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A B S T R A C T 

We examine massive black hole (MBH) mergers and their associated gra vitational wa ve signals from the large-volume 

cosmological simulation Astrid . Astrid includes galaxy formation and black hole models recently updated with an 

MBH seed population between 3 × 10 
4 h 

−1 M ⊙ and 3 × 10 
5 h 

−1 M ⊙ and a sub-grid dynamical friction (DF) model to follow 

the MBH dynamics down to 1.5 ckpc h 
−1 . We calculate the initial eccentricities of MBH orbits directly from the simulation 

at kpc-scales, and find orbital eccentricities abo v e 0.7 for most MBH pairs before the numerical merger. After approximating 

unresolved evolution on scales below ∼ 200 pc , we find that the in-simulation DF on large scales accounts for more than half 

of the total orbital decay time ( ∼ 500 Myr ) due to DF. The binary hardening time is an order of magnitude longer than the DF 

time, especially for the seed-mass binaries ( M BH < 2 M seed ). As a result, only � 20 per cent of seed MBH pairs merge at z > 3 

after considering both unresolved DF evolution and binary hardening. These z > 3 seed-mass mergers are hosted in a biased 

population of galaxies with the highest stellar masses of > 10 
9 M ⊙. With the higher initial eccentricity prediction from Astrid , 

we estimate an expected merger rate of 0.3 −0.7 per year from the z > 3 MBH population. This is a factor of ∼7 higher than 

the prediction using the circular orbit assumption. The Laser Interferometer Space Antenna events are expected at a similar rate, 

and comprise � 60 per cent seed-seed mergers, ∼ 30 per cent involving only one seed-mass MBH, and ∼ 10 per cent mergers of 

non-seed MBHs. 

Key w ords: gravitational w aves – methods: numerical – quasars: supermassive black holes. 

1  I N T RO D U C T I O N  

Massive black holes (MBHs) are known to exist at the centre of 

galaxies (e.g. Soltan 1982 ; Kormendy & Richstone 1995 ; Magorrian 

et al. 1998 ; Kormendy & Ho 2013 ). As these galaxies merge (e.g. 

Lacey & Cole 1993 ; Lotz et al. 2011 ; Rodriguez-Gomez et al. 2015 ), 

the MBHs that they host will also merge, resulting in the mass 

growth of the MBH population (e.g. Begelman, Blandford & Rees 

1980 ). MBH mergers following their host galaxy mergers are an 

important aspect of the growth of MBHs in dense environments (e.g. 

Kulier et al. 2015 ). Even more importantly, as a by-product of MBH 

mergers, gra vitational wa ves (GWs) are emitted, and their detection 

opens up a new channel for probing the formation and evolution of 

early MBHs in the universe (e.g. Sesana, Volonteri & Haardt 2007a ; 

Barausse 2012 ). 

The GW detection by LIGO (Abbott et al. 2016 ) pro v es the 

experimental feasibility of using GWs for studying black hole (BH) 

binaries. While LIGO cannot detect GWs from binaries more massive 

⋆ E-mail: nianyi.chen7@gmail.com 

than ∼ 100 M ⊙ (Mangiagli et al. 2019 ), long-baseline experiments 

are being planned for the detections of more massive BH binaries. 

Specifically, the upcoming Laser Interferometer Space Antenna 

(LISA; Amaro-Seoane et al. 2017 ) mission will be sensitive to low- 

frequency (10 −4 −10 −1 Hz) GWs from the coalescence of MBHs 

with masses 10 4 –10 7 M ⊙ up to z ∼ 20. At lower frequencies, 

Pulsar Timing Arrays (PTAs) are already collecting data and the 

Square Kilometer Array in the next decade will be a major leap 

forwards in sensitivity. While MBH binaries are the primary sources 

for PTAs and LISA, these two experiments probe different stages 

of MBH evolution. PTAs are most sensitive to the early inspiral 

(orbital periods of years or longer) of nearby ( z < 1) massive 

( M BH � 10 8 M ⊙) sources (Mingarelli et al. 2017 ). In contrast, LISA 

is sensitive to the inspiral, merger, and ringdown of MBH binaries 

at a wide range of redshifts (Amaro-Seoane et al. 2012 ) and from 

smaller sources ( M BH ∈ [10 4 M ⊙, 10 7 M ⊙]). 

GWs from MBH mergers will provide a unique way of probing 

the high-redshift universe and understanding the early formation of 

the MBH seeds, especially when combined with observations of the 

electromagnetic (EM) counterparts (Natarajan et al. 2017 ; DeGraf & 

Sijacki 2020 ). For instance, an MBH merger multimessenger detec- 
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tions should allow us to distinguish between different MBH seeding 

mechanisms at high-redshift (Ricarte & Natarajan 2018 ), to obtain 

information on the dynamical evolution of MBHs (Bonetti et al. 

2019 ), and to gain information about the gas properties within the 

accretion disc (Derdzinski et al. 2019 ). 

To properly access the potential of the upcoming GW signals 

as well as the EM observations of MBH binaries, we need to gain a 

thorough understanding of the physics of these events with theoretical 

tools and be able to make statistical predictions for the binary 

population. Early studies have provided merger rate predictions for 

MBH binaries using analytic models (e.g. Haehnelt 1994 ; Jaffe & 

Backer 2003 ; Wyithe & Loeb 2003 ). Some more recent predictions 

made use of semi-analytic models (e.g. Sesana et al. 2004 ; Tanaka & 

Haiman 2009 ; Barausse 2012 ; Ricarte & Natarajan 2018 ) to enhance 

the model complexity and physical realism. Recent developments 

in large-volume cosmological simulations (e.g. Hirschmann et al. 

2014 ; Vogelsberger et al. 2014 ; Schaye et al. 2015 ; Feng et al. 

2016 ; Volonteri et al. 2016 ; Pillepich et al. 2018 ; Dav ́e et al. 2019 ) 

have enabled the study of MBH mergers within the context of 

cosmological galaxy formation (e.g. Salcido et al. 2016 ; Kelley, 

Blecha & Hernquist 2017a ; Katz et al. 2020 ; Volonteri et al. 2020 ). 

These simulations directly associate MBH binaries with their host 

galaxies, and they are carried out in large enough cosmological 

volumes to provide the statistical power to make merger rate 

predictions across cosmic time which are crucial for the upcoming 

observations. 

In order to accurately predict when MBH mergers occur in these 

simulations, one must account for the orbital decay and binary 

hardening time-scales in a wide dynamical range. During galaxy 

mergers, the central MBHs start at large separation in the remnant 

galaxy (as much as a few tens of kpc). These MBHs then gradually 

lose their orbital energy and sink to the centre of the remnant galaxy 

due to the dynamical friction e x erted by the gas, stars, and dark matter 

around them (e.g. Chandrasekhar 1943 ; Ostriker 1999 ). When their 

separation is � 1 parsec, a MBH binary forms and other energy- 

loss channels begin to dominate, such as scattering with stars (e.g. 

Quinlan 1996 ; Berczik et al. 2006 ; Sesana, Haardt & Madau 2007b ; 

Berentzen et al. 2009 ; Khan, Just & Merritt 2011 ; Khan et al. 2013 ; 

Vasiliev, Antonini & Merritt 2015 ), gas drag from the circumbinary 

disc (e.g. Haiman, Kocsis & Menou 2009 ), or, if rele v ant, three-body 

scattering with a third BH (e.g. Bonetti et al. 2018 ). 

Among these processes, only the dynamical friction decay affects 

the dynamics at orbital separation abo v e the resolution of large- 

volume cosmological simulations. Ho we ver, so far there is limited 

attempt to directly model dynamical friction (at small scales, close 

to the resolution) in the large-volume cosmological simulations 

mentioned abo v e. In most cosmological simulations, once MBHs 

are within a given halo, they are simply repositioned to the minimum 

potential position of the host galaxy at each time-step. For these 

simulations (although sometimes the effects of subgrid dynamical 

friction are treated in post-processing), many spurious mergers occur 

during fly-by encounters. Among simulations that do include subgrid 

modelling of DF on-the-fly, Dubois et al. ( 2014 ) only includes the 

friction from gas but not stars, while Tremmel et al. ( 2017 ) and 

Hirschmann et al. ( 2014 ) model the dynamical friction from stars and 

dark matter particles. Most recently, Mannerkoski et al. ( 2021 ) uses 

a hybrid model to track the MBH dynamics during galaxy mergers 

on small scales, while including on-the-fly dynamical friction and 

stellar scattering computations. 

Here, we study MBH mergers using the large-volume cosmo- 

logical simulation Astrid which uses a no v el power-la w seeding 

with a range of MBH seed masses and so includes relatively low- 

mass MBHs. More importantly, it directly incorporates additional 

dynamical friction modelling, following the recent model by (Chen 

et al. 2021 ) for the MBH dynamics down to the resolution limit (see 

also similar implementations by Hirschmann et al. 2014 ; Tremmel 

et al. 2015 ). With more physical modelling of the MBH dynamics, we 

can follow the in-simulation mergers for a more extended period of 

time o v er hundreds of Myrs, and almost completely prevent mergers 

during fly-by encounters. Moreo v er, for the first time we can aim 

to measure the orbital evolution and eccentricities of MBH pairs 

on sub-kpc scales. Such information should be important both for 

estimating the binary hardening time-scales and for predicting the 

GW signals from the MBH mergers. 

This paper is organized as follows. In Section 2 , we introduce the 

Astrid simulation, in particular the MBH modelling, and describe 

how we obtain the merger catalogue from the simulation; in Section 3 , 

we describe our methods for measuring the MBH orbital eccentricity 

from the simulation, and present results of our measurements. 

Section 4 focuses on the modelling of post-processing delay times 

including the dynamical friction time and binary hardening time after 

the numerical merger. Then in Section 5 , we present our prediction 

for MBH merger rate at z > 3, and investigate the properties of 

high-redshift MBH merger systems. Finally, in Section 6 we show 

the GW strain and signal-to-noise ratios for the binary population 

that merges at z > 3. 

2  SI MULATI ON  

2.1 The Astrid Simulation 

The Astrid simulation is a large-scale cosmological hydrody- 

namic simulation in a 250 Mpc h 
−1 box with 2 × 5500 3 particles. 

Astrid contains a statistical sample of haloes that can be compared 

to future surv e y data from JWST , while resolving galactic haloes 

down to 10 9 M ⊙ (corresponding to 200 dark matter particles). The 

initial conditions are set at z = 99 and the current final redshift 

is z = 3. The cosmological parameters used are from (Planck 

Collaboration VI 2020 ), with �0 = 0.3089, �� = 0 . 6911, �b = 

0.0486, σ 8 = 0.82, h = 0.6774, A s = 2.142 × 10 −9 , n s = 0.9667. 

The mass resolution of Astrid is M DM = 6.74 × 10 6 h −1 M ⊙ and 

M gas = 1.27 × 10 6 h −1 M ⊙ in the initial conditions. The gravitational 

softening length is ǫg = 1 . 5 h 
−1 kpc for both DM and gas particles. 

Astrid contains models for inhomogeneous hydrogen and he- 

lium reionization, baryon relative velocities and massive neutrinos, 

as well as ’full-physics’ star formation model, BH accretion and 

associated supernova and AGN feedback, respectively. The star 

formation model is unchanged from Feng et al. ( 2016 ), which 

followed the implementation of Springel & Hernquist ( 2003 ). The 

BH model includes mergers driven by dynamic friction rather 

than repositioning. Our treatment of MBHs largely follows the 

BlueTides simulation in terms of the BH accretion and feedback, 

which is based on the earlier work by Di Matteo, Springel & 

Hernquist ( 2005 ) and Springel, Di Matteo & Hernquist ( 2005 ). The 

gas accretion rate on to the BH is estimated via the Bondi–Hoyle–

Lyttleton-like prescription applied to the smoothed properties of the 

112 gas particles within the SPH kernel of the BH. We allow for short 

periods of super-Eddington accretion in the simulation, but limit the 

accretion rate to 2 times the Eddington accretion rate. The MBH 

produces thermal feedback on the surrounding gas, and radiates with 

a bolometric luminosity L Bol proportional to the accretion rate Ṁ BH , 

with a mass-to-light conv ersion efficienc y η = 0.1 in an accretion disc 

according to Shakura & Sunyaev ( 1973 ). 5 per cent of the radiated 
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energy is thermally coupled to the surrounding gas, residing within 

twice the radius of the SPH smoothing kernel of the BH particle. 

