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A B S T R A C T   

Identifying patterns is an important part of mathematical reasoning, but many students struggle 
to justify their pattern-based generalizations. Some researchers argue for a de-emphasis on 
patterning activities, but empirical investigation has also been shown to support discovery and 
insight into problem structures. We introduce the phenomenon of empirical re-conceptualization, 
which is the development of an empirical generalization that is subsequently re-interpreted from 
a structural perspective. We define and elaborate empirical re-conceptualization by drawing on 
data from secondary and undergraduate students. We also identify four major instructional 
supports we found for empirical re-conceptualization: (1) experiencing need for verification, (2) 
fostering contextual interpretation, (3) fostering reflection and justification, and (4) fostering 
pattern exploration, as well as three processes facilitating the transition from empirical to 
deductive reasoning: (a) verification, (b) justification, and (c) creation / interpretation.   

1. Introduction and motivation 

Recognizing and developing patterns is a critical aspect of mathematical reasoning. 
Curricular materials emphasize activities that foster students’ abilities to develop empirical (typically pattern-based) generaliza

tions (e.g., Lappan et al., 2014), and many students are adept at recognizing and formalizing patterns (Pytlak, 2015). However, 
students can also struggle to understand, explain, and justify the empirically-based findings they develop (e.g., Čadež & Kolar, 2015). 
One source of students’ difficulties may rest with the empirical nature of their generalizations, by which we mean generalizations that 
are derived from observed patterns or regularities in data. Students can become overly reliant on examples and infer that a universal 
statement is true based on a few confirming cases (Knuth et al., 2009). Further, students tend not to analyze those examples strate
gically in order to develop insight into a justification for their generalization (Cooper et al., 2011; Knuth et al., 2012). Accordingly, 
researchers have advocated for instructional approaches that help students learn the limitations of empirical arguments (e.g., Mhlolo, 
2016; Stylianides & Stylianides, 2009). These approaches have shown some success in helping students see the limitations of examples, 
but students nevertheless continue to struggle to produce deductive justifications (Bieda et al., 2013; Stylianides et al., 2017). Further, 
these approaches frame empirical reasoning strategies as stumbling blocks to overcome, rather than important and useful tools in the 
development of both generalizations and their justifications. 

In contrast, we propose that empirical reasoning can play an essential role not only in the development, exploration, and 
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understanding of generalizations, but also in subsequent attempts to develop justifications of those generalizations. Such reasoning, in 
turn, can help students transition from empirical to deductive argumentation (e.g., Tall et al., 2011). One way to do this may be 
through seeing an example as a generic example. Mason and Pimm (1984) introduced the notion of a generic example as a specific 
example that is presented in such a way as to bring out its intended role as the carrier of the general. Such an example can make explicit 
the reasons for the truth of an assertion by means of operations on an object that is a “characteristic representative of the class” 
(Balacheff, 1988, p. 219), and can therefore support the development of what Mason and Pimm (1984) called a generic proof. The 
characterization of a generic example as one that students can use to stand in for all objects in its class is reflected in other descriptions 
in the literature (e.g., Harel & Tall, 1991; Leron & Zaslavsky, 2013; Rowland, 1998, 2002), and researchers have offered guiding 
principles for developing such examples (Rowland, 2002), for judging an argument’s use of a generic example (Yopp & Ely, 2016), and 
for using generic examples as vehicles to formal proof (Leron & Zaslavsky, 2013). 

The above studies offer a promising avenue for helping students leverage their empirical reasoning, but more work is needed to 
better understand the nature of the transition from relying on empirical patterns to the development of examples that students use as 
generic examples, and more generally a deductive argument. In particular, there remains a need to further conceptualize this tran
sition, and to identify the processes involved in such a transition. We introduce one such avenue for transitioning from empirical 
reasoning to deductive argumentation, which we call empirical re-conceptualization. Empirical re-conceptualization is the process of 
identifying a pattern or regularity, forming an associated generalization, and then re-interpreting those findings from a structural 
perspective. Through the act of empirical re-conceptualization, students can build their empirical generalizations into mathematically 
meaningful insights and arguments. The aim of the study reported here is to characterize the processes involved in leveraging empirical 
reasoning into more advanced forms of reasoning, and to identify the instructional supports that can foster empirical re- 
conceptualization. 

2. Background: the challenge of transitioning from empirical to deductive reasoning 

In the following sections we describe the benefits students can experience from 
generalizing empirical patterns, as well as the documented challenges that exist when trying to move from empirical patterning to 

deductive reasoning and justification. Together, these works position empirically-based generalizing as having promise for offering a 
bridge to deductive reasoning, but there remains a need to better understand the manner in which this transition should occur. We then 
return to the idea of a generic example as one potential bridge between empirical and deductive reasoning, describing two key 
constructs related to students’ use of the generic example. 

2.1. The benefits and challenges of empirical patterning 

In examining students’ pattern generalization, researchers have found that students use multiple strategies (e.g., Barbosa et al., 
2007; Becker & Rivera, 2006; Jurdak & El Mouhayar, 2014; Zazkis & Liljedhal, 2002). These works offer evidence that students can 
flexibly shift between different representations and can develop more sophisticated pattern strategies over time (e.g., Amit & Neria, 
2008; Jurdak & El Mouhayar, 2014). There are a number of potential benefits from attending to empirical patterns. The act of 
developing empirically-based generalizations could potentially foster an understanding of a problem’s structure, which could 
consequently support proof development (de Villiers, 2010; Tall, 2008). Indeed, there is some evidence that students can and do 
engage in a dynamic interplay between empirical patterning and justifying (e.g., Guven et al., 2010; Küchemann, 2010; Martinez & 
Pedemonte, 2014; Schoenfeld, 1986), just as research mathematicians do (de Villiers, 2010). 

These works offer promise for positioning empirical patterning as a bridge to conceptual understanding and deduction, which 
reflects an expectation that students’ reasoning will “proceed from inductive toward deductive and greater generality” (Simon & 
Blume, 1996, p. 9). Indeed, a number of mathematical reasoning hierarchies (e.g., Balacheff, 1987; Bell, 1976; Waring, 2000) and 
school mathematics curricula (e.g., Lappan et al., 2014) reflect this expected progression. However, as discussed above, students who 
generalize patterns can struggle to justify them (Čadež and Kolar, 2015; Hargreaves et al., 1998; Stylianides & Stylianides, 2009; Zazkis 
& Liljedahl, 2002), which has contributed to difficulties in multiple domains (e.g., Ellis & Grinstead, 2008; Lockwood & Reed, 2016; 
Vlahović-Štetić et al., 2010). 

Given the documented difficulties students experience with transitioning from empirical to deductive reasoning, an overly strong 
emphasis on empirical patterns alone is unlikely to foster justification (Lin et al., 2004), and in fact can promote the learning of routine 
procedures and generalizations without understanding (Küchemann, 2010; MacGregor & Stacey, 1993). Furthermore, these diffi
culties are compounded by the fact that students typically receive little, if any, explicit instruction on how to strategically analyze 
examples in developing, understanding, exploring, and proving generalizations (Cooper et al., 2011). Thus, although a focus on 
empirical generalization can offer promise as a bridge to insight and deduction, this promise is yet to be broadly realized in instruction. 
In particular, what remains unclear is the manner in which students are supposed to actually make the transition from empirical to 
deductive arguments. As we described in Section 1, one potential avenue for using empirical patterning to develop deductive justi
fication could be through the use of a generic example. In the section below, we introduce two constructs germane to generic examples, 
namely generic abstraction and empirical versus structural generalizations. 

