

1. How can Ellis’ generalization taxonomy be refined and extended to apply to the domains of
algebra, advanced algebra, trigonometry/pre-calculus, and combinatorics?

2. What aspects of mathematical activity foster productive generalizing across the domains of
algebra, advanced algebra, trigonometry/pre-calculus, and combinatorics?

In addressing these questions, our aim is to better understand the character of student general-
izing across multiple content domains and grade levels (middle-school, high-school, and college),
and across a varied range of tasks and activities beyond those presenting patterns.

Our findings yield a broader, more comprehensive framework of generalizing activity called
the Relating-Forming-Extending (RFE) Framework. The RFE Framework distinguishes related
forms and types of students’ generalizing across multiple content domains, spanning student
thinking in middle-school, high-school, and university topics. In the results section of this paper,
we describe the RFE Framework, then we present findings on two aspects of mathematical activ-
ity that foster productive generalizing activity, which we call generative generalizing. The first
aspect addresses students’ initial focus when investigating a task, and the second addresses stu-
dents’ abilities to leverage initial generalizations into more powerful generalizations as they grap-
ple with novel tasks. We close with instructional recommendations for better supporting students’
productive generalizing.

Review of the literature: characterizing generalization

Prior characterizations of generalization in the literature

In framing our contribution to the literature, we first briefly review other ways in which general-
ization has been characterized in the literature. We do this to highlight the fact that distinctions
among forms and types of generalizing (e.g., Harel, 2001), as well as generalizing strategies and
processes (e.g., Radford, 2008, 2010), have long been of interest to the mathematics education
community. In elaborating existing distinctions in the literature, we note three main categories of
studies: studies of students in one particular setting or focused on one given domain; studies of
students’ strategies across grade levels that are focused on one specific kind of generalizing (such
as pattern generalization); and studies that rely on theoretical analyses.

Researchers have highlighted different generalization types, focusing particularly on whether
the source of the generalization is based on empirical results or reasoning processes. For instance,
in studying undergraduates and proof, Harel (2001) identified two forms of generalization: result-
pattern generalization and process-pattern generalization. The former is the development of gen-
erality from regularity in the result of a process, and the latter is the development of generality
from regularity in the process of moving from one term or outcome to the next. Rivera (2008)
noted that Harel’s distinction shadows what Doerfler (1991) referred to as empirical generaliza-
tion and theoretical generalization, respectively. Empirical generalization is the recognition of
common features, whereas theoretical generalization relies on a system of action in which
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generalizations are constructed through the abstraction of invariants. Theoretical generalization,
like process-pattern generalization, foregrounds commonalities that emerge in reasoning about
actions, rather than about their outcomes. In working with third grade students in the context of
patterning in functions, Carraher et al. (2008) also used the terms empirical and theoretical gen-
eralization, the former of which arises from examining data for underlying trends and structure,
and the latter emerges from ascribing models to data (see also, Bills & Rowland, 1999). There is a
loose implied hierarchy in many of these distinctions, in which generalizations that are theoretical
(or structural, or process-pattern) are viewed as more mathematically powerful than their empir-
ical counterparts.

A number of researchers have also distinguished more explicit stages or levels of sophistication
in generalizing. For example, in a theoretical paper, Harel and Tall (1991) characterized a hier-
archy of conceptual effort in which they distinguished between expansive, reconstructive, and dis-
junctive generalization. Expansive generalization occurs when one expands the applicability range
of an existing scheme without reconstructing it. Reconstructive generalization involves recon-
structing a scheme to widen its applicability range, and disjunctive generalization is the construc-
tion of a new scheme. Other researchers have also explored hierarchies in a variety of contexts;
one example is the distinction between reflective (or constructive), eliminative, and additive
abstraction (Font & Contreras, 2008), which was introduced in a theoretical analysis of the
derivative function.

Much of the work describing progressions in generalization has been situated within the con-
text of pattern generalization (e.g., Amit & Neria, 2008; El Mouhayar & Jurdak, 2015; Radford,
2003; Rivera & Becker, 2008, 2016). For instance, Rivera and Becker (2008) distinguished con-
structive versus deconstructive generalizations among middle school students’ linear figural pat-
terns, and in a series of studies, Radford (2003, 2006, 2008, 2010) offered elaborations of
constructs such as factual, contextual, and symbolic generalizations that contribute to young stu-
dents’ patterning activity. Researchers have also explored differences between elementary, middle-
school, and secondary students’ generalizing in patterning contexts, addressing distinctions such
as inductive versus deductive strategies (Rivera, 2013), near versus far generalizations (El
Mouhayar & Jurdak, 2015), function type (Jurdak & El Mouhayar, 2014), and figural versus
numerical generalizations (El Mouhayar, 2018a, 2018b). Each of these distinctions captures
important insights into students’ cognitive processes within the context of pattern generalization.

Finally, a few researchers have described students’ generalization strategies, rather than stages
or levels (e.g., Becker & Rivera, 2007; Park & Lee, 2016; Rivera & Becker, 2005). For instance,
Lannin, Barker, and Townsend (2006) described four generalizing strategies that emerged in their
work with two fifth grade students in algebra: recursive, chunking, unitizing, and explicit. Their
work has since been replicated by Yeap and Kaur (2008), also with fifth grade students. Warren
et al. (2013) found that the use of three strategies—gesturing, self-talk, and concrete acting out—
supported primary students’ generalizations about functional relationships. Becker and Rivera
(2006, 2007) distinguished between figural and numerical strategies as two ways to express gener-
ality, characterizing students’ shifts from figurative to numerical strategies over time. These
reported strategies highlight that researchers see merit in articulating differences between how
students might engage in generalizing and that there may be strategies that are more or less
effective for students in this process.

These previous studies have articulated meaningful distinctions between ways in which stu-
dents generalize and progress in generalizing activity. As we have noted, many of these distinc-
tions emerged from a single mathematical level and domain, from studies of students’ strategies
across grade levels that are focused on one specific kind of generalizing (such as pattern general-
ization), or through theoretical arguments that were based in mathematical examples. We now
turn to Ellis’ (2007a) taxonomy, upon which our work builds directly, and discuss the manner in
which it identifies multiple types of generalizing grouped into thematically-related categories.
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Ellis’ generalization taxonomy

Like many of the other studies we have reviewed, Ellis’ (2007a) generalization taxonomy was
developed from a data set that was situated in a single mathematical domain and level, namely,
an examination of seven 7th-grade students studying ratios and linear functions. In it, Ellis differ-
entiated between generalizing actions and reflection generalizations, describing a generalizing
action as an observer’s inference of a mental action, and a reflection generalization as a final
statement of generalization that is shared publicly. The generalization taxonomy includes three
broad forms of generalizing action: Relating, Searching, and Extending (Figure 1). Relating is the
formation of an association of similarity between two or more contexts, tasks, or objects. Relating
can entail what a student perceives as two distinct problem situations (relating two contexts or
tasks) or can occur within a single problem situation (relating two objects). Searching is the
attempt to find an element of similarity, and can encompass a focus on a pattern, procedure, rela-
tionship, or solution. Extending is the expansion of the rule (or pattern or relationship) to
account for new cases.

One purpose of the taxonomy was to identify ways in which students’ initial generalizing activ-
ity, (i.e., their first attempts at generalizing), could be leveraged to create more mathematically
powerful generalizations over time. It has since informed work in a number of other domains,
including number theory and arithmetic (Chinnappan & Pandian, 2009; Vale, Widjaja, Herbert,
Bragg, & Loong, 2017); patterning activities (Maj-Tatsis & Tatsis, 2018; Oflaz, 2019), algebraic
thinking and functional relationships (Ellis & Grinstead, 2008; Napaphun, 2012; Strachota, Knuth,
& Blanton, 2018; Tillema & Gatza, 2017), geometry (Yao, 2018); trigonometry (Tasova & Moore,
2018); calculus (Dorko, 2015; Dorko & Lockwood, 2016; Dorko & Weber, 2014), linear algebra

Figure 1. Ellis’ (2007a) Taxonomy of Generalizing Actions.
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(Aranda & Callejo, 2010), and real analysis (Reed, 2018). These studies have increased the
broader applicability of the taxonomy by applying it to new domains. However, they did not
challenge, refine, or extend the taxonomy itself. It was precisely for this purpose that we devel-
oped the RFE Framework, particularly in light of the anticipation that we might see changes to
the taxonomy as a consequence of investigating students’ generalizing across a broader range of
mathematical domains and levels. In the following sections, we outline how we have challenged,
extended, and refined Ellis’ (2007a) taxonomy, including what new forms and types of generaliz-
ing emerged and how particular constructs enabled us to characterize the mathematical activity
that led to productive generalizing.

Theoretical framework

We situate the RFE framework within Lobato’s (2003) actor-oriented approach by focusing on
the perspective of the learner (see also, Ellis, 2007a). Consistent with that approach, we sought
evidence of generalizing by attempting to identify the similarities and extensions that our students
perceived as general, whatever those may be, rather than relying on a predetermined set of math-
ematically correct general statements. Thus, we did not require a formal description of a correct
rule as evidence of generalizing, although we did attend to what mathematical activities promoted
productive generalizing. Instead, we probed students’ sense-making of problem situations and
investigated their conceptions of general processes and relationships, enabling a focus on what
appeared to be salient features of tasks from the student’s point of view. This does not mean that
we do not value mathematical correctness, but rather that we value what students perceive as
general and seek to understand the processes by which they develop generalizations.