Compared with BlueTides , we slightly changed the seeding 

scheme of MBHs by drawing the seed mass from a power-law 

distribution instead of using a universal seed mass. Furthermore, 

we use a dynamical friction model (tested and validated in Chen 

et al. 2021 ) to evolve the binary BHs and include the sinking and 

merger of MBHs in the simulation in a more physical way. Here, 

we briefly summarize the BH seeding and dynamics treatment in 

Astrid , and refer to Bird et al. ( 2021 ) and Ni et al. ( 2021 ) for 

detailed presentations of physical models for star formation and BHs. 

2.1.1 MBH seeding 

To seed MBHs in the simulation, we periodically run a FOF 

group finder on the fly with a linking length of 0.2 times the 

mean particle separation, to identify haloes with a total mass and 

stellar mass satisfying the seeding criteria { M halo, FOF > M halo, thr ; 

M ∗, FOF > M ∗, thr } . We apply a mass threshold value of M halo, thr = 

5 × 10 9 h −1 M ⊙ and M ∗, thr = 2 × 10 6 h −1 M ⊙. 

Considering the complex astrophysical process involved in BH 

seed formation in realistic cases, haloes with the same mass can 

form different mass MBH seeds. Therefore, in Astrid , instead of 

applying a uniform seed mass for all MBHs, we probe a mass range of 

the MBH seed mass M seed drawn probabilistically from a power-law 

distribution: 

P ( M seed ) = 

⎧ 

⎨ 

⎩ 

0 M seed < M seed , min 

N ( M seed ) 
−n M seed , min ≤ M seed ≤ M seed , max 

0 M seed > M seed , max 

, (1) 

where N is the normalization factor. The minimum seed mass 

is M seed, min = 3 × 10 4 h −1 M ⊙ and the maximum seed mass is 

M seed, max = 3 × 10 5 h −1 M ⊙, with a power-law index n = −1. For each 

halo that satisfies the seeding criteria but does not already contain at 

least one BH particle, we convert the densest gas particle into a BH 

particle. The new-born BH particle inherits the position and velocity 

of its parent gas particle. 

2.1.2 MBH dynamics and merg er s 

Instead of constantly repositioning the BH towards the potential 

minimum, as in earlier simulations, in Chen et al. ( 2021 ) we imple- 

mented and tested a model for subgrid dynamical friction (similar 

to Tremmel et al. 2015 , 2017 ). Dynamical friction is an artificial 

force for modelling unresolved small-scale interactions between the 

MBH and nearby stars and dark matter. These interactions transfer 

momentum from the MBH to individual stars in the surrounding 

star clusters, gradually reducing the momentum of the MBH particle 

relative to the surrounding collisionless objects in the bulge (e.g. 

Go v ernato, Colpi & Maraschi 1994 ; Kazantzidis et al. 2005 ). The 

additional dynamical friction also stabilizes the MBH motion at the 

centre of the galaxy. 

We estimate dynamical friction on MBHs using equation 8.3 of 

Binney & Tremaine ( 2008 ): 

F DF = −16 π2 G 
2 M 

2 
BH m a log ( � ) 

v BH 

v 3 BH 

∫ v BH 

0 

d v a v 
2 
a f ( v a ) , (2) 

where M BH is the BH mass, v BH is the BH velocity relative to its 

surrounding medium, m a and v a are the masses and velocities of 

the particles surrounding the BH, and log( � ) = log( b max / b min ) is 

the Coulomb logarithm that accounts for the ef fecti ve range of the 

friction between the specified b min and b max . f ( v a ) in equation ( 2 ) 

is the velocity distribution of the surrounding collisionless particles 

including both stars and dark matter. Here, we have assumed an 

isotropic velocity distribution of the particles surrounding the BH so 

that we are left with a 1D integration. 

In Astrid , the BH seed mass extends down to 3 × 10 4 M ⊙/h , 

which is one order of magnitude smaller than the stellar particle mass. 

In this regime, the dynamical friction of BH is likely unrealistic due 

to its small mass compared to the masses of other particles, and so 

the dynamics of the seed BH would be unstable due to dynamical 

heating (when M BH is below the mass resolution). Therefore, we 

boost the dynamical friction in this regime with M dyn = 2 × M DM 

when M BH < M dyn < 1. This temporarily boosts the BH dynamical 

mass for BHs near the seed mass and helps stabilize their motion 

during the early post-seeding evolution. 

We approximate the distribution function f ( v a ) by the Maxwellian 

distribution (as, e.g., Binney & Tremaine 2008 ), and account for 

the neighbouring collisionless particles up to the range of the SPH 

kernel of the BH particle (see Chen et al. 2021 for more details). 

Equation ( 2 ) becomes 

F DF = −4 πρsph 

(

GM dyn 

v BH 

)2 

log ( � ) F 

(

v BH 

σv 

)

v BH 

v BH 
. (3) 

Here, ρsph is the density of dark matter and star particles within the 

SPH kernel, F is the integral in equation ( 2 ) assuming a Maxwellian 

distribution of stellar velocities. σ v is the velocity dispersion of the 

dark matter and star particles within the SPH kernel. 

The boost of the initial M dyn may o v erestimate the dynamical 

friction for small BHs and the resultant sinking time-scale will be 

shortened by a factor of ∼M BH / M dyn compared to the no-boost case. 

On the other hand, it is also possible that the BH sinking time-scale 

estimated in our simulation in the no-boost case could o v erestimate 

the true sinking time, as the high-density stellar bulges are not fully 

resolved (e.g. Antonini & Merritt 2012 ; Biernacki, Teyssier & Bleuler 

2017 ; Dosopoulou & Antonini 2017 ). Therefore, boosting the initial 

M dyn seems a reasonable compromise to model the dynamics of 

smallmass BHs, while also alleviating the noisy perturbation of 

dynamic heating brought by the limit of resolution. Note that even if 

our dynamic friction implementation o v erestimates the force, it still 

provides a substantially more conserv ati ve estimation of BH sinking 

than the common model where BHs are repositioned to the potential 

minimum. 

In our simulations, we set the merging distance to be 2 ǫg = 

3 ckpc /h , because the MBH dynamics below this distance is not well 

resolv ed. We conserv e the total momentum of the binary during the 

merger. Moreo v er, when we turn-off the repositioning of the MBHs 

to the nearby potential minimum, the MBHs will have well-defined 

velocities at each time-step (this is true whether or not we add the 

dynamical friction). This allows us to apply further merging criteria 

based on the velocities and accelerations of the BH pair, and thus 

a v oid early mergers of gravitationally unbound pairs. 

We follo w Bellov ary et al. ( 2011 ) and Tremmel et al. ( 2017 ), and 

use the criterion 

1 

2 
| 	 v | 2 < 	 a 	 r (4) 

to check whether two BHs are gravitationally bound. Here, 	 a , 	 v , 

and 	 r denote the relative acceleration, velocity, and position of the 

BH pair, respectively. Note that this expression is not strictly the total 

energy of the BH pair, but an approximation of the kinetic energy and 

the work needed to get the BHs to merge. Because in the simulations 

the BH is constantly interacting with surrounding particles, on the 
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right-hand side we use the o v erall gravitational acceleration instead 

of the acceleration purely from the two-body interaction. 

2.2 The merger catalogue 

There are a total of 445635 BH mergers in the simulation for z > 3. 

We note that since our merging criterion has a distance threshold at 

2 ǫg = 3 ckpc /h (0 . 75 pkpc /h at z = 3) below which the gravitational 

force cannot be reliably computed, most of the MBH pairs retain an 

orbital size of a few hundred parsecs when ‘merged’ in the simulation. 

Moreo v er, we may hav e missed some z > 3 mergers due to an 

underestimation of the dynamical friction from the flattened density 

profiles near our resolution limit. 

The subsequent MBH dynamics and merging time will have to be 

calculated in post-processing, and the result depends on the subgrid 

models used for those calculations (to be described later in more 

detail). For each merger event, we extract the rele v ant environmental 

variables (the density profiles of gas, dark matter and stars, and the 

stellar velocity dispersion) from the nearest snapshot before and after 

the merger. The snapshots used are separated by ∼20 Myr. In a small 

fraction of cases, the mergers take place within 20 Myrs after one of 

the MBHs is born, and so we cannot find the corresponding MBH in 

the previous snapshot. We remo v e these mergers from the catalog, 

after which 440999 mergers remain. 

From the snapshots immediately before and after the merger, we 

identify the host haloes and subhaloes containing the binaries using 

FOF and SubFind, respectively. Out of the mergers that remain in 

the catalogue, we further remo v e those not associated with any 

halo/subhalo, and those whose host galaxy has less than 200 star 

particles. The hosts for these binaries are not well resolved in our 

simulation, so we cannot reliably compute the binary hardening time 

in post-processing. This leaves us with a final catalogue of 430938 

BH merger candidates. For each host halo identified, we define the 

halo centre as the position of the particle with the minimum potential, 

and calculate galaxy properties such as the density profiles and half- 

mass radius with respect to this point. 

In Fig. 1 , we show the last few orbits of a few selected BH 

pairs in our merger catalogue plotted on their host galaxies’ stellar 

distributions. The distance from left to right of each image is 

8 ckpc h 
−1 . The brightness corresponds to the stellar density, and the 

colours show the stellar age with older stars being redder and younger 

stars being whiter. The red curves are the BH pairs’ positions relative 

to their centre of mass. 

3  O R B I TA L  ECCENTRICITY  

As was described in Section 2.1 , our simulation has a build-in sub- 

grid dynamical friction model, which allows us to follow the BHs’ 

orbits before their numerical mergers down to the resolution limit. 

Fig. 1 shows several examples of the last few orbits of BH pairs just 

before they merge in the simulation. The BH orbits are plotted in 

the centre-of-mass frame of the BH pairs, with a face-on projection 

on the 2D plane perpendicular to the mean angular momentum of 

the last orbit. Since we record the BH information at each time-step 

when the BH is active, the orbits are much better resolved in time 

compared with the galaxies. Most orbits start off at a semimajor 

axis of > 1 kpc, and gradually go through orbital decay until the 

merger. 

From the images, we see that the majority of the orbits are very 

non-circular during the initial encounter of the BHs. While some of 

them circularize with time, most orbits still retain a high eccentricity 

at the time of the merger in the simulation. This moti v ates us 

to characterize the orbital eccentricity before merging, as it is an 

important piece of information not only for estimating the binary 

hardening time with analytical models, but also for calculating the 

GW signals from the merger events. In this section, we will describe 

tw o w ays of characterizing the orbital eccentricities of the BH pairs 

in our simulation. 1 

3.1 Shape measurement 

Given the images in Fig. 1 , a natural way of measuring the orbital 

eccentricity is to use the shape of the orbits just before the numerical 

merger, and this is the first approach we take. 

On ∼kpc scales, since most orbits are not Keplerian except those 

of the most massive BHs and the orbits are constantly shrinking, the 

BH orbits do not fit an ellipse. Instead, they exhibit the feature of a 

Rosetta orbit (the feature is most prominent in e.g. second row, second 

column of Fig. 1 , although standard Rosetta orbits do not shrink o v er 

time). For orbits resulting from the spherically symmetric potential, 

we can characterize the eccentricity by the size of the inner radius 

and the size of the outer radius. More specifically, for each orbit, 

we define 	 r 2 to be the position of the secondary BH with respect 

to the centre of mass, and we take the local minimum of 	 r 2 as the 

(generalized) periapsis of the orbit, and the local maximum of 	 r 2 as 

the apoapsis. Then, we represent the orbital eccentricity of the binary 

by the generalized eccentricity, defined for a spherical potential as 

(Binney & Tremaine 2008 ): 

ǫ = 
r apo − r peri 

r apo + r peri 
, (5) 

where r apo and r per are the apoapsis and the periapsis of the orbit, 

respectively. To distinguish between the measurement of the two 

methods, we will use the subscript ‘sh’ to refer to the measure- 

ments from this shape-based method. We average the eccentricity 

measurements o v er the last three orbits. We note, ho we ver, that the 

distribution in eccentricity does not change significantly when we 

take the average of the last one, two, or three orbits. 

