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ABSTRACT

We examine massive black hole (MBH) mergers and their associated gravitational wave signals from the large-volume
cosmological simulation Astrid . Astrid includes galaxy formation and black hole models recently updated with an
MBH seed population between 3 x 10*42~'Mg and 3 x 10°4~'Mg, and a sub-grid dynamical friction (DF) model to follow
the MBH dynamics down to 1.5 ckpc A~!. We calculate the initial eccentricities of MBH orbits directly from the simulation
at kpc-scales, and find orbital eccentricities above 0.7 for most MBH pairs before the numerical merger. After approximating
unresolved evolution on scales below ~ 200 pc, we find that the in-simulation DF on large scales accounts for more than half
of the total orbital decay time (~ 500 Myr) due to DF. The binary hardening time is an order of magnitude longer than the DF
time, especially for the seed-mass binaries (Mpy < 2Mgeeq). As a result, only < 20per cent of seed MBH pairs merge at z > 3
after considering both unresolved DF evolution and binary hardening. These z > 3 seed-mass mergers are hosted in a biased
population of galaxies with the highest stellar masses of > 10° M. With the higher initial eccentricity prediction from Astrid,
we estimate an expected merger rate of 0.3—0.7 per year from the z > 3 MBH population. This is a factor of ~7 higher than
the prediction using the circular orbit assumption. The Laser Interferometer Space Antenna events are expected at a similar rate,
and comprise = 60 per cent seed-seed mergers, ~ 30 per cent involving only one seed-mass MBH, and ~ 10 per cent mergers of

non-seed MBHs.

Key words: gravitational waves —methods: numerical — quasars: supermassive black holes.

1 INTRODUCTION

Massive black holes (MBHs) are known to exist at the centre of
galaxies (e.g. Soltan 1982; Kormendy & Richstone 1995; Magorrian
et al. 1998; Kormendy & Ho 2013). As these galaxies merge (e.g.
Lacey & Cole 1993; Lotz et al. 2011; Rodriguez-Gomez et al. 2015),
the MBHs that they host will also merge, resulting in the mass
growth of the MBH population (e.g. Begelman, Blandford & Rees
1980). MBH mergers following their host galaxy mergers are an
important aspect of the growth of MBHs in dense environments (e.g.
Kulier et al. 2015). Even more importantly, as a by-product of MBH
mergers, gravitational waves (GWs) are emitted, and their detection
opens up a new channel for probing the formation and evolution of
early MBHs in the universe (e.g. Sesana, Volonteri & Haardt 2007a;
Barausse 2012).

The GW detection by LIGO (Abbott et al. 2016) proves the
experimental feasibility of using GWs for studying black hole (BH)
binaries. While LIGO cannot detect GW's from binaries more massive
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than ~ 100 My (Mangiagli et al. 2019), long-baseline experiments
are being planned for the detections of more massive BH binaries.
Specifically, the upcoming Laser Interferometer Space Antenna
(LISA; Amaro-Seoane et al. 2017) mission will be sensitive to low-
frequency (107*—10"'"Hz) GWs from the coalescence of MBHs
with masses 10*~10’ Mg up to z ~ 20. At lower frequencies,
Pulsar Timing Arrays (PTAs) are already collecting data and the
Square Kilometer Array in the next decade will be a major leap
forwards in sensitivity. While MBH binaries are the primary sources
for PTAs and LISA, these two experiments probe different stages
of MBH evolution. PTAs are most sensitive to the early inspiral
(orbital periods of years or longer) of nearby (z < 1) massive
(Mgy = 10® M) sources (Mingarelli et al. 2017). In contrast, LISA
is sensitive to the inspiral, merger, and ringdown of MBH binaries
at a wide range of redshifts (Amaro-Seoane et al. 2012) and from
smaller sources (Mg € [10* Mg, 107 Mg]).

GWs from MBH mergers will provide a unique way of probing
the high-redshift universe and understanding the early formation of
the MBH seeds, especially when combined with observations of the
electromagnetic (EM) counterparts (Natarajan et al. 2017; DeGraf &
Sijacki 2020). For instance, an MBH merger multimessenger detec-
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tions should allow us to distinguish between different MBH seeding
mechanisms at high-redshift (Ricarte & Natarajan 2018), to obtain
information on the dynamical evolution of MBHs (Bonetti et al.
2019), and to gain information about the gas properties within the
accretion disc (Derdzinski et al. 2019).

To properly access the potential of the upcoming GW signals
as well as the EM observations of MBH binaries, we need to gain a
thorough understanding of the physics of these events with theoretical
tools and be able to make statistical predictions for the binary
population. Early studies have provided merger rate predictions for
MBH binaries using analytic models (e.g. Haehnelt 1994; Jaffe &
Backer 2003; Wyithe & Loeb 2003). Some more recent predictions
made use of semi-analytic models (e.g. Sesana et al. 2004; Tanaka &
Haiman 2009; Barausse 2012; Ricarte & Natarajan 2018) to enhance
the model complexity and physical realism. Recent developments
in large-volume cosmological simulations (e.g. Hirschmann et al.
2014; Vogelsberger et al. 2014; Schaye et al. 2015; Feng et al.
2016; Volonteri et al. 2016; Pillepich et al. 2018; Davé et al. 2019)
have enabled the study of MBH mergers within the context of
cosmological galaxy formation (e.g. Salcido et al. 2016; Kelley,
Blecha & Hernquist 2017a; Katz et al. 2020; Volonteri et al. 2020).
These simulations directly associate MBH binaries with their host
galaxies, and they are carried out in large enough cosmological
volumes to provide the statistical power to make merger rate
predictions across cosmic time which are crucial for the upcoming
observations.

In order to accurately predict when MBH mergers occur in these
simulations, one must account for the orbital decay and binary
hardening time-scales in a wide dynamical range. During galaxy
mergers, the central MBHs start at large separation in the remnant
galaxy (as much as a few tens of kpc). These MBHs then gradually
lose their orbital energy and sink to the centre of the remnant galaxy
due to the dynamical friction exerted by the gas, stars, and dark matter
around them (e.g. Chandrasekhar 1943; Ostriker 1999). When their
separation is < 1 parsec, a MBH binary forms and other energy-
loss channels begin to dominate, such as scattering with stars (e.g.
Quinlan 1996; Berczik et al. 2006; Sesana, Haardt & Madau 2007b;
Berentzen et al. 2009; Khan, Just & Merritt 2011; Khan et al. 2013;
Vasiliev, Antonini & Merritt 2015), gas drag from the circumbinary
disc (e.g. Haiman, Kocsis & Menou 2009), or, if relevant, three-body
scattering with a third BH (e.g. Bonetti et al. 2018).

Among these processes, only the dynamical friction decay affects
the dynamics at orbital separation above the resolution of large-
volume cosmological simulations. However, so far there is limited
attempt to directly model dynamical friction (at small scales, close
to the resolution) in the large-volume cosmological simulations
mentioned above. In most cosmological simulations, once MBHs
are within a given halo, they are simply repositioned to the minimum
potential position of the host galaxy at each time-step. For these
simulations (although sometimes the effects of subgrid dynamical
friction are treated in post-processing), many spurious mergers occur
during fly-by encounters. Among simulations that do include subgrid
modelling of DF on-the-fly, Dubois et al. (2014) only includes the
friction from gas but not stars, while Tremmel et al. (2017) and
Hirschmann et al. (2014) model the dynamical friction from stars and
dark matter particles. Most recently, Mannerkoski et al. (2021) uses
a hybrid model to track the MBH dynamics during galaxy mergers
on small scales, while including on-the-fly dynamical friction and
stellar scattering computations.

Here, we study MBH mergers using the large-volume cosmo-
logical simulation Astrid which uses a novel power-law seeding
with a range of MBH seed masses and so includes relatively low-
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mass MBHs. More importantly, it directly incorporates additional
dynamical friction modelling, following the recent model by (Chen
et al. 2021) for the MBH dynamics down to the resolution limit (see
also similar implementations by Hirschmann et al. 2014; Tremmel
etal. 2015). With more physical modelling of the MBH dynamics, we
can follow the in-simulation mergers for a more extended period of
time over hundreds of Myrs, and almost completely prevent mergers
during fly-by encounters. Moreover, for the first time we can aim
to measure the orbital evolution and eccentricities of MBH pairs
on sub-kpc scales. Such information should be important both for
estimating the binary hardening time-scales and for predicting the
GW signals from the MBH mergers.

This paper is organized as follows. In Section 2, we introduce the
Astrid simulation, in particular the MBH modelling, and describe
how we obtain the merger catalogue from the simulation; in Section 3,
we describe our methods for measuring the MBH orbital eccentricity
from the simulation, and present results of our measurements.
Section 4 focuses on the modelling of post-processing delay times
including the dynamical friction time and binary hardening time after
the numerical merger. Then in Section 5, we present our prediction
for MBH merger rate at z > 3, and investigate the properties of
high-redshift MBH merger systems. Finally, in Section 6 we show
the GW strain and signal-to-noise ratios for the binary population
that merges at z > 3.

2 SIMULATION

2.1 The Astrid Simulation

The Astrid simulation is a large-scale cosmological hydrody-
namic simulation in a 250 Mpc 2~! box with 2 x 5500° particles.
Astrid contains a statistical sample of haloes that can be compared
to future survey data from JWST, while resolving galactic haloes
down to 10° M, (corresponding to 200 dark matter particles). The
initial conditions are set at z = 99 and the current final redshift
is z = 3. The cosmological parameters used are from (Planck
Collaboration VI 2020), with €y = 0.3089, @, = 0.6911, @y, =
0.0486, o3 = 0.82, h = 0.6774, A, = 2.142 x 107%, n, = 0.9667.
The mass resolution of Astrid is Mpy = 6.74 x 106h_1M@ and
Mg = 1.27 x 10" M, in the initial conditions. The gravitational
softening length is €, = 1.5h~! kpc for both DM and gas particles.
Astrid contains models for inhomogeneous hydrogen and he-
lium reionization, baryon relative velocities and massive neutrinos,
as well as ’full-physics’ star formation model, BH accretion and
associated supernova and AGN feedback, respectively. The star
formation model is unchanged from Feng et al. (2016), which
followed the implementation of Springel & Hernquist (2003). The
BH model includes mergers driven by dynamic friction rather
than repositioning. Our treatment of MBHs largely follows the
BlueTides simulationinterms of the BH accretion and feedback,
which is based on the earlier work by Di Matteo, Springel &
Hernquist (2005) and Springel, Di Matteo & Hernquist (2005). The
gas accretion rate on to the BH is estimated via the Bondi-Hoyle—
Lyttleton-like prescription applied to the smoothed properties of the
112 gas particles within the SPH kernel of the BH. We allow for short
periods of super-Eddington accretion in the simulation, but limit the
accretion rate to 2 times the Eddington accretion rate. The MBH
produces thermal feedback on the surrounding gas, and radiates with
a bolometric luminosity Lg, proportional to the accretion rate Mgy,
with a mass-to-light conversion efficiency 7 = 0.1 in an accretion disc
according to Shakura & Sunyaev (1973). 5 per cent of the radiated
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energy is thermally coupled to the surrounding gas, residing within
twice the radius of the SPH smoothing kernel of the BH particle.
Compared with BlueTides, we slightly changed the seeding
scheme of MBHs by drawing the seed mass from a power-law
distribution instead of using a universal seed mass. Furthermore,
we use a dynamical friction model (tested and validated in Chen
et al. 2021) to evolve the binary BHs and include the sinking and
merger of MBHs in the simulation in a more physical way. Here,
we briefly summarize the BH seeding and dynamics treatment in
Astrid, and refer to Bird et al. (2021) and Ni et al. (2021) for
detailed presentations of physical models for star formation and BHs.