Key cognitive constructs

As noted, Ellis’ (2007a) generalization taxonomy, which was also grounded in the actor-oriented
perspective (Lobato, 2003), distinguishes between generalizing actions and reflection generaliza-
tions. We drew from both parts of the taxonomy, integrating them into a single framework in
which our focus was the mental actions that support them. The key cognitive constructs we rely
on come from this attention to students’ mental actions and the need to describe, characterize,
and differentiate them. By mental action we follow Piaget’s (1970) notion of action as consisting
of goal-directed mental operations that transform a problem situation into a result. We use “way
of operating” to capture when, from our perspective, a student enacts a system of mental
operations when engaged in problem solving activity. Such a system need not be generalizing,
as the enacted way of operating could be the result of a previous generalization or merely an in-
the-moment enactment that solves the problem at hand.

Piaget and others (e.g., Piaget & Inhelder, 1971; Steffe, 1991; von Glasersfeld, 1997) have been
careful to distinguish the perspective of the subject from the perspective of the observer, noting
that constructs must originate from the observer’s perspective. For instance, von Glasersfeld
(1997) remarked that:

The constructivists who follow Piaget, attempt to think in a way that includes the observer. They are trying
to devise a model that may show one way in which intelligent organisms, who start their thinking career in
the middle of their own experience, could possibly come to have concepts of others, of themselves, and of
an environment, and could ultimately arrive at a comprehensive non-contradictory complex of livable ideas
(p. 305).

We see the attention to distinguishing the observer from the subject (or actor) as useful in
acknowledging that our descriptions and constructs of students’ activity can only ever be made
by us as observers of that activity. We see this as compatible with the actor-oriented perspective
in that as observers of student activity, we are trying to construct models of student thinking that
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reflect our hypotheses about students’ perceptions and experiences of generality. These hypotheses
are informed by our observations of student activity, by students’ descriptions of their thinking,
and by our interactions with students. If we can construct a viable hypothesis that a student per-
ceives two situations as similar, for instance, then we consider this a case of generalizing, even if
we do not perceive the situations as similar from our own mathematical perspectives. Thus, the
constructs that we describe below are observers’ second-order models (Steffe, von Glasersfeld,
Richards, & Cobb, 1983) of students, but those models are ones that are attempts to depict stu-
dents’ perspectives—i.e., they are explanatory models of students’ mathematics.

An important distinction addressing students’ ways of operating is that of figurative and opera-
tive forms of thought (Piaget, 2001; Piaget & Inhelder, 1971; Steffe, 1991). Mental operations are
always performed on either perceptually present or mentally generated (i.e., in visualized imagin-
ation) figurative material. For example, a student might envision a rectangle continuously grow-
ing along its length dimension; in this case, the figurative material is the rectangle, and the
mental operations are those that enable the student to envision the growth of the rectangle and
its properties. A student who bases judgments of growth on perceptual or sensorimotor character-
istics or the results of actions is said to be foregrounding figurative aspects of thought
(Thompson, 1985). A student who bases judgments of growth on the coordination of the mental
operations that produce growth, including its measurable attributes, is foregrounding operative
aspects of thought. In the context of a rectangle growing in length, an example of figurative
thought would be a student concluding that a graph relating area and length should be “smooth”
because the figure appears to be changing smoothly. An example of operative thought would be a
student considering the length of the rectangle varying by particular amounts, making multiplica-
tive comparisons with the amount the area varies, and then constructing a graph that represent-
ing the identified covariational relationship (e.g., a linear relationship). For the purposes of
characterizing students’ generalizing across domains, we distinguish between thought that fore-
grounds (a) perceptual or sensorimotor characteristics, (b) the coordination of mental operations,
and (c) comparisons of mental activity with the terms figurative, operative, and activity-based,
respectively. These are researchers’ second-order models of students’ mathematics, but they are
attempts to characterize what students are attending to and experiencing as salient.

Another set of constructs characterizing students’ activity is that of assimilation and accommo-
dation (Piaget, 2001; Steffe, 1990; von Glasersfeld, 1995). Assimilation is the mental action by
which the actor conceives a situation, and accommodation entails a change in their way of oper-
ating. Accommodation necessarily entails an act of assimilation, as it affords an act of assimila-
tion that reconciles some experienced perturbation (e.g., a problem to be solved). To illustrate the
relationship between assimilation and accommodation relative to generalizing actions, consider an
individual identifying a commonality across situations. Again, our characterization of this action
reflects the actor-oriented perspective in that we are concerned with the individual’s perception
of commonality, rather than our own. Initially, a person conceiving two situations may not per-
ceive a commonality among them; they might not see them as cases of the same thing. In the
context of particular goal-oriented activity, that person might experience a perturbation stemming
from those differences and sensing or anticipating that there should be commonalities not yet
conceived. In working to reconcile that perturbation, one might construct new ways of operating,
enact extant ways of operating not yet used, or combine extant ways of operating in some novel
way. Such a construction is an accommodation, and if that accommodation involves the person
now assimilating two situations as entailing some commonality not previously conceived, then
their accommodation has entailed a generalizing action.

We distinguish between minor and major accommodations when operating on a generalization
to extend it. For the purposes of this paper, a minor accommodation does not result in a change
to the ways of operating involved in the original generalizing action, whereas a major accommo-
dation involves such a change. This can result in two distinct outcomes—the first is that some
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key aspects of the original generalization are maintained, or it can result in a student forming a
new generalization. We provide an example of this distinction below in the Results section.

Ellis’ generalization taxonomy and the RFE framework

We built on Ellis’ (2007a) taxonomy in two ways in creating the RFE framework. First, we viewed
the forms of generalizing actions as a viable initial set of categories from which to develop the
RFE framework. Second, we aimed to integrate reflection generalizations into the forms of gener-
alizing, because we viewed general statements as based on mental operations, an orientation for
reflection generalizations that was not explicit in the original taxonomy. With these two uses of
the taxonomy as a starting place, our aim was to inspect whether a broader range of students,
mathematical domains, and problem types would yield different forms and types of generalizing.
In the Results section, we discuss the ways in which the RFE Framework re-conceived the major
forms of generalizing identified in Ellis’ (2007a) taxonomy, as well as the new generalization types
that emerged as a consequence of our broader data set.

Methods

This study is part of a larger project investigating students’ generalizing in interview settings,
teaching experiments, and design experiments. For the purposes of this paper, we draw on a ser-
ies of individual semi-structured interviews (Bernard, 1988) with middle-school, high-school, and
undergraduate students in the domains of algebra, advanced algebra, trigonometry/pre-calculus,
and combinatorics in order to elicit and characterize students’ generalizations in domains and
tasks that go beyond the typical patterning activities often seen in the generalization literature.
Below we discuss the participants, instruments, and analysis methods for the study.

Participants and data collection

We conducted a total of 146 individual semi-structured interviews with 93 participants across 4
research sites (see Table 1). At sites 1 and 2, we recruited from local middle and high school
classrooms by sending fliers home with students. At sites 3 and 4, we recruited undergraduate
students in relevant courses through in-class and email announcements. At each site, we inter-
viewed the first students who indicated that they wanted to participate (that is, we did not restrict
eligibility for participation beyond enrollment in the class in which we recruited). Thus, we did
not narrow the interview pool based on mathematical backgrounds or achievement levels, other
than at Site 3, in which we sought out a pool that consisted both of students who had and had
not taken discrete mathematics. This recruitment method aligned with our goal of intentionally
interviewing a broad swath of students across and within grade levels. It was not our intent to

Table 1. Distribution of topics, interviews, and participants across the 4 research sites.

Site Topic Interviews Participants

1 Algebra 1 individual 60–90min interview 10 middle-school students (5 M, 5 F)
Algebra and Advanced Algebra 11 high-school students (7 M, 4 F)

2 Combinatorics (MS) 2 individual 60-min interviews 19 middle-school students (11 M, 8 F)
Combinatorics (HS) 13 high-school students (9 M, 4 F)

3 Combinatorics (pre-discrete) 1 individual 60–90min interview 21 pre-discrete undergraduate students
(17 M, 4 F)

Combinatorics (post-discrete) 6 post-discrete undergraduate students (6 M)
4 Trigonometry/Pre-calculus 3 individual interviews, each 60–120min 10 undergraduate students (8 F, 2 M)

Trigonometry/Pre-calculus 2 individual interviews, each 60–120min 1 undergraduate student (1 F)
Trigonometry/Pre-calculus 1 individual interview, 60–120min 2 undergraduate students (1 F, 1 M)
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make associations based on students’ background knowledge. All interviews were video recorded
and transcribed, and we used gender-preserving pseudonyms for all participants.

Instruments

Given our definition of generalizing as identifying commonality, deriving broader results from
particular cases to form general relationships, rules, concepts, or connections, or extending one’s
reasoning beyond the range in which it originated, we chose task-based, semi-structured inter-
views in order to engineer opportunities to observe students engaging in these activities. During
the interviews, we presented the participants with tasks to elicit generalizations, and we asked
them to identify patterns and themes, discuss any elements of similarity they noticed, and explain
and discuss the generalizations they formed. Table 2 presents a representative sample of the inter-
view tasks across the mathematical domains. We include these specific tasks in the table because
we refer to them in the Results section to discuss specific data episodes.