3.2 Solving the orbital equation 

In addition to the shape-based measurement in Section 3.1 , we also 

calculate the generalized orbital eccentricity by simply solving the 

orbital equation. Using these two independent methods, we will 

then be able to compare the robustness of the BH orbit eccentricity 

distribution measurement from the simulations. 

When the BH merger occurs in the simulation, the separation 

between the BH pair is ∼3 ckpc h −1 . At this distance, the gravitational 

potential is dominated by the surrounding stars and dark matter 

particles instead of the BHs themselves. Under such circumstances, 

the orbit of the satellite BH is non-Keplerian, as we have shown in 

Section 3.1 . In the case of a spherical potential, the (generalized) 

apoapsis and periapsis can be obtained by solving the generalized 

orbital equation (Binney & Tremaine 2008 ): 

1 

r 2 
+ 

2[ φ( r) − E] 

J 2 
= 0 , (6) 

where φ( r ) is the gravitational potential computed from the density 

profile of surrounding particles, E is the total energy per unit mass 

1 We also tried applying the method of osculating elements (e.g. Efroimsky & 

Goldreich 2004 , and references therein) to the orbital trajectories; ho we ver, 

we found that the stellar environment dominated the binary’s evolution, such 

that it could not be adequately described as a post-Keplerian orbit. 
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Figure 1. The last few orbits (starting from ∼ 80 Myr before the merger) of selected binaries in the Astrid simulation plotted on their host galaxies. The 

distance from left to right of each image is 10 ckpc h −1 . The brightness corresponds to the stellar density, and the colours show the stellar age with older stars 

being redder. The red curves are the BH pairs’ position relative to their centre of mass. In most cases, we see a Rosetta orbit, as the local potential is a spherical 

potential dominated by stars and dark matter. We find that some orbits circularize o v er time (e.g. third row, fifth column), although the majority of the orbits still 

remain eccentric when merging (see e.g. Fig. 2 ). 

and J is the angular momentum per unit mass of the secondary 

BH with respect to the host galaxy centre. The larger root of the 

equation corresponds to r apo and the smaller root is r peri . 

When solving equation ( 6 ), we take E and J to be the average 

energy and angular momentum o v er the last half-orbit (i.e. from the 

last local maximum to the last local minimum of the BH separation) 

of the BH. We did not take the average over a more extended period of 

time because the BH pair is constantly losing energy. After getting 

the two apses, we again use equation ( 5 ) to calculate the orbital 

eccentricity. We refer to this method as the energy method, and use 

the subscript ‘en’ when showing results. 

Fig. 2 shows a comparison between the (generalized) eccentricity 

measurements from the shape method and the energy method. The 

left panel shows the distribution of eccentricities for all the mergers 

in the simulation. The measurements from both methods show 

that the BH binary population is dominated by highly eccentric 

orbits, with a peak at ǫ ∼ 0.85 for the shape-based method and 

∼0.75 for the energy-based method. Comparing the two distribu- 

tions, we see that the shape measurement generally produces a 

distribution with higher eccentricities than the energy method. In 

the middle panel, we show a scatter plot of the eccentricities from 

the two measurements. There is a positive correlation between the 

two eccentricities, with the majority of the measurements close 

to the diagonal line. This means that the two measurements are 

not only close in distrib ution, b ut also yield correlated results 

for each individual orbit. Similar to what is shown by the 1D 

distributions, the shape method predicts higher values of eccentricity 

for most pairs than the energy method (typically ∼ 10 per cent 

lower). 

In addition to the eccentricity, in the right-hand panel of Fig. 2 

we further compare the apoapses and periapases from the two 

measurements. Overall, we can see that the apoapsis peaks around 

1 ∼ 3 kpc, while the periapsis peaks around 0.1 ∼ 0.7 kpc. Again 

there is a good alignment between the two measurements, with the 

peaks distributed close to the diagonal line. In the majority of cases, 

the shape measurement gives a larger apoapsis value. 

To estimate the binary hardening time, we will use the measured 

binary eccentricities as an input to the model. By doing so, we do 

not consider any time-evolution of the binary eccentricity due to 

dynamical friction beyond the point of numerical merger (Colpi, 

Mayer & Go v ernato 1999 ; Hashimoto, Funato & Makino 2003 ). 

In particular, we will only show results using the values from the 

energy-based method ( ǫen ) in later sections, and we have tested that 

the effect of using the shape-based values is minor compared with 

the uncertainties from other sources (e.g. density in the central region 

of the galaxy). 

4  POST-PROCESSING  D E L AY S  

4.1 Dynamical friction 

In Astrid , we have already accounted for the dynamical friction 

time-scale abo v e the resolution limit, leading to significant delays of 

in-simulation mergers compared to the traditional MBH reposition- 

ing methods. Ho we ver, dynamical friction will continue to dominate 

o v er other delay processes on scales of 10 ∼ 100 pc (e.g. Kelley et al. 

2017a ), which is beyond our current resolution. In this section, we 

will compute the unresolved DF time-scales for the MBH mergers, 
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Figure 2. Comparison between eccentricity measurements from the shape method and the energy method. Left: The distribution of the (generalized) orbital 

eccentricity from the two measurements. In both cases, the distribution is dominated by highly eccentric binaries, as we can also see from the images in Fig. 1 . 

The shape method has a more skewed distribution compared to the energy method. Middle: A scattered plot of the eccentricity from the two measurements. We 

can see that the two measurements yield similar results by comparing the distribution to the diagonal line. In most cases, the energy measurement is ∼ 10 per cent 

lower than the shape measurement. Right: In addition to the eccentricity, we show the apoapses and periapases of the two measurements. The orange dots are 

the apoapses and the green dots are the periapases. The scatter relation also follows the diagonal line quite closely. When the two BHs merge in the simulation, 

the apoapsis is usually a few kpc and the periapsis is usually less than 1kpc. 

Figure 3. Comparison between the pre-merger dynamical friction time and 

the post-merger dynamical friction time. Top: Distributions of the pre- and 

post- merger DF times for all MBH pairs in Astrid . The two distributions are 

similar and both peak around 200 Myr, indicating that by adding dynamical 

friction to the simulation, we have resolved more than half of the total 

dynamical friction delay. Bottom left: Relation between the DF times and 

the mass ratio between the two MBHs ( q ). We observe the expected negative 

correlation between DF times and q . Bottom right: 1D distribution of the 

mass ratio q . 

and compare them with the in-simulation DF time-scale. 

For the in-simulation DF time, we measure it in the following 

way: for each BH pair that merges within the simulation at z merge , 

we track their trajectories before the merger event, and find the 

redshift z encounter at which they are first within 2 ǫg of each other. 

z encounter is the approximate time at which the BHs would merge 

if we did not account for the dynamical friction time at all (note 

that under the reposition model, BHs usually merge even before 

z encounter ). We consider the time difference between z encounter and z merge 

as the in-simulation DF time, T DF, sim . Among all BH mergers in 

the simulation, 5713 mergers ( ∼ 1 . 4 per cent of the whole merger 

population) happen at the first encounter. 

For the post-processed DF time T DF, post , we adopt the treatment 

from Merritt ( 2013 ) and Dosopoulou & Antonini ( 2017 ), who 

modifies the Chandrasekhar formalism (e.g. Chandrasekhar 1943 ; 

Binney & Tremaine 2008 ) to include the effect of the secondary 

BH embedded in a tight core of stars brought in from the secondary 

galaxy. The increased dynamical friction allows the secondary to 

sink faster towards the primary galaxy’s centre, and thus the resulting 

dynamical friction time is less than the prediction from the canonical 

Binney & Tremaine ( 2008 ) treatment assuming a bare BH. In 

Dosopoulou & Antonini ( 2017 ), the assumption is that the mass 

of stars bound to the secondary BH is 1000 times the mass of the BH 

itself, and the resulting dynamical friction time-scale is 

t DF , post = 0 . 12 Gyr 

(

r 

10 kpc 

)2 
( σ

300 km s −1 

)

(

10 8 M ⊙

M 2 

)

1 

log ( � ) 
, 

(7) 

where log( � ) is the Coulomb logarithm, and M 2 is the mass of the 

secondary BH. For the initial separation r , we use the radius of the 

circular orbit that has the same energy as the last orbit of the binary 

before the (numerical) merger. Note that the model in equation ( 7 ) 

does not account for the effect of non-circular orbits on the DF time. 

Taking the eccentricity into consideration can further reduce the 

estimated DF time (e.g. Taffoni et al. 2003 ). Following the method 

in (Chen et al. 2021 ), we compute the Coulomb logarithm by 

� = 
b max 

( GM 2 ) /v 
2 
BH 

, b max = 10 ckpc h 
−1 , (8) 

where M 2 is the mass of the secondary BH and v BH is the velocity of 

the secondary BH with respect to the host galaxy centre. 

Fig. 3 shows the comparison between the in-simulation dynamical 

friction time and the post-processed dynamical friction time from 

abo v e. The top panel shows the o v erall distributions of the DF times. 

The two distributions are on the same order of magnitude at around 

10 2 Myr, with a range from 10 Myr to 1 Gyr. For most BH pairs, 

T DF, sim is longer than T DF, post . This means that by accounting for 

dynamical friction in the simulation, we have already included about 

half of the total dynamical friction delay effects. Note that both DF 

time-scales are shorter than 1 Gyr. In the case of the resolved DF 

time, this is mainly due to the fact that most of the BHs have not 

existed for more than 1 Gyr at z = 3. 
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In the bottom panel of Fig. 3 , we show the relation between the 

two DF times and the binary mass ratio q . Here, we only show the 

times involving at least one non-seed MBH, defined as mergers with 

M 1 > 2 M 1 , seed . This is because our merger population is dominated 

by seed MBHs which have not grown out of their dynamical mass 

and thus the in-simulation DF time estimation is not exact. From 

equation ( 7 ), we can see that the DF time is correlated with the mass 

of the primary galaxy (and MBH) through σ , and that it is inversely 

proportional to the secondary BH mass. Hence, we expect that minor 

mergers will have longer decay time-scales, and in the plot we do see 

a ne gativ e correlation between T DF, post and q . F or the in-simulation 

DF, although this relation is not imposed explicitly, we still observe 

a ne gativ e correlation between q and the DF time. This indicates 

that the ne gativ e correlation is still captured by the in-simulation 

dynamical friction modelling. 

4.2 Loss cone scattering and GW hardening 

Once the two MBHs become gravitationally bound, the dynamical 

friction formalism is no longer a valid approximation, and individual 

interactions between singular stars and the binary must be considered. 

These interactions extract angular momentum from the binary, 

driving them closer to each other (e.g. Merritt 2013 ; Vasiliev & 

Merritt 2013 ). This regime is the loss-cone scattering (LC) regime, 

which refers to the specific cone in parameter space where stars 

hav e to e xist in order to extract angular momentum from the binary 

(e.g. Frank & Rees 1976 ; Lightman & Shapiro 1977 ). On even 

smaller scales, the binary will enter the GW regime where it will 

evolve until coalescence. Once the binary enters the GW regime, its 

dynamics follow the formalism of Peters ( 1964 ) at small separations 

of 10 −1000 Schwarzschild radii. 