2.1.1 MBH seeding

To seed MBHs in the simulation, we periodically run a FOF
group finder on the fly with a linking length of 0.2 times the
mean particle separation, to identify haloes with a total mass and
stellar mass satisfying the seeding criteria { My For > Mhalo, thr
M, ror > M, w}. We apply a mass threshold value of Myyjo, thy =
5 x 10°h'"Mg and M, ¢y =2 x 10°h~ "M

Considering the complex astrophysical process involved in BH
seed formation in realistic cases, haloes with the same mass can
form different mass MBH seeds. Therefore, in Astrid, instead of
applying a uniform seed mass for all MBHs, we probe a mass range of
the MBH seed mass Mj..q drawn probabilistically from a power-law
distribution:

0 Mseed < Mseed.min
P(Mseed) = N(Mseed)in Mseed.min =< Mseed = Mseed,max, (1)
0 Mseed > Mseed,max

where N is the normalization factor. The minimum seed mass
iS Mgeed min = 3 x 10°47'Mg and the maximum seed mass is
Meed, max = 3 X 10°h~' M, with a power-law index n = —1. For each
halo that satisfies the seeding criteria but does not already contain at
least one BH particle, we convert the densest gas particle into a BH
particle. The new-born BH particle inherits the position and velocity
of its parent gas particle.

2.1.2 MBH dynamics and mergers

Instead of constantly repositioning the BH towards the potential
minimum, as in earlier simulations, in Chen et al. (2021) we imple-
mented and tested a model for subgrid dynamical friction (similar
to Tremmel et al. 2015, 2017). Dynamical friction is an artificial
force for modelling unresolved small-scale interactions between the
MBH and nearby stars and dark matter. These interactions transfer
momentum from the MBH to individual stars in the surrounding
star clusters, gradually reducing the momentum of the MBH particle
relative to the surrounding collisionless objects in the bulge (e.g.
Governato, Colpi & Maraschi 1994; Kazantzidis et al. 2005). The
additional dynamical friction also stabilizes the MBH motion at the
centre of the galaxy.

We estimate dynamical friction on MBHs using equation 8.3 of
Binney & Tremaine (2008):

Fpp = —16m°G*M2,m, log(A)v%H
UBH

UBH
/ dvgv; f (va), )
0
where Mpgy is the BH mass, vgy is the BH velocity relative to its
surrounding medium, m, and v, are the masses and velocities of
the particles surrounding the BH, and log(A) = 10g(bmax/bmin) 1S
the Coulomb logarithm that accounts for the effective range of the
friction between the specified by, and byax. f(v,) in equation (2)
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is the velocity distribution of the surrounding collisionless particles
including both stars and dark matter. Here, we have assumed an
isotropic velocity distribution of the particles surrounding the BH so
that we are left with a 1D integration.

In Astrid, the BH seed mass extends down to 3 x 10* Mg, /A,
which is one order of magnitude smaller than the stellar particle mass.
In this regime, the dynamical friction of BH is likely unrealistic due
to its small mass compared to the masses of other particles, and so
the dynamics of the seed BH would be unstable due to dynamical
heating (when Mpy is below the mass resolution). Therefore, we
boost the dynamical friction in this regime with Mgy, = 2 x Mpym
when Mpy < Mgy, < 1. This temporarily boosts the BH dynamical
mass for BHs near the seed mass and helps stabilize their motion
during the early post-seeding evolution.

We approximate the distribution function f(v,) by the Maxwellian
distribution (as, e.g., Binney & Tremaine 2008), and account for
the neighbouring collisionless particles up to the range of the SPH
kernel of the BH particle (see Chen et al. 2021 for more details).
Equation (2) becomes

GMy\?
Fpp = —47pgn ( : & ) log(A)F (”‘3—“) WLy 3)
BH

Oy UBH

Here, pgpn is the density of dark matter and star particles within the
SPH kernel, F is the integral in equation (2) assuming a Maxwellian
distribution of stellar velocities. o, is the velocity dispersion of the
dark matter and star particles within the SPH kernel.

The boost of the initial Mgy, may overestimate the dynamical
friction for small BHs and the resultant sinking time-scale will be
shortened by a factor of ~Mpy/Myy, compared to the no-boost case.
On the other hand, it is also possible that the BH sinking time-scale
estimated in our simulation in the no-boost case could overestimate
the true sinking time, as the high-density stellar bulges are not fully
resolved (e.g. Antonini & Merritt 2012; Biernacki, Teyssier & Bleuler
2017; Dosopoulou & Antonini 2017). Therefore, boosting the initial
Mgy, seems a reasonable compromise to model the dynamics of
smallmass BHs, while also alleviating the noisy perturbation of
dynamic heating brought by the limit of resolution. Note that even if
our dynamic friction implementation overestimates the force, it still
provides a substantially more conservative estimation of BH sinking
than the common model where BHs are repositioned to the potential
minimum.

In our simulations, we set the merging distance to be 2¢, =
3 ckpc/h, because the MBH dynamics below this distance is not well
resolved. We conserve the total momentum of the binary during the
merger. Moreover, when we turn-off the repositioning of the MBHs
to the nearby potential minimum, the MBHs will have well-defined
velocities at each time-step (this is true whether or not we add the
dynamical friction). This allows us to apply further merging criteria
based on the velocities and accelerations of the BH pair, and thus
avoid early mergers of gravitationally unbound pairs.

We follow Bellovary et al. (2011) and Tremmel et al. (2017), and
use the criterion

1
E|Av|2 < AaAr 4)

to check whether two BHs are gravitationally bound. Here, Aa, Av,
and Ar denote the relative acceleration, velocity, and position of the
BH pair, respectively. Note that this expression is not strictly the total
energy of the BH pair, but an approximation of the kinetic energy and
the work needed to get the BHs to merge. Because in the simulations
the BH is constantly interacting with surrounding particles, on the
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right-hand side we use the overall gravitational acceleration instead
of the acceleration purely from the two-body interaction.

2.2 The merger catalogue

There are a total of 445635 BH mergers in the simulation for z > 3.
We note that since our merging criterion has a distance threshold at
2e, = 3 ckpe/h (0.75 pkpc/h at z = 3) below which the gravitational
force cannot be reliably computed, most of the MBH pairs retain an
orbital size of a few hundred parsecs when ‘merged’ in the simulation.
Moreover, we may have missed some z > 3 mergers due to an
underestimation of the dynamical friction from the flattened density
profiles near our resolution limit.

The subsequent MBH dynamics and merging time will have to be
calculated in post-processing, and the result depends on the subgrid
models used for those calculations (to be described later in more
detail). For each merger event, we extract the relevant environmental
variables (the density profiles of gas, dark matter and stars, and the
stellar velocity dispersion) from the nearest snapshot before and after
the merger. The snapshots used are separated by ~20 Myr. In a small
fraction of cases, the mergers take place within 20 Myrs after one of
the MBHs is born, and so we cannot find the corresponding MBH in
the previous snapshot. We remove these mergers from the catalog,
after which 440999 mergers remain.

From the snapshots immediately before and after the merger, we
identify the host haloes and subhaloes containing the binaries using
FOF and SubFind, respectively. Out of the mergers that remain in
the catalogue, we further remove those not associated with any
halo/subhalo, and those whose host galaxy has less than 200 star
particles. The hosts for these binaries are not well resolved in our
simulation, so we cannot reliably compute the binary hardening time
in post-processing. This leaves us with a final catalogue of 430938
BH merger candidates. For each host halo identified, we define the
halo centre as the position of the particle with the minimum potential,
and calculate galaxy properties such as the density profiles and half-
mass radius with respect to this point.

In Fig. 1, we show the last few orbits of a few selected BH
pairs in our merger catalogue plotted on their host galaxies’ stellar
distributions. The distance from left to right of each image is
8 ckpc 2! The brightness corresponds to the stellar density, and the
colours show the stellar age with older stars being redder and younger
stars being whiter. The red curves are the BH pairs’ positions relative
to their centre of mass.

3 ORBITAL ECCENTRICITY

As was described in Section 2.1, our simulation has a build-in sub-
grid dynamical friction model, which allows us to follow the BHs’
orbits before their numerical mergers down to the resolution limit.
Fig. 1 shows several examples of the last few orbits of BH pairs just
before they merge in the simulation. The BH orbits are plotted in
the centre-of-mass frame of the BH pairs, with a face-on projection
on the 2D plane perpendicular to the mean angular momentum of
the last orbit. Since we record the BH information at each time-step
when the BH is active, the orbits are much better resolved in time
compared with the galaxies. Most orbits start off at a semimajor
axis of >1 kpc, and gradually go through orbital decay until the
merger.

From the images, we see that the majority of the orbits are very
non-circular during the initial encounter of the BHs. While some of
them circularize with time, most orbits still retain a high eccentricity
at the time of the merger in the simulation. This motivates us
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to characterize the orbital eccentricity before merging, as it is an
important piece of information not only for estimating the binary
hardening time with analytical models, but also for calculating the
GW signals from the merger events. In this section, we will describe
two ways of characterizing the orbital eccentricities of the BH pairs
in our simulation.'

3.1 Shape measurement

Given the images in Fig. 1, a natural way of measuring the orbital
eccentricity is to use the shape of the orbits just before the numerical
merger, and this is the first approach we take.

On ~kpc scales, since most orbits are not Keplerian except those
of the most massive BHs and the orbits are constantly shrinking, the
BH orbits do not fit an ellipse. Instead, they exhibit the feature of a
Rosetta orbit (the feature is most prominent in e.g. second row, second
column of Fig. 1, although standard Rosetta orbits do not shrink over
time). For orbits resulting from the spherically symmetric potential,
we can characterize the eccentricity by the size of the inner radius
and the size of the outer radius. More specifically, for each orbit,
we define Ar, to be the position of the secondary BH with respect
to the centre of mass, and we take the local minimum of Ar, as the
(generalized) periapsis of the orbit, and the local maximum of Ar;, as
the apoapsis. Then, we represent the orbital eccentricity of the binary
by the generalized eccentricity, defined for a spherical potential as
(Binney & Tremaine 2008):
€ — rapo_rperi’ (5)

Tapo +r peri

where 7,p, and rye; are the apoapsis and the periapsis of the orbit,
respectively. To distinguish between the measurement of the two
methods, we will use the subscript ‘sh’ to refer to the measure-
ments from this shape-based method. We average the eccentricity
measurements over the last three orbits. We note, however, that the
distribution in eccentricity does not change significantly when we
take the average of the last one, two, or three orbits.