2.2. Generic abstraction and empirical versus structural generalizations 

Harel and Tall (1991) introduced the notion of generic abstraction, in which a student comes to understand one or more examples 
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as typical of a wider range of examples embodying an abstract concept. Such an abstraction entails a generalization because it embeds 
the example in a broader class embodied by the abstraction. Rowland (1998) linked this type of generic abstraction to two forms of 
generalization, drawing on Bills & Rowland’s (1999) distinction between empirical and structural generalizations. Empirical gener
alizations, which are derived only from the form of results and observed relationships, can possess predictive potential but lack 
explanatory power. In contrast, structural generalizations, which are based on underlying meanings or structures, can provide 
explanatory insight. A generic example, then, that can successfully speak to a general process, has the quality of a structural gener
alization. Others have also described a similar difference in generalization, distinguishing it as empirical versus theoretical (Carraher 
et al., 2008; Doerfler, 1991). In each case, generalizations that are theoretical (or structural) are viewed as more mathematically 
powerful than their empirical counterparts. 

As an example, Bills and Rowland (1999) discussed a pattern problem with a rectangle of matchsticks (Fig. 1), in which one had to 
determine “How many matches would be needed to make a rectangle with R rows and C columns?” (p. 106). 

The authors noted that one could hold the number of rows R at 2 and increase the number of columns to determine the number of 
matchsticks for a given column, producing a pattern yielding 5 more matchsticks for each new column, which can be described as M =
5C + 2. Then, one could increase the number of rows R to 3 to yield M = 7C + 3. Similarly, for R = 4 and R = 5, one can find the rules M 
= 9C + 4, and M = 11C + 5, respectively. Thus, a pattern emerges that suggests the general rule to be M = (2R + 1)C + R. This 
generalization is empirical, as it is the consequence of attending to the pattern of outcomes of counting the number of matchsticks for 
given row and column values. As Bills and Rowland described, however, one can also consider the number of vertical and horizontal 
matches in relation to a generic rectangle, specifically, recognizing that “there are C + 1 columns of vertical matches, each containing R 
matches; there are R + 1 rows of horizontal matches, each containing C matches” (p. 107), therefore, altogether there will be (C + 1)R 
+ (R + 1)C matches. In contrast to the empirical generalization, this is a structural generalization, because it relies on considering the 
number of matchsticks in relation to the number of rows and columns. Bills and Rowland (1999) noted that the type of pattern-based 
reasoning that produced the initial generalization M = (2R + 1)C + R can be a useful way to produce conjectures, but ultimately 
students must shift to other sources of conviction. 

The above example highlights a meaningful distinction between empirical and structural generalization, but it does not necessarily 
account for the processes by which one progresses from empirical to structural generalization. It is in exploring how students can 
transition from empirical to structural generalizations (which ultimately may lead to deductive reasoning) that we position the 
construct of empirical re-conceptualization. In the Conceptual Framework section below, we define generalization and then outline the 
perspectives that guided our development of empirical re-conceptualization. 

3. Conceptual framework 

Generalization is commonly characterized as the establishment of a claim that a property holds for a set of mathematical objects or 
conditions that is larger than the set of individually verified cases (Carraher et al., 2008; Dreyfus, 1991; Ellis, 2007; Kaput, 1999). For 
instance, Radford (1996) argued that generalization involves identifying a commonality based on particulars, and then extending it to 
all terms, and Harel and Tall (1991) defined generalization as the process of applying a given argument to a broader context. As a 
complement to these cognitively-based definitions, others have positioned generalization as a social phenomenon (e.g., Jurow, 2004), 
arguing that generalization is an activity that can occur collectively, distributed across multiple agents (Ellis, 2011; Reid, 2002; 
Tuomi-Gröhn & Engeström, 2003). For the purposes of this paper, we define generalizing as an activity in which learners in specific 
sociocultural and instructional contexts either (a) identify commonality across cases, (b) extend their reasoning beyond the range in 
which it originated, or (c) derive broader results from particular cases. 

3.1. Result pattern generalization (RPG) and process pattern generalization (PPG) 

Harel (2001) described RPG as a way of thinking about the process of generalization in which one attends solely to regularities in 
the result. Generalizing through RPG led to the rule M = (2R + 1)C + R from the above matchstick problem (Bills & Rowland, 1999), 
and it is often observed in students’ activity when they then struggle to shift from recursive to explicit relationships or justify their 
patterns (e.g., Čadež & Kolar, 2015, Moss et al., 2006). In contrast, PPG entails attending to regularity in the process. To extend the 
matchstick example, one might consider a generic starting row made up of R vertical matches, and then reason that when adding a 
column, one must add another R vertical matches plus R + 1 horizontal matches, i.e., 2R + 1 total matches. Thus, for an additional C 
columns, the number of matchsticks will be M = R + (2R + 1)C. This distinction between RPG and PPG helped us think about 
qualitatively different kinds of generalizations, and helped to frame our development of empirical re-conceptualization. 

Fig. 1. Rectangle matchstick problem (Bills & Rowland, 1999, p. 106).  
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3.2. Figurative and operative activity 

The second construct we draw on is a distinction between figurative and operative activity (Piaget, 1976, 2001; Steffe, 1991; 
Thompson, 1985). Figurative activity involves attending to similarity in perceptual or sensorimotor characteristics. As such, it is not a 
form of thought that we should necessarily interpret as deficient, as it can support the development of generalizations. In the 
matchstick rectangle problem, figurative activity supported the development of the rule M = (2R + 1)C + R. In contrast, operative 
activity entails attending to similarity in structure or function through the coordination and transformation of mental operations. 
Considering the number of vertical and horizontal matches in relation to a generic rectangle entailed operative activity, as it required 
mentally coordinating rows, columns, and matchsticks in relation to one another for any given size rectangle. A shift from RPG to PPG 
often co-occurs with a shift from figurative to operative activity, and we consider operative activity to be a hallmark of the tendency to 
reason structurally. 

3.3. Symbolic interactionism and instructional supports 

In order to attend to the features of instruction and interaction that can foster empirical re- 
conceptualization, we consider learning situations through the lens of multiple processes of interactions, in which the students and 

the teacher-researcher co-contribute to the development of meaning through their conversation, shared problem-solving activity, 
negotiated meaning of tasks, and engagement with tools and artifacts. The symbolic interactionist perspective (Blumer, 1969) priv
ileges both individual students’ reasoning and the social processes supporting that reasoning (Voigt, 1995). As such, it allows us to 
attend to how teachers, students, tasks, and tools can mutually interact to support shared ways of reasoning. It is with this framing that 
we sought out instructional supports for empirical re-conceptualization, examining how the teacher-researcher, students, task struc
tures, and tools worked together. We use the term instructional supports rather than teacher moves as a reflection of our view of the 
learning environment as a system, made of up mutually interacting agents. We then consider how that system supports students’ 
abilities to re-conceptualize their generalizations from a structural perspective. This perspective is a useful way to make sense of 
student learning within teaching-experiment settings, which can be more complex and entail more forms of interaction than individual 
clinical interviews. 

4. The process of empirical re-conceptualization 

We now define empirical re-conceptualization as the process of re-interpreting an empirical generalization from a structural 
perspective. By structural perspective, we follow Bills and Rowland’s (1999) characterization of “looking at the underlying meanings, 
structures, or procedures” (p. 106). More specifically, we consider this to entail either (a) a shift from RPG to PPG, (b) a shift from 
figurative to operative mental activity, and/or (c) a shift from considering specific numbers or patterns to considering a case as a 
generic example. Re-interpreting a generalization from a structural perspective thus entails a shift that involves recognizing, exploring, 
and reasoning with general structures rather than with particular cases alone. The matchstick rectangle example described in Bills and 
Rowland (1999) could therefore be a case of empirical re-conceptualization. If a student developed the rule M = (2R + 1)C + R from 
exploring and generalizing number patterns for specific row values, it would be an empirical generalization. In then considering a 
generic rectangle of matchsticks with R rows and C columns, one would be re-interpreting the rule in light of the relationship between 
rows and columns. This would entail both a shift from figurative to operative mental activity and a shift to the use of a generic example. 

In this paper, our aim is to characterize and elaborate what occurs when students engage in empirical re-conceptualization. We also 
address the following research questions:  

1 What instructional supports exist to foster empirical re-conceptualization?  
2 How does empirical re-conceptualization facilitate students’ transition from empirical reasoning to deductive reasoning and 

justification? What characterizes this shift? 