For the loss-cone scattering and gra vitational-wa ve hardening 

phase, we adopt the analytical prescription in Vasiliev et al. ( 2015 , 

V15 hereafter). Ho we ver, the time estimation in equation (25) of 

V15 assumes a single family of M tot −σ inf −r inf relation, and thus it 

may o v ersimplify the properties of the galaxies hosting the merger 

events. Hence, we will adopt the V15 formalism but with some slight 

changes, so that we can use the host galaxy properties measured 

from the simulation. In this section, we first explain how we measure 

the rele v ant galaxy properties, then we gi ve our binary hardening 

time estimation by combining analytic modelling with the measured 

properties. 

4.2.1 Extrapolated galaxy properties 

To compute the hardening time for the binaries, the important 

quantities to measure are the influence radius r inf defined as the 

radius containing a stellar mass equal to two times the binary mass, 

the velocity dispersion of stars at the influence radius σ inf , the power- 

law slope of the stellar density profile γ , and the stellar density at 

the influence radius ρ inf . Since the binary hardening phase begins 

after the dynamical friction phase, we use the snapshot immediately 

following the numerical merger to measure these properties. 

Among the quantities abo v e, the v elocity dispersion can be 

measured directly from the simulation without extrapolation (for an 

isothermal sphere, the velocity dispersion is independent of radius). 

Therefore, we make the approximation that σ inf = σ gal , and use the 

measured velocity dispersion within the half-mass radius of the host 

galaxy. 

The next galaxy property we measure from the simulation is the 

power-law slope γ of the stellar density profile. In Fig. 4 , we show 

Figure 4. Density profiles (left) and images (right) of the host galaxies of 

three MBH mergers in the simulation. The blue crosses mark all MBHs in the 

host galaxy, scaled by the BH mass. The red circles mark the merging binary. 

Top: Host of a very massive binary with M tot = 5 . 6 × 10 8 M ⊙ at z = 3. The 

stellar density is the dominant component on scales below ∼10 ckpc h −1 . 

Middle: Host of a binary with M tot = 7 . 6 × 10 6 M ⊙ at z = 3. For this less 

massive binary, the density of the three components is comparable at r < 

10 ckpc h −1 , and the density profile flattens at a larger radius. Bottom: Host 

of a binary with two seed-mass MBHs. The mass of the host galaxy is high 

relative to the binary mass. The binary is not the most massive MBHs in this 

galaxy, but the merger still occurs in a relatively central region. 

three examples of the density profiles of dark matter, gas, and stars for 

galaxies hosting recently merged binaries. We show the profiles of a 

massive binary with M tot = 5 . 6 × 10 8 M ⊙, a less massive one with 

M tot = 7 . 6 × 10 6 M ⊙ at z = 3, and a seed-mass binary with M tot = 

1.9 × 10 6 M ⊙. For the most massive binary (top), the stellar density 

is the dominant component on scales below ∼10 ckpc h −1 . The 

stellar density profile follows a power law down to the gravitational 

softening length ǫg , where the profile flattens due to gravitational 

softening. In the case of the medium-mass binary, the density of all 

three components is comparable at r < 10 ckpc h −1 , and the density 

profile flattens at a larger radius compared to the massive one. In 

the third case of a seed-seed merger, the mass of the host galaxy is 

high relative to the binary mass. The binary is not the most massive 

MBHs in this galaxy, but the merger still occurs in a relatively central 

region. We note that this binary belongs to the seed MBH population 

that still merges after the post-processing delays. 

As we do not resolve the scale of interest for the loss-cone 

scattering, we assume that below a scale r ext close to the resolution 

limit ǫg , the stellar density profile follows a single power-law ρ ∝ r −γ . 

By doing so, we are able to extrapolate the stellar density to the inner 
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Figure 5. Left: The density profiles of Astrid galaxies that host a recent numerical merger. The blue solid line shows the median density of all binary hosts 

measured from the simulation and the shaded region encloses 95 per cent of the population. The power-law extrapolation is shown by dashed lines. Here, we 

show the results for extrapolation scales r ext = 1.5 ǫg (purple) and r ext = 2 ǫg (green). A larger r ext results in a steeper power-law slope. Middle: Distribution of 

the power-la w inde x of the density profile γ , measured at r ext = 1.5 ǫg (purple) and r ext = 2 ǫg (green). For r ext = 1.5 ǫg , the distribution peaks at γ = 1.4, while 

for r ext = 2.0 ǫg , the distribution peaks at γ = 1.9. We plot the power-index estimate in Kelley, Blecha & Hernquist ( 2017b ) for comparison. Right: Distribution 

of density extrapolated to 10 pc . We compare the two r ext values. The extrapolated density is sensitive to the change in r ext : r ext = 1.5 ǫg gives a distribution 

centred at 10 M ⊙ pc −3 , while r ext = 2.0 ǫg gives a distribution centred at 100 M ⊙ pc −3 . 

region of the host galaxy. To measure the value of γ , we take the 

measured density from 10 bins just abo v e r ext , and fit it to the power- 

law profile. Our choice of r ext is moti v ated by the flattening of the 

profile at ∼1.5 ǫg in Fig. 4 and the fact that gravity is not well- 

resolved within ∼2 ǫg . Since the exact scale on which the simulation 

density becomes unrealistic is uncertain, we use both r ext = 1.5 ǫg 

and r ext = 2.0 ǫg to bracket our predictions. We also note that the 

modelling of the inner regions of the galaxy is a simple one, where a 

single power-law profile is assumed. In reality, the relation between 

the density of the inner core of the galaxy and the profile at kpc- 

scales may be more complicated. Therefore, we take into account 

the lack of resolution in our simulations by measuring the profiles at 

different radii and including a range in our final predictions (whereas 

in previous works this uncertainty is not explicitly considered, or 

often a constant power-law index is assumed). 

The left-hand panel of Fig. 5 shows the measured stellar density 

profiles and extrapolations beyond r ext for all binaries in Astrid . 

We show the median as well as the 95 per cent contour of the 

measured density, and we compare the power-law extrapolation from 

r ext = 1.5 ǫg and r ext = 2.0 ǫg . From the comparison, we see that the 

measurement of γ is sensitive to the extrapolation scale, and that 

larger r ext results in a steeper power-law slope and thus a higher 

density at the inner region. Ho we ver, we also note that the shift 

due to r ext is comparable to the width of the distribution, and that 

both measurements are consistent with the values assumed in various 

binary hardening models. 

This is further illustrated by the middle/right-hand panel of Fig. 5 , 

where we show the distribution of the measured γ and the density 

extrapolated to 10 pc. For r ext = 1.5 ǫg , the distribution peaks at 

γ = 1.4, while for r ext = 2.0 ǫg , the distribution peaks at γ = 

1.9. These values are consistent with the range of values used in 

most loss-cone scattering models (e.g. Sesana 2010 ; Merritt 2013 ; 

V15 ; Sesana & Khan 2015 ). In the figure, we also compared our 

distributions with the measured distribution in Kelley et al. ( 2017b ) 

from the Illustris simulation. Compared to Kelley et al. ( 2017b ), 

our measured profiles are significantly steeper, which also leads to 

a higher extrapolated density at r = 10 pc. Our simulation has a 

higher resolution than Illustris, and thus resolves the stellar density 

profiles better on kpc scales. This is also due to the fact that we 

be gin our e xtrapolation at dif ferent scales: K elley et al. ( 2017b ) 

uses the inner-most eight density bins that contain at least four 

particles, which could lie well below the gravitational softening. 

From the right-hand panel, we see that the extrapolated density 

is sensitive to the change in r ext : r ext = 1.5 ǫg gives a distribution 

centred at 10 M ⊙ pc −3 , while r ext = 2.0 ǫg gives a distribution centred 

at 100 M ⊙ pc −3 . The order-of-magnitude difference motivates us to 

propagate the uncertainty in r ext throughout subsequent analyses, as 

it may have non-trivial impacts on the final merger rate predictions 

from the simulation. 

Finally, we compute r inf and ρ inf from the quantities measured 

abo v e. As we cannot resolve the inner cusp of the galaxies in our 

simulation, a direct measurement of r inf is not possible. To estimate 

the influence radius, we adopt the analytical relation (e.g. Sesana 

2010 ): 

r inf = (3 − γ ) 
GM tot 

σ 2 
inf 

, (9) 

where γ is the density power-law slope we just showed, and σ inf is 

approximated by the measured galaxy velocity dispersion. 

To get the density at the influence radius ρ inf , we extrapolate 

the power-law relation of the density profile down to r inf , using the 

measured γ and ρ. Note that our simulation does not resolve the 

high-density peaks below our resolution, or nuclear star clusters, and 

thus the extrapolated ρ inf is likely a lower limit. Moreover, since the 

nuclear star clusters are not resolved, we do not account for effects 

such as tidal disruption, which can to a shorter binary hardening time 

(e.g. Arca-Sedda & Gualandris 2018 ; Biava et al. 2019 ; Ogiya et al. 

2020 ). 

Fig. 6 shows all of the measured or derived variables for computing 

the binary hardening time-scales, and their relation with the binary 

mass. The M BH −σ relation follows the relation in Tremaine et al. 

( 2002 ) for binaries with M tot > 2 × 10 6 M ⊙, but is flatter compared 

to the relation in Kormendy & Ho ( 2013 ). There is a large scatter in 

σ for seed-mass binaries. Since the influence radius r inf is derived 

from σ , γ , and the binary mass, we expect it to stay close to the 

analytical models from binary hardening papers. Here, we compared 

it with the analytical model adopted in Sesana ( 2010 ) and V15 . Our 

values are in line with the Sesana ( 2010 ) model with a constant γ = 

1.5, although the scatter is large. This is also consistent with the fact 
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Figure 6. Variables used to calculate dynamical friction and binary hardening time-scales. Left: M tot −σ relation measured from all the binaries at the time of 

merger in the simulation, compared to the analytical relation given in Tremaine et al. ( 2002 ) and Kormendy & Ho ( 2013 ). Middle: The influence radius derived 

from γ and σ measured the simulation, compared with the analytical model used in V15 (green dashed line), and in Sesana ( 2010 ) with γ = 1.5 (black dashed 

line). Our measured σ and r inf are both close to the analytical models. Right: Density at influence radius extrapolated from the simulation. To illustrate the effect 

of extrapolation scales on ρinf , we show the resulting extrapolation from both 1.5 ǫg (pink dots) and 2.0 ǫg (green contour). As was demonstrated in Fig. 5 , the 

density extrapolation is sensitive to the starting point of the extrapolation. Ho we ver, e ven the extrapolated density from an outer radius is smaller compared with 

the analytical model used in Sesana ( 2010 ) with γ = 1.5 (black dashed line). 

that our distribution in γ peaks around γ = 1.4 when measured at 

r ext = 1.5 ǫg . 

Finally, in the right-hand panel of Fig. 6 we show the density at 

the influence radius extrapolated from the simulation. To illustrate 

the effect of extrapolation scales on ρ inf , we show the resulting 

extrapolation from both 1.5 ǫg and 2.0 ǫg . As shown in Fig. 5 , the 

density extrapolation is very sensitive to the starting point of the 

extrapolation. Shifting the starting point by 0.5 ǫg = 0.75 ckpc h −1 

can result in an order of magnitude difference in ρ inf . Ho we ver, 

we note that even the density extrapolated from the outer radius is 

smaller than the analytical model used in Sesana ( 2010 ) with γ = 

1.5. 

4.2.2 Binary hardening time-scales 

After measuring the quantities of interest for computing the binary 

hardening time, we will proceed to describe the analytical model 

for estimating the hardening time-scale. As was mentioned earlier, 

we base most of our model on V15 , with appropriate changes to 

incorporate information from the simulation. 

V15 models a separation-dependent LC hardening rate by 

S ∗( a) = μS inf 

(

a 

a h 

)ν

, (10) 

where a is the binary separation, a h is the hardening radius given 

by a h = 
q 

4(1 + q) 2 
r inf , μ is the filling fraction of the loss cone, and ν

characterizes the radial dependence of the hardening rate. We adopt 

the fiducial values of μ = 0.3 and ν = 0.4 from V15. S inf is the full 

LC hardening rate at the influence radius given by 

S inf = H 
Gρinf 

σinf 
, (11) 

where σ inf and ρ inf are the velocity dispersion and stellar density at 

the influence radius r inf , and H is a constant LC hardening rate given 

by H = 2 πA , with A = 4 in V15. This value is slightly larger than the 

H = 15 rate given by Sesana & Khan ( 2015 ). We note that this model 

is tested under the assumption that γ ∈ [1, 2], and in the case of a 

shallower density profile from core depletion, the value of A may be 

smaller (e.g. Mannerkoski et al. 2019 ). 