3.2 Solving the orbital equation

In addition to the shape-based measurement in Section 3.1, we also
calculate the generalized orbital eccentricity by simply solving the
orbital equation. Using these two independent methods, we will
then be able to compare the robustness of the BH orbit eccentricity
distribution measurement from the simulations.

When the BH merger occurs in the simulation, the separation
between the BH pairis ~3 ckpc 2~ !. At this distance, the gravitational
potential is dominated by the surrounding stars and dark matter
particles instead of the BHs themselves. Under such circumstances,
the orbit of the satellite BH is non-Keplerian, as we have shown in
Section 3.1. In the case of a spherical potential, the (generalized)
apoapsis and periapsis can be obtained by solving the generalized
orbital equation (Binney & Tremaine 2008):

1 2[¢(r)— E]
At T
where ¢(r) is the gravitational potential computed from the density
profile of surrounding particles, E is the total energy per unit mass

0, (6)

'We also tried applying the method of osculating elements (e.g. Efroimsky &
Goldreich 2004, and references therein) to the orbital trajectories; however,
we found that the stellar environment dominated the binary’s evolution, such
that it could not be adequately described as a post-Keplerian orbit.
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Figure 1. The last few orbits (starting from ~ 80 Myr before the merger) of selected binaries in the Astrid simulation plotted on their host galaxies. The
distance from left to right of each image is 10 ckpc 2!, The brightness corresponds to the stellar density, and the colours show the stellar age with older stars
being redder. The red curves are the BH pairs’ position relative to their centre of mass. In most cases, we see a Rosetta orbit, as the local potential is a spherical
potential dominated by stars and dark matter. We find that some orbits circularize over time (e.g. third row, fifth column), although the majority of the orbits still

remain eccentric when merging (see e.g. Fig. 2).

and J is the angular momentum per unit mass of the secondary
BH with respect to the host galaxy centre. The larger root of the
equation corresponds to 7y, and the smaller root is rper.

When solving equation (6), we take £ and J to be the average
energy and angular momentum over the last half-orbit (i.e. from the
last local maximum to the last local minimum of the BH separation)
of the BH. We did not take the average over a more extended period of
time because the BH pair is constantly losing energy. After getting
the two apses, we again use equation (5) to calculate the orbital
eccentricity. We refer to this method as the energy method, and use
the subscript ‘en’ when showing results.

Fig. 2 shows a comparison between the (generalized) eccentricity
measurements from the shape method and the energy method. The
left panel shows the distribution of eccentricities for all the mergers
in the simulation. The measurements from both methods show
that the BH binary population is dominated by highly eccentric
orbits, with a peak at € ~ 0.85 for the shape-based method and
~0.75 for the energy-based method. Comparing the two distribu-
tions, we see that the shape measurement generally produces a
distribution with higher eccentricities than the energy method. In
the middle panel, we show a scatter plot of the eccentricities from
the two measurements. There is a positive correlation between the
two eccentricities, with the majority of the measurements close
to the diagonal line. This means that the two measurements are
not only close in distribution, but also yield correlated results
for each individual orbit. Similar to what is shown by the 1D
distributions, the shape method predicts higher values of eccentricity
for most pairs than the energy method (typically ~ 10 percent
lower).
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In addition to the eccentricity, in the right-hand panel of Fig. 2
we further compare the apoapses and periapases from the two
measurements. Overall, we can see that the apoapsis peaks around
1 ~ 3 kpc, while the periapsis peaks around 0.1 ~ 0.7 kpc. Again
there is a good alignment between the two measurements, with the
peaks distributed close to the diagonal line. In the majority of cases,
the shape measurement gives a larger apoapsis value.

To estimate the binary hardening time, we will use the measured
binary eccentricities as an input to the model. By doing so, we do
not consider any time-evolution of the binary eccentricity due to
dynamical friction beyond the point of numerical merger (Colpi,
Mayer & Governato 1999; Hashimoto, Funato & Makino 2003).
In particular, we will only show results using the values from the
energy-based method (e.,) in later sections, and we have tested that
the effect of using the shape-based values is minor compared with
the uncertainties from other sources (e.g. density in the central region
of the galaxy).

4 POST-PROCESSING DELAYS

4.1 Dynamical friction

In Astrid, we have already accounted for the dynamical friction
time-scale above the resolution limit, leading to significant delays of
in-simulation mergers compared to the traditional MBH reposition-
ing methods. However, dynamical friction will continue to dominate
over other delay processes on scales of 10 ~ 100 pc (e.g. Kelley et al.
2017a), which is beyond our current resolution. In this section, we
will compute the unresolved DF time-scales for the MBH mergers,
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Figure 2. Comparison between eccentricity measurements from the shape method and the energy method. Left: The distribution of the (generalized) orbital
eccentricity from the two measurements. In both cases, the distribution is dominated by highly eccentric binaries, as we can also see from the images in Fig. 1.
The shape method has a more skewed distribution compared to the energy method. Middle: A scattered plot of the eccentricity from the two measurements. We
can see that the two measurements yield similar results by comparing the distribution to the diagonal line. In most cases, the energy measurement is ~ 10 per cent
lower than the shape measurement. Right: In addition to the eccentricity, we show the apoapses and periapases of the two measurements. The orange dots are
the apoapses and the green dots are the periapases. The scatter relation also follows the diagonal line quite closely. When the two BHs merge in the simulation,

the apoapsis is usually a few kpc and the periapsis is usually less than 1kpc.
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Figure 3. Comparison between the pre-merger dynamical friction time and
the post-merger dynamical friction time. Top: Distributions of the pre- and
post- merger DF times for all MBH pairs in Ast rid. The two distributions are
similar and both peak around 200 Myr, indicating that by adding dynamical
friction to the simulation, we have resolved more than half of the total
dynamical friction delay. Bottom left: Relation between the DF times and
the mass ratio between the two MBHs (¢). We observe the expected negative
correlation between DF times and ¢. Bottom right: 1D distribution of the
mass ratio g.

and compare them with the in-simulation DF time-scale.

For the in-simulation DF time, we measure it in the following
way: for each BH pair that merges within the simulation at Zmerge,
we track their trajectories before the merger event, and find the
redshift Zepcouner at Which they are first within 2¢, of each other.
Zencounter 18 the approximate time at which the BHs would merge
if we did not account for the dynamical friction time at all (note
that under the reposition model, BHs usually merge even before
Zencounter)- We consider the time difference between Zencounter a1 Zmerge
as the in-simulation DF time, Tpg sim. Among all BH mergers in
the simulation, 5713 mergers (~ 1.4 per cent of the whole merger
population) happen at the first encounter.

For the post-processed DF time Tpg, posi, We adopt the treatment
from Merritt (2013) and Dosopoulou & Antonini (2017), who
modifies the Chandrasekhar formalism (e.g. Chandrasekhar 1943;
Binney & Tremaine 2008) to include the effect of the secondary
BH embedded in a tight core of stars brought in from the secondary
galaxy. The increased dynamical friction allows the secondary to
sink faster towards the primary galaxy’s centre, and thus the resulting
dynamical friction time is less than the prediction from the canonical
Binney & Tremaine (2008) treatment assuming a bare BH. In
Dosopoulou & Antonini (2017), the assumption is that the mass
of stars bound to the secondary BH is 1000 times the mass of the BH
itself, and the resulting dynamical friction time-scale is

2 8
r o 10°M 1
b post = 0.12 Gyr ( - ) © ,
10 kpc 300kms M, log(A)
(N

where log(A) is the Coulomb logarithm, and M, is the mass of the
secondary BH. For the initial separation r, we use the radius of the
circular orbit that has the same energy as the last orbit of the binary
before the (numerical) merger. Note that the model in equation (7)
does not account for the effect of non-circular orbits on the DF time.
Taking the eccentricity into consideration can further reduce the
estimated DF time (e.g. Taffoni et al. 2003). Following the method
in (Chen et al. 2021), we compute the Coulomb logarithm by

bmax

T (GMy)/vdy,

where M, is the mass of the secondary BH and vgy is the velocity of
the secondary BH with respect to the host galaxy centre.

Fig. 3 shows the comparison between the in-simulation dynamical
friction time and the post-processed dynamical friction time from
above. The top panel shows the overall distributions of the DF times.
The two distributions are on the same order of magnitude at around
10? Myr, with a range from 10 Myr to 1 Gyr. For most BH pairs,
TpF sim is longer than Tpg pos. This means that by accounting for
dynamical friction in the simulation, we have already included about
half of the total dynamical friction delay effects. Note that both DF
time-scales are shorter than 1 Gyr. In the case of the resolved DF
time, this is mainly due to the fact that most of the BHs have not
existed for more than 1 Gyr at z = 3.

, bmax = 10 ckpeh™!, (®)
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In the bottom panel of Fig. 3, we show the relation between the
two DF times and the binary mass ratio g. Here, we only show the
times involving at least one non-seed MBH, defined as mergers with
M, > 2M, secq- This is because our merger population is dominated
by seed MBHs which have not grown out of their dynamical mass
and thus the in-simulation DF time estimation is not exact. From
equation (7), we can see that the DF time is correlated with the mass
of the primary galaxy (and MBH) through o, and that it is inversely
proportional to the secondary BH mass. Hence, we expect that minor
mergers will have longer decay time-scales, and in the plot we do see
a negative correlation between TpE post and g. For the in-simulation
DF, although this relation is not imposed explicitly, we still observe
a negative correlation between ¢ and the DF time. This indicates
that the negative correlation is still captured by the in-simulation
dynamical friction modelling.

4.2 Loss cone scattering and GW hardening

Once the two MBHs become gravitationally bound, the dynamical
friction formalism is no longer a valid approximation, and individual
interactions between singular stars and the binary must be considered.
These interactions extract angular momentum from the binary,
driving them closer to each other (e.g. Merritt 2013; Vasiliev &
Merritt 2013). This regime is the loss-cone scattering (LC) regime,
which refers to the specific cone in parameter space where stars
have to exist in order to extract angular momentum from the binary
(e.g. Frank & Rees 1976; Lightman & Shapiro 1977). On even
smaller scales, the binary will enter the GW regime where it will
evolve until coalescence. Once the binary enters the GW regime, its
dynamics follow the formalism of Peters (1964) at small separations
of 10—1000 Schwarzschild radii.

For the loss-cone scattering and gravitational-wave hardening
phase, we adopt the analytical prescription in Vasiliev et al. (2015,
V15 hereafter). However, the time estimation in equation (25) of
V15 assumes a single family of My —0o ins—rins relation, and thus it
may oversimplify the properties of the galaxies hosting the merger
events. Hence, we will adopt the V15 formalism but with some slight
changes, so that we can use the host galaxy properties measured
from the simulation. In this section, we first explain how we measure
the relevant galaxy properties, then we give our binary hardening
time estimation by combining analytic modelling with the measured
properties.