Consistent with the actor-oriented approach, our aim was to probe the students’ identified
similarities and relationships, regardless of their mathematical correctness from our perspective.
The algebra, advanced-algebra, and trigonometry/pre-calculus topics included linear, quadratic,
higher-order polynomial, and trigonometric functions. The combinatorics topics included count-
ing tasks involving quadratic and cubic relationships and questions about the binomial theorem.
We chose tasks to reflect a variety of topics as well as different types of generalizing based on
Ellis’ (2007a) taxonomy. A key feature of the interview tasks is that they were not restricted to
the typical patterning activities commonly reported in the generalization literature, in which stu-
dents are presented with a series of mathematical terms or figures and are then asked to develop
expressions for the nth term. We see those tasks as valuable, but we were also interested in
exploring students’ generalizing in other types of tasks as well. The interviews included some
tasks of this nature—for instance, see the advanced algebra and combinatorics examples in Table
2—but they also included open-ended tasks that challenged students’ mathematical thinking.
Examples of those can be seen in the middle-school algebra and precalculus tasks in Table 2.

Analysis

We relied on the constant comparative method (Strauss & Corbin, 1990) to analyze the interview
data in order to identify forms and types of generalization. For the first round of analysis, we
drew on Ellis’ (2007a) taxonomy to infer categories of generalizing based on students’ talk, ges-
tures, diagrams and task responses. Three questions guided our initial analysis. The first was,
“What is the content of the generalization?” For instance, an example of a generalization we
could describe is, “Each time the rectangle’s side length grows by 1 in, the area grows by 3 in2.”
In operationalizing the actor-oriented perspective, we identified the content of the students’ gen-
eralizations regardless of their mathematical correctness. Our aim was to find all of the similar-
ities, connections, relationships, rules, etc. that the students identified, even if they may not have
corresponded to our predetermined expectations of the particular generalizations we anticipated
based on the task structure. Many of the participants’ generalizations were not ones we antici-
pated based on the task structure.

The second question was, “What is the generalization based on, and can we articulate the
mental operations that formed it?” For instance, is the student generalizing based on reflecting on
their mathematical activity, based on noticing a pattern in the numbers or figures, based on iden-
tifying a relationship between quantities, or based on some other activity? Consistent with the
actor-oriented perspective, we sought to identify these operations based on the students’ observed
activity, language, gestures, etc., rather than identifying operations based on an a priori determin-
ation of the type of mental operation that should be leveraged based on the task. As an example,
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for the generalization that the area of a rectangle grows by 3 in2 for each 1-in increase in side
length, the student may have generalized based on noticing a pattern in the associated side length
and area pairs, after developing multiple examples.

Table 2. Concise versions of sample interview tasks.

Interview Task Domain and
grade level

The rectangle below grows along the dotted path as shown:

Complete the following statement: When the length of the rectangle’s side grows by
_____, the area grows by _____.

Algebra, middle 
school

Consider the following sequence of figures. How much does the area grow from one 
step to the next, and what is the new total area each time? How big would the total
area be for (a) Step 10, (b) Step 100, (c) Step x? Advanced 

Algebra, high 
school

Combinatorics, 
middle school

I have a password consisting of the letters A and B. I want to make all possible 
passwords. How many such passwords are there of length 3? Length 4?  Length n? Combinatorics, 

undergraduateI have a password consisting of the characters A, B, and 1. I want to make all
possible passwords. How many such passwords are there of length 3, 4, and n?

You’ve decided to road trip to C for spring break. Of course, this means traveling
around B on your way down and back, because who would want to go through B? 
The animation represents a simplification of your trip there and back. (a) Create a 
graph relating your total distance travelled (x-axis) and your distance from B (y-axis)
during your trip. (b) Create a graph relating your distance from B (x-axis) and your
distance from A (y-axis) during your trip. 

Precalculus, 
Undergraduate
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The final question was, “What is the form and type of generalizing?” This question was related
to discerning forms of generalization as identified in Ellis’ (2007a) taxonomy, such as relating,
searching, and extending, as well as identifying new potential forms and types based on our data.
For the above example, the student may have developed a generalization based on searching for
the same relationship between the side length and the area across multiple cases. As with the
other two questions, our analysis of this question had to be emergent in order to honor the
actor-oriented perspective. We sought to abandon preconceived assumptions about the forms and
types of generalizations a task should elicit in favor of simply exploring the forms and types of
generalizations each task did elicit.

Beginning with 1–3 sample interviews from each of the four sites, the project team met and
analyzed each of the interviews together as a group for an initial round of coding. This first
round, based on the above three guiding questions, led to an initial set of emergent forms and
types. Then, for the mental operation constituting the basis of the generalization, we developed
emergent categories such as operating on the structure of a prior generalization, on an extant
scheme, on reflecting on activity (such as counting, forming relationship between quantities, or
other activities), or on operative or figurative material, among others. The results of this round of
analysis are presented in the second part of the Results section, in which we discuss the utility of
the framework. In particular, by identifying the mental operations constituting the basis of each
generalization, we were then able to examine which operations undergirded those generalizations
that we deemed generative.

The project team met weekly to refine and adjust the codes in relation to one another. This
iterative process continued until no new codes emerged, and none of the existing codes
required refinement. At each of the four sites, the local project team collaboratively coded all
of the site interviews via the qualitative software program MaxQDA, meeting weekly to discuss
and resolve any discrepancies in the coding. At the completion of this process, the entire pro-
ject team across all four sites then coded two interviews from each of the sites, meeting
together in order to discern coding agreement across the entire project team as well as collab-
oratively discuss and resolve any remaining discrepancies. Our process of collaboratively
resolving discrepancies and establishing common understandings of the coding categories fol-
lowed Syed and Nelson’s (2015) recommendations for establishing reliability in qualitative
research. Namely, they argue for adherence to rigor rather than reliability, in which research
teams develop and implement a coding system in a manner that emphasizes multiple readings
of the data and relies on group consensus.

Results

Our analysis of 146 interviews with 93 participants yielded two major results. The first is an
empirically-grounded updated framework that captures the broad range of generalizing activity
for multiple content domains and levels. We introduce the RFE Framework in Table 3 and then
discuss in detail the elements that differ from Ellis’ (2007a) generalization taxonomy. Our second
result identifies two key elements of what we call generative generalizing activity, namely, (a)
operative activity, and (b) building and refining activity. We elaborate on each of these
results below.

The relating-forming-extending (RFE) framework

The RFE framework identifies three major categories of generalizing: relating, forming,
and extending. We call these major categories forms of generalizing, and then each of the
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sub-categories within them types. This is to distinguish between the broader structure of the gen-
eralizing actions (the form), and the traits of each of the generalizing actions (the type) grouped
together within one form. Relating is the identification of similarity across situations, problems,
or strategies that the learner perceives as distinct contexts. Forming is the development of an ini-
tial, sometimes tentative generalization, and extending is the use of that generalization, sometimes
to a broader domain. These three forms are not necessarily hierarchical in sophistication or in
temporal occurrence; relating does not necessarily have to occur before forming and extending.
Forming and extending actions, however, do typically occur as part of a two-part process of gen-
eralizing. In the first part, one might develop an initial generalization, which we characterize as
forming, and then when extending, students may apply the generalization they formed. Thus,
extending does presuppose an existing generalization that has been formed, but forming does not
necessarily always lead to extending. It is often through the extending process that a generaliza-
tion becomes solidified. This does not mean, however, that extending is necessarily more complex
than the action of relating or of forming. In the Utility of the Framework section below, for
instance, we detail one extended example of a student, Willow, who seamlessly shifts back and
forth between forming and extending, while also shifting between types within each of
those forms.

Table 3. The relating-forming-extending framework.

RELATING Relating Situations: Forming a relation of
similarity across contexts, problems,
or situations.

Connecting back: Forming a connection between
a current and previous problem or situation.

Analogy invention: Creating a new situation or
problem to be similar to the current one.

Recursive embedding: Embedding a previous
situation into a new one as a key component
of the new task.

Relating Ideas or Strategies (Transfer): Influence of a prior context or task is evident in a student’s
current operating.

FORMING Associating Objects: Forming a relation of
similarity between two or more present
mathematical objects.

Operative: Associating objects by isolating a
similar property or structure.

Figurative: Associating objects by isolating
similarity in form.

Activity-based: Relating objects or ideas based
on identifying the product of one’s activity
as similar.

Searching for Similarity or Regularity: Searching to find a stable pattern, regularity, or element of
similarity across cases, numbers, or figures.

Isolating Constancy: Focusing on and isolating a constant feature across varying features without
reaching the final stage of fully identifying a regularity, pattern, or relationship across those cases.

Establishing a Way of Operating: Establishing a new way of operating that has the potential to
be repeated.

Identify a Regularity: Identification of a
regularity or pattern across cases, numbers,
or figures.

Extracted: Extracting regularity across
multiple cases.

Anticipated: Describing a predicted stable
feature that the student anticipates will hold
for future cases.

EXTENDING Continuing: Continuing an existing pattern or regularity to a new case, instance, situation, or scenario
beyond the one in which the generalization was developed.