At a closer separation, GW emission becomes the dominant 

channel for binary energy loss. The hardening rate in the GW regime 

is given by Peters ( 1964 ), which considers the evolution of the 

Keplerian orbital due to the leading radiation reaction term at the 

PN2.5 level: 

S GW ( a ) = 
1 

a 5 

64 G 
3 M 1 M 2 M tot F ( ǫ) 

5 c 2 
, (12) 

where ǫ is the eccentricity of the binary orbit and 

F ( ǫ) = (1 − ǫ2 ) −7 / 2 [1 + (73 / 24) ǫ2 + (37 / 96) ǫ4 ] (13) 

accounts for the eccentricity dependence of the GW hardening rate. 

The separation at which the binary spends the most time, a gw , is 

calculated by setting S ∗( a ) = S GW ( a ), which leads to 

a GW = 

(

64 G 
3 M 1 M 2 M tot F ( ǫ) 

5 c 2 
a νh σinf 

μS inf 

)1 / (5 + ν) 

, (14) 

Finally, we can estimate the LC + GW hardening time-scale by 

T 
ǫgw 

hard = 
1 

S ∗( a GW ) × a GW 
. (15) 

Note that in this expression, we have only accounted for the 

eccentricity dependence during the GW hardening stage, and thus 

the superscript ǫgw . Ho we ver, the orbital eccentricity also evolves 

during the LC scattering phase and can impact the hardening time. 

V15 models this effect by 

T hard = T 
ǫgw = 0 

hard × (1 − ǫ2 )[ k + (1 − k)(1 − ǫ2 ) 4 ] (16) 

where k = 0 . 4 + 0 . 1 log 10 ( M tot / 10 8 M ⊙). At higher eccentricities, 

equation ( 15 ) and ( 16 ) give similar results, but for ǫ ∼ 0, the former 

underestimates the hardening time-scale by a factor of ∼3. 

For the binaries in our simulation, we use the galaxy and binary 

properties shown in Section 4.2.1 , together with the abo v e formalism 

to estimate the binary hardening time. Note that the hardening 

time-scale depends on the orbital eccentricity as the BHs enter the 

hardening regime: more eccentric orbits merge faster compare to 

circular ones. To take this effect into account, we use the orbital 

eccentricity shown in Section 3 as a proxy for the orbital eccentricity 

at the beginning of the binary hardening phase, assuming that 
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Figure 7. Top: The distribution of the loss-cone and gra vitational-wa ve 

hardening time for all binaries in the simulation. Here we use r ext from 

1.5 ǫg . The shaded distribution is computed using the measured eccentricity 

ǫen . If we assume ǫ = 0 (unshaded), the decay time-scales will generally be 

longer by a factor of ∼100 and peak at 100 Gyr, which is much longer than a 

Hubble time. Middle: The relation between the hardening time-scale and the 

density at influence radius ρinf . The time-scale is ne gativ ely correlated with 

ρinf . Changing r ext from 1.5 ǫg (pink dots) to 2.0 ǫg (green contours) shortens 

the hardening time-scale. The right-hand panel shows a clearer dependence 

when we remo v e the seed population. Bottom: The relation between the 

hardening time-scale and the measured eccentricity. We see a weak ne gativ e 

correlation between T hard and ǫen . 

the post-processed dynamical friction does not change the orbital 

eccentricity greatly (e.g. Colpi et al. 1999 ; Hashimoto et al. 2003 ). 

There are many very recent works investigating the change in the 

orbital eccentricity during the dynamical friction and loss cone 

scattering evolution phases. Vasiliev, Belokurov & Evans ( 2022 ) has 

shown that the orbital eccentricity tends to increase for the low-q, 

shallow-profile pairs, while Mannerkoski et al. ( 2021 ) and Gualandris 

et al. ( 2022 ) saw the circularization of the orbits during the dynamical 

friction phase. None the less, all these simulations agree on the result 

that the initial eccentricity of the MBH orbit at ∼ 100 pc scales is 

high, and that the eccentricity by the end of the loss-cone scattering 

phase still traces the initial eccentricity of the MBH. Hence, our 

assumption of using the measured eccentricity ǫen as a proxy for the 

eccentricity at the hardening phase still aligns with their results. In 

Section 5 and in the Appendix, we will further discuss the change in 

the merger rate estimation due to possible circularization of the orbit 

during the unresolved dynamical friction phase. 

We also note that the galaxy properties we put into the calculation 

are instantaneous properties from the simulation after the BHs go 

through the numerical merger. Given that the galaxy and central 

stellar densities will only grow with time (as well as the BH masses), 

our estimations are likely upper limits of the hardening time. 

Fig. 7 shows the relation between the binary hardening time and 

ρ inf as well as the energy-based eccentricity ǫen . We also show the 1D 

distribution of hardening times. The left column includes all binaries 

in the catalog, while the right column only includes binaries with M 1 

> 2 M seed, 1 . For all binaries, given our measured initial eccentricities, 

the hardening time-scale falls between 100 Myr and 100 Gyr, with a 

peak around 5 Gyr. The time-scale is strongly correlated with ρ inf and 

therefore also r ext . Changing the value of r ext from 1.5 ǫg to 2.0 ǫg leads 

to a shorter estimated hardening time-scale. This is because higher 

stellar density leads to shorter hardening time-scales, as the LC stars 

can more efficiently carry away the energy from the binary. In fact, 

we find that the inner stellar density is the most important property for 

determining the hardening time-scale. None the less, in both cases, 

the hardening time-scale is much longer than the dynamical friction 

time-scale. Note that if we do not account for the eccentricities of 

the binary orbits, the decay time-scales will generally be longer by 

a factor of ∼100 and peak at 100 Gyr, which is much longer than a 

Hubble time. 

The bottom row of Fig. 7 shows the relation between the hardening 

time-scale and the measured eccentricity. When looking at the whole 

binary population, we see a ne gativ e correlation between T hard and 

ǫen . This is expected as eccentric orbits have accelerated hardening 

rates. Ho we ver, when we only focus on the non-seed mergers, the 

ǫen dependence is washed out by the strong correlation with ρ inf . 

Because of the strong dependence of the delay time-scale on the 

uncertain variable ρ inf , we will propagate this uncertainty to the 

merger rate predictions in the next session, and characterize how 

the uncertainty due to numerical resolution affects the mergers in 

Astrid . 

5  MBH  M E R G E R  R AT E  A N D  H O S T  G A L A X Y  

PROPERTIES  

After characterizing the delay time, in this section we present the 

rate at which GW signals from MBH mergers will reach the earth, 

taking into account the sub-resolution delay processes. We also 

examine how the DF and binary hardening delay affects the different 

populations of MBH mergers. Finally, we investigate the galaxy 

properties for different parts of the merger population. 

5.1 Merger rate predictions 

We calculate the rate by integrating the number of mergers in the 

simulation o v er redshifts, incorporating the cosmic volume at the 

given redshift: 

d N 

d z d t 
= 

d 2 n ( z) 

d z d V c 

d z 

d t 

d V c 

d z 

1 

1 + z 
(17) 

where d V c is the comoving volume element of the universe at a given 

redshift and n ( z) is the number of mergers at that redshift. The 1/(1 

+ z) term redshifts the infinitesimal time element in d z/d t to the 

observer frame time interval. 

To calculate this rate from our simulation, we take the finite- 

interval approximation: 

d 2 n ( z) 

d z d V c 
= 

N ( z) 

	z V sim 
, (18) 

where 	z is the width of the redshift bin, N ( z) is the total number 

of mergers within that redshift bin, and V sim = (250 Mpc /h ) 3 is the 

volume of our simulation in comoving units. 

To clearly see the effect of each stage of the delay, we calculate 

three different rates. We first compute the ‘Sim’ rate which uses 

the numerical merging time as the redshift of the merger (also see 

DeGraf et al. preparation). Then we add the post-processed DF time 

to the numerical merger time to compute the ‘DF-only’ rate. We 

further account for the binary hardening time-scales and calculate the 
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Figure 8. Left: The merger rates for all binaries in Astrid down to z = 3 with different levels of delays. Without considering any post-processing delays 

(orange), we expect a total of ∼2 mergers per year of observation down to z = 3. The rate when considering only the DF delay (green) has an at most 50 per 

cent decrease compared to the raw rate at the highest redshifts. The binary hardening time has the most significant effect in reducing the merger rate. The purple 

band shows the DF + hardening delayed merger rate estimated using the measured eccentricity ǫen . The upper limits of the bands assume r ext = 2 ǫg , and the 

lower limits assume r ext = 1.5 ǫg . The yellow dashed line shows the DF + hardening delayed merger rate estimated using the half-circularized eccentricity 

0.5 ǫen , assuming r ext = 1.5 ǫg . The bottom panel shows the ratio between the delayed merger rates and the simulation merger rates. Right: The mass distribution 

of the two MBHs involved in the mergers. The red curves correspond to the more massive MBH and the blue curves correspond to the less massive MBH. The 

mass distribution of the simulation mergers is plotted in dashed lines, and that of the delayed mergers is plotted in solid lines. The bottom panel shows the ratio 

between the mass distributions of simulation mergers and delayed mergers. The seed-mass mergers (enclosed in the vertical dashed lines) are suppressed most 

strongly by a factor of ∼6. 

‘DF + Hard’ rate. Finally, to account for the possible circularization 

of the orbital eccentricity during the unresolved dynamical friction 

evolution, we compute the ‘half-circularization’ rate assuming that 

binaries only retain 50% of their initial eccentricities at the beginning 

of the hardening phase. Our ‘half-circularization’ model uses a 

simple assumption that all the binaries lose 50 per cent of the initial 

measured eccentricities, regardless of the environment. In reality, 

the eccentricity evolution can depend on various factors such as the 

density profile and the mass ratio of the host galaxies, and could 

deviate from a simple linear relation. None the less, due to the lack 

of an analytical model for eccentricity evolution in the dynamical 

friction phase, we choose this simplified linear relation in order to 

estimate the uncertainties. 

In the left-hand panel of Fig. 8 , we plot the merger rates with 

dif ferent le vels of post-processed delays, for the whole merger 

population in Astrid . First, we notice that the number of mergers 

keeps increasing with decreasing redshift for all three models. This 

is because we keep seeding BHs as structures form and grow, and 

we have not reached the peak in seeding rate at z = 3. Without 

considering any post-processed delays (‘Sim’), we expect a total of 

∼1.8 mergers per year of observ ation do wn to z = 3. The post- 

processed DF time does not significantly impact the total observed 

merger rate (‘DF-only’), with a ∼ 50 per cent decrease at the highest 

redshift ( z ∼ 8). The binary hardening time has the most significant 

impact on the merger rate at all redshifts (‘DF + Hard’). We see 

that the merger rate is reduced by a factor of 3 ∼ 7 after adding 

the delay from binary hardening. The resulting merger rate is 0.3 ∼
0.7 at z > 3. Here, the upper limit is given by assuming r ext = 2 ǫg 

and the lower limit is given by r ext = 1.5 ǫg . Finally, if we further 

consider the circularization of MBH orbits during the unresolved 

dynamical friction evolution, the rate estimation decreases to 0.1 

∼ 0.3 per year at z > 3. This is again a factor of ∼5 decrease in 

the merger rate, comparable to the uncertainties due to the density 

profile measurements. In the Appendix, we will investigate in more 

details ho w v arious eccentricity assumptions af fect our merger rate 

predictions. There we will show that the difference between a ‘half- 

circularization model’ and a ‘full-circularization’ model (where all 

orbits are assumed to be circular) is within 15% in terms of the merger 

rate prediction. Thus by investigating the ‘half-circularization’ model 

here, we have approached the lower-bound in the merger rate due 

to orbital circularization. On the bottom panel, we show the ratio 

between the delayed merger rate and the simulation merger rate as 

a function of redshift. For both DF-only and DF + Hard delays, the 

fractional rates get higher at lower redshifts. This is a result of the 

high-redshift mergers being pushed down to low redshifts. 