4.2.1 Extrapolated galaxy properties

To compute the hardening time for the binaries, the important
quantities to measure are the influence radius ry,¢ defined as the
radius containing a stellar mass equal to two times the binary mass,
the velocity dispersion of stars at the influence radius o i,¢, the power-
law slope of the stellar density profile y, and the stellar density at
the influence radius pj,s. Since the binary hardening phase begins
after the dynamical friction phase, we use the snapshot immediately
following the numerical merger to measure these properties.

Among the quantities above, the velocity dispersion can be
measured directly from the simulation without extrapolation (for an
isothermal sphere, the velocity dispersion is independent of radius).
Therefore, we make the approximation that oi,; = 0 g1, and use the
measured velocity dispersion within the half-mass radius of the host
galaxy.

The next galaxy property we measure from the simulation is the
power-law slope y of the stellar density profile. In Fig. 4, we show

MNRAS 514, 2220-2238 (2022)
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Figure 4. Density profiles (left) and images (right) of the host galaxies of
three MBH mergers in the simulation. The blue crosses mark all MBHs in the
host galaxy, scaled by the BH mass. The red circles mark the merging binary.
Top: Host of a very massive binary with My, = 5.6 x 108 Mg at z = 3. The
stellar density is the dominant component on scales below ~10 ckpc A~
Middle: Host of a binary with Moy = 7.6 x 10® Mg, at z = 3. For this less
massive binary, the density of the three components is comparable at r <
10 ckpe £~', and the density profile flattens at a larger radius. Bottom: Host
of a binary with two seed-mass MBHs. The mass of the host galaxy is high
relative to the binary mass. The binary is not the most massive MBHs in this
galaxy, but the merger still occurs in a relatively central region.

three examples of the density profiles of dark matter, gas, and stars for
galaxies hosting recently merged binaries. We show the profiles of a
massive binary with M, = 5.6 x 108 Mg, a less massive one with
M = 7.6 x 10° Mg, at z = 3, and a seed-mass binary with M, =
1.9 x 10°My,. For the most massive binary (top), the stellar density
is the dominant component on scales below ~10 ckpc h~'. The
stellar density profile follows a power law down to the gravitational
softening length €,, where the profile flattens due to gravitational
softening. In the case of the medium-mass binary, the density of all
three components is comparable at » < 10 ckpc 27!, and the density
profile flattens at a larger radius compared to the massive one. In
the third case of a seed-seed merger, the mass of the host galaxy is
high relative to the binary mass. The binary is not the most massive
MBHs in this galaxy, but the merger still occurs in a relatively central
region. We note that this binary belongs to the seed MBH population
that still merges after the post-processing delays.

As we do not resolve the scale of interest for the loss-cone
scattering, we assume that below a scale re close to the resolution
limit €, the stellar density profile follows a single power-law p oc 7.
By doing so, we are able to extrapolate the stellar density to the inner
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Figure 5. Left: The density profiles of Astrid galaxies that host a recent numerical merger. The blue solid line shows the median density of all binary hosts
measured from the simulation and the shaded region encloses 95 per cent of the population. The power-law extrapolation is shown by dashed lines. Here, we
show the results for extrapolation scales rexy = 1.5€¢ (purple) and rexy = 2€, (green). A larger rex, results in a steeper power-law slope. Middle: Distribution of
the power-law index of the density profile y, measured at rex = 1.5¢, (purple) and rex = 2¢€, (green). For rex; = 1.5€, the distribution peaks at y = 1.4, while
for rexe = 2.0€, the distribution peaks at y = 1.9. We plot the power-index estimate in Kelley, Blecha & Hernquist (2017b) for comparison. Right: Distribution
of density extrapolated to 10 pc. We compare the two rex; values. The extrapolated density is sensitive to the change in rex: rexx = 1.5€¢ gives a distribution
centred at 10 Mg pe™2, while rex; = 2.0 gives a distribution centred at 100 Mg pc3.

region of the host galaxy. To measure the value of y, we take the
measured density from 10 bins just above rey, and fit it to the power-
law profile. Our choice of rq is motivated by the flattening of the
profile at ~1.5¢, in Fig. 4 and the fact that gravity is not well-
resolved within ~2e¢,. Since the exact scale on which the simulation
density becomes unrealistic is uncertain, we use both 7. = 1.5¢,
and re = 2.0€, to bracket our predictions. We also note that the
modelling of the inner regions of the galaxy is a simple one, where a
single power-law profile is assumed. In reality, the relation between
the density of the inner core of the galaxy and the profile at kpc-
scales may be more complicated. Therefore, we take into account
the lack of resolution in our simulations by measuring the profiles at
different radii and including a range in our final predictions (whereas
in previous works this uncertainty is not explicitly considered, or
often a constant power-law index is assumed).

The left-hand panel of Fig. 5 shows the measured stellar density
profiles and extrapolations beyond rey, for all binaries in Astrid.
We show the median as well as the 95 percent contour of the
measured density, and we compare the power-law extrapolation from
Text = 1.5€, and rex = 2.0€,. From the comparison, we see that the
measurement of y is sensitive to the extrapolation scale, and that
larger 7.y results in a steeper power-law slope and thus a higher
density at the inner region. However, we also note that the shift
due to rey is comparable to the width of the distribution, and that
both measurements are consistent with the values assumed in various
binary hardening models.

This is further illustrated by the middle/right-hand panel of Fig. 5,
where we show the distribution of the measured y and the density
extrapolated to 10 pc. For re = 1.5€,, the distribution peaks at
y = 1.4, while for 7, = 2.0¢,, the distribution peaks at y =
1.9. These values are consistent with the range of values used in
most loss-cone scattering models (e.g. Sesana 2010; Merritt 2013;
V15; Sesana & Khan 2015). In the figure, we also compared our
distributions with the measured distribution in Kelley et al. (2017b)
from the Illustris simulation. Compared to Kelley et al. (2017b),
our measured profiles are significantly steeper, which also leads to
a higher extrapolated density at » = 10 pc. Our simulation has a
higher resolution than Illustris, and thus resolves the stellar density
profiles better on kpc scales. This is also due to the fact that we
begin our extrapolation at different scales: Kelley et al. (2017b)

uses the inner-most eight density bins that contain at least four
particles, which could lie well below the gravitational softening.
From the right-hand panel, we see that the extrapolated density
is sensitive to the change in re: 7ex = 1.5€, gives a distribution
centred at 10 Mg pc*3, while rex = 2.0€, gives a distribution centred
at 100 Mg, pc>. The order-of-magnitude difference motivates us to
propagate the uncertainty in r.y throughout subsequent analyses, as
it may have non-trivial impacts on the final merger rate predictions
from the simulation.

Finally, we compute ri,¢ and pj,s from the quantities measured
above. As we cannot resolve the inner cusp of the galaxies in our
simulation, a direct measurement of 7y, is not possible. To estimate
the influence radius, we adopt the analytical relation (e.g. Sesana
2010):

GM[D[
2

Fing = (3 —y) ; )

inf
where y is the density power-law slope we just showed, and oy is
approximated by the measured galaxy velocity dispersion.

To get the density at the influence radius pj,r, we extrapolate
the power-law relation of the density profile down to 7y, using the
measured y and p. Note that our simulation does not resolve the
high-density peaks below our resolution, or nuclear star clusters, and
thus the extrapolated p;y is likely a lower limit. Moreover, since the
nuclear star clusters are not resolved, we do not account for effects
such as tidal disruption, which can to a shorter binary hardening time
(e.g. Arca-Sedda & Gualandris 2018; Biava et al. 2019; Ogiya et al.
2020).

Fig. 6 shows all of the measured or derived variables for computing
the binary hardening time-scales, and their relation with the binary
mass. The Mgy—o relation follows the relation in Tremaine et al.
(2002) for binaries with My, > 2 x 10° M, but is flatter compared
to the relation in Kormendy & Ho (2013). There is a large scatter in
o for seed-mass binaries. Since the influence radius ry, is derived
from o, y, and the binary mass, we expect it to stay close to the
analytical models from binary hardening papers. Here, we compared
it with the analytical model adopted in Sesana (2010) and V15. Our
values are in line with the Sesana (2010) model with a constant y =
1.5, although the scatter is large. This is also consistent with the fact
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Figure 6. Variables used to calculate dynamical friction and binary hardening time-scales. Left: M,—o relation measured from all the binaries at the time of
merger in the simulation, compared to the analytical relation given in Tremaine et al. (2002) and Kormendy & Ho (2013). Middle: The influence radius derived
from y and o measured the simulation, compared with the analytical model used in V15 (green dashed line), and in Sesana (2010) with y = 1.5 (black dashed
line). Our measured o and rjpr are both close to the analytical models. Right: Density at influence radius extrapolated from the simulation. To illustrate the effect
of extrapolation scales on pinf, we show the resulting extrapolation from both 1.5¢, (pink dots) and 2.0€, (green contour). As was demonstrated in Fig. 5, the
density extrapolation is sensitive to the starting point of the extrapolation. However, even the extrapolated density from an outer radius is smaller compared with

the analytical model used in Sesana (2010) with y = 1.5 (black dashed line).

that our distribution in y peaks around y = 1.4 when measured at
Text = 1.5€,.

Finally, in the right-hand panel of Fig. 6 we show the density at
the influence radius extrapolated from the simulation. To illustrate
the effect of extrapolation scales on pi,r, we show the resulting
extrapolation from both 1.5¢, and 2.0€,. As shown in Fig. 5, the
density extrapolation is very sensitive to the starting point of the
extrapolation. Shifting the starting point by 0.5¢, = 0.75 ckpc h~!
can result in an order of magnitude difference in p;,r. However,
we note that even the density extrapolated from the outer radius is
smaller than the analytical model used in Sesana (2010) with y =
L.5.

4.2.2 Binary hardening time-scales

After measuring the quantities of interest for computing the binary
hardening time, we will proceed to describe the analytical model
for estimating the hardening time-scale. As was mentioned earlier,
we base most of our model on V15, with appropriate changes to
incorporate information from the simulation.