Operating: Operating on an identified pattern,
regularity, or relationship in order to extend it
to a new case, instance, situation, or scenario
beyond the one in which the generalization
was developed.

Minor accommodation: Making a minor change
to a regularity in order to extend it to a
new case.

Major accommodation: Making a significant
change to the structure of a regularity in
order to project it to a far case or to make
sense of a new relationship.

Transforming: Extending a generalization by changing the generalization to be extended; in contrast to
operating, the generalization itself changes in the act of transforming.

Removing Particulars: Extending a specific relationship, pattern, or regularity by removing particular
details to express the relationship more generally.
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Table 3 provides an overview of the generalizing forms and types along with their definitions.
The shaded cells are the types that are novel, in that they capture generalizing that was not pre-
sent in Ellis’ (2007a) generalization taxonomy. Below we explore those novel types in more detail
for each of the three forms. We also address, within each form, the ways in which the types of
generalizing may or may not be hierarchically related.

Relating
One way in which we refined the relating category as part of developing the RFE Framework is
that we use relating only to identify generalizing actions that occur between what the student per-
ceives as two distinct tasks or contexts. In that way, relating is intended to capture a larger grain
size of cognitive acts that occur over a sequence of tasks and period of time. There are two major
types of relating, relating situations and relating ideas or strategies. When relating situations,
students form a connection between what they perceive as the current situation and a differ-
ent situation. The different situation may be one they have previously encountered (i.e., con-
necting back), or they may generate a new situation that entails similar features to the current
situation (i.e., analogy invention). This connection is explicit, and we coded activity as relating
situations when students could verbally describe a connection. In contrast to relating situa-
tions, relating ideas or strategies may not be explicit or verbalized, but occurred when we
found evidence that a student’s prior ways of operating influenced their current ways of oper-
ating with the task at hand. This influence is typically described as transfer, and Ellis (2007a)
characterized it as such in the reflection generalizations part of the generalization taxonomy.
As an example, an advanced-algebra high-school student considered the L-shaped rectangle
task from Table 2. This was a pattern task in which the students were asked to determine
the nature of growth from one figure to the next. The student distinguished the area of the
rectangle in the original step as “P” from the combined area of the two added pieces in Step
A as “V”: “Let’s do V for valence because that’s one word I know for outer ring.” When the
interviewer asked the student if that term was from his chemistry class, the student
responded, “Yep. Like the valence electrons… how much that equals plus the previous one,
would equal your new answer.” The student understood valence as a recursive relationship
and interpreted the new task as a relationship with the same recursive structure.

We have also identified a new type of relating situations that was not present in the gener-
alization taxonomy or in other generalization constructs, called recursive embedding (also
described in Lockwood & Reed, 2016). When recursively embedding, a student reflects on
prior activity (often as a consequence of connecting back) and inserts that activity into one
part of a new situation. Because recursive embedding is a novel type of generalizing, we pre-
sent an example with an undergraduate vector calculus student, Tyler, who worked on the
Passwords Task (see Table 2).

In the Passwords Task, students had to count 3, 4, and 5-character passwords consisting of the
letters A and/or B, and then create tables that organized the passwords according to the number
of As in them. Then, students would count 3, 4, and 5-character passwords consisting of the
characters A, B, and/or 1, again creating tables that organized passwords but according to the
number of 1 s in the passwords. (Note that the presentation of this task was accompanied by
prompts for students to engage in listing, and thus the students did not interpret them as text-
book tasks that could be answered with the use of a formula.) We highlight this example in order
to characterize the nature of recursive embedding as a student works with a complex, hierarchical
series of tasks.

In order to determine the total number of 3-character AB passwords, Tyler created a system-
atic, organized list of outcomes (Figure 2). Tyler used his list to correctly create a table of the
number of passwords that contained a certain number of As in a 3-character password, and then
completed similar tasks for 4- and 5-character passwords.
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In the episode relevant to recursive embedding, Tyler was working on a problem that asked
for the number of 4-character passwords using As, Bs, and 1s. As part of this, he created a table
according to the number of passwords that contained a certain number of 1s in it, and estab-
lished that there was one password with four 1s and 16 passwords with no 1s. In working on the
row for one 1, Tyler introduced a way of describing a general outcome involving 1s and xs.
Specifically, he wrote four general outcomes 1xxx, x1xx, xx1x, and xxx1 (Figure 3(a)), and he
used those generalized outcomes to fill out his table. Tyler discussed his reasoning while referring
back to his three-character AB table (Figure 3(b)), explaining that “There is only a certain
amount of spots for it. Like it has to be… like, I’m just going to use x because, has to be in one
of these spots”:

Figure 3. Tyler’s List of One 1 and Three xs (a), and Tyler Explicitly Refers Back to the 3-Character AB Table (b).

Figure 2. Tyler’s List of the Eight 3-Character AB Passwords and the 3-Character AB Table.

Tyler: So, there’s – now there’s just three xs, and I know that for… 3 spots with 2 different letters
there’s going to be eight different ways to do it [points back to the previous 3-character
AB table, see Figure 2]. Um, so I guess eight, there’s eight different of each of those, just
using this same table [points to the 3-character AB table]. Um, there’s just 32. So, I want
to say there’s gonna be, um, 32 for just the one.

Int.: Okay. And you got – you’re thinking of that as kind of the 4 times 8?
Tyler: Yeah. I just – adding them all up [referring to adding the four groups of 8].
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Tyler recognized the xs in the 1xxx structure in the AB1 situation as representing placeholders
into which he could embed activity from a previous situation (listing AB passwords). Tyler per-
ceived the AB and AB1 passwords contexts as distinct but related via this embedding activity. He
was also explicit in his use of his prior work in making sense of a new, more complex task. In
doing so, Tyler was able to create a more general representation relying on 1s and xs.

Recursive embedding initially emerged from analysis of the undergraduate and high-school stu-
dents’ work on combinatorics tasks. We posit that recursive embedding emerged in this context
because many of those tasks were hierarchical in nature, with repeated elements across many sub-
tasks as in the Passwords task. Recursive embedding is not unique to the domain of combinatorics,
however, and once this category was identified, we then found instances of it in other domains,
such as advanced algebra. These instances often occurred when students worked with tasks with
repeated elements, such as in the L-shaped rectangle task and the quadratic growing rectangle task
(Figure 4). In that case, we saw instances of students embedding the growth pattern from the prior
L-shaped task into the new task and then adjusting the pattern to relate it to the corner squares.

Forming
As we described above, if the participants indicated that they saw their actions as spanning two
or more different situations, we coded their generalizing as relating, even if, from our perspective,
those situations were the same. If the participants identified relations of similarity but they per-
ceived those relations to be occurring within one situation, we coded their generalizing as form-
ing. Consequently, the forming activity of associating objects, which is the formation of a relation
of similarity between two or more mathematical tasks or other representations, is similar to the
category “relating objects” from Ellis (2007a) generalization taxonomy, but in that taxonomy, it
was situated within relating. There are three types of associating objects: operative, figurative, and
activity-based. These three types are based on the locus of mental activity that forms the associ-
ation: Is the student attending to similarity in structure or function through the coordination
and transformation of mental operations (operative), similarity in perceptual or sensorimotor
characteristics (figurative), or similarity in the products of their own mental operations (activity-
based)? The operative and figurative types are similar to constructs that appeared in the general-
ization taxonomy, but the activity-based type is new.

Figure 4. Quadratic Growing-Rectangle Task.
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As a brief example of these three types of associating objects, a student could associate the
sine curve with circular motion through conceiving each as representing an invariant relationship
of co-varying quantities (operative), through conceiving the sine curve as smooth because the
motion is perceived as continuous (figurative), or through conceiving two objects being composed
of points with the same numerical pairs (activity-based). We discuss the activity-based type in
more detail below in the Utility of the Framework section.

Associating objects is not a searching action, but there are other searching actions that do
occur within forming, similar to those depicted in the generalization taxonomy. Drawing on the
constructs of assimilation, accommodation, and perturbation, we understand searching to occur
when a student has experienced a perturbation that leads to a search for an element of similarity.
Thus, searching for similarity or regularity involves the attempt to find a stable pattern or regular-
ity across cases. This search can sometimes result in the isolation of a property that remains
unchanged across variation of other elements; we term this isolating constancy. Isolating con-
stancy can also occur when students simply notice a feature or characteristic that remains
unchanged across multiple iterations of the same situation. This does not necessarily have to be
the result of a searching action, but it can instead reflect the activity of attending to a constant
feature across variation. This was a typical occurrence, for instance, in students’ exploration of
the L-shaped rectangle task (Table 2), in which they isolated the area of the base rectangle in
each of the steps to be 15 cm2.

Isolating constancy often occurs as a precursor to identifying a regularity. This type of general-
izing was present in the original generalization taxonomy, but as a reflection generalization. In
the RFE Framework, we identified two new subtypes of identifying a regularity: extracted, in
which one explicitly identifies or describes a common feature across multiple observed cases, and
anticipated, in which one predicts that a feature will continue to future cases, even if this has not
been observed in multiple cases. Whereas an extracted generalization can occur as a result of
searching, an anticipated generalization stems from an already known feature. As an example of
this distinction, consider the work of Joyce and Cordelia. Joyce was a 9th grade student in
Honors Algebra, and Cordelia was a 10th grade student in Geometry. When working with the L-
shaped rectangle task, Joyce and Cordelia both identified a regularity, but we interpret that
Joyce’s regularity was extracted and Cordelia’s was anticipated.