In the right-hand panel, we show the mass distribution of the 

two MBHs involved in each merger. The dashed lines correspond to 

the simulation merger without any delays, and the solid lines show 

the distribution of the merger population after the DF + hardening 

delays. First, we can see that both before and after the delay, the 

merger population is dominated by seed-mass mergers (the ones 

enclosed by the vertical dashed lines), with M 1 evenly distributed 

across the seed masses and M 2 concentrated on the lower-mass 

end of the seeds. It is also this seed-mass merger population that 

gets suppressed the most by the delay. From the ratio between the 

mass functions shown in the bottom panel, we see that for the 

seed-mass mergers, only ∼ 15 per cent still merge at z > 3 after 

the delays, whereas at the high-mass end this fraction increases to 

50 per cent . 

In order to disentangle different merger populations, in Fig. 9 we 

further split the rate by how many seed MBHs are involved in the 

merger. The left-hand panel shows the merger rates for the seed- 

mass population, where the masses of both MBHs are below two 

times their seed masses. This population makes up ∼ 60 per cent of 
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Figur e 9. Mer ger rates for different mass cuts and mass-ratio cuts. Left: The merger rates for the seed-mass population, where the masses of both MBHs are 

less than two times their seed masses. The colours are the same as in Fig. 8 . Compared to Fig. 8 , this population makes up ∼ 60 per cent of the mergers. Middle: 

Merger rate for MBHs with only one of the two grown out of the seed mass. This rate makes up ∼ 30 per cent of the entire merger population. Compared to 

the seed–seed mergers; here, we see fewer mergers at high redshifts, but a similar rate at z = 3. Right: Mergers with both MBHs larger than two times their 

seed masses and with q > 0.1. When constrained to major and non-seed mergers, the effect of DF is barely noticeable. The DF + hard delayed rate makes up 

50 per cent of the total rate. The lower panels show the ratio between the delayed merger rates and the simulation merger rates. 

the mergers. At z > 5, the seed-seed mergers are strongly suppressed 

by the binary hardening delays because the stellar density is relatively 

low. The middle panel shows the mergers with the only more massive 

MBH grown beyond two times its seed mass. At z = 3, the rate from 

this group is comparable to the rate from the seed–seed mergers. 

Ho we ver, the number decreases more steeply as we go to higher 

redshifts. Compared to the seed–seed mergers, this group has a 

higher mass ratio and thus a longer DF time. The effect of the binary 

hardening delay, ho we ver, is smaller because of the higher density 

in the remnant galaxy . Finally , on the right-hand panel, we show 

the more massive and major mergers. Compared to the previous two 

groups where at least one seed-mass MBH is involved in the merger, 

the mergers from this group are ∼6 times lower. The effect of delay 

is also the smallest. In particular, we noticed that the DF-only rate 

is very similar to the simulation rate. Even for this group where the 

effect of delays is the smallest, the merger rate is still suppressed 

by > 50 per cent at each redshift compared to the simulation merger 

rate. 

Fig. 10 shows the distribution of MBH mergers on the M tot −z merge 

plane for both the simulation and delayed mergers, colour coded by 

the number of mergers per Myr. Without any delay, the majority of the 

merger events are seed–seed mergers around z = 3 −4. As we would 

expect from the BH mass growth over time, we see more massive 

mergers at lower redshifts. The middle panel shows the same merger 

population with the post-merger DF time added. As was discussed 

in the previous paragraph and in Section 4.1 , the post-processed DF 

peaks around 200 Myr and does not significantly delay the mergers. 

Here, we see a slight shift of the merger population towards a lower 

redshift. 

In the right-hand panel of Fig. 10 , we show the distribution after 

considering the DF delay and hardening phase. Note that since the 

final simulation output is at z = 3, all the data points at z < 3 are the 

results of delayed z > 3 numerical mergers, and are not representative 

of all merger events at z < 3. Compared with the other two panels, 

we see a significant shift of the mergers towards lower redshifts. The 

population that is most significantly shifted are the low-mass mergers 

with M tot < 10 6.5 M ⊙, while the most massive binaries are still able to 

merge at relatively high redshifts. This is a consequence of the large 

hardening time-scale of smaller BHs associated with lower ρ inf . 

5.2 Properties of high-z MBH mergers 

From the previous section, we have seen that while some low-mass 

mergers are significantly delayed and do not merge at z > 3, ∼
15 per cent of them still do. For the non-seed mergers, although the 

delay is generally less significant, we still see a 50 per cent decrease in 

merger rate when accounting for the delays. Now we will investigate 

which part of the merger population gets significantly delayed, and 

which still manages to merge at high redshifts. 

In Fig. 11 , we show the properties of MBHs involved in both the 

simulation mergers and the delayed mergers. The top row shows 

the properties of the non-seed mergers, and the bottom row shows 

the properties of the seed-seed mergers. We start by looking at the 

mass distribution of galaxies hosting the mergers (shown in the first 

column). For the simulation mergers consisting of two non-seed 

MBHs, the masses of the host galaxies peak at 4 × 10 9 M ⊙. For 

systems that still merge after the delays, we see a clear shift towards 

the higher end in stellar masses with a peak at ∼10 10 M ⊙. This is 

because for more massive galaxies, the high stellar density enables 

more efficient hardening through loss-cone scattering, and thus the 

delay time is shorter (also see Fig. 7 ). For mergers involving two 

MBH seeds shown on the bottom, we observe a similar trend. Overall, 

seed mergers reside in less massive galaxies with stellar masses 

below 4 × 10 8 M ⊙. The delayed merger events also pick up the more 

massive galaxy population out of the simulation mergers with galaxy 

masses distributed around 10 9 M ⊙. 

In addition to the stellar environment which plays an important 

role in the delay time estimation, the seeding redshift of the MBHs 

can also affect whether the two MBHs still merge at a high redshift 

after the delay. This is shown in the second column of Fig. 11 . While 

the seeding redshift of the simulation merger MBHs is z ∼ 7, the 

MBHs involved in delayed mergers are seeded as early as z = 10. 

For the seed-seed mergers shown on the bottom, the overall seeding 
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Figure 10. The distribution of mergers on the M tot −z merge plane for the simulation and delayed mergers, colour-coded by the number of mergers per Myr. 

Left: The distribution for all mergers without delays. Middle: The same merger population with the post-merger DF time added. Here, we see a slight shift 

of the merger population towards a lower redshift, but nothing gets delayed below z = 2. Right: The distribution after considering both the DF delay and the 

hardening time. Note that since the latest redshift of the simulation is z = 3, all the data points at z < 3 (masked in grey) are results of the delay from z > 3 

numerical mergers, and are not representative of all merger events at z < 3. We see a significant shift of the mergers to wards lo wer redshifts. The population 

most significantly shifted are the low-mass mergers with M tot < 10 6.5 M ⊙, while the most massive binaries are still able to merge at relatively high redshifts. 

Figure 11. The fraction of the merger population in each bin of the galaxy stellar mass hosting the merger (first column), seeding redshifts of the merged MBHs 

(second column), number of MBHs in the host galaxy (third column), and the ratio between the total MBH mass in the host galaxy and the binary mass M tot 

(fourth column). The top row shows the non-seed merger population, and the bottom ro w sho ws the seed-mass merger population. The simulation mergers are 

shown in orange and the DF + Hard delayed mergers are shown in purple. The total number of z > 3 mergers in each population is shown in the second column 

with corresponding colours. 

redshift is lower, but we also see a shift towards a higher redshift 

when comparing the delayed mergers to the simulation mergers. 

The bias towards early MBH seeding for delayed mergers is also 

correlated with the higher host galaxy mass we have seen earlier: 

because the delayed mergers fa v our earlier seeds, they also tend to 

reside in galaxies that are massive enough at high redshifts to host 

an MBH seed. 

On the right two columns, we examine the properties of other 

MBHs embedded in the host galaxy of the mergers. The third column 

shows the total number of MBHs embedded in the host galaxy of 

the merger, in the snapshot immediately following the numerical 

merger (so the merging MBHs will be counted as one object). The 

fourth column is the mass ratio between all MBHs in the host galaxy 

and the merging system. For both the seed and non-seed merger 

populations, the merging system is the sole MBH in the host galaxy 

in the majority of mergers. For the non-seed population, there is still 

a > 50 per cent fraction of mergers happening next to a third MBH 

(or more). Interestingly, the delayed merger systems fa v our galaxies 

with more MBHs near the merging ones (also correlated with larger 

galaxy masses). None the less, the merging system is still the most 

massive MBH in its host galaxy in most cases when we look at the 

M BH, gal / M tot ratio. 
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When constrained to seed-seed mergers, we see that ∼ 70 per cent 

of the mergers are the single MBH in the host galaxy. The delayed 

mergers also tend to pick out the galaxies with more MBHs compared 

to the simulation mergers. Ho we ver, contrary to the non-seed case 

where the merging MBH is more massive than the other MBHs in the 

same galaxy, for seed-seed mergers that do occur near a third MBH, 

the mass of the third MBH is more likely to be larger. This can be 

seen from the fact that the N BH, gal distribution is more peaked at 

N BH, gal > 1 compared to the M BH, gal / M tot > 1 distribution (it means 

that if there is a third MBH, its mass can be larger than M tot in some 

cases, resulting in the longer tail of M BH, gal / M tot ). 

From the investigations above, we conclude that the z > 3 mergers 

after the DF and hardening delay make up a small and biased sample 

of the simulation mergers. In particular, they are systems with MBHs 

seeded earlier and embedded in more massive galaxies compared to 

the o v erall simulation merger population. Moreo v er, the majority of 

the merger remnant is the only MBH in its host galaxy, especially 

for the seed-mass mergers. Ho we ver, the delayed mergers tend to 

pick out more systems that have other nearby MBHs in the remnant 

galaxy compared to the o v erall simulation merger population. 

6  G W  EMISSION  F RO M  MBH  M E R G E R S  

With a catalogue of merging binaries, their merging time, and orbital 

eccentricities, we can not only compute the rate of mergers reaching 

the Earth, but also predict the GW signal that can be observed 

from these sources. This section is dedicated to predicting the GW 

signal and detectability of the Astrid mergers with LISA. We 

first briefly describe the characteristic strain for circular sources, 

and then we generalize to the signal from eccentric sources. After 

that, we combine with the LISA sensitivity curve and compute the 

signal-to-noise ratio (SNR) for each merger in the simulation. 

6.1 Characteristic strain of circular orbits 

MBH binaries provide a variety of signals measurable by LISA 

since their chirp evolution in the frequency domain occurs near the 

low-frequency band edge of the LISA sensitivity curve. Binaries 

with 10 5 –10 7 M ⊙ total mass will provide a measurable inspiral, 

merger, and ringdown, leading to signals out to the cosmic horizon 

(Amaro-Seoane et al. 2017 ). The binary inspiral is the initial stage 

of binary BH coalescence when the two MBHs orbit one another at 

separations greater than the innermost stable circular orbit (ISCO; 

R = 6 GM BH / c 
2 ). At these separations, the orbit is usually treated with 

a post-Newtonian formalism. The merger stage follows the binary 

inspiral with a highly non-linear relativistic process. This process 

continues until the binary components form a single event horizon, 

leading to ringdown. 

We use the characteristic strain, h s , to model the binary signal 

which accounts for the time the binary spends in each frequency 

bin (Finn & Thorne 2000 ). The characteristic strain is given by (e.g. 

Moore, Cole & Berry 2015 ) 

h s ( f ) = 4 f 2 | ̃  h ( f ) | 2 , (19) 

where ˜ h ( f ) represents the Fourier transform of a time domain signal. 