5. Methods 

This study was part of a larger three-year project investigating the processes of students’ 
generalizing activity. For that project, we first implemented a series of individual, semi-structured interviews with 29 middle- 

school students, 24 high-school students, and 40 undergraduate students in order to explore their generalizations in the topics of 
algebra, advanced algebra, trigonometry, and combinatorics. We then conducted a series of 13 small and medium-scale videoed 
teaching experiments (Steffe & Thompson, 2000) with a total of 18 middle-school students, 5 high-school students, and 29 under
graduate students (see Ellis, Lockwood, Tillema, & Moore, 2021) for more details about the broader project). The data for the study 
reported in this paper come from the teaching-experiment phase. For the purposes of illustrating the phenomenon of empirical 
re-conceptualization, we highlight two teaching experiments, one with secondary students and one with undergraduate students. 

5.1. Secondary teaching experiment 

Barney, a 7th-grade student, and Homer, a 9th-grade student, participated in a paired teaching experiment. (The students chose 
their own pseudonyms.) At the time of the teaching experiment, Barney had just completed a pre-algebra course, which was part of the 

A. Ellis et al.                                                                                                                                                                                                            



Journal of Mathematical Behavior 65 (2022) 100928

5

advanced mathematics track at his school, and Homer had completed Algebra I. The two students had a strong familiarity with one 
another and communicated well together, which was evident in their discussions throughout the teaching experiment. The teaching 
experiment occurred across five sessions, with each session averaging about 75 min (and ranging in time from 60−90 min). The first 
author was the teacher-researcher. In between each session, the first author met with the second author to review the data, debrief the 
session, and revise or develop new tasks for the next session. Consequently, the tasks were created and revised on a session-by-session 
basis in response to the teacher-researcher’s hypothesized models about the students’ mathematics. 

We developed tasks to first foster an understanding of linear growth as a constant rate of change, and quadratic growth as a 
constantly-changing rate of change. Following the design principles addressed in covariational reasoning frameworks (Carlson et al., 
2002; Thompson & Carlson, 2017), we created a task sequence exploring rates of change within the contexts of speed, area, and 
volume. The tasks were organized to create opportunities for students to develop a foundation of thinking about functional growth 
from a covariation perspective that the students could then leverage when exploring cubic and higher-order polynomial functions (Ellis 
et al., 2020). We then transitioned to volume tasks to explore the students’ generalizations about volumes of growing cubes and 
rectangular prisms. For instance, one such task was the growing cube task, in which the students examined how the volume of an n by n 
by n cube would grow if each side grew by 1 cm. The students manipulated a dynamic geometry software image of a smoothly growing 
cube, and also worked with physical cubes to build up models to think about the constituent parts of the added volume (Fig. 2). The 
emphasis on volume then provided a conceptual metaphor (Lakoff & Núñez, 2000) for exploring growing hypervolumes of hypercubes 
and other objects in four dimensions and beyond. This metaphor gave meaning to the students’ representations when they transitioned 
to reasoning combinatorially about n-dimensional figures and binomial coefficients. Table 1 provides the mathematical topics and 
contexts addressed each day during the teaching experiment. With respect to these tasks, Homer had encountered quadratic growth in 
his mathematics classes, but Barney had not. Neither student had encountered higher-order polynomials, and Barney had not yet 
learned algebraic manipulations such as (n+1)2 or (n+1)3. Homer was familiar with these manipulations, but did not use them during 
the teaching experiment. 

5.2. Undergraduate teaching experiment 

For the undergraduate teaching experiment, we recruited four students who were novice counters, without formal instruction 
counting problems. This criterion was important because we wanted to observe reasoning about combinatorial ideas, rather than the 
recall of formulas. We assigned the pseudonyms Carson, Aaron, Anne-Marie, and Josh to the four participants. The teaching experi
ment consisted of nine 90-minute videotaped sessions, totaling 13.5 h, over a 15-day span. The second author was the teacher- 
researcher. Other members of the research team filmed the sessions, and the team members met in between each session to review 
the data and to revise or develop new tasks. 

The teaching experiment included a number of combinatorial activities aimed at facilitating students’ generalizing, including 
counting tasks and the development of combinatorial proofs of binomial identities. For the purposes of this paper, we focus on a set of 
tasks that we call the Passwords Activity. The overall aim of the activity was to guide students through the development and artic

ulation of a general statement of the binomial theorem (x + y)
n

=
∑n

k=0

(
n
k

)

xkyn−k, in our case where n is a nonnegative integer. In 

order to do so, we developed a sequence of tasks in which students explore what would happen as x, k, and n vary (in terms of the 
number of letters, the number of numbers, and the total length of the passwords). To get there, we began with passwords with only one 
type of character (letters), asking students to count the number of passwords of length 3, 4, 5, and eventually length n, that consisted of 
the characters A or B, where repetition was allowed. We prompted students to create tables to organize passwords with a certain 
number of As, reasoning about the total number of passwords of a given length. In subsequent tasks, the students counted passwords of 
various lengths from the characters 1, A, or B, and then eventually counted various length passwords that consisted of x numbers and y 
letters, ultimately generalizing a statement of the binomial theorem. 

The purpose of asking the students to complete tables was to draw their attention to certain mathematical relationships, such as the 
fact that the sum of the rows in the table is equal to the total number of passwords (which relate to the two sides of the expression of the 

binomial theorem). In this paper, we focus on student work related to the 5-character AB table, in this case, 
∑5

i=0

(
5
i

)

= 25 (Table 2). 

Here the number of 5-character AB passwords with exactly three As can be found by selecting three of the five distinct positions in 
which to place As (and the rest of the positions will be Bs).1 Thus, for example, the 10 in the fourth row of Table 2 can be thought of as 
(

5
3

)

, or 5!
3!2!

. 

5.3. Analysis 

Our aim in analysis was to address our research questions by first identifying and characterizing students’ processes of empirical re- 
conceptualization, and then by identifying any instructional supports that fostered empirical re-conceptualization and examining the 

1 Generally, the number of n-character AB passwords with exactly k As (the right column of the table) can be found through listing or by using the 
formula for sections or combinations 

(
n
k

)

. 
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processes involved in transitioning from empirical to deductive reasoning. In order to accomplish this, we first transcribed all teaching 
sessions. Using the constant-comparative method (Strauss & Corbin, 1990), we then analyzed both data sets in order to identify the 
participants’ generalizations; we did this in order to find those generalizations that were empirical (Bills & Rowland, 1999). We drew 
on Ellis et al.’s (2017; Ellis, Lockwood, Tillema, & Moore, 2021) RFE Framework, which identifies types and forms of generalizations. 
Once we had identified all of the empirical generalizations, we then shifted to open coding to trace the development of each empirical 
generalization. In particular, we asked the following: (a) Did the generalization change, and if so, how? Specifically, did the students 
re-interpret their empirical generalization from a structural perspective? (b) Did the generalization lead to a justification? (c) Did the 
student(s) experience a subsequent mathematical insight? Open coding yielded types of insight such as the re-interpretation of a 
previously-developed formula, generalization, or statement, the development of a new pattern, or the establishment of a new piece of 
knowledge or form of understanding. This enabled us to characterize what occurred as students made sense of their empirical gen
eralizations from a structural perspective. By answering question a), we gained insight into the actual shifts that occurred in empirical 
re-conceptualization and what might be occurring as students engage in this process of empirical re-conceptualization (research 
question #1). Then, answering questions b) and c) provided insight into the processes by which empirical re-conceptualization 
facilitated the transition from empirical to deductive argumentation (research question #3). 

Once we identified each instance of empirical re-conceptualization, we began a new round of open coding with the secondary data 
to identify what instructional supports foster empirical re-conceptualization (research question #2). Beginning with each case of 
empirical re-conceptualization, we examined the teacher moves, student interactions and use of artifacts, and task features that 
preceded the instance and supported the students’ structural re-conceptualization of the empirical generalization. This led to an initial 
set of four types of instructional supports, which we present in Section 6.1. We then coded the undergraduate teaching experiment data 
with our initial categories, refined and adjusted the categories in light of the undergraduate data, and then re-coded both data sets with 
our final coding scheme. 