Joyce calculated the area of the original figure to be 15 cm2, calculated the area of the Step
A figure to be 23 cm2, and then calculated the area of the Step B figure to be 31 cm2. She
noticed that each new area value was 8 cm2 greater than the previous, which she used when
the interviewer asked her to determine the growth in area from Step B to Step C. Joyce then
identified a regularity when she explained how she noticed the growth of 8 cm2: “Because it’s
a pattern. You’re adding the same amount each time, so it’s growing by the same amount
each time, which is 8.” She extracted the pattern of adding 8 from the original figure to Step
A, and from Step A to Step B, and then was able to use this pattern to determine the area
for other figures.

Cordelia, in contrast, did not determine that the area grew by 8 cm2 from one figure to the
next through calculation. In fact, she did not calculate any area values before anticipating that the
growth would always be 8 cm2:

Int: How much does the area grow by from the original to Step A?
Cordelia: 8 centimeters. I think. Yes. That is my final answer.
Int: Final answer, and will you explain how you thought about that one?
Cordelia: Well, it says that each of these are 1 centimeter (points to the added rectangular sections in Step A), and

so if it grows by 1 centimeter like that, it’s still multiplied by the bottom, like, base. And so, 1 by 5 is
5 and then the same thing with the other side. So, 1 by 3 is 3 and then you just add 8 onto the
original square.
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When next asked to determine the growth from Step A to Step B, Cordelia did not calculate,
but she anticipated that the growth would be 8 cm2 again: “I don’t have measurements but if it’s
the same then yeah, 8 centimeters.” Cordelia then began operating with the þ8 pattern as a regu-
larity, determining that she could multiply 8 by the number of steps to find the amount of added
area from any one given step to a later step. When asked to find the amount of area for the fig-
ure in the 10th step, Cordelia jumped straight to writing the rule 15þ 8x. She did not extract a
generalization that the area would always grow by 8 from multiple instances of calculation across
the figures, but instead she anticipated the regularity across all future cases, based on her under-
standing of the nature of each figure’s growth. Note that this type of generalizing occurred in
other domains as well, particularly when students could reflect upon multiple events or outcomes
(whether those were figural patterns, numerical relationships, or another kind of mathemat-
ical object).

The final generalizing type within forming is establishing a way of operating, which is also a
novel construct that was not present in Ellis’ (2007a) taxonomy. When establishing a way of
operating, students form novel mental operations that become the foundation for generalizing
that can be applied to a broader domain. As an example, we present Keisha’s work on the num-
ber cards task, the middle school combinatorics Task A and B from Table 2. Keisha was taking a
7th grade mathematics class that prepared her to take pre-algebra in 8th grade.

To solve Task A, Keisha first created six coordinate points by physically drawing cards from a
deck of numbered cards. The interviewer then asked her to create a list of all of the possible
coordinate points. Initially she listed pairs of coordinate points (e.g., (1, 2) and (2, 1), then (3, 5)
and (5, 3), etc.) until she realized that she was unable to tell whether she had created all of the
possible coordinate pairs. She abandoned this method and introduced a systematic method for
listing (Figure 5(a)), eventually making an array (Figure 5(b)).

Figure 5. Keisha’s Lists and Arrays for the Number Cards Task.
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Keisha was then asked to respond to Task B, specifically how many new coordinate points she
could make if she were given one additional card, numbered 6. She began by listing the coordin-
ate points shown in Figure 5(c), indicating that those were all of the coordinate points she could
make with six. The interviewer asked her to check by making further coordinate points with the
actual cards. Keisha drew one from the deck, and then said, “Oh you could do one, six.” She con-
tinued, “I was just thinking of like you can add one, six [pointing in Figure 5(a) to where it
would be added to the column of coordinate points that have one in the first position, then con-
tinuing to point to the appropriate location in Figure 5(a), while saying]; two, six; three, six; four,
six; and five, six.” Keisha then noted that she had added one new coordinate point to “each of
five boxes” in Figure 5(a) and one “new box of six” coordinate points (Figure 5(c)). She then
identified the coordinate point (6, 6) as special because “it had six in the first and second spot.”
Keisha illustrated this observation on her array (Figure 5(d)), and wrote that the total number of
coordinate points could be expressed as “36¼ 25þ 5 þ 5þ 1.”

We coded Keisha’s work as establishing a way of operating. We used two criteria for this
code: (a) when we could infer that a student was engaged in a significant coordination of novel
mental operations; and (b) when we could infer that it was a baseline way of operating that sup-
ported students to engage in subsequent generalizing actions. In Keisha’s case, she initially con-
sidered an increase in the coordinate points along only a single dimension of the array, but
subsequently considered an increase in the coordinate points along both dimensions, structuring
this increase as 5þ 5 þ 1, according to whether the new digit was in the first position, the second
position, or both positions. Further, once she had established this way of operating, it was the
basis for a number of additional opportunities to generalize. For instance, it enabled her to iden-
tify a regularity (extracted) when she worked on Tasks C and D, during which she stated that she
produced new coordinate points “each time by adding one to each of my original boxes, adding a
whole new box” that had the same number of coordinate points as the number she had added
when adding one to each box “plus one special one (the coordinate point that had the same digit
in the first and second position).”

Establishing a way of operating can be a challenging type of generalizing to identify, because
finding evidence of it requires observation of a student’s extended engagement in a task or a ser-
ies of tasks over time. Many of the initially-determined cases of this category occurred at the
undergraduate level, in advanced algebra and combinatorics, perhaps due to the students’
increased capacity to explain their thinking compared to the high-school and middle-school stu-
dents. Once we established this type of generalizing, we then revisited the remainder of the data
corpus and found additional instances of establishing a way of operating across domains and at
all levels.

Extending
Once formed, a generalization can be extended to a new case. One of the central differences
between the extending category in Ellis’ original taxonomy and extending in the RFE Framework
is that in the RFE Framework we have accounted for when a generalizing action includes learning
(accommodation), as well as the nature of the learning involved in the extending action. By doing
so, all extending actions are differentiated based on specific qualities of learning that occur.

We found four major types of extending: continuing, operating, transforming, and removing
particulars. Continuing, which existed in Ellis (2007a) taxonomy, is the most straightforward type
of extending: when continuing, a student does not alter the generalization, but simply applies an
already-formed regularity to a new case. When operating, a student will alter the expression of
the generalization in order to extend it to a new case. Operating was present in the original tax-
onomy, but we identified a novel distinction between two subtypes of operating, specifically
minor accommodation from major accommodation. Recall that the difference between a minor
and major accommodation depends on a researcher’s model of the student; taking the actor-

368 A. B. ELLIS ET AL.



oriented perspective, we judge an accommodation relative to the significance it has for the stu-
dent’s understanding of a task and the extent to which it requires a structural change to their cur-
rent ways of operating. To illustrate this difference, we draw on the work of Patty, an
undergraduate student in a trigonometry/pre-calculus course, in the “Going Around Gainesville”
task (Table 2) (Moore 2019). Although Patty only experienced a temporary accommodation, her
activity illustrates the potential of a major accommodation. Against that backdrop we identify
examples of minor accommodations.

In Part (a), Patty drew a graph (Figure 6) indicating that, for the first portion of the trip, the
distance from B was decreasing at a constant rate as total distance increased from 0. Patty also
provided evidence that she was able to reason about the relationships between these two distances
as co-varying quantities.

Patty experienced difficulty in solving Part (b), and we inferred she had generalized that
graphing a relationship such that a quantity decreases at a constant rate as another quantity
increases from 0 entails “starting” on the y-axis and then progressing down and to the right. To
graph such a relationship for Part (b), one must begin graphing on the x-axis as seen in another
student’s work (Figure 7). Patty struggled to extend her generalization to this new case, and she
spent a sustained period of time attempting to “start” her graph on the y-axis in order to extend
by continuing her generalization to Part (b). Patty eventually drew a graph with the axes’ referents
switched, which allowed her to use her previous generalization. Suggesting a potential accommo-
dation, Patty then operated on that generalization to consider beginning her graph on the x-axis
and drawing it right to left. However, she questioned the viability of her solution, saying, “It’s
backwards so I don’t like it,” “My graph is from right-to-left, which is probably not right,” and “I
think I’m missing something.” She then abandoned a graph that starts on the x-axis and is drawn
upward from right to left.

Patty’s goal and understanding of drawing a graph as a representation of two co-varying quan-
tities did not change from Part (a) to Part (b), nor did she have difficulty sustaining an image of

Figure 7. A Sample Graph of a Normative Solution for Part (b) (Distance from B is on the x-axis and Distance from A is on the
y-axis).

Figure 6. Patty’s Graph for Part (a) (y-axis is “Distance From B,” x-axis is Total Distance Traveled).
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the relationship she intended to graph. Rather, her difficulty was in attempting to operate on her
extant generalization for how to draw a graph in order to extend it to an alternate orientation of
axes. Suggesting a potential major accommodation, Patty’s operating on her generalization was
effortful and indicates she was in the process of re-conceiving graphing a relationship as a process
not constrained to a specific axis orientation. As further evidence of Patty being on the verge of a
major accommodation, she questioned the viability of her temporary accommodation, which
highlights that such an accommodation carried with it a significant change to her extant general-
ization regarding graphing.