V15 models a separation-dependent LC hardening rate by

a v
S«(a) = WSins (—)
ap

where a is the binary separation, a; is the hardening radius given
by a, = M‘iﬁrinf, w is the filling fraction of the loss cone, and v
characterizes the radial dependence of the hardening rate. We adopt
the fiducial values of « = 0.3 and v = 0.4 from V15. S is the full
LC hardening rate at the influence radius given by

(10)

G in
Sint = H pf, 1D

Oinf

where oy and piyr are the velocity dispersion and stellar density at
the influence radius riys, and H is a constant LC hardening rate given
by H =2nA, with A =4 in V15. This value is slightly larger than the
H = 15 rate given by Sesana & Khan (2015). We note that this model
is tested under the assumption that y € [1, 2], and in the case of a
shallower density profile from core depletion, the value of A may be
smaller (e.g. Mannerkoski et al. 2019).
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At a closer separation, GW emission becomes the dominant
channel for binary energy loss. The hardening rate in the GW regime
is given by Peters (1964), which considers the evolution of the
Keplerian orbital due to the leading radiation reaction term at the
PN2.5 level:

1 64G3 M, MaM,o F(€)

Sew(a) = = 502 12)
where € is the eccentricity of the binary orbit and
F(e) = (1 — )71 4 (73/24)e* + (37/96)€*] (13)

accounts for the eccentricity dependence of the GW hardening rate.
The separation at which the binary spends the most time, dgy, is
calculated by setting S.(a) = Sgw(a), which leads to

64G3 M MyM o F(€) ajoing \ /T
aGw=< Mo Mo (6”'1‘”) , (14)

5¢? W Sint
Finally, we can estimate the LC + GW hardening time-scale by
1
Tt = ——————. (15)
hard S«(agw) X agw
Note that in this expression, we have only accounted for the
eccentricity dependence during the GW hardening stage, and thus
the superscript €4,. However, the orbital eccentricity also evolves
during the LC scattering phase and can impact the hardening time.
V15 models this effect by

€quw=0

Thad = Ty~ x (1 — Dk + (1 — k)(1 — €)*] (16)

where k = 0.4 4+ 0.1 loglo(th/IO8 Mg). At higher eccentricities,
equation (15) and (16) give similar results, but for € ~ 0, the former
underestimates the hardening time-scale by a factor of ~3.

For the binaries in our simulation, we use the galaxy and binary
properties shown in Section 4.2.1, together with the above formalism
to estimate the binary hardening time. Note that the hardening
time-scale depends on the orbital eccentricity as the BHs enter the
hardening regime: more eccentric orbits merge faster compare to
circular ones. To take this effect into account, we use the orbital
eccentricity shown in Section 3 as a proxy for the orbital eccentricity
at the beginning of the binary hardening phase, assuming that
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Figure 7. Top: The distribution of the loss-cone and gravitational-wave
hardening time for all binaries in the simulation. Here we use rexe from
1.5€¢,. The shaded distribution is computed using the measured eccentricity
€en- If we assume € = 0 (unshaded), the decay time-scales will generally be
longer by a factor of ~100 and peak at 100 Gyr, which is much longer than a
Hubble time. Middle: The relation between the hardening time-scale and the
density at influence radius pjnr. The time-scale is negatively correlated with
Pint- Changing rex, from 1.5¢, (pink dots) to 2.0€, (green contours) shortens
the hardening time-scale. The right-hand panel shows a clearer dependence
when we remove the seed population. Bottom: The relation between the
hardening time-scale and the measured eccentricity. We see a weak negative
correlation between Thyrg and €y

the post-processed dynamical friction does not change the orbital
eccentricity greatly (e.g. Colpi et al. 1999; Hashimoto et al. 2003).
There are many very recent works investigating the change in the
orbital eccentricity during the dynamical friction and loss cone
scattering evolution phases. Vasiliev, Belokurov & Evans (2022) has
shown that the orbital eccentricity tends to increase for the low-q,
shallow-profile pairs, while Mannerkoski et al. (2021) and Gualandris
etal. (2022) saw the circularization of the orbits during the dynamical
friction phase. None the less, all these simulations agree on the result
that the initial eccentricity of the MBH orbit at ~ 100 pc scales is
high, and that the eccentricity by the end of the loss-cone scattering
phase still traces the initial eccentricity of the MBH. Hence, our
assumption of using the measured eccentricity €., as a proxy for the
eccentricity at the hardening phase still aligns with their results. In
Section 5 and in the Appendix, we will further discuss the change in
the merger rate estimation due to possible circularization of the orbit
during the unresolved dynamical friction phase.

We also note that the galaxy properties we put into the calculation
are instantaneous properties from the simulation after the BHs go
through the numerical merger. Given that the galaxy and central
stellar densities will only grow with time (as well as the BH masses),
our estimations are likely upper limits of the hardening time.

Fig. 7 shows the relation between the binary hardening time and
pint as well as the energy-based eccentricity €.,. We also show the 1D
distribution of hardening times. The left column includes all binaries
in the catalog, while the right column only includes binaries with M,
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> 2Mceq, 1 - For all binaries, given our measured initial eccentricities,
the hardening time-scale falls between 100 Myr and 100 Gyr, with a
peak around 5 Gyr. The time-scale is strongly correlated with pi,r and
therefore also .. Changing the value of r.,; from 1.5¢, t0 2.0¢,, leads
to a shorter estimated hardening time-scale. This is because higher
stellar density leads to shorter hardening time-scales, as the LC stars
can more efficiently carry away the energy from the binary. In fact,
we find that the inner stellar density is the most important property for
determining the hardening time-scale. None the less, in both cases,
the hardening time-scale is much longer than the dynamical friction
time-scale. Note that if we do not account for the eccentricities of
the binary orbits, the decay time-scales will generally be longer by
a factor of ~100 and peak at 100 Gyr, which is much longer than a
Hubble time.

The bottom row of Fig. 7 shows the relation between the hardening
time-scale and the measured eccentricity. When looking at the whole
binary population, we see a negative correlation between Tyyg and
€en. This is expected as eccentric orbits have accelerated hardening
rates. However, when we only focus on the non-seed mergers, the
€.y dependence is washed out by the strong correlation with pjps.

Because of the strong dependence of the delay time-scale on the
uncertain variable p;,r, we will propagate this uncertainty to the
merger rate predictions in the next session, and characterize how
the uncertainty due to numerical resolution affects the mergers in
Astrid.

5 MBH MERGER RATE AND HOST GALAXY
PROPERTIES

After characterizing the delay time, in this section we present the
rate at which GW signals from MBH mergers will reach the earth,
taking into account the sub-resolution delay processes. We also
examine how the DF and binary hardening delay affects the different
populations of MBH mergers. Finally, we investigate the galaxy
properties for different parts of the merger population.

5.1 Merger rate predictions

We calculate the rate by integrating the number of mergers in the
simulation over redshifts, incorporating the cosmic volume at the
given redshift:

dN  d’n(z)dzdV,. 1
dzdt ~ dzdV.dr dz 1+¢

where dV, is the comoving volume element of the universe at a given
redshift and n(z) is the number of mergers at that redshift. The 1/(1
+ z) term redshifts the infinitesimal time element in dz/d¢ to the
observer frame time interval.

To calculate this rate from our simulation, we take the finite-
interval approximation:

¢n@)  N@
dzdV, = Az Vim'

where Az is the width of the redshift bin, N(z) is the total number
of mergers within that redshift bin, and Vj;,, = (250 Mpc/h)? is the
volume of our simulation in comoving units.

To clearly see the effect of each stage of the delay, we calculate
three different rates. We first compute the ‘Sim’ rate which uses
the numerical merging time as the redshift of the merger (also see
DeGraf et al. preparation). Then we add the post-processed DF time
to the numerical merger time to compute the ‘DF-only’ rate. We
further account for the binary hardening time-scales and calculate the

a7

(18)

MNRAS 514, 2220-2238 (2022)

220z Jaqwiaides 9| UO Josn s|elIaS/sadIAIeS "yoa | Aielqi apisiaAly ‘elulole) 1o Alsiaaiun AQ 92£5659/0222/2/1 L S/8191e/seluw/woo dno olwapeoe//:sdiy Woll papeojumoc]



2230  N. Chen et al.

0 [
- -1 :_ \\
L 10 E . N
N EoTel \
=102 L .
3 0 Sim "~ \
% 10-3 i DF-only \\\\ Ny
DF+Hard  ~~_ \
4L Half-circularization \,
0 E ! | R
1.0
£ -
2 mo——
505+ D——
e ™ N
%
] e —— ===
4 6 8
Redshift

---= Sim

N . —— M,;,DF+Hard

- Y Seo M,
\\\\ \\\\\
N

—_
9
IS
URLELL R RLL B R AL B R LI L
/
I3
7/
/
7/
/
/
/
/
/
7
/

dN/dlogM dV[dex~"'h3cMpc=3]

i\ '
N
I~

e
o
T

| |
10° 108
Mgu([Mo]

Figure 8. Left: The merger rates for all binaries in Astrid down to z = 3 with different levels of delays. Without considering any post-processing delays
(orange), we expect a total of ~2 mergers per year of observation down to z = 3. The rate when considering only the DF delay (green) has an at most 50 per
cent decrease compared to the raw rate at the highest redshifts. The binary hardening time has the most significant effect in reducing the merger rate. The purple
band shows the DF + hardening delayed merger rate estimated using the measured eccentricity €e,. The upper limits of the bands assume rexy = 2¢,, and the
lower limits assume rex; = 1.5€¢,. The yellow dashed line shows the DF + hardening delayed merger rate estimated using the half-circularized eccentricity
0.5€¢n, assuming rex; = 1.5¢,. The bottom panel shows the ratio between the delayed merger rates and the simulation merger rates. Right: The mass distribution
of the two MBHs involved in the mergers. The red curves correspond to the more massive MBH and the blue curves correspond to the less massive MBH. The
mass distribution of the simulation mergers is plotted in dashed lines, and that of the delayed mergers is plotted in solid lines. The bottom panel shows the ratio
between the mass distributions of simulation mergers and delayed mergers. The seed-mass mergers (enclosed in the vertical dashed lines) are suppressed most

strongly by a factor of ~6.

‘DF + Hard’ rate. Finally, to account for the possible circularization
of the orbital eccentricity during the unresolved dynamical friction
evolution, we compute the ‘half-circularization’ rate assuming that
binaries only retain 50% of their initial eccentricities at the beginning
of the hardening phase. Our ‘half-circularization’ model uses a
simple assumption that all the binaries lose 50 per cent of the initial
measured eccentricities, regardless of the environment. In reality,
the eccentricity evolution can depend on various factors such as the
density profile and the mass ratio of the host galaxies, and could
deviate from a simple linear relation. None the less, due to the lack
of an analytical model for eccentricity evolution in the dynamical
friction phase, we choose this simplified linear relation in order to
estimate the uncertainties.

In the left-hand panel of Fig. 8, we plot the merger rates with
different levels of post-processed delays, for the whole merger
population in Astrid. First, we notice that the number of mergers
keeps increasing with decreasing redshift for all three models. This
is because we keep seeding BHs as structures form and grow, and
we have not reached the peak in seeding rate at z = 3. Without
considering any post-processed delays (‘Sim’), we expect a total of
~1.8 mergers per year of observation down to z = 3. The post-
processed DF time does not significantly impact the total observed
merger rate (‘DF-only’), with a ~ 50 per cent decrease at the highest
redshift (z ~ 8). The binary hardening time has the most significant
impact on the merger rate at all redshifts (‘DF 4 Hard’). We see
that the merger rate is reduced by a factor of 3 ~ 7 after adding
the delay from binary hardening. The resulting merger rate is 0.3 ~
0.7 at z > 3. Here, the upper limit is given by assuming 7. = 2¢,
and the lower limit is given by re = 1.5¢,. Finally, if we further
consider the circularization of MBH orbits during the unresolved
dynamical friction evolution, the rate estimation decreases to 0.1
~ 0.3 per year at z > 3. This is again a factor of ~5 decrease in
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the merger rate, comparable to the uncertainties due to the density
profile measurements. In the Appendix, we will investigate in more
details how various eccentricity assumptions affect our merger rate
predictions. There we will show that the difference between a ‘half-
circularization model” and a ‘full-circularization’ model (where all
orbits are assumed to be circular) is within 15% in terms of the merger
rate prediction. Thus by investigating the ‘half-circularization’ model
here, we have approached the lower-bound in the merger rate due
to orbital circularization. On the bottom panel, we show the ratio
between the delayed merger rate and the simulation merger rate as
a function of redshift. For both DF-only and DF + Hard delays, the
fractional rates get higher at lower redshifts. This is a result of the
high-redshift mergers being pushed down to low redshifts.