To generate the waveforms, we use the phenomenological wave- 

form PhenomD (Husa et al. 2016 ; Khan et al. 2016 ) implemented 

within the gwsnrcalc PYTHON package (Katz & Larson 2019 ). 

The input parameters are the binary masses, merging redshift, and 

the dimensionless spins of the binary. For the MBH masses, we do 

not account for mass growth after the numerical merger. Ho we ver, 

we note that the MBH can potentially gain a significant fraction of 

its mass during the > 1 Gyr of time in the dynamical friction (e.g. 

Banks et al. 2021 ) or loss-cone scattering phase. The dimensionless 

spin a characterizes the alignment of the spin angular momentum 

with the orbital angular momentum, and the value of a ranges from 

−1 to 1. Ho we v er, we do not hav e an y information on the spin of 

the SMBHs in our simulation. Therefore, following the argument in 

Katz et al. ( 2020 ), we assume a constant dimensionless spin of a 1 = 

a 2 = 0.8 for all binaries (e.g. Miller 2007 ; Reynolds 2013 ). 

In Fig. 12 , we show the distribution of the merging frequency f merge 

and the strain at this frequency for all binaries in the simulation, 

before and after applying the DF + Hardening delay models. To 

e v aluate the detectability of the population with LISA, we also plot 

the proposed LISA sensitivity curves. We use the LISA sensitivity 

configuration from the LISA Mission Proposal (Amaro-Seoane et al. 

2017 ), and we use h N = 
√ 

S N (Moore et al. 2015 ) to convert from 

the proposed power spectral density S N to strain h N . 

In the left-hand panel of Fig. 12 , we show example waveforms 

for binaries of different masses but similar numerical merging time. 

The thick curve shows the waveform assuming ǫ = 0, with the 

dot representing the merging frequency f merge . We will discuss the 

thin lines with non-zero eccentricities in later sections. From the 

e xample wav eforms, we see that at a fixed source redshift, the more 

massive binary has a higher strain amplitude. However, this does not 

necessarily lead to a more significant detection, because the lower 

frequency at which the wave is emitted falls into the region where 

the LISA sensitivity is worse. Out of these three binaries, the two 

least massive binaries are detectable by LISA while the most massive 

one is not. After the DF and hardening delays, all curves have higher 

strain amplitudes, as the strength of the signal is ne gativ ely correlated 

with redshift. 

After looking at individual cases, we turn to the whole binary 

population. On the right-hand panel, we show the distribution of 

f merge and h s ( f merge ) for Astrid mergers, after the post-processed 

delays. We have masked the signals from z < 3 mergers in light 

gre y, as the y are purely due to the post-processed delays, and are 

not part of our simulation predictions. The majority of merger events 

within the simulation lie abo v e the LISA sensitivity curve. From 

e xample wav eforms, we see that once an y giv en GW signal crosses 

the detector sensitivity curve, the ratio of the signal to the sensitivity 

curve rapidly increases by a few orders of magnitude. Since the 

merger population is dominated by seed–seed mergers, we see a 

peak around f merge ∼ 10 −2 Hz, corresponding to the example green 

curve. Finally, we demonstrate the shift of the signal due to the delay 

model by the coloured arrows. The tail of the arrows indicates the 

location of the frequency/strain before the delays. The head of the 

arrows are the signals after the delays. We see that in the example 

cases, the signal shifts to the high-strain, high-frequency region of 

the plane. This is mainly because of the delay of the mergers from z 

> 3 to z < 3. 

6.2 GW signal from eccentric sources 

In the previous section, we have shown a single h s −f relation 

by assuming circular orbits for the binaries. In this section, we 

will utilize the eccentricity measured from the simulation when 

calculating the strain and signal-to-noise ratio (SNR) for each binary. 

The GW strain from an individual, eccentric source can be related 

to that of a circular source as (e.g. Amaro-Seoane et al. 2010 ; Kelley 

et al. 2017b ): 

h 
2 
s ( f r ) = 

(

2 

n 

)2 ∞ 
∑ 

n = 1 

h 
2 
r, circ ( f h ) g( n, ǫ) | f h = f r /n , (20) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
1
4
/2

/2
2
2
0
/6

5
9
5
3
2
6
 b

y
 U

n
iv

e
rs

ity
 o

f C
a
lifo

rn
ia

, R
iv

e
rs

id
e
 L

ib
ra

ry
 T

e
c
h
. S

e
rv

ic
e
s
/S

e
ria

ls
 u

s
e
r o

n
 1

6
 S

e
p
te

m
b
e
r 2

0
2
2



2234 N. Chen et al. 

MNRAS 514, 2220–2238 (2022) 

Figure 12. Left: Example waveforms for three binaries of different masses in Astrid . The thick curve shows the waveform assuming ǫ = 0, while the thin 

lines are the waveform assuming eccentric orbits. We also show the LISA sensitivity curve from Amaro-Seoane et al. ( 2017 ) (black solid) for comparison. The 

numerical merging time of all example binaries is z ∼ 3.1. Right: The h −f distribution after applying the delay models. The arrows indicate the shifts in strain 

and frequency by the delay. Most signals are shifted to the upper-right due to the lower redshift of the merger after the delays. The light grey region shows the 

merger population delayed to z < 3, which is not part of our prediction. 

where h r,circ is the characteristic strain of a circular source given by 

equation ( 19 ), g ( n , ǫ) is the GW frequency distribution function given 

by equation 20 in Peters & Mathews ( 1963 ) with 
∑ ∞ 

n = 1 g( n, ǫ) = 

F ( ǫ), where F ( ǫ) is defined by equation ( 13 ). 

During the GW-driven inspiral, the orbital eccentricity also evolves 

according to Peters ( 1964 ) equation (5.7), such that it decays towards 

zero as the binary inspirals towards merger. This will affect the orbital 

frequency by 

f orb 

f 0 
= 

⎡ 

⎣ 
1 − ǫ2 

0 

1 − ǫ2 

(

ǫ

ǫ0 

)12 / 19 
( 

1 + 
121 
304 ǫ

2 

1 + 
121 
304 ǫ

2 
0 

) 870 / 2299 
⎤ 

⎦ 

−3 / 2 

, (21) 

where ǫ0 is the initial eccentricity at the reference frequency f 0 . 

In Fig. 12 , the multiple thin lines are the waveforms from higher 

order harmonics assuming eccentric orbits. For circular orbits, the 

GW is emitted at a single frequency at a fixed separation, while the 

eccentric binaries emit GW at higher order harmonics at a given time. 

One consequence of this is that the energy dissipated in higher order 

harmonics is below the detection sensitivity, and thus the signal will 

be smaller compared with the circular orbits. 

We note that by using the simulation measurement of the orbital 

eccentricity as the initial eccentricity in the inspiral phase, we did not 

account for any possible increase in ǫ during the loss-cone scattering 

phase (see, e.g. Sesana 2010 ). Ho we ver, such changes mostly affect 

low initial eccentricity pairs (e.g. Kelley et al. 2017a ). Since the 

initial binary eccentricities of our MBH pairs are already very high, 

we expect the loss-cone scattering to have only a minor effect on the 

final eccentricity. 

6.3 Detectability prediction 

Although the strain in Fig. 12 is a good estimation of the detectability 

of a circular binary, for the eccentric case a more careful prediction 

comes from the signal-to-noise ratio (SNR). The SNR is estimated 

by integrating the ratio of the signal to the noise in the frequency 

domain. The sky, orientation, and polarization averaged SNR are 

given by 

〈 SNR 〉 2 = 
16 

5 

∫ f end 

f start 

h 
2 
s 

h 
2 
N 

f −1 d f , (22) 

where f start = f ( t start ) and f end = f ( t end ), with t start and t end representing 

the starting and ending time of when the signal is observed. Note that 

here we are assuming eccentric waveforms for the binaries, and thus 

h s is given by the sum over different modes following equation ( 20 ). 

As it is not computationally feasible to sum an infinite number of 

modes, we truncate the sum in equation ( 20 ) at n = 50 and we have 

checked that the difference between the first 50 and the first 100 

modes is less than 5 per cent . 

For the current configuration, we assume that the LISA observation 

lasts for 4 yr. We further assume a most optimistic SNR for all mergers 

by taking t end = t peak and t start = t peak − 4 yr. Under this assumption, 

we are al w ays integrating the part of the waveform where the strain 

is maximized. Ho we ver, as was discussed in Salcido et al. ( 2016 ) 

and Katz et al. ( 2020 ), the actual SNR may be smaller if there is an 

offset between the LISA observation window and the merger time of 

the binary. 

Fig. 13 shows the distribution of the SNR computed for all mergers 

in the simulation. The left column shows the joint distribution of 

SNR and the merging redshift. The top row is the SNR computed 

with merging redshifts before the DF and hardening delays, and 

the bottom row is the SNR after the delay time is applied. As was 

expected from the simpler calculation shown in Fig. 12 , the majority 

of the binary population in the simulation has an SNR larger than 

the LISA detection threshold of 8 (plotted as dashed grey lines). The 

ones that fall below the SNR cut are mainly massive mergers with 

M tot > 10 7 M ⊙. When we account for the delays, the mergers are 

pushed towards lower redshifts, and the resulting SNR is higher for 

each event. 

The middle panel of Fig. 13 shows the effect of delays and the 

SNR cut on mergers with different masses. The SNR cut remo v es all 

mergers with M tot > 10 8 M ⊙ from the LISA-detectable population. 

On the low-mass end of MBH mergers, the reduction results from 

the DF and binary hardening delays. Combining both the delays and 

SNR cut, we see that the o v erall detectable mergers at z > 3 are 

∼ 15 per cent of the original Astrid merger population across all 

masses. The seed-mass mergers still dominate o v er other ev ents ev en 

though they are most strongly suppressed by the delays. Finally, in 

the right-hand panel, we show the mass distribution of the two MBHs 

involved in each detectable event. The majority of these events are 
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Figure 13. Left: The joint distribution of the SNR and redshift for Astrid mergers. The top row is the SNR computed before the DF and hardening delays, 

and the bottom row is the SNR after the delay time is applied. The mergers delayed to z < 3 are masked in grey. Middle: Distribution of binary mass for all 

Astrid mergers (red), the ones with SNR > 8 without the delay model (blue), and the ones that merge before z = 3 after the delays (brown). The SNR > 8 

cut eliminates all mergers with M tot > 10 8 M ⊙, while the drop in low-mass merger events is due to the delays. Right: The distribution of two MBH masses for 

LISA detectable merger events at z > 3. Most events are expected to involve two seed-mass MBHs. 

expected to be mergers from two seed-mass MBHs. On the high- 

mass end, the detectable events have a mass ratio of q ∼ 1 (close 

to the diagonal line). Based on these results, the likelihood that a 

LISA detection comes from mergers of MBH seeds is high, but the 

detectable MBH seed mergers is only a small sample of the seed 

MBH pairs and the associated galaxy mergers. 

Here, accounting for the delay time to merger affects the resulting 

SNR more than the eccentricity. The eccentricity itself, ho we ver, 

may affect the prospects for multimessenger follow-up. For example, 

eccentric binaries may spend a shorter amount of time in the 

LISA band compared to circular binaries. Spin-orbit interactions 

in eccentric binaries may change the orbital inclination with respect 

to the line of sight, which may also play a role in detectability and 

sky localization. We will explore such effects and their implications 

for multimessenger follow-up in a companion paper. 

7  C O N C L U S I O N  A N D  DISCUSSION  

In this work, we have made predictions for the MBH merger rate 

and associated LISA events for a cosmological population of MBHs 

with masses ranging between 5 × 10 4 M ⊙ and 10 10 M ⊙ down to z = 

3, using the large volume cosmological simulation Astrid . At high 

redshifts, MBH mergers and the associated GW signal should provide 

strong constraints for models of seed BH formation. In Astrid , 

MBH seeds range from 5 × 10 4 M ⊙ to 5 × 10 5 M ⊙, co v ering down to 

masses that LISA will be most sensitiv e to. Moreo v er, in Astrid we 

have included an on-the-fly subgrid dynamical friction prescription, 

which allows us to trace the MBH orbits down to the resolution limit. 