Although Patty’s accommodation was only temporary, her actions illustrate that a major
accommodation results in a structural change to a generalization. In her case, and had her
accommodation been permanent, that structural change would have involved a shift from fore-
grounding the direction a graph is drawn to a generalization that privileges the covariational rela-
tionship being represented. As stated above, we judge minor versus major accommodations based
on the relative importance that it has for a particular student. As an example of a minor accom-
modation, a different student might solve Part (a) of the task, making a similar generalization as
Patty. In solving Part (b) of the task, this student might treat the x-axis like the y-axis through a
mental rotation of the axes, and then draw the graph shown in Figure 7 with relative ease. In this
case, the student would have operated on their initial generalization by combining it with envi-
sioning a rotation of the axes. Such an accommodation would be minor because the structure of
the regularity would remain essentially equivalent except for conceiving it in combination with
mentally rotating axes.

The above example highlights that content involving covarying relationships and graphing
conventions could be particularly well-suited to elicit minor and major accommodations, but,
again, we saw instances of this phenomenon among other domains. The specific features of an
accommodation depend on the particular mathematical concepts at play, but the occurrence of
an accommodation can occur in any content area.

The remaining two types of extending are removing particulars and transforming. As in
Ellis’ (2007a) generalization taxonomy, removing particulars involves expressing a regularity
more generally, which could occur as a verbal or an algebraic description. Transforming
involves changing the generalization itself. This is a novel type of activity that has some simi-
larities to Ellis’ “extending by operating,” in which students would operate on a generalization
in order to generate new cases, but it also has some important differences. In order to clarify
the distinction, we ask the reader to recall the quadratic growing rectangle task from Figure
4, in which students are presented with a sequence of rectangular figures and must determine
the total area for any given step. One participant, Xander, wrote “Area ¼ 5xþ 3xþ 15þ x2”
to express the area of a figure at Step x. If Xander were to extend by operating, he could
consolidate his actions of separately adding 5 square units times the step number and then
adding 3 square units times the step number into adding 8 square units times the step num-
ber, which could be expressed as 8xþ 15þ x2. The consolidation of 5xþ 3x into 8x is a
minor accommodation to his existing generalization, and the generalization itself did not
change. In other cases, however, we found instances in which our participants actually
changed the content of the generalization itself.

For instance, when Caleb worked on the linearly-growing rectangle task shown in Table 2
(second row), he wrote “A ¼ (5þ n)(3þ n) – n2” to express the area of a Step n figure by imag-
ining the entire rectangle and then subtracting the missing portion. When Caleb then shifted to
the quadratic growing rectangle task, he transformed his prior expression, “A ¼ (5þ n)(3þ n) –
n2”, to “A ¼ (5þ n)(3þ n)”, reasoning that he no longer had to subtract the missing corner. In
this transformation act, the content of the generalization itself changed.

As we described when introducing the RFE Framework, extending a generalization means
that there had to have been, prior to the extending activity, the action of forming a
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generalization. Within extending, the different generalizing types can at times follow a loose
progression, but this is not always the case. Operating via a major accommodation, for
instance, may be a more conceptually difficult act than transforming, particularly if the trans-
formation is not a challenging one. Students may continue without ever operating or trans-
forming. Removing particulars is an extending action that can follow multiple instances of
continuing, operating, or transforming, but this did not always occur in our data set. We
found multiple instances of students forming a generalization and then shifting to removing
particulars in order to express a formal algebraic relationship, all before ever engaging in any
of the other extending actions.

Utility of the framework: mental activity undergirding generative generalizations

In order to further examine the framework’s utility, we now shift to a consideration of our third
research question: What aspects of mathematical activity foster productive generalizing? Across
all domains, we observed episodes of generalizing that we perceived to be generative in nature.
The generative learning model was first introduced by Osborne and Wittrock (1983), in which
they characterized generative learning as combining previous knowledge with new knowledge;
new ideas are integrated with a student’s existing ways of thinking. For our purposes, we charac-
terize generative generalizations as having two main attributes. They facilitate extending, in that
they allow for the generalization to be expanded to accommodate new cases, and they can be
effectively justified, which we consider an indication that students have a conceptual understand-
ing of what is being generalized. Note that a characterization of which generalizations are genera-
tive are ones that we established as observers. Nevertheless, we still attempted to adopt the actor’s
perspective when considering how students viewed their generalizations as amenable to extending,
as well as what students viewed to be convincing justifications. Thus, a given generalization may
be more or less generative depending on how a student makes sense of it: what might appear to
be the same act of generalizing to the observer may be more meaningful for a student who can
justify that generalization.

The above attributes are how we characterized the generalizations that the students produced
as generative. Once these generalizations were identified, we then turned to investigating students’
mathematical activity when producing them. By mathematical activity, we mean an individual’s
ways of operating when engaging in mathematical thinking. Our aim was to determine whether
there were any common aspects of mental activity across the instances of generative generaliza-
tions that were not domain dependent. Specifically, were there aspects of students’ mental activity
that were typically present in the production of generative generalizations, but not typically pre-
sent in the production of the non-generative generalizations? We found two aspects: (1) operative
activity, and (2) building and refining activity. We discuss each aspect in turn with exemplifying
data episodes drawn from different domains.

Operative activity
A key distinguishing factor in instances of generative generalizations was whether students’ initial
activity was figurative or operative. Recall that operative associations involve the coordination and
transformation of mental operations (i.e., function or structure), while figurative associations
involve perceiving similarity in perceptual or sensorimotor characteristics, often in ways tied to
the results of activity. We offer an example from two undergraduate combinatorics students,
Jonas and James, to clarify this distinction as it relates to the generativity of students’
generalizations.

Jonas, a vector calculus student, and James, a student who had completed discrete mathemat-
ics, both worked on the Passwords Task. Both students associated objects, but there were
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important differences in their mental activity when filling out the AB tables. In completing the 3-
character AB password task, Jonas correctly created the table in Figure 8 by listing outcomes. He
then conjectured that for a length-n password there were 2n possible outcomes (an identification
of a regularity (anticipated)), and he observed the symmetric nature of the table.

The interviewer then asked Jonas to create a 4-character AB table, organized according to the
number of As in the password. In his first attempt (Figure 9(a)), Jonas copied the form of the 3-
character AB table in an attempt to ensure that the total would be 16 (24), even though the num-
bers did not properly align with the number of rows. After some examination he corrected the
table by crossing out numbers and arriving at 1, 4, 6, 4, 1 (Figure 9(b)), but we infer that this
was based on a pattern of totaling 16 and maintaining symmetry. That is, he engaged in forming
by associating objects, in this case between the 3-character and the 4-character tables, but that
association was based on figurative activity, namely, the result of the table entries in the right-
hand column – they maintained the symmetric structure of numbers obtained previously.

As further evidence of this claim, when Jonas filled out the 5-character table, he guessed and
checked to create a pattern that resembled the symmetric form of the previous tables, explaining,
“I’m just trying to follow the same pattern.” Jonas’ attention was to the result of his activity in
producing outcomes with symmetry in the table entries. In addition, Jonas could not justify why
that symmetry made sense beyond maintaining a result achieved in the first task. Ultimately, he
was limited in the kinds of generalizing he could do beyond the 3-character AB case. Because he
understood the tables in terms of numerical patterns that must maintain a symmetric form, Jonas
struggled to make sense of what was happening combinatorially in future activity. Jonas’ general-
izations were correct, but they were not generative because they did not facilitate extending and
he could not justify them.

Figure 8. Jonas’ 3-Character AB Table.

Figure 9. Jonas’ 4-Character First Attempt (a) and Second Attempt (b) 4-Character AB Tables.
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In contrast, we characterize James’ initial activity when filling out his tables as operative
because it foregrounded the underlying structure of his counting activity. The following exchange
occurred when James filled out a table for the 3-character AB passwords, and it demonstrates
that he thought about the combinatorial context as he completed the table (Figure 10). He deter-
mined there would be one password containing no As, and then reasoned about how to find the
number of passwords with one and two As:

James engaged in similar reasoning for the 4-character AB case. He did not need to guess and
check for the purposes of maintaining particular numerical patterns, but rather he provided com-
binatorial explanations for the respective entries and used systematic listing to complete the
tables. When asked about the symmetry of his tables, James replied:

Here James isolated not just the symmetric results of prior tables, but he recognized the
underlying combinatorial property of why the tables must be symmetric – namely the fact that
As and Bs will behave similarly with respect to counting strategies. Thus James, like Jonas,
engaged in forming by associating objects, but his association was operative. He associated the
tables based on identical counting structures between 0As and 5As. James was able to justify his
forming activity combinatorially, and he went on to successfully use his combinatorial reasoning
to form and extend new generalizations.

We found that a student’s initial mental activity provided an influential foundation for the
generativity of their generalizations. If a student’s initial activity is strictly figurative, then the
generalizing is likely to be limited in its generativity, particularly in one’s ability to extend

Figure 10. James’ Counting Strategy and Table for Number of Passwords Containing As.

James: Well, how many of them there are, which is one A, is you can put A in any of the 3 places, and then
the other 2 places would have to be B [writes 3 in the table].