In the right-hand panel, we show the mass distribution of the
two MBHs involved in each merger. The dashed lines correspond to
the simulation merger without any delays, and the solid lines show
the distribution of the merger population after the DF + hardening
delays. First, we can see that both before and after the delay, the
merger population is dominated by seed-mass mergers (the ones
enclosed by the vertical dashed lines), with M, evenly distributed
across the seed masses and M, concentrated on the lower-mass
end of the seeds. It is also this seed-mass merger population that
gets suppressed the most by the delay. From the ratio between the
mass functions shown in the bottom panel, we see that for the
seed-mass mergers, only ~ 15percent still merge at z > 3 after
the delays, whereas at the high-mass end this fraction increases to
50 per cent.

In order to disentangle different merger populations, in Fig. 9 we
further split the rate by how many seed MBHs are involved in the
merger. The left-hand panel shows the merger rates for the seed-
mass population, where the masses of both MBHs are below two
times their seed masses. This population makes up ~ 60 per cent of
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Figure 9. Merger rates for different mass cuts and mass-ratio cuts. Left: The merger rates for the seed-mass population, where the masses of both MBHs are
less than two times their seed masses. The colours are the same as in Fig. 8. Compared to Fig. 8, this population makes up ~ 60 per cent of the mergers. Middle:
Merger rate for MBHs with only one of the two grown out of the seed mass. This rate makes up ~ 30 per cent of the entire merger population. Compared to
the seed—seed mergers; here, we see fewer mergers at high redshifts, but a similar rate at z = 3. Right: Mergers with both MBHs larger than two times their
seed masses and with ¢ > 0.1. When constrained to major and non-seed mergers, the effect of DF is barely noticeable. The DF + hard delayed rate makes up
50 per cent of the total rate. The lower panels show the ratio between the delayed merger rates and the simulation merger rates.

the mergers. At z > 5, the seed-seed mergers are strongly suppressed
by the binary hardening delays because the stellar density is relatively
low. The middle panel shows the mergers with the only more massive
MBH grown beyond two times its seed mass. At z = 3, the rate from
this group is comparable to the rate from the seed—seed mergers.
However, the number decreases more steeply as we go to higher
redshifts. Compared to the seed—seed mergers, this group has a
higher mass ratio and thus a longer DF time. The effect of the binary
hardening delay, however, is smaller because of the higher density
in the remnant galaxy. Finally, on the right-hand panel, we show
the more massive and major mergers. Compared to the previous two
groups where at least one seed-mass MBH is involved in the merger,
the mergers from this group are ~6 times lower. The effect of delay
is also the smallest. In particular, we noticed that the DF-only rate
is very similar to the simulation rate. Even for this group where the
effect of delays is the smallest, the merger rate is still suppressed
by > 50 per cent at each redshift compared to the simulation merger
rate.

Fig. 10 shows the distribution of MBH mergers on the Mo—Zmerge
plane for both the simulation and delayed mergers, colour coded by
the number of mergers per Myr. Without any delay, the majority of the
merger events are seed—seed mergers around z = 3—4. As we would
expect from the BH mass growth over time, we see more massive
mergers at lower redshifts. The middle panel shows the same merger
population with the post-merger DF time added. As was discussed
in the previous paragraph and in Section 4.1, the post-processed DF
peaks around 200 Myr and does not significantly delay the mergers.
Here, we see a slight shift of the merger population towards a lower
redshift.

In the right-hand panel of Fig. 10, we show the distribution after
considering the DF delay and hardening phase. Note that since the
final simulation output is at z = 3, all the data points at z < 3 are the
results of delayed z > 3 numerical mergers, and are not representative
of all merger events at z < 3. Compared with the other two panels,
we see a significant shift of the mergers towards lower redshifts. The
population that is most significantly shifted are the low-mass mergers
with M, < 10%°Mg, while the most massive binaries are still able to

merge at relatively high redshifts. This is a consequence of the large
hardening time-scale of smaller BHs associated with lower pjps.

5.2 Properties of high-z MBH mergers

From the previous section, we have seen that while some low-mass
mergers are significantly delayed and do not merge at z > 3, ~
15 per cent of them still do. For the non-seed mergers, although the
delay is generally less significant, we still see a 50 per cent decrease in
merger rate when accounting for the delays. Now we will investigate
which part of the merger population gets significantly delayed, and
which still manages to merge at high redshifts.

In Fig. 11, we show the properties of MBHs involved in both the
simulation mergers and the delayed mergers. The top row shows
the properties of the non-seed mergers, and the bottom row shows
the properties of the seed-seed mergers. We start by looking at the
mass distribution of galaxies hosting the mergers (shown in the first
column). For the simulation mergers consisting of two non-seed
MBHs, the masses of the host galaxies peak at 4 x 10° M. For
systems that still merge after the delays, we see a clear shift towards
the higher end in stellar masses with a peak at ~10'°Mg. This is
because for more massive galaxies, the high stellar density enables
more efficient hardening through loss-cone scattering, and thus the
delay time is shorter (also see Fig. 7). For mergers involving two
MBH seeds shown on the bottom, we observe a similar trend. Overall,
seed mergers reside in less massive galaxies with stellar masses
below 4 x 108 M. The delayed merger events also pick up the more
massive galaxy population out of the simulation mergers with galaxy
masses distributed around 10° M.

In addition to the stellar environment which plays an important
role in the delay time estimation, the seeding redshift of the MBHs
can also affect whether the two MBHs still merge at a high redshift
after the delay. This is shown in the second column of Fig. 11. While
the seeding redshift of the simulation merger MBHs is z ~ 7, the
MBHs involved in delayed mergers are seeded as early as z = 10.
For the seed-seed mergers shown on the bottom, the overall seeding
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Figure 10. The distribution of mergers on the Miot—Zmerge plane for the simulation and delayed mergers, colour-coded by the number of mergers per Myr.
Left: The distribution for all mergers without delays. Middle: The same merger population with the post-merger DF time added. Here, we see a slight shift
of the merger population towards a lower redshift, but nothing gets delayed below z = 2. Right: The distribution after considering both the DF delay and the
hardening time. Note that since the latest redshift of the simulation is z = 3, all the data points at z < 3 (masked in grey) are results of the delay from z > 3
numerical mergers, and are not representative of all merger events at z < 3. We see a significant shift of the mergers towards lower redshifts. The population
most significantly shifted are the low-mass mergers with My, < 109°Mg, while the most massive binaries are still able to merge at relatively high redshifts.
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with corresponding colours.

redshift is lower, but we also see a shift towards a higher redshift
when comparing the delayed mergers to the simulation mergers.
The bias towards early MBH seeding for delayed mergers is also
correlated with the higher host galaxy mass we have seen earlier:
because the delayed mergers favour earlier seeds, they also tend to
reside in galaxies that are massive enough at high redshifts to host
an MBH seed.

On the right two columns, we examine the properties of other
MBHs embedded in the host galaxy of the mergers. The third column
shows the total number of MBHs embedded in the host galaxy of
the merger, in the snapshot immediately following the numerical
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merger (so the merging MBHs will be counted as one object). The
fourth column is the mass ratio between all MBHs in the host galaxy
and the merging system. For both the seed and non-seed merger
populations, the merging system is the sole MBH in the host galaxy
in the majority of mergers. For the non-seed population, there is still
a > 50 per cent fraction of mergers happening next to a third MBH
(or more). Interestingly, the delayed merger systems favour galaxies
with more MBHs near the merging ones (also correlated with larger
galaxy masses). None the less, the merging system is still the most
massive MBH in its host galaxy in most cases when we look at the
Mgy, gal/Mtol ratio.
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When constrained to seed-seed mergers, we see that ~ 70 per cent
of the mergers are the single MBH in the host galaxy. The delayed
mergers also tend to pick out the galaxies with more MBHs compared
to the simulation mergers. However, contrary to the non-seed case
where the merging MBH is more massive than the other MBHs in the
same galaxy, for seed-seed mergers that do occur near a third MBH,
the mass of the third MBH is more likely to be larger. This can be
seen from the fact that the Npy, ga distribution is more peaked at
NgH, ga > 1 compared to the Mgy, ga/M;ox > 1 distribution (it means
that if there is a third MBH, its mass can be larger than M,y in some
cases, resulting in the longer tail of Mgy, ga/Mio,)-

From the investigations above, we conclude that the z > 3 mergers
after the DF and hardening delay make up a small and biased sample
of the simulation mergers. In particular, they are systems with MBHs
seeded earlier and embedded in more massive galaxies compared to
the overall simulation merger population. Moreover, the majority of
the merger remnant is the only MBH in its host galaxy, especially
for the seed-mass mergers. However, the delayed mergers tend to
pick out more systems that have other nearby MBHs in the remnant
galaxy compared to the overall simulation merger population.

6 GW EMISSION FROM MBH MERGERS

With a catalogue of merging binaries, their merging time, and orbital
eccentricities, we can not only compute the rate of mergers reaching
the Earth, but also predict the GW signal that can be observed
from these sources. This section is dedicated to predicting the GW
signal and detectability of the Astrid mergers with LISA. We
first briefly describe the characteristic strain for circular sources,
and then we generalize to the signal from eccentric sources. After
that, we combine with the LISA sensitivity curve and compute the
signal-to-noise ratio (SNR) for each merger in the simulation.

6.1 Characteristic strain of circular orbits

MBH binaries provide a variety of signals measurable by LISA
since their chirp evolution in the frequency domain occurs near the
low-frequency band edge of the LISA sensitivity curve. Binaries
with 10°-10" Mg, total mass will provide a measurable inspiral,
merger, and ringdown, leading to signals out to the cosmic horizon
(Amaro-Seoane et al. 2017). The binary inspiral is the initial stage
of binary BH coalescence when the two MBHs orbit one another at
separations greater than the innermost stable circular orbit (ISCO;
R = 6GMgy/c?). At these separations, the orbit is usually treated with
a post-Newtonian formalism. The merger stage follows the binary
inspiral with a highly non-linear relativistic process. This process
continues until the binary components form a single event horizon,
leading to ringdown.