Using the MBH orbits directly from the simulation, we estimated 

the (generalized) orbital eccentricity for unbounded MBH pairs that 

undergoDF-dominated orbital decay in the Astrid simulation. In 

addition, we use the most recent post-processing models to account 

for the additional delay in MBH mergers due to dynamical friction 

(Dosopoulou & Antonini 2017 ) and binary hardening V15 at scales 

not resolved directly by Astrid . This is done by accounting 

for the orbital eccentricities constrained by the simulation which 

is important for the loss-cone scattering and gra vitational-wa ve 

hardening phase. After considering the effect of these processes 

in delaying the MBH merger, we made a detailed prediction of 

the expected number of mergers down to z = 3, the redshift that 

the simulation has currently reached. Finally, we computed the 

detectability of these events by LISA. 

We find that most MBHs pairs in Astrid have eccentric orbits 

distributed near ǫ = 0.8. We verify the eccentricity measurements 

by using both the shape and the dynamical information of the 

MBHs and find general agreement on the result. While some orbits 

circularize during the dynamical friction decay, the majority of them 

still maintain a high level of eccentricity at the time of the numerical 

merger. The orbital eccentricity is important in accelerating the 

binary hardening process. In particular, we show that the assumption 

of circular orbits for all binaries leads to estimates for the binary 

hardening time that can exceed 20 Gyr for most Astrid binaries. 

Taking into account the measured orbital eccentricities, our estimated 

hardening times fall between 1 ∼ 10 Gyr. 

Even after considering the accelerated binary hardening rate due 

to eccentric orbits, for Astrid mergers close to the seed mass, the 

binary hardening (including LC and GW hardening) time typically 

provides the longest delay, and it remains more important than 

the dynamical friction component (including DF time modelled in 

Astrid directly and the estimated subresolution component). For 

MBH binaries abo v e the seed mass, the hardening time becomes 

comparable to the DF time and al w ays remains < 1 Gyr. By 

comparing the DF directly modelled in Astrid with the post- 

processed (subresolution) DF time, we find that they are comparable, 

accounting for 100 ∼ 300 Myr of binary evolution. At the resolution 

of Astrid , the subgrid DF added directly in the simulation is able 

to reco v er more than half of the dynamical friction decay process 

before the numerical merger. 

Without accounting for any additional post-processed binary 

dynamics delays, we expect ∼2 merger events per year (DeGraf 

et al. in preparation) from the z > 3 MBH population in Astrid . 

With the post-processed dynamical friction and binary hardening 

taken into account, the expected merger rate reduces to 0.3 ∼ 0.7 

per year at z > 3. Astrid predicts for merger rates that are higher 

than most previous predictions from hydrodynamical simulations 

of comparable volumes (e.g. Salcido et al. 2016 ; Katz et al. 2020 ; 

Volonteri et al. 2020 ), because Astrid accounts for a seed popula- 

tion (see DeGraf et al. preparation for a more direct comparison) in 

haloes about an order of magnitude lower in mass than e.g. Illustris 

( M halo , thr = 7 × 10 10 M ⊙) and EAGLE ( M halo , thr = 1 . 4 × 10 10 M ⊙). 

Among the whole MBH merger population, the seed-mass mergers 

are most affected by the delays, with only < 20 per cent of the original 

simulation mergers still merging at z > 3. None the less, because 

the seed-mass mergers dominate the merger population in absolute 
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numbers (250455 out of 440999), they still occupy a large fraction 

of the delayed mergers. Out of the delayed merger events at z > 

3, ∼ 60 per cent involve two seed-mass MBHs, ∼ 30 per cent are 

mergers between one non-seed MBH and one seed-mass MBH, and 

∼ 10 per cent are mergers between two large mass MBHs. 

We use a 4-yr LISA observation time to calculate an upper limit on 

the SNR for each merger ev ent. Man y of these high- z mergers result 

in SNRs around ∼200. With an SNR > 8 threshold, high-mass merger 

( M tot > 10 8 M ⊙) events are removed from the detectable population 

at z > 3. The M tot < 10 7 M ⊙ mergers are still detectable. As a result, 

the LISA detectable population is still dominated by seed MBH 

mergers, and the expected detection rate is similar to the total merger 

rate of 0.3 ∼ 0.7 per year at z > 3. 

Based on these results, a LISA detection of merger events from 

MBH seeds population is highly feasible. Ho we ver, the detectable 

MBH seed mergers are predicted to correspond to the sample of 

the seed MBH pairs that occur in hosts with stellar masses close to 

10 9 M ⊙. This is about three times larger than the typical stellar mass at 

which seed-mass mergers are expected to occur if loss cone scattering 

was not accounted for. We also find that ∼ 80 per cent of the seed–

seed merger remnants in the simulation are the only MBH residing 

in their host galaxies. Accounting for the DF and binary hardening 

delays slightly fa v ours systems embedded in a larger galaxy with a 

more massive MBH around. This is because the more massive hosts 

tend to provide a higher stellar density and hence a more ef fecti ve 

loss-cone scattering. Ho we ver, sole MBH remnants still make up 

∼ 70 per cent of the seed–seed merger population after the delays. 

Regardless, Astrid predicts the host galaxies of the detectable z > 

3 mergers to be galaxies of M ∗ ∼ 10 9 –10 10 M ⊙. These host galaxies 

are detectable with current and upcoming telescopes. 

We note also that our estimation of the low-mass MBH merger rate 

is a lower limit, since we do not resolve the MBHs residing in low- 

mass dwarf galaxies. Observations hav e pro vided evidence that dwarf 

galaxies host MBHs in their centre (e.g. Reines, Greene & Geha 

2013 ; Moran et al. 2014 ; Satyapal et al. 2014 ; Lemons et al. 2015 ; 

Sartori et al. 2015 ; Pardo et al. 2016 ; Nguyen et al. 2019 ). Simulations 

(e.g. Van Wassenho v e et al. 2010 ; Bello vary et al. 2019 ; Volonteri 

et al. 2020 ) also show that dwarf galaxies consistently merge into 

larger galaxies o v er time. Hence, missing the dwarf galaxy MBHs 

could bias our merger rate and detection rate estimation towards the 

lower end. 

Moreo v er, in this work, we do not evolve the orbital eccentricity 

during the loss-cone scattering phase. Loss-cone scattering can 

increase the orbital eccentricity of the binary (e.g. Sesana 2010 ; 

Kelley et al. 2017b ), and may affect the detected GW signal. We 

also do not consider circumbinary–disc interactions (e.g. Haiman 

et al. 2009 ), since circumbinary–disc simulations for eccentric 

binaries have not yet been comprehensively explored for a wide- 

enough range of binary parameters and disk properties. A significant 

amount of progress, ho we ver, has been made in the hydrodynamic 

modelling of such systems (e.g. Duffell et al. 2020 ; Tiede et al. 2020 ; 

D’Orazio & Duffell 2021 ). Binary–disc interactions may also affect 

the spin orientations of each MBH. It is also currently uncertain 

how a circumbinary disc would respond when an eccentric binary 

undergoes post-Newtonian spin–orbit interactions. We thus leave 

such analyses with our cosmological binary population for future 

work. 

Despite the limitations in the modelling discussed abo v e, we 

find that current simulations such as Astrid are getting closer to 

predicting DF time-scales for the binary evolution. The estimation of 

the binary hardening time-scale remains more uncertain as it depends 

on the properties of central stellar densities below the resolution 

limit. We have shown that changing the stellar density extrapolation 

starting point from 1.5 ǫg to 2 ǫg increases the estimated density at 

the influence radius by a factor of ∼10, and thereby shortens the 

estimated binary hardening time-scale by a factor of ∼10. This 

translates to a factor of ∼3 different in the merger rate predictions. To 

more confidently estimate the binary hardening time-scale and thus 

the MBH merger rate in the context of cosmological simulations, 

better modelling of the inner region of the galaxy would be needed. 

None the less, we still expect the merger rates to be within a factor 

of a few of what a cosmological simulation is able to predict (at the 

resolution of Astrid ). 
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file forms of the data presented here as well as scripts to generate 

the figures are available. Binary catalogues including the MBH 

information and the host galaxy properties are available upon request. 
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APPENDI X:  EFFECT  O F  UNRESOLV ED  

ECCENTRI CI TY  E VO L U T I O N  

As was discussed in Sections 4.2.2 and 6.2 , when computing the 

delay of mergers due to loss-cone scattering and when calculating the 

SNR for eccentric binaries, we have not taken into account possible 

circularization of the orbits during the unresolved dynamical friction 

phase. In this section, we will investigate the possible effect of orbit 

circularization on the merger rate predictions as well as on the SNR 

calculation. 

We still assume simple models for binary circularization, because 

there is not yet an analytical model we can apply for the eccentricity 

evolution on < 100 pc scales. We assume two scenarios for the orbit 

circularization: the first model is an extreme case, where we assume 

that all orbits are fully circularized before entering the loss-cone 
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Figur e A1. Mer ger rates after the DF and hardening delays when we assume 

different eccentricities for the binary population. We compare the constant- 

eccentricity cases with ǫ = 0 ( thin blue ), ǫ = 0.5 ( thin green ), and ǫ = 0.9 

( thin pink ) with the merger rate assuming our measured eccentricity during 

the DF phase ( thick blue ). We also show the merger rate when assume that the 

eccentricity decreased by half during the unresolved DF phase ( thick yellow ), 

based on the conclusion of Gualandris et al. ( 2022 ). 

scattering phase. This model deviates from the results in previous 

works such as Mannerkoski et al. ( 2021 ), Vasiliev et al. ( 2022 ) and 

Gualandris et al. ( 2022 ), but we take it as a lower limit on our 

rate predictions. The second model is moti v ated by the result in 

Gualandris et al. ( 2022 ), who found that in the DF regime, the orbit 

goes through a certain degree of circularization, while still retaining 

a fraction of the high eccentricity at the beginning of the DF phase. 

Hence, we assume that by the end of the DF-dominated orbital decay, 

the binary retains half of its original eccentricity. This is in line with 

the median eccentricity loss in the simulations of Mannerkoski et al. 

( 2021 ) and Gualandris et al. ( 2022 ), although these simulations also 

show a wide range of circularization. 

In Fig. A1 , we show the merger rate similar to those calculated 

in Fig. 8 , but for different initial eccentricity assumptions. When 

we assume that all orbits have zero eccentricity before the loss-cone 

scattering phase, the binary hardening time is significantly longer, 

and the merger rate decreases by an order of magnitude compared 

with our original predictions using the measured eccentricities. When 

assuming half-circularized orbit, the hardening time also increases, 

resulting in a 70 per cent decrease in the merger rate before z = 3. 

Fig. A2 further shows the impact of the assumed initial eccentricity 

on the SNR predictions for LISA. In the top panel, we reproduce 

our original predictions based on the measured eccentricities. The 

middle panel assumes a full-circularization model. Note that here 

the eccentricity not only affects the merging redshifts throughout the 

Figure A2. SNR and merging redshift distribution for different eccentricities 

assumed at the beginning of the loss-cone scattering phase. Top: Same as 

the lower left-hand panel of Fig. 13 , where we have used the eccentricity 

measured from the last orbit in the simulation. Middle: The merging time and 

SNR assuming that all orbits are completely circularized before entering the 

loss-cone scattering regime. Bottom: The merging time and SNR assuming 

that the orbits are half-circularized during the unresolved DF and the LC 

phase. 

hardening time, but also affects the waveform of the final signals. 

We can see that the most of the mergers still have SNRs abo v e the 

detection limit, but there are significantly less mergers before z = 3. 

The bottom panel shows the SNR for the half-circularization model. 

Comparing with the full-circularization model, the o v erall SNR is 

slightly lower at high-redshifts, and the distribution of SNR better 

traces the measured-eccentricity model. In both cases, the assumed 

eccentricity does not have a large impact on the SNR for each merger 

event, but does affect the high-redshift merger rate. 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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