6. Results 

Recall that we defined empirical re-conceptualization as a shift, that entails beginning with an empirical generalization, and then 
shifting (a) from RPG to PPG, (b) from figurative to operative mental activity, and/or (c) from considering specific numbers or patterns 
to considering a case as a generic example. Our two research questions concerned (1) what instructional supports foster empirical re- 
conceptualization, and (2) how empirical re-conceptualization facilitates the transition from empirical to deductive reasoning. In the 
next section, we first provide an overview of the four instructional supports we found for empirical re-conceptualization. In Section 6.2, 
we then introduce the three processes that students engaged in as they leveraged empirical re-conceptualization to transition to 
deductive reasoning and justification. Then, in Sections 6.3 and 6.4, we present two extended data vignettes to further elaborate both 
the instructional supports and the processes. For each vignette we (a) characterize the phenomenon of empirical re-conceptualization 
in terms of its shifts, (b) analyze the relevant instructional supports, and (c) analyze the relevant mathematical processes in tran
sitioning to deductive reasoning. By providing vignettes across two different age ranges and involving multiple content areas, we 

Fig. 2. Screen capture of a dynamically growing cube and physical model of a growing cube.  

Table 1 
Overview of the secondary teaching experiment unit.  

Day Mathematical Topics Contexts 

1 Covariation, linear growth, average rate of change Growing rectangles 
2 Piecewise linear growth, quadratic growth Growing stair steps, triangles 
3 Cubic growth Growing cubes, rectangular prisms 
4 Higher-order polynomials, combinations, Pascal’s triangle Growing hypercubes, n-dimensional figures 
5 Binomial coefficients Combinations and listing  

Table 2 
The 5-character AB table.  

Number of As Number of Passwords 

0 1 
1 5 
2 10 
3 10 
4 5 
5 1  
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highlight the fact that empirical re-conceptualization is a phenomenon that may occur in a variety of mathematical settings. 

6.1. Overview of instructional supports 

The four major categories of instructional supports supporting empirical re-conceptualization that emerged from our analysis of the 
data sets are (1) experiencing need for verification, (2) fostering contextual interpretation, (3) fostering reflection and justification, and (4) 
fostering pattern exploration (Table 3). The first category addresses a need to verify, which occurred in two forms: A need to verify a 
hypothesis about the context, or a need to verify the developed generalization or statement. Our participants experienced these needs 
arising from their own mathematical activity, but it is possible that these needs could also be deliberately fostered through task design, 
instructional moves, or classroom norms. 

The remaining three categories and their subcategories do not specify an actor; consistent with the symbolic interactionist 
perspective, we found that the teacher-researcher, the tasks, the other students, and the students’ interaction with the tasks or the task- 
related tools mutually interacted to foster the processes. Contextual interpretation was fostered either by encouraging students to 
consider the context, or by sharing a contextual interpretation. Fostering reflection and justification occurred either through pushing 
for an explanation of a student’s thinking, or through specifically asking for a justification or a proof. Lastly, pattern exploration was 
fostered either through directing students’ attention to patterns, or through task organization, talk, or instructional moves that 
encouraged the development or extension of a pattern. 

6.2. Overview of processes in the transition to deductive reasoning 

When engaging in empirical re-conceptualization, our participants often leveraged that activity to develop deductive arguments 
and justifications. Our second research question addresses this transition, namely, how did empirical re-conceptualization facilitate 
students’ transition from empirical to deductive reasoning? In addressing this question, we identified three major types of processes 
facilitated by empirical re-conceptualization that supported this transition: (a) verification, (b) justification, and (c) creation / 
interpretation (Table 4). 

Verification addresses the role that empirical re-conceptualization plays in serving as a source of verification for the correctness of a 
pattern, generalization, formula, or idea. In contrast to verification, justification goes a step farther: By engaging in the process of 
empirical re-conceptualization, students can develop an argument to justify the generalization or statement they developed. For more 
advanced students, this argument can take the role of a formal proof. Creation / interpretation occurred in four distinct ways. Firstly, 
students can re-interpret a developed generalization or statement from a contextual perspective, enabling them to understand a new 
aspect of their developed generalization. The second form of creation / interpretation is the construction of a new representation, 
which may then support a new form of insight into the extant generalization. The third form is the creation or extension of a new 
pattern or generalization, and the last form is the establishment of a new piece of knowledge or understanding. Through re- 
conceptualizing, students may develop new connections, understanding, relations, or develop new knowledge about the mathemat
ical ideas that led to the initial generalization; these can then foster a transition to deductive reasoning. 

Across both data sets, we identified a total of 64 instances of empirical re-conceptualization, 39 in the undergraduate data set and 
25 in the secondary data set. Of those instances, 50 (78 %) had at least one of the above associated processes. Twelve instances had two 
processes, and one had three. Fourteen percent were verification, 42 % were justification, and 44 % were creation / interpretation; for 
this latter category, 54 % of those cases were re-interpretation, 14 % were representation, 18 % were pattern or generalization, and 14 
% were knowledge or understanding. The percentage of instances of these processes across the data sets were similar, with one notable 
exception: We found a greater percentage of processes for the empirical re-conceptualization in the secondary data set compared to the 
undergraduate data set (22 out of 25 secondary instances had at least one process, compared to 28 out of 39 undergraduate instances). 

6.3. Secondary vignette: growing volume 

In the following vignette the secondary students, Homer and Barney, engaged in empirical re-conceptualization when generalizing 
about growing cubes and then generalizing about growing n-dimensional figures. The students’ processes of empirical re- 
conceptualization occurred in relation to multiple, sometimes interacting, instructional supports, and they engaged in a number of 
different processes as they leveraged their empirical re-conceptualization and transitioned toward deductive reasoning. In presenting 
this vignette, we highlight two major episodes - first generalizing about growing cubes, and then generalizing about growing n- 

Table 3 
The four categories of instructional supports for empirical re-conceptualization.  

Experiencing Need for Verification Context Verification: Students may use the generalization or statement to verify a hypothesis about the context. 
Generalization Verification: Students may use the context to verify the generalization or statement. 

Fostering Contextual Interpretation 
Encouraging: Encouraging students to engage in a contextual interpretation of a generalization or statement. 
Sharing: Sharing a contextual interpretation of a generalization or statement. 

Fostering Reflection and Justification Prompting Explanation: Asking for an explanation of one’s thinking, actions, or mathematical activity. 
Prompting Justification: Asking for a justification or proof of one’s generalization or statement. 

Fostering Pattern Exploration 
Encouraging: Encouraging students to generate or extend a pattern. 
Directing: Directing students’ attention to a pattern or patterns.  
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dimensional figures. In each case we first offer the data excerpt, and then we discuss (a) the shifts involved in the students’ empirical re- 
conceptualizations, (b) the instructional supports that fostered those empirical re-conceptualizations, and then (c) the processes by 
which they leveraged those empirical re-conceptualizations to transition beyond empirical reasoning. 

6.3.1. Generalizing about growing cubes 
When considering a cube that grew 1 cm in height, width, and length, the students initially worked with blocks. As an example, 

Fig. 3 depicts a yellow cube. The teacher-researcher asked Homer and Barney to build a new cube that would be 1 cm larger in height, 
width, and length. The students added the three n2 pieces (depicted as the blue, pink, and green squares in Fig. 3), then the three n 
pieces (as depicted by the three orange rectangles), and finally one 1 piece (as depicted by the small purple cube). Originally, Homer 
and Barney thought about these pieces in terms of the specific dimensions of the original cube. The teacher-researcher pushed them to 
instead express the additional volume algebraically, if “it was an n × n × n [cube]”. Barney immediately responded, “n squared times 
three. Plus 3n, no, that’s the wrong way of writing it. Three n squared plus 3n plus one equals volume gained”, writing the expression 
“3n2 + 3n + 1”. Barney’s expression was a generalization of the students’ process of decomposing the added volume into the con
stituent parts. Both Homer and Barney could identify each of the parts of the expression 3n2 + 3n + 1 in terms of the additional pieces 
on the new cube. 