Int.: Okay.
James: For 2 As, the 2 As could be here, here or here [draws lines as in Figure 10(a)]. So, I guess that’s 3? And

3 As there’s only 1, because all 3 were A.

James: When you have 0 As there’s going to be all – it’s all going to be Bs. And there’s only 1 way to do
that, because the Bs are indistinguishable.

Int.: Uh-huh.
James: And then when you have 5 As it’s the same thing, the 5 As are indistinguishable.

So, there’s only 1 way to arrange them. And then the same thing, concept with like one A, 4 Bs,
and 4 As and one B.
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and justify subsequent generalizations. If one’s initial activity is operative, a student can
potentially make meaningful extensions that they can justify based on the coordination of
mental operations. Returning to Patty’s work above on the Going Around B graphing task,
her work provides additional insights into both the limitations of activity that is figurative
and the potential affordances of activity that is operative, but in the context of precalculus
concepts. In the event that a student’s initial activity foregrounds perceptual or sensorimotor
features when graphing, their extending of those generalizations are limited to those instances
that enable maintaining those features. On the other hand, in the event that a student’ activ-
ity foregrounds the coordination of mental actions, their extending of those generalizations
can involve transformations that accommodate to any context in which one has conceived of
quantities that vary. Particularly, generalizing rooted in the initial operative activity based on
quantitative and covariational reasoning supports students in conceiving invariance among
their actions despite perceptual or sensorimotor differences (Liang & Moore, 2021; Moore,
Silverman, Paoletti, Liss, & Musgrave, 2019; Moore, Stevens, Paoletti, Hobson, & Liang, 2019).

Building and refining activity
Students who were able to produce generative generalizations did not always begin with well-
formed, correct generalizations that they could extend and justify. This was particularly the case
when students encountered novel tasks that challenged their mathematical thinking. Instead, the
development of generative generalizations was an iterative process of building on and refining
prior generalizing, often in a series of repeated cycles of forming and extending. We found that
one important part of the process of refining prior generalizing involved extending by transform-
ing. As an example of this process, we present Willow’s work on a proportional area task.

Willow, a 6th grade student, began investigating the growing rectangle task (Table 2, first
row), in which a rectangle with a side length of 4 cm and an area of 6 cm2 grew in length but
maintained its (unlabeled) width. The interviewer asked Willow to determine a relationship
between the growth in side length and the growth in area by filling in the blanks for the state-
ment, “When the length grows by ____, the area grows by ____.” Willow initially made an addi-
tive comparison, explaining that “the area is 2 more than the length”, and generalizing that this
would always be the case: “It would always be 2 more if they grew in the same, like, the same
amount.” Willow’s initial generalization was in the forming category, an identification of a regular-
ity (anticipated).

Willow remained convinced that the relationship between side length and area was additive
for a significant amount of time, and she extended by continuing her regularity to a number of
different new cases, as well as ultimately extending by removing particulars in order to state, “If
the length grew by x, then the area would be 2 more than the total length.” At this point, how-
ever, Willow suddenly evidenced a shift in her thinking about the nature of the task:

Willow re-conceived the situation dynamically, imagining the rectangle growing from a start-
ing point of zero. This re-imagining then enabled her to project an image of continued growth
beyond the initial 4 cm:6 cm2 growth. She did so by iterating, repeating the imagined growth
from 0 cm to 4 cm in length. Willow then constructed a new generalization, another identification
of a regularity (anticipated), that a growth in 4 (cm) for side length would always be associated
with a growth in 6 (cm2) for area.

Willow: Unless it will start at zero! Because if you start it at 0, if you start from 0 to find the actual growth, then, say this
is like the first theygrew [gestures along the length], and this kind of, so this [the length] grew by 4 first. And
then this [gestures along the area] grew by 6. So this [the length] could grow by 4 again, and this [the area]
could grow by 6 again.
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Willow then extended her regularity by continuing, saying, “When the length grows by 8, then
the area grows by 12,” and then, when asked to determine the added area for an added length of
16 cm, she responded immediately:

Willow was able to take her generalization based on the 4:6 ratio and extend it to a new case
by operating. Rather than iterating 4 times, Willow could consolidate this process by multiplying
the side length by 4, preserving the ratio by also multiplying the area by 4. This appeared to be a
minor accommodation for Willow, evidenced by her immediate response. She now had a general-
ization that she could take the amount of additional length, divide it by 4, and multiply that
result by 6 to find the new area. Willow was then able to extend this generalization by continuing
to a new case of a growth of 40 cm in side length, determining that the area would grow by
60 cm2, and again by operating when asked to determine the additional area for a side length
growth of 2 cm.

The interviewer then asked Willow to consider the area for a growth of 1 cm in length:

Willow’s statement represented another extending generalization, operating, and appeared to
be a major accommodation given her effort in making a structural change to the regularity.
Namely, given a new value of added length x that was less than 4 cm, she determined the quo-
tient 4/x, and then found the proportional amount that would “go into” 6 four times. The result,
1.5 cm2, is equivalent to dividing 6 by 4, but Willow’s strategy for this was to guess an amount
and then iterate it 4 times to confirm that the result was 6.

Willow was able to again extend to new cases by continuing her adjusted generalization, creat-
ing length:area pairs of 3:4.5 and 5:7.5. In each case, she relied on her knowledge that 1=4 of 6 is
1.5 in order to take 3=4 of 6 and 5/4 of 6, each time iterating 1.5 three times and five times,
respectively. Willow then realized an element of similarity across her activity with these tasks,
exclaiming, “Oh! I think I see something!”:

Even though Willow had previously solved a task in which the length grew by 1 cm and had
found an associated growth of 1.5 cm2 for area, she had not conceived of 1:1.5 as a unit ratio.
Here, we see evidence of the third type of forming by associating, activity-based associating.
Namely, in reflecting back over her mental activity of repeatedly iterating 1.5 in order to create
multiple equivalent ratios, Willow realized that 1 is 1=4 of 4, and 1.5 is therefore 1=4 of 6. She
shifted back to forming, associating objects based on her activity. Willow could now express a
new regularity for this 1:1.5 ratio, saying, “it’s 1.5 bigger each time”, which suggests the image of
adding 1.5 cm2 of area for each additional 1 cm in side length. Willow also expressed this rela-
tionship more formally, writing “A¼ 1.5# L”. In writing this expression, Willow extended by

Willow: Well, 1 goes into 4 four times. [Pause]. One point 5? Because 1.5 goes into 6 four times. Hmm. [Calculates
1.5þ 1.5þ 1.5þ 1.5] Yeah. But I don’t know if that’s… I don’t know if that’s right though.

Willow: So, this would be, this was 1=4, right? One point five is 1=4 of 6. So, 1 would be 1=4 [of 4], so it [the associated area
for 1 cm in length] would be 1.5. And then this [the length] grew by 1. Hmm. Well, if it [side length] grew by
3, this [the area] is 4.5, so I think, it’s, like, 1.5 bigger each time.

Willow: 24. Oh so it’s, so we’re trying to find the growth in area, so this will be the growth in area, equals, well I was kind
of thinking, like, if you kind of made it like the growth in length, if it grew like, like 16 is 4 times 4 so it grew 4
times the original length kind of, then the area grows 4 times the original length.
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transforming her prior generalization into a unit ratio statement. Prior to this moment, Willow
had generalized a strategy that relied on repeatedly iterating 1.5, but it is only now that she was
able to reconceive of the area as 1.5 times any length.

Willow began her generalizing activity by making an additive comparison. When she shifted
to viewing the rectangle as dynamically growing “from zero”, Willow reconceived the situation as
a multiplicative relationship. We characterize Willow’s generalizing from this point forward as
generative because she could extend her generalizations to new cases, and she bootstrapped her
repeated iterating and partitioning activity into the development of a unit ratio. Further, Willow
understood and could justify her generalizations; indeed, we saw an iterative relationship between
generalizing and justifying in Willow’s extended activity (Ellis, 2007b). Willow’s final generaliza-
tion, A¼ 1.5# L, required significant intellectual work to achieve and was the result of a series of
shifts between forming and extending, and between types of forming and extending. It is when
she reflected on her activity and made an association of similarity that she was ultimately able to
transform 1.5 into a unit ratio, an amount of area associated with a 1-cm increase in side length.

We observed many cases of more mathematically advanced students easily forming the same
generalization, A¼ 1.5# L. It is not the case that a student must engage in repeated cycles of
forming and extending in order to produce a generative generalization. Rather, this is a type of
activity we observed when students grappled with novel mathematical ideas that posed a chal-
lenge for them. We consider this process noteworthy because it characterizes students’ generaliz-
ing activity when engaged in “productive struggle” (Warshauer, 2014), providing insight into how
meaningful generalizations can occur when working on challenging, complex tasks. The RFE
Framework provides a way to understand and characterize these instances in which students are
observed bootstrapping their initial generalizations (which may be of limited utility or correct-
ness) into more generative generalizations. In particular, the framework’s distinction between
forming and extending actions enabled us to identify a pattern of cyclical generalizing in our par-
ticipants, in which they shifted back and forth between the two forms in order to deepen and
expand the content of their generalizations over an extended sequence of problem solving.