We use the characteristic strain, A, to model the binary signal
which accounts for the time the binary spends in each frequency
bin (Finn & Thorne 2000). The characteristic strain is given by (e.g.
Moore, Cole & Berry 2015)

ho(f) = 4RI, (19)

where /i( f) represents the Fourier transform of a time domain signal.

To generate the waveforms, we use the phenomenological wave-
form PhenomD (Husa et al. 2016; Khan et al. 2016) implemented
within the gwsnrcalc PYTHON package (Katz & Larson 2019).
The input parameters are the binary masses, merging redshift, and
the dimensionless spins of the binary. For the MBH masses, we do
not account for mass growth after the numerical merger. However,
we note that the MBH can potentially gain a significant fraction of
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its mass during the > 1 Gyr of time in the dynamical friction (e.g.
Banks et al. 2021) or loss-cone scattering phase. The dimensionless
spin a characterizes the alignment of the spin angular momentum
with the orbital angular momentum, and the value of a ranges from
—1 to 1. However, we do not have any information on the spin of
the SMBHs in our simulation. Therefore, following the argument in
Katz et al. (2020), we assume a constant dimensionless spin of a; =
a, = 0.8 for all binaries (e.g. Miller 2007; Reynolds 2013).

InFig. 12, we show the distribution of the merging frequency ferge
and the strain at this frequency for all binaries in the simulation,
before and after applying the DF + Hardening delay models. To
evaluate the detectability of the population with LISA, we also plot
the proposed LISA sensitivity curves. We use the LISA sensitivity
configuration from the LISA Mission Proposal (Amaro-Seoane et al.
2017), and we use hy = /Sy (Moore et al. 2015) to convert from
the proposed power spectral density Sy to strain Ay.

In the left-hand panel of Fig. 12, we show example waveforms
for binaries of different masses but similar numerical merging time.
The thick curve shows the waveform assuming € = 0, with the
dot representing the merging frequency fineree. We will discuss the
thin lines with non-zero eccentricities in later sections. From the
example waveforms, we see that at a fixed source redshift, the more
massive binary has a higher strain amplitude. However, this does not
necessarily lead to a more significant detection, because the lower
frequency at which the wave is emitted falls into the region where
the LISA sensitivity is worse. Out of these three binaries, the two
least massive binaries are detectable by LISA while the most massive
one is not. After the DF and hardening delays, all curves have higher
strain amplitudes, as the strength of the signal is negatively correlated
with redshift.

After looking at individual cases, we turn to the whole binary
population. On the right-hand panel, we show the distribution of
Simerge and Ag(fmerge) for Astrid mergers, after the post-processed
delays. We have masked the signals from z < 3 mergers in light
grey, as they are purely due to the post-processed delays, and are
not part of our simulation predictions. The majority of merger events
within the simulation lie above the LISA sensitivity curve. From
example waveforms, we see that once any given GW signal crosses
the detector sensitivity curve, the ratio of the signal to the sensitivity
curve rapidly increases by a few orders of magnitude. Since the
merger population is dominated by seed—seed mergers, we see a
peak around fieee ~ 1072Hz, corresponding to the example green
curve. Finally, we demonstrate the shift of the signal due to the delay
model by the coloured arrows. The tail of the arrows indicates the
location of the frequency/strain before the delays. The head of the
arrows are the signals after the delays. We see that in the example
cases, the signal shifts to the high-strain, high-frequency region of
the plane. This is mainly because of the delay of the mergers from z
>3toz < 3.

6.2 GW signal from eccentric sources

In the previous section, we have shown a single h,—f relation
by assuming circular orbits for the binaries. In this section, we
will utilize the eccentricity measured from the simulation when
calculating the strain and signal-to-noise ratio (SNR) for each binary.

The GW strain from an individual, eccentric source can be related
to that of a circular source as (e.g. Amaro-Seoane et al. 2010; Kelley
et al. 2017b):

2 2 00
h?(fr) = (;) Zhicirc(fh)g(nsE)lfh:fr/”’ (20)

n=1
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Figure 12. Left: Example waveforms for three binaries of different masses in Astrid. The thick curve shows the waveform assuming € = 0, while the thin
lines are the waveform assuming eccentric orbits. We also show the LISA sensitivity curve from Amaro-Seoane et al. (2017) (black solid) for comparison. The
numerical merging time of all example binaries is z ~ 3.1. Right: The h—f distribution after applying the delay models. The arrows indicate the shifts in strain
and frequency by the delay. Most signals are shifted to the upper-right due to the lower redshift of the merger after the delays. The light grey region shows the

merger population delayed to z < 3, which is not part of our prediction.

where h, ¢ is the characteristic strain of a circular source given by
equation (19), g(n, €) is the GW frequency distribution function given
by equation 20 in Peters & Mathews (1963) with EZL gln,e)=
F(€), where F(¢) is defined by equation (13).

During the GW-driven inspiral, the orbital eccentricity also evolves
according to Peters (1964) equation (5.7), such that it decays towards
zero as the binary inspirals towards merger. This will affect the orbital
frequency by

Fo 1—¢ ( c ) 12/19 <1 i ;3162> 870/22997 ~3/2
= 2o T 2o . @D

fo 1—¢ € 1+ 301 €0

where € is the initial eccentricity at the reference frequency fp.

In Fig. 12, the multiple thin lines are the waveforms from higher
order harmonics assuming eccentric orbits. For circular orbits, the
GW is emitted at a single frequency at a fixed separation, while the
eccentric binaries emit GW at higher order harmonics at a given time.
One consequence of this is that the energy dissipated in higher order
harmonics is below the detection sensitivity, and thus the signal will
be smaller compared with the circular orbits.

We note that by using the simulation measurement of the orbital
eccentricity as the initial eccentricity in the inspiral phase, we did not
account for any possible increase in € during the loss-cone scattering
phase (see, e.g. Sesana 2010). However, such changes mostly affect
low initial eccentricity pairs (e.g. Kelley et al. 2017a). Since the
initial binary eccentricities of our MBH pairs are already very high,
we expect the loss-cone scattering to have only a minor effect on the
final eccentricity.

6.3 Detectability prediction

Although the strain in Fig. 12 is a good estimation of the detectability
of a circular binary, for the eccentric case a more careful prediction
comes from the signal-to-noise ratio (SNR). The SNR is estimated
by integrating the ratio of the signal to the noise in the frequency
domain. The sky, orientation, and polarization averaged SNR are
given by

16 fcnd ]’l2
(SNR)? = ?/f ﬁf”df, (22)

start
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where fiut = fltsarn) and fong = f(fena), With fg, and fepq representing
the starting and ending time of when the signal is observed. Note that
here we are assuming eccentric waveforms for the binaries, and thus
hy is given by the sum over different modes following equation (20).
As it is not computationally feasible to sum an infinite number of
modes, we truncate the sum in equation (20) at n = 50 and we have
checked that the difference between the first 50 and the first 100
modes is less than 5 per cent.

For the current configuration, we assume that the LISA observation
lasts for 4 yr. We further assume a most optimistic SNR for all mergers
by taking feng = fpeak and fyare = fpea — 4 yr. Under this assumption,
we are always integrating the part of the waveform where the strain
is maximized. However, as was discussed in Salcido et al. (2016)
and Katz et al. (2020), the actual SNR may be smaller if there is an
offset between the LISA observation window and the merger time of
the binary.

Fig. 13 shows the distribution of the SNR computed for all mergers
in the simulation. The left column shows the joint distribution of
SNR and the merging redshift. The top row is the SNR computed
with merging redshifts before the DF and hardening delays, and
the bottom row is the SNR after the delay time is applied. As was
expected from the simpler calculation shown in Fig. 12, the majority
of the binary population in the simulation has an SNR larger than
the LISA detection threshold of 8 (plotted as dashed grey lines). The
ones that fall below the SNR cut are mainly massive mergers with
My > 107 Mg. When we account for the delays, the mergers are
pushed towards lower redshifts, and the resulting SNR is higher for
each event.

The middle panel of Fig. 13 shows the effect of delays and the
SNR cut on mergers with different masses. The SNR cut removes all
mergers with M, > 10 My, from the LISA-detectable population.
On the low-mass end of MBH mergers, the reduction results from
the DF and binary hardening delays. Combining both the delays and
SNR cut, we see that the overall detectable mergers at z > 3 are
~ 15 per cent of the original Astrid merger population across all
masses. The seed-mass mergers still dominate over other events even
though they are most strongly suppressed by the delays. Finally, in
the right-hand panel, we show the mass distribution of the two MBHs
involved in each detectable event. The majority of these events are
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Figure 13. Left: The joint distribution of the SNR and redshift for Astrid mergers. The top row is the SNR computed before the DF and hardening delays,
and the bottom row is the SNR after the delay time is applied. The mergers delayed to z < 3 are masked in grey. Middle: Distribution of binary mass for all
Astrid mergers (red), the ones with SNR > 8 without the delay model (blue), and the ones that merge before z = 3 after the delays (brown). The SNR > 8
cut eliminates all mergers with M, > 10% M, while the drop in low-mass merger events is due to the delays. Right: The distribution of two MBH masses for
LISA detectable merger events at z > 3. Most events are expected to involve two seed-mass MBHs.

expected to be mergers from two seed-mass MBHs. On the high-
mass end, the detectable events have a mass ratio of ¢ ~ 1 (close
to the diagonal line). Based on these results, the likelihood that a
LISA detection comes from mergers of MBH seeds is high, but the
detectable MBH seed mergers is only a small sample of the seed
MBH pairs and the associated galaxy mergers.

Here, accounting for the delay time to merger affects the resulting
SNR more than the eccentricity. The eccentricity itself, however,
may affect the prospects for multimessenger follow-up. For example,
eccentric binaries may spend a shorter amount of time in the
LISA band compared to circular binaries. Spin-orbit interactions
in eccentric binaries may change the orbital inclination with respect
to the line of sight, which may also play a role in detectability and
sky localization. We will explore such effects and their implications
for multimessenger follow-up in a companion paper.

7 CONCLUSION AND DISCUSSION

In this work, we have made predictions for the MBH merger rate
and associated LISA events for a cosmological population of MBHs
with masses ranging between 5 x 10* Mg and 10'° My, down to z =
3, using the large volume cosmological simulation Astrid. At high
redshifts, MBH mergers and the associated GW signal should provide
strong constraints for models of seed BH formation. In Astrid,
MBH seeds range from 5 x 10* Mg to 5 x 10° M, covering down to
masses that LISA will be most sensitive to. Moreover, in Astrid we
have included an on-the-fly subgrid dynamical friction prescription,
which allows us to trace the MBH orbits down to the resolution limit.

Using the MBH orbits directly from the simulation, we estimated
the (generalized) orbital eccentricity for unbounded MBH pairs that
undergoDF-dominated orbital decay in the Astrid simulation. In
addition, we use the most recent post-processing models to account
for the additional delay in MBH mergers due to dynamical friction
(Dosopoulou & Antonini 2017) and binary hardening V15 at scales
not resolved directly by Astrid. This is done by accounting
for the orbital eccentricities constrained by the simulation which
is important for the loss-cone scattering and gravitational-wave
hardening phase. After considering the effect of these processes
in delaying the MBH merger, we made a detailed prediction of
the expected number of mergers down to z = 3, the redshift that
the simulation has currently reached. Finally, we computed the
detectability of these events by LISA.