The students then began to investigate the added volume of a cube that would grow x cm in each direction. In attempting to extend 
to this new case, they generalized from their prior result of 3n2 + 3n + 1. Homer wrote “(3x)n2 + (3x)n + x2”, replacing the three in the 
first two terms of his original expression with a 3x, and replacing the 1 in the last term, which he had conceived as 12, with an x2. Note 
that this is an empirical generalization: Homer and Barney derived it from the form of the prior generalization, 3n2 + 3n + 1, rather 
than from the structure of that generalization as representing, for instance, three n2 pieces, each of which has the dimensions n × 1 × 1 
because the prior cube grew by 1 cm. As such, the students’ mental activity was figurative, as they were attempting to create a new 
expression that was perceptually similar to the prior expression. Further, replacing the constants with xs was based on the result of 
their prior activity, rather than attending to the process by which they grew the cube’s volume. Unsure about the correctness of their 
generalization, Barney said, “Let me model on the cube.” Working with the cube pieces depicted in Fig. 3, Barney decided that the first 
term, 3xn2, was correct because it represented three additional rectangular prisms, each with a volume of xn2. Both students then 
realized errors in the next two terms. Barney explained that the second term should actually be 3x2n, “because you’re adding three of x 
by x by n.” As Barney continued to build the additional volume on the cube, both students also realized that the final term should be x3, 
rather than x2, because the final purple cube should have the dimensions x by x by x. 

In another instance of empirical re-conceptualization, when considering the corrected expression 3xn2 + 3x2n + x3, Barney said, 
“It’s interesting how there’s one x here (in the first term), two x’s here (in the second term), three x’s here (in the third term).” The 
degree to which Barney saw this statement as a generalization is unclear, but the statement was empirically-based, as Barney was 
attending to the form of the expression. He then re-conceptualized this statement by justifying it geometrically: 

Barney: But I think that’s because, here (pointing to an imaginary x by n by n added volume), you’re only doing x once. But once 
you do these (points to the imaginary x by x by n piece), it’s this amount x (gestures along the width) and this amount x (gestures 
along the height). And then once you do all of that, it’s this amount x (gestures to the remaining cube of added volume), you 
already have this x, this x (gestures along the three dimensions, height, width, and length). 
Homer: Oh, it’s because in the first one it’s n squared, and then one n – 
Barney: – And then no ns. 
Homer: So it’s two ns, one n, and then no ns. And then the next one it would…so the first one is two ns and one x, the second one 
is one n and two xs, and the last one is no ns and three xs. 

6.3.1.1. The shift of empirical re-conceptualization. In the first instance of empirical re-conceptualization, by deciding to model on the 
cube, Barney engaged in a shift from figurative to operative activity. Specifically, he took the expression they had produced, and re- 
interpreted it geometrically in terms of volumes with specific dimensions. In the process, Barney shifted to operative activity by 

Table 4 
The three major categories of processes facilitated by empirical re-conceptualization.  

Verification (14 %) Students are able to verify the correctness of a pattern, generalization, formula, or idea. 
Justification (42 %) Students develop an argument justifying the generalization or statement they developed. 

Creation / Interpretation (44 %) 

Re-interpretation: Students re-interpret a developed generalization or statement from a contextual perspective. 
Representation: Students create a new representation. 
Pattern or Generalization: Students create or extend a new pattern or generalization. 
Knowledge or Understanding: Students establish a new piece of knowledge or understanding.  

Fig. 3. Constituent parts of a cube that has grown by 1 cm in height, length, and width.  
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coordinating his mental actions of constructing component volumes and translating those quantities to algebraic representations. 
Barney’s second appeal to the constituent parts of the cube was another empirical re-conceptualization. He again shifted from figu
rative to operative activity, coordinating and transforming mental operations on the cube to justify the pattern he saw. Although 
Barney was working with a specific cube, he was able to use it as a generic example with dimensions n and x. 

6.3.1.2. Instructional supports. We found two supports that fostered Barney’s first instance of empirical re-conceptualization. The first 
was the task itself, which fostered pattern exploration by encouraging the students to extend the action of growing a cube by 1 cm in 
every direction to growing by x cm in every direction. This led to the empirical generalization, which then caused Barney to experience 
a need for verification, a second support. He wanted to verify the accuracy of their produced generalization, and the physical cubes 
provided the tools Barney needed to re-conceptualize an algebraic expression geometrically. 

The need to verify was again a support for Barney’s second instance of empirical re-conceptualization, which then caused Homer to 
notice another pattern. Gesturing along the dimensions of the cube, Homer re-conceptualized Barney’s pattern about ns into the 
context not only of volume, but also of dimensions. Engaging in operative activity, Homer could use the specific cube to reason in terms 
of a general n × n × n structure, but more importantly, he began to think about any general cube that could be considered in terms of its 
three dimensions. Barney’s activity supported Homer’s empirical re-conceptualization by fostering a contextual interpretation, in this 
case, an interpretation of dimensions and not just volume. 

6.3.1.3. Processes for transition to deductive reasoning. The students’ first empirical re-conceptualization supported several processes in 
the transition to deductive reasoning. First, it enabled a re-interpretation of the meaning of the coefficients of n as representing volumes. 
It also served as a source of verification; Barney and Homer realized that their first generalization was incorrect, and they were able to 
correct it. Finally, it led to a new creation / interpretation, specifically an identification of a new pattern when Barney realized that the new 
expression had one, two, and three xs in each of its three terms, respectively. 

In the second instance of empirical re-conceptualization, Homer experienced a new creation / interpretation, specifically a new 
understanding that each added piece of volume could be thought of in terms of the dimensions height, width, and length. Evidence that 
the students did shift to thinking about dimensions is present in their engagement with the subsequent task, in which they explored the 
volume of a new cube and specifically referred to the cube’s height, width, and length in determining its growth in volume. Thus, 
Homer’s re-conceptualization productively influenced the manner in which the students engaged with further tasks. 

6.3.2. Generalizing about growing n-dimensional figures 
The next day, the teacher-researcher introduced the students to the idea of a hypercube, and asked them to determine the amount of 

added hypervolume when adding 1 cm to every dimension of an n × n × n × n hypercube. Reasoning from their prior activity, Homer 
and Barney knew that their answer should have the structure of “a1n3 + a2n2 + a3n + 1”, but they had to determine the coefficients. 
They also realized that when adding 1 cm to the n × n × n slice of a hypercube, they would have four outcomes: a) 1 × n × n × n; b) n ×
1 × n × n; c) n × n × 1 × n; and d) n × n × n × 1. Using this reasoning, both students could easily justify why the n term and the n3 term 
should both have a coefficient of four. Building on the prior day’s expression, 3n2 + 3n + 1, the students generalized the new 
expression to be “4n3 + 4n2 + 4n + 14”. This expression is incorrect – the coefficient of the n2 term should be six – but it is an un
surprising generalization. It was the result of the students generalizing both from their operative activity of determining the coefficient 
of n3 to be four, as well as from a figurative extension of the numeric structure of the three-dimensional case to the four-dimensional 
case (reasoning that each coefficient would be four, because each coefficient in the prior case was three). This aspect of their 
generalizing was empirical, as it was an attempt to extend the form of the prior expression. 

The teacher-researcher then asked the students to list out all of the combinatorial options for the n2 coefficient. Both students 
correctly listed the six options for arranging two ns and two 1s into four slots, and the teacher-researcher pushed them to explain why 
the number of combinations must be six. Homer explained that there must be three possible combinations with an n in the first slot, 
another two combinations with n in the second slot, and a final remaining combination with an n in the third slot. Barney followed up 
on this idea, adjusting it to remark, “So basically, if you have n in the first spot, there’s only three places the n can go. So, it’s n and then 
there’s three that start with n and then there’s three that start with one.” 