Discussion

Much of the research on students’ generalizing has occurred in the domains of algebra, (e.g.,
Becker & Rivera, 2006; Carraher et al., 2008; Cooper & Warren, 2008; Mulligan & Mitchelmore,
2009), and much of the rich work examining students’ progressions with generalizing activity has
occurred specifically within a focus on patterning tasks (e.g., 2008; 2010; El Mouhayar, 2018a,
2018b; El Mouhayar & Jurdak, 2015; Jurdak & El Mouhayar, 2014; Radford, 2003; 2006; Rivera,
2013; Rivera & Becker, 2016). Following the lead of other researchers (e.g., Font & Contreras,
2008; Harel & Tall, 1991; Mason et al., 2007; Rivera & Becker, 2016), we have extended the
research base to more advanced mathematical domains, and have also incorporated more varied,
open-ended, and complex tasks to afford an exploration of how students generalize when engaged
in problem-solving contexts that are more similar to those students might encounter in a class-
room setting. In doing so, we responded to Doerfler’s (2008) call to leverage “free” generalization
tasks unrestricted by pre-determined goals.

The RFE framework confirmed a number of existing constructs delineating types of generaliza-
tions, including the categories Ellis (2007a) initially discovered about generalizing when consider-
ing a narrow domain. This can be seen with our categories of extending by removing particulars
(similar to symbolic generalization; Radford, 2008), establishing a regularity (similar to result-pat-
tern generalization; Harel, 2001) and empirical generalization (Bills & Rowland, 1999; Doerfler,
1991), forming by establishing a way of operating (similar to reconstructive generalization; Harel
& Tall, 1991), extending by continuing (similar to expansive generalization; Harel & Tall, 1991),
and other processes of forming and extending, such as establishing and continuing a regularity
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(similar to constructive generalization; Rivera & Becker, 2008) and reflective or eliminative
abstraction (Font & Contreras, 2008).

We also found a number of instances of student activity that could not be explained by previ-
ous constructs. One example is the activity of extending by transforming, in which the content of
the generalization itself is changed. Instances in which students change the content of generaliza-
tions are not well specified in the literature, likely because many existing constructs address stu-
dents’ statements of generalization more than the ongoing process of creating and modifying
generalizations over time. Other new generalization types include relating by recursive embed-
ding, and the more fine-grained distinctions between types of forming and extending, such as the
distinction between extracted and anticipated regularities, the distinction between operative, fig-
urative, and activity-based forming by associating objects, and the distinction between minor and
major accommodations. We found that taking the actor’s perspective supported our ability to
identify aspects of generalizing that may not have been possible to discern from the expert’s per-
spective. Further, many of these distinctions exemplify the RFE Framework’s ability to help the
researcher identify operations that are new and/or conceptually challenging to students. As such,
the framework emphasizes the conceptual mechanisms that undergird generalizing activity, rather
than generalization strategies or statements. Further, the RFE Framework organizes these con-
structs into thematically-related forms and types of generalizing, which enables an examination of
students’ generalizing activity throughout the process of problem solving, beginning with stu-
dents’ initial forays into new tasks and continuing as students grapple with revisiting and refining
their ideas over time. Thus, the RFE Framework offers a way to characterize and understand stu-
dents’ generalizing activity when engaged in complex, open-ended problems with multiple solu-
tion strategies.

The importance of fostering repeated cycles of generalizing

One of our aims in designing this study was to better understand how students initially form and
develop new generalizations, how they adjust and expand those generalizations, and how they
ultimately settle on final versions of their generalizations. Of particular interest was the manner
in which students bootstrap their initial generalizing activity, which might be of limited use, into
more generative generalizations. Students often develop initial generalizations or generalizing
attempts, abandon them for a new direction or adjust them over time, circle back to prior ideas
and revise or expand them, and make connections between different aspects of their conceptual
activity over the course of solving a problem. In trying to understand these processes, we found
that when engaged in problem solving, students shifted between forms of generalizing and also
engaged in multiple types of generalizing activity within each form. This led to an important
finding characterizing generative generalizations, which is that students can cycle back and forth
between forming and extending, leveraging their initial activity into more powerful generaliza-
tions over time.

Many students require the time and space to engage in repeated cycles of forming and extend-
ing. This is particularly true for students’ first introduction to mathematical concepts—their ini-
tial generalizations may be of limited utility or may even be incorrect, but with proper
instructional support, they can serve as productive launch points for subsequent generalizing.
Designing tasks that enable and encourage repeated cycles of forming and extending can be pro-
ductive for fostering more sophisticated generalizations over time. Some potential features of
such tasks could include prompting for prediction before allowing calculation (as seen in the
Passwords Task), leveraging situations with surface similarities that contain structural differences
(such as in the Going Around B Task), and designing questions that perturb prior problematic
generalizations (as seen in the Growing Rectangle Task). When implementing tasks, teachers can
also foster more extended engagement in generalizing by encouraging students to reflect back on
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their work and to articulate the similarities and differences they notice in their activity, both
within and across contexts. When doing so, teachers should emphasize operative rather than fig-
urative aspects of students’ activity.

Generalizing across mathematical domains

Studying a common mathematical practice, such as generalizing, across multiple domains and lev-
els enables us to distill characteristic activity about that practice in a manner that is not bound to
reasoning about a particular mathematical area. One interest guiding our study design was the
question of whether participants would engage in similar generalizing activity across different
domains, or whether generalizing is more domain-specific. Would we see particular generalizing
types occur only in specific domains and not others? What we found is that generalizing is both
domain-specific and domain-transcending. Generalizing is domain-transcending in that we did
not find any generalizing types or forms that only occurred within one domain, or for one age
level. In fact, all of the types and forms occurred in multiple domains. In the rare cases in which
we saw few instances of a particular type within a specific domain, we saw this as a consequence
of the limitation of our data set and our task bank. For example, we did not see many instances
of isolating constancy within the undergraduate trigonometry/pre-calculus domain. This is, how-
ever, likely due to the nature of the tasks we used within that domain, in which students explored
dynamic covarying quantities and their graphs. Those tasks encouraged relating situations, associ-
ating objects, establishing a way of operating, and extending more than other forms and types of
generalizing. This was more a constraint of the tasks than of the domain itself, as there are other
types of trigonometric tasks that could better encourage isolating constancy. However, despite
these differences, we did see each of the generalizing types occur across domains, suggesting that
the generalizing identified in the RFE Framework depicts common conceptual mechanisms that
can occur in many areas of mathematics and for students in different grade levels.

How then, is generalizing domain-specific? We did find generalizing types that occurred more
often within particular domains than others. For instance, as we have discussed, recursive embed-
ding occurred most commonly in the combinatorics domain, which is unsurprising given that
recursion of both an additive and multiplicative nature that is typical in combinatorics problems.
Similarly, searching for a similarity or regularity and isolating constancy occurred often in the
algebra tasks we presented to middle-school and high-school students, likely due to the presenta-
tion of these tasks as consecutive sequences of numbers and figures. In contrast, when students
explored graphs and variation, they were less likely to engage in searching, recursive embedding,
or isolating constancy. These examples underscore that it is difficult to truly disentangle domain
from task, because particular domains are often coupled with specific types of tasks.

Additionally, domain-specific activity did play a critical role in supporting generalizing. We
argue that generalization, like proof, should not be treated as a domain-independent heuristic
(Dawkins & Karunakaran, 2016). Different domains involve different kinds of initial conceptual
activity, and research in those domains can inform potential opportunities to leverage domain-
specific thinking that could facilitate productive generalizing activity. In our study, we observed
that students’ generalizing could be deeply connected with the concepts and practices that are
specific to a given domain. As an example, in combinatorics, our data support previous findings
that it is critical to focus on sets of outcomes when counting (e.g., Lockwood, 2013, 2014;
Lockwood & Gibson, 2016; Wasserman & Galarza, 2019). When students can connect their
counting processes to sets of outcomes, they can gain insight into which formula might be appro-
priate, whether or not they have all of the outcomes, and how to avoid common traps such as
overcounting. In advanced algebra, trigonometry, and pre-calculus, in contrast, identifying rele-
vant quantities (Thompson & Carlson, 2017) and determining their dependency relationships
were important ways of operating that supported the development of generative generalizations.
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Students’ generalizing does not occur in decontextualized spaces, and thus students may lever-
age ways of thinking that can allow for intentional generalizing activity that aligns with the con-
tent and practices relevant to a given domain. Furthermore, although we observed the
generalizing forms and types occurring across domains, how those forms and types might mani-
fest in student activity can differ depending on domain. By exploring generalization across
domains and levels, the RFE Framework provides a way to characterize how particular types of
generalizing can manifest in different ways across different tasks, contexts, and domains.

Future directions

This study suggests some potential avenues for future directions of research. We expanded the
research base to explore generalizing in more advanced domains, but it would be fruitful to also
characterize generalizing among young children. In addition, although we have considered the
degree to which some types of generalizing may or may not need to precede others, our data sets
were not specifically organized to afford an in-depth consideration of this question. Future studies
exploring students’ generalizing in extended teaching settings, be that teaching experiments,
design experiments, or whole-classroom studies, could more thoroughly investigate the hierarchy
of students’ generalizing types within the RFE framework. Situating future research within
extended teaching settings could also support greater examination of the types of activities that
are conducive to generative generalizing, as well as characterize the instructional moves that
teachers can leverage in their own classrooms to better support powerful generalizing.
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