We find that most MBHs pairs in Astrid have eccentric orbits
distributed near € = 0.8. We verify the eccentricity measurements
by using both the shape and the dynamical information of the
MBHs and find general agreement on the result. While some orbits
circularize during the dynamical friction decay, the majority of them
still maintain a high level of eccentricity at the time of the numerical
merger. The orbital eccentricity is important in accelerating the
binary hardening process. In particular, we show that the assumption
of circular orbits for all binaries leads to estimates for the binary
hardening time that can exceed 20 Gyr for most Astrid binaries.
Taking into account the measured orbital eccentricities, our estimated
hardening times fall between 1 ~ 10 Gyr.

Even after considering the accelerated binary hardening rate due
to eccentric orbits, for Astrid mergers close to the seed mass, the
binary hardening (including LC and GW hardening) time typically
provides the longest delay, and it remains more important than
the dynamical friction component (including DF time modelled in
Astrid directly and the estimated subresolution component). For
MBH binaries above the seed mass, the hardening time becomes
comparable to the DF time and always remains <1 Gyr. By
comparing the DF directly modelled in Astrid with the post-
processed (subresolution) DF time, we find that they are comparable,
accounting for 100 ~ 300 Myr of binary evolution. At the resolution
of Astrid, the subgrid DF added directly in the simulation is able
to recover more than half of the dynamical friction decay process
before the numerical merger.

Without accounting for any additional post-processed binary
dynamics delays, we expect ~2 merger events per year (DeGraf
et al. in preparation) from the z > 3 MBH population in Astrid.
With the post-processed dynamical friction and binary hardening
taken into account, the expected merger rate reduces to 0.3 ~ 0.7
per year at z > 3. Astrid predicts for merger rates that are higher
than most previous predictions from hydrodynamical simulations
of comparable volumes (e.g. Salcido et al. 2016; Katz et al. 2020;
Volonteri et al. 2020), because Astrid accounts for a seed popula-
tion (see DeGraf et al. preparation for a more direct comparison) in
haloes about an order of magnitude lower in mass than e.g. [llustris
(Mhalo,thr =7x 1010 MO) and EAGLE (Mhalo,lhr =14x 1010 M@)
Among the whole MBH merger population, the seed-mass mergers
are most affected by the delays, with only < 20 per cent of the original
simulation mergers still merging at z > 3. None the less, because
the seed-mass mergers dominate the merger population in absolute
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numbers (250455 out of 440999), they still occupy a large fraction
of the delayed mergers. Out of the delayed merger events at z >
3, ~ 60 percent involve two seed-mass MBHs, ~ 30 percent are
mergers between one non-seed MBH and one seed-mass MBH, and
~ 10 per cent are mergers between two large mass MBHs.

We use a 4-yr LISA observation time to calculate an upper limit on
the SNR for each merger event. Many of these high-z mergers result
in SNRs around ~200. With an SNR>§ threshold, high-mass merger
(M > 10° My,) events are removed from the detectable population
atz > 3. The My < 107 M mergers are still detectable. As a result,
the LISA detectable population is still dominated by seed MBH
mergers, and the expected detection rate is similar to the total merger
rate of 0.3 ~ 0.7 per year at z > 3.

Based on these results, a LISA detection of merger events from
MBH seeds population is highly feasible. However, the detectable
MBH seed mergers are predicted to correspond to the sample of
the seed MBH pairs that occur in hosts with stellar masses close to
10° Mg,. This is about three times larger than the typical stellar mass at
which seed-mass mergers are expected to occur if loss cone scattering
was not accounted for. We also find that ~ 80 per cent of the seed—
seed merger remnants in the simulation are the only MBH residing
in their host galaxies. Accounting for the DF and binary hardening
delays slightly favours systems embedded in a larger galaxy with a
more massive MBH around. This is because the more massive hosts
tend to provide a higher stellar density and hence a more effective
loss-cone scattering. However, sole MBH remnants still make up
~ 70 per cent of the seed—seed merger population after the delays.
Regardless, Astrid predicts the host galaxies of the detectable z >
3 mergers to be galaxies of M, ~ 10°~10'° M. These host galaxies
are detectable with current and upcoming telescopes.

We note also that our estimation of the low-mass MBH merger rate
is a lower limit, since we do not resolve the MBHs residing in low-
mass dwarf galaxies. Observations have provided evidence that dwarf
galaxies host MBHs in their centre (e.g. Reines, Greene & Geha
2013; Moran et al. 2014; Satyapal et al. 2014; Lemons et al. 2015;
Sartorietal. 2015; Pardo et al. 2016; Nguyen et al. 2019). Simulations
(e.g. Van Wassenhove et al. 2010; Bellovary et al. 2019; Volonteri
et al. 2020) also show that dwarf galaxies consistently merge into
larger galaxies over time. Hence, missing the dwarf galaxy MBHs
could bias our merger rate and detection rate estimation towards the
lower end.

Moreover, in this work, we do not evolve the orbital eccentricity
during the loss-cone scattering phase. Loss-cone scattering can
increase the orbital eccentricity of the binary (e.g. Sesana 2010;
Kelley et al. 2017b), and may affect the detected GW signal. We
also do not consider circumbinary—disc interactions (e.g. Haiman
et al. 2009), since circumbinary—disc simulations for eccentric
binaries have not yet been comprehensively explored for a wide-
enough range of binary parameters and disk properties. A significant
amount of progress, however, has been made in the hydrodynamic
modelling of such systems (e.g. Duffell et al. 2020; Tiede et al. 2020;
D’Orazio & Duffell 2021). Binary—disc interactions may also affect
the spin orientations of each MBH. It is also currently uncertain
how a circumbinary disc would respond when an eccentric binary
undergoes post-Newtonian spin—orbit interactions. We thus leave
such analyses with our cosmological binary population for future
work.

Despite the limitations in the modelling discussed above, we
find that current simulations such as Astrid are getting closer to
predicting DF time-scales for the binary evolution. The estimation of
the binary hardening time-scale remains more uncertain as it depends
on the properties of central stellar densities below the resolution
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limit. We have shown that changing the stellar density extrapolation
starting point from 1.5¢, to 2¢, increases the estimated density at
the influence radius by a factor of ~10, and thereby shortens the
estimated binary hardening time-scale by a factor of ~10. This
translates to a factor of ~3 different in the merger rate predictions. To
more confidently estimate the binary hardening time-scale and thus
the MBH merger rate in the context of cosmological simulations,
better modelling of the inner region of the galaxy would be needed.
None the less, we still expect the merger rates to be within a factor
of a few of what a cosmological simulation is able to predict (at the
resolution of Astrid).
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APPENDIX: EFFECT OF UNRESOLVED
ECCENTRICITY EVOLUTION

As was discussed in Sections 4.2.2 and 6.2, when computing the
delay of mergers due to loss-cone scattering and when calculating the
SNR for eccentric binaries, we have not taken into account possible
circularization of the orbits during the unresolved dynamical friction
phase. In this section, we will investigate the possible effect of orbit
circularization on the merger rate predictions as well as on the SNR
calculation.

We still assume simple models for binary circularization, because
there is not yet an analytical model we can apply for the eccentricity
evolution on < 100 pc scales. We assume two scenarios for the orbit
circularization: the first model is an extreme case, where we assume
that all orbits are fully circularized before entering the loss-cone

MNRAS 514, 2220-2238 (2022)

220z Jaqwiaides 9| UO Josn s|elIaS/sadIAIeS "yoa | Aielqi apisiaAly ‘elulole) 1o Alsiaaiun AQ 92£5659/0222/2/1 L S/8191e/seluw/woo dno olwapeoe//:sdiy Woll papeojumoc]



2238  N. Chen et al.

7
/
|

—
o
L
T T T
™
Il
<
(9]

)
Il
©
o

dN/dzdt [yr=']
s 3 3
UL RLLL LR |
/ |
// 7
/
T/
{ S

IR
P

6
Redshift

Figure A1. Merger rates after the DF and hardening delays when we assume
different eccentricities for the binary population. We compare the constant-
eccentricity cases with € = 0 (thin blue), € = 0.5 (thin green), and € = 0.9
(thin pink) with the merger rate assuming our measured eccentricity during
the DF phase (thick blue). We also show the merger rate when assume that the
eccentricity decreased by half during the unresolved DF phase (thick yellow),
based on the conclusion of Gualandris et al. (2022).

scattering phase. This model deviates from the results in previous
works such as Mannerkoski et al. (2021), Vasiliev et al. (2022) and
Gualandris et al. (2022), but we take it as a lower limit on our
rate predictions. The second model is motivated by the result in
Gualandris et al. (2022), who found that in the DF regime, the orbit
goes through a certain degree of circularization, while still retaining
a fraction of the high eccentricity at the beginning of the DF phase.
Hence, we assume that by the end of the DF-dominated orbital decay,
the binary retains half of its original eccentricity. This is in line with
the median eccentricity loss in the simulations of Mannerkoski et al.
(2021) and Gualandris et al. (2022), although these simulations also
show a wide range of circularization.

In Fig. Al, we show the merger rate similar to those calculated
in Fig. 8, but for different initial eccentricity assumptions. When
we assume that all orbits have zero eccentricity before the loss-cone
scattering phase, the binary hardening time is significantly longer,
and the merger rate decreases by an order of magnitude compared
with our original predictions using the measured eccentricities. When
assuming half-circularized orbit, the hardening time also increases,
resulting in a 70 per cent decrease in the merger rate before z = 3.

Fig. A2 further shows the impact of the assumed initial eccentricity
on the SNR predictions for LISA. In the top panel, we reproduce
our original predictions based on the measured eccentricities. The
middle panel assumes a full-circularization model. Note that here
the eccentricity not only affects the merging redshifts throughout the
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Figure A2. SNR and merging redshift distribution for different eccentricities
assumed at the beginning of the loss-cone scattering phase. Top: Same as
the lower left-hand panel of Fig. 13, where we have used the eccentricity
measured from the last orbit in the simulation. Middle: The merging time and
SNR assuming that all orbits are completely circularized before entering the
loss-cone scattering regime. Bottom: The merging time and SNR assuming
that the orbits are half-circularized during the unresolved DF and the LC
phase.

hardening time, but also affects the waveform of the final signals.
We can see that the most of the mergers still have SNRs above the
detection limit, but there are significantly less mergers before z = 3.
The bottom panel shows the SNR for the half-circularization model.
Comparing with the full-circularization model, the overall SNR is
slightly lower at high-redshifts, and the distribution of SNR better
traces the measured-eccentricity model. In both cases, the assumed
eccentricity does not have a large impact on the SNR for each merger
event, but does affect the high-redshift merger rate.
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