Once the students correctly determined expressions for the 2nd, 3rd, and 4th dimensions, the teacher-research wrote those ex
pressions on a piece of paper (Fig. 4), which prompted Homer to recognize that each coefficient could be determined by adding the sum 
of the coefficients of the consecutive terms in the prior line. Referring to the coefficients, he explained, “Two plus one is three, and two 
plus one is three, three plus three is six, three plus one is four, one plus three is four [writes the red numbers in Fig. 4].” Barney 
responded, “Wow. It’s just that one triangle, Pascal’s triangle, right?” 

Fig. 4. Expressions for added volume in the 2nd, 3rd, and 4th dimensions.  
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This is again an empirical generalization, based on a recognition of the form of the pattern of the coefficients. Pascal’s triangle then 
became a mechanism for determining the additional volume of a 5th-dimensional solid. The students used the pattern to write “5n4 +

10n3 + 10n2 + 5n1 + 15”, another empirical generalization. However, both students wanted to verify their expression, and they 
decided to first check the 10n3 term by listing out the arrangements of three ns and two 1s. They successfully listed the 10 cases, and as 
the students reflected on their activity, Homer explained that he did not want to do the tedious listing that would be required to double 
check every coefficient. Barney then realized that since that they had verified the 10n3 case, they did not need to check the 10n2 case: 
“We can basically just take this and switch all the ns to 1s and 1s to ns.” Explaining further, Barney said, “It will be the same com
binations here, just substituting I for n and n for I” (he inadvertently started calling the 1s “I”s). 

6.3.2.1. The shifts of empirical re-conceptualization. The students experienced two major shifts in the above episode. First, when they 
initially determined six options for arranging two ns and two 1 s into four slots, they did so empirically through listing. However, they 
then both shifted to begin to think structurally about six general slots, and then imagined placing the available ns in an organized 
manner. By shifting from listing to mentally organizing the outcomes according to ns and slots, both students shifted from RPG to PPG, 
as well as from figurative to operative activity. This was their first instance of empirical re-conceptualization. 

In the second instance, when the students later realized that they did not need to check the 10n2 case because they had already 
verified the 10n3 case, they again shifted from the empirical activity of listing combinations and counting the outcomes to imagining a 
structural relationship between the number of ns and the number of 1s in the list of outcomes - shifting from figurative to operative 
activity. Barney was able to reflect on his coordination of operations in listing the 10 outcomes and realize that there was nothing 
special about the characters n and 1, and they could simply be reversed in the case of determining the combinations of two ns and three 
1s. Thus, Barney was able to see the list of outcomes for the 10n3 case as a generic example. 

6.3.2.2. Instructional supports. Three instructional supports fostered the instances of empirical re-conceptualization. The first was the 
teacher-researcher’s request to list the options for n2 after they had produced the expression “4n3 + 4n2 + 4n + 14”. In doing so, she 
encouraged a contextual interpretation, but this time, the context was combinatorial rather than the context of volume. Secondly, the 
teacher-researcher prompted a justification by asking them to explain why the number of combinations must be six. Additionally, when 
Barney and Homer imagined a structural relationship between the number of ns and the number of 1s in the list of outcomes for 10n2, 
their ability to shift to operative activity was fostered by their need for verification. Homer, in particular, wanted to verify that all of the 
coefficients for the expression “5n4 + 10n3 + 10n2 + 5n1 + 15” were correct, but he did not want to have to list for each term. Thus, the 
combination of the students’ need to verify with the desire to avoid tedious listing encouraged them to consider instead the rela
tionship between the number of ns and the number of 1s in the list of outcomes. 

6.3.2.3. Processes for transition to deductive reasoning. Barney and Homer’s first instance of empirical re-conceptualization engendered 
a justification: They could both justify why the coefficient of the term 6n2 had to be six, because there were three possible combinations 
with an n in the first slot, another two combinations with n in the second slot, and a final remaining combination with an n in the third 
slot. They also produced a justification as part of their second empirical re-conceptualization, explaining why the coefficient for the 
10n3 case had to be the same as for the 10n2 case. This activity also helped Barney develop a new creation / interpretation by establishing 
a new understanding of symmetry, which then caused Homer to extend that finding to new cases: “Oh, and you know what? You can do 
the same for these (pointing to the 5n4 and the 5n1 terms)…you can just replace these 1s for ns.” Thus, Homer took up Barney’s practice 
of attending to symmetry, and was able to form a new generalization. 

6.4. Undergraduate vignette: counting 5-character AB passwords 

6.4.1. Making sense of symmetry combinatorially 
In the following episode, we begin with the undergraduate students’ work when they created tables for 5-character AB passwords 

and highlight the students’ discussion of the symmetric nature of the second column of the 5-character AB table in Table 2. The 
symmetry is important for two reasons. Firstly, it underscores a number of important relationships that can be understood and justified 
combinatorially, one of which is that the number of As and Bs in the passwords are related, and a 5-character password with three As 

must have two Bs (and vice versa). It also highlights the combinatorial identity 
(

n
k

)

=

(
n

n − k

)

. 

The students had previously established that there were 25 total 5-character AB passwords by drawing on the multiplication 
principle and arguing that there were two choices, A or B, for each of the five positions. They then began to create tables for 5-character 
AB passwords, which yielded the column of 1, 5, 10, 10, 5, 1 (Fig. 5). As seen in the excerpt below, both Aaron and Carson indicated 
that they had used numerical patterns to fill out the middle entries of the table. Namely, they knew the table entries were 1, 5, __, __, 5, 

Fig. 5. Aaron’s (left) and Carson’s (right) 5-character tables.  
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1, they knew the total had to be 32, and they hypothesized that the two middle entries would be the same number, 10, because tables 
from prior tasks had followed that pattern. Thus, as Aaron explained, “I just knew that it had to add up to 32, so, you know, 20 added up 
to what was already there.” Carson agreed with Aaron: 

Carson: I did the exact same thing. I started with the symmetry again where you know you have one option for each of the 
monogamous sets, and then five options for sets where one of the things is different than all of the others, and then two empty 
slots. And because it’s symmetric, then we know that those two slots need to be the same number, and knew that the total had to 
go up to 32 just based off of, you know, if you [have] five slots and two options for each slot, you’re going to get 25. 
TR2: Okay. 
Carson: So, there was a remainder of 20, so half of 20 is 10, so 10 for each of those slots. 

Aaron and Carson’s initial determination that the middle values of the table would be 10 was the result of an empirical general
ization. The students had observed a pattern of symmetry across prior tables, but their observation was figurative and an RPG, based on 
the outcome of each table, and they did not articulate why the tables had to be symmetric. The teacher-researcher the asked the 
students, “Can you just talk about how you remember becoming aware of the symmetry and then why it might make sense?” In 
response, two students, Anne-Marie and Carson, introduced the idea of considering what was happening in the list of passwords that 
would be generated. In particular, they talked about noticing a regularity in their process of writing outcomes - they began by writing 
outcomes with fewer As, and “moving the A” through the Bs. Then, at a certain point in the listing process, they switched to “moving 
the B instead of the A”; which helped them view the symmetry in a different light: 

Anne-Marie: But, I just see it as, like, it’s where the As and Bs flip. So, like, when I was writing out the list, I was moving the A 
through the matrix of Bs. And, like, so that’s when…the symmetry…I think it was kind of when you were moving the B instead 
of the A. 
TR2: Okay, nice. 
Carson: Yeah, so just, it’s…asking to move one A around in a group of Bs is the same thing asking to move one B around a group 
of As. It’s going to return the same number of results. 
TR2: Okay. 
Carson: So, it’s like that flip she was talking about, you know, where you were going down this list of how many As you have. 
Eventually it’d be easier to ask how many Bs you have, because it’ll be the same list, just backwards. 

6.4.1.1. The shifts of empirical re-conceptualization. The students’ discussion of passwords and moving As and Bs to generate certain 
arrangements suggests that Anne-Marie and Carson re-conceptualized the prior empirical generalization, articulating a combinatorial 
interpretation of the symmetric pattern. The students initially generalized that the table entries would be symmetric by observing that 
regularity in the outcome of prior tables, a figuratively-based RPG. Further, Anne-Marie indicated that she had not previously 
developed a combinatorial justification for the symmetry in terms of passwords, just as Carson’s initial generalization had also been 
based on a numerical pattern. Carson then shifted from conceiving of the symmetry as a regularity based on numerical results, to now 
conceiving of it as being rooted in symmetric processes (moving an A through Bs or moving a B through As). The students justified this 
symmetric pattern in terms of a regularity in process, a shift to PPG. Further, Carson built on Anne-Marie’s idea by explaining that 
moving one A around versus moving one B around returns the same number of results, indicating a shift to operative activity. Carson 
could see the two processes as identical: the specific number of As and Bs did not matter, and instead he could imagine a generic 
process. 

6.4.1.2. Instructional supports. The teacher-researcher explicitly asked the students to consider why the symmetry they had observed 
might make sense, thereby fostering reflection and justification (prompting explanation). This episode also highlights how interaction can 
influence empirical re-conceptualization. Carson’s shift to operative thinking built upon Anne-Marie’s initial re-interpretation, 
showing that the students’ discussions supported empirical re-conceptualization. Anne-Marie fostered a contextual interpretation 
(sharing), as she shared the particular contextual interpretation of a generalization, connecting the symmetry to the combinatorial 
context of listing passwords. 

6.4.1.3. Processes for transition to deductive reasoning. In this case, the students’ process of empirical re-conceptualization facilitated 
justification. In particular, the students justified the symmetry in a manner rooted in the context of passwords, which in turn supported 
a transition from empirical reasoning to deeper conceptual understanding. 

6.4.2. Connecting to the interpretation of counting arrangements with restricted repetition 
Still wanting to reinforce a combinatorial interpretation of the symmetry in the 5-character AB table, the teacher-researcher asked 

the rest of the students, “Someone else just tell me a little bit more about why that’s the case. If you have, you know, two As and three 
Bs, three Bs two As – that’s the same thing. Two As and three Bs, three As and two Bs, like, yeah, why is it the same number of things?” 
In response, Carson introduced another way to view the problem, suggesting that one can think of counting AB passwords as counting 
arrangements with repetition. Earlier in the teaching experiment the students had solved “arrangement with restricted repetition” 
problems, which involve arranging some number of characters, some of which are identical (or repeated) – one such problem is, “How 
many arrangements are there of the word BANANA?” However, although they had solved these problems previously, the students had 
not connected the activity of counting AB passwords to those prior problems. Instead, they thought about counting AB passwords in 
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terms of selecting places to place As (so, as a selection or combination problem). These are both valid approaches, and they involve the 
same formulas, but they result in different interpretations of the formulas. Thus, the approach Carson describes below is novel, distinct 
from prior work on the Passwords task up to this point. To make his point, Carson started with the third row and re-interpreted the 

original empirical solution 
(

5
3

)

in terms of arrangements with repetition, specifically arranging three identical As and two identical 

Bs: 

Carson: Another way you could look at this [the fourth row in the 5-character AB table] is if you have the A, A, A, B, B, how 
many different ways can you arrange the letters in that word? So that’s going to 5!, which is the total number of letters over the 
repeat letters, so 3!, 2! (writes “AAABB” and “ 5!

3!2!
”). Right? 

TR2: Mm hmm. 
Carson: And that’s the same equation there. That will hold true whether the repeat letters are three As and two Bs, or three Bs 
and two A, or three Cs and two Ds. Right? 
TR2: Okay. 
Carson: And I mean, that’s a mathematical relationship we’ve talked about before, because you’re just pulling out the 
redundant, um, redundant arrangements given repeated letters. 
TR2: Okay, good. 
Carson: So, I mean, yeah, it doesn’t really matter what the letters are as long as they’re as those ratios. 

Carson then made another observation, stating, “And that’s the same equation there. That will hold true whether the repeat letters 
are three As and two Bs, or three Bs and two As, or three Cs and two Ds. Right?” He quickly realized, “I mean, yeah, it doesn’t really 
matter what the letters are, as long as they’re those ratios.” Carson realized an important phenomenon: While they were counting AB 
passwords with a certain number of As, they were actually doing something that could be considered much more broadly as involving 
any two kinds of characters. 

6.4.2.1. The shifts of empirical re-conceptualization. Carson created a new representation for this context, 5!
3!2!

, that represented his 
thinking about the AB-passwords as involving a new type of counting process - specifically arranging all letters and dividing by du
plicates. We interpret this representation to be a consequence of Carson shifting from viewing the table entry as choosing places for the 
As to go (a selection problem), to viewing it as arranging the five letters A, A, A, B, B. Thus, Carson shifted from an initial focus on 
regularity based on results (when he justified the symmetry based on the fact that the numerical pattern in the tables was symmetric) to 
regularity based on a process - here an entirely new process that they had not yet discussed. This also suggests a shift from figurative to 
operative thought. Carson went from focusing on the symmetry in the tables as being based on an observable figural pattern to 
justifying that regularity based on structure and sophisticated combinatorial operations. 

6.4.2.2. Instructional supports. The teacher-researcher employed the instructional supports of fostering contextual interpretation 
(encouraging) and fostering reflection and justification (prompting justification). Specifically, she attempted to reinforce, in the particular 
context of AB passwords, why this particular relationship made sense. It was contextual because it was specific to a combinatorial 
situation, where the teacher-researcher drew particular attention to the combinatorial reasons why the relationship might be inter
preted and make sense. This instance of empirical re-conceptualization was thus supported by the teacher-researcher’s repeated 
prompts to explain, justify, and contextualize the symmetric pattern in the table. 

6.4.2.3. Processes for transition to deductive reasoning. Through empirical re-conceptualization, Carson developed a new creation / 
interpretation, creating a new representation, 5!

3!2!
. He also reinterpreted his generalization from a structural perspective, recognizing the 

more general structure of repeated characters, even explicitly noting that it did not matter what the letters were as long as some were 
repeated. Carson understood that it was not the As and Bs themselves that were important, but rather that they were dealing with two 
types of objects. In this manner, empirical re-conceptualization contributed to a more coherent picture of all of the students’ 
combinatorial work to that point. Indeed, Carson was able to reinforce a connection with prior work the students had done, and thus 
this exchange constitutes an important creation / interpretation, that of establishing a new understanding. 

7. Discussion and conclusion 

A growing body of research has moved beyond discouraging empirical reasoning to recognizing its value, suggesting that students 
can learn to develop structural understanding from patterns (e.g., Küchemann, 2010), and can leverage pattern-based thinking to 
support mathematical deduction and proof (e.g., Tall, 2008). What remains to be elaborated, however, is how students actually make 
that transition from empirical reasoning to structural and deductive reasoning. This paper has introduced empirical 
re-conceptualization as one promising mechanism for this transition. 

7.1. Summary of findings 

We have characterized the construct of empirical re-conceptualization by elaborating the specific shifts that mark a progression 
from empirical generalization to structural generalization. Empirical re-conceptualization occurs when students shift from RPG to 
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PPG, when they shift from figurative to operative mental activity, and/or when they shift from considering specific numbers or 
patterns to engaging in operations on a generic mental object. Through empirical re-conceptualization, we found that students can 
leverage their empirical investigations and generalizations into more powerful forms of reasoning, supporting the processes of veri
fication, justification, and insight generation. Similar to the work exploring students’ use of generic examples (Harel & Tall, 1991; 
Leron & Zaslavsky, 2013; Rowland, 2002), we found that with empirical re-conceptualization, students are able to think with 
particular patterns or cases, but in a structural manner that affords explanatory power (Bills & Rowland, 1999). 

Other researchers have similarly distinguished empirical from structural (or theoretical) generalizations (Bills & Rowland, 1999; 
Carraher et al., 2008; Doerfler, 1991). What our study offers, however, is not only evidence that these distinct forms of generalizing 
exist, but an elaboration of how students can shift from one form to the other. In identifying the types of instructional supports that can 
foster this shift, our findings lend credence to the assertion that students, like mathematicians, can engage in a dynamic interplay 
between empirical patterning and deductive argumentation (de Villiers, 2010; Schoenfeld, 1986), leveraging their empirical in
vestigations into more sophisticated knowledge structures (Tall et al., 2011). By taking the symbolic interactionist perspective, we 
could see how the established norms, students’ participation, teacher moves, and task structures mutually interacted to foster 
empirical re-conceptualization. Our findings suggest that one element alone may not be sufficient to appropriately foster empirical 
re-conceptualization, but rather, teachers should enact carefully-designed tasks within a broader context of establishing and 
encouraging a norm of explaining and justifying one’s reasoning. 

We found that empirical re-conceptualization served as a source of verification, as seen when Barney and Homer used combina
torial reasoning to verify the accuracy of the expression for added “volume” of a 5th-dimensional cube. It also served as a source of 
justification, for instance when Anne-Marie and Carson justified why the entries for exactly two As and the entries for three As must 
both be 10. Finally, we found that empirical re-conceptualization enabled mathematical understanding. Both groups of students came 
to understand number patterns from a contextual perspective, such as when Homer made geometric sense of the constant second 
differences in the table of triangle areas. The students also identified new patterns and generalizations and created new representa
tions, such as when Carson introduced and leveraged the representation 5!

3!2!
as a link between AB-passwords and the process of ar

ranging all letters and dividing by duplicates. Overall, our findings help to frame empirical re-conceptualization as one potential 
avenue by which students can transition from empirical to deductive reasoning and argumentation. 

7.2. The role of context and domain in empirical re-conceptualization 

Empirical re-conceptualization itself is a process that is more likely to occur in domains that afford pattern investigation. Although 
one can explore empirical patterns across many domains, those that lend themselves naturally to patterning activities, or to collecting 
multiple examples to explore a conjecture or a phenomenon, will offer more opportunities for re-conceptualizing those empirical 
findings. Furthermore, contexts that move beyond visualization, such as N-dimensional hypercubes, may play a special role in 
encouraging generalizations that go beyond empirical validation. Nevertheless, as research on mathematicians’ problem-solving 
processes has revealed (e.g., de Villiers, 2010; Lockwood et al., 2016; Lynch & Lockwood, 2019), leveraging empirical patterns to 
support proof development can occur even with problems that are not explicitly about patterning. Similarly, the instructional supports 
we identified could occur in a variety of content domains. One common element across both teaching experiments was an emphasis on 
situating students’ exploration within meaningful contexts, whether those were geometric or combinatorial. This set an important 
foundation for fostering empirical re-conceptualization, because it provided students with the means to make structural sense of 
empirical findings. 

In both the secondary and undergraduate teaching experiments, multiple elements of the instructional setting, including the tasks, 
teacher moves, student talk and activity, and the processes of justification, verification, and creation/interpretation, interacted to co- 
construct opportunities for empirical re-conceptualization. When reasoning about the growing cubes, the secondary students engaged 
with tasks that fostered pattern exploration, encouraging them to make extensions to more general cases. Without the established norm 
that it was desirable to justify empirical patterns contextually, however, the cubes may have been of little importance, and the tasks 
encouraging pattern development may not have fostered empirical re-conceptualization. We also saw instances of both the teacher- 
researcher and the students fostering a contextual interpretation, either by sharing an interpretation, such as when Barney inter
preted coefficients in terms of volume, or by encouraging an interpretation, such as when the teacher-researcher asked the students to 
check a coefficient by thinking about it as a number of combinations. The teacher-researcher and the students also both fostered 
reflection and justification, either by asking for explanations, or by prompting justifications, as when the teacher-researcher asked the 
students to explain why the number of combinations must be six. We saw that these supports interacted with and reinforced the 
students’ processes of justifying, verifying, re-interpreting, and developing new patterns, generalizations, and knowledge or 
understanding. 

Similarly, in the undergraduate teaching experiment, the tasks themselves were explicitly designed to allow for students to identify 
and articulate generalizations, even empirical ones, through the creation of tables and the intentional build up to larger cases. But, both 
prompts by the teacher-researcher and interactions among the students encouraged movement toward more structural reasoning and 
practices such as verification and interpretation. In particular, the interaction between multiple students encouraged them to discuss 
their work together, and they could build upon each other’s ideas and add to mathematical contributions. The teacher-researcher and 
the students regularly fostered reflection and justification by asking for explanations, or by prompting justifications, as when the 
teacher-researcher asked the students to explain the symmetry they observed in the tables. Instructional supports thus interacted with 
and reinforced the students’ practices of justifying and re-interpreting, and developing knowledge or understanding. Across both data 
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sets, it was by considering the teaching-experiment setting to be a system made up of mutually interacting agents that we could better 
characterize how empirical re-conceptualization can occur in instruction. 

7.3. Instructional supports and fostering intellectual need 

Some of the instructional supports are related to Harel’s (2013) notion of intellectual need, in which one experiences perturbation 
through encountering a situation or problem unsolvable by their current knowledge. Harel identified five categories of intellectual 
need, which are the need for certainty, need for causality, need for computation, need for communication, and need for structure. Our 
instructional support experiencing need for verification is compatible with Harel’s need for certainty, which is the desire to know whether 
a conjecture is true. Harel’s need for causality can also occur within the instructional supports. This need addresses one’s desire to 
determine and explain the cause of a phenomenon, which can drive one’s need for verification or even the desire to share a contextual 
interpretation of a generalization, as contextual interpretations often offer a causal explanation. Finally, the need for structure, which 
Harel (2013) described as “the need to reorganize the knowledge one has learned into a logical structure” (p. 140) can undergird 
students’ pattern exploration and justification, and indeed is broadly compatible with the very notion of empirical 
re-conceptualization. We found that task design that can facilitate intellectual need for students, particularly a need for verification, 
offers a useful route towards supporting empirical re-conceptualization. 

It is worth noting, however, that students’ need for verification may not always be an intellectual need; in our data, particularly 
early in the teaching experiments, it was a social need engendered by the teacher-researchers’ instructional moves to encourage the 
students to verify and justify their results. As the students progressed in their respective teaching experiments, they then began to take 
ownership of the norms of verification and justification, even reproducing prompts and encouragements within their dialogue with one 
another. In this manner, the symbolic interactionist perspective helped clarify how the interacting agents of the teacher-researcher’s 
instructional moves, the task design, and the students’ engagement and uptake of the teaching-experiment norms worked together to 
mutually facilitate the need to verify. It is useful to create tasks that can necessitate knowledge creation for students, but it is also 
helpful to understand that these tasks always exist within a system of interaction. Our aim was to support the students’ journey in 
becoming intellectually curious, to experience perturbation and intellectual need, and to engage in justification to understand why 
their new knowledge resolved problematic situations. 

In conclusion, reasoning empirically was something all of our participants found natural and expressed a need to engage in. This 
mirrors the body of research showing that students are adept at identifying and developing patterns (e.g., Blanton & Kaput, 2002; 
Pytlak, 2015; Rivera & Becker, 2008). Our data suggest that when students are allowed to explore empirical findings within a context 
of tasks and instructional moves that explicitly encourage contextual interpretation and re-conceptualization, they are able to leverage 
their empirical generalizations to ultimately build more powerful mathematical insights. This paper offers one mechanism for char
acterizing how students can do this, and for articulating the supports that can foster this process. Empirical re-conceptualization is 
surely not the only mechanism for doing so, but it is an important mechanism that can be explicitly nurtured. Our findings show that it 
is possible to support students’ meaning making and deductive argumentation without discouraging a reliance on empirical patterns, 
and without requiring students to prematurely shift to fully abstract representations. Instead, empirical re-conceptualization can be a 
way to foster students’ emerging abilities to bridge from inductively-developed patterns and arguments to more deductive reasoning, 
justification, and proof. 
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