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Abstract

We model COVID-19 data for 89 nations and US states with a recently developed for-
malism that describes mathematically any pattern of growth with the minimum number
of parameters. The results show that the disease has a typical duration of 18 days, with
a significant increase in fatality when it lasts longer than about 4 months. Searching for
correlations between “flattening of the curve” and preventive public policies, we find
strong statistical evidence for the impact of the first implemented policy on decreas-
ing the pandemic growth rate; a delay of one week in implementation nearly triples
the size of the infected population, on average. Without any government action, the
initial outburst still slows down after 36 days, possibly thanks to changes in public
behavior in response to the pandemic toll. Stay-at-home (lockdown) was not the first
policy of any sample member and we do not find statistically meaningful evidence for
its added impact, similar to a recent study that employed an entirely different approach.
However, lockdown was mostly imposed only shortly before the exponential rise was
arrested. The possibility remains that lockdown might have shortened significantly the
initial exponential rise had it been employed as first, rather than last resort.
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1. Introduction

Various policies have been implemented to arrest the rise of the COVID-19 pan-
demic. To assess the impact of any given policy and compare its efficacy with other
policies requires a description of the epidemic trajectory and objective measures of
its trend. One approach is to construct detailed, dynamic epidemiological models and
search for the impact of implemented policies on the model time variation (Brauner
et al., 2020; Hsiang et al., 2020; Lai et al., 2020). An alternative is to employ a gen-
eral mathematical description with the minimal number of free parameters and identify
deviations from purely exponential growth. This is the approach we take here. We con-
struct descriptive models of the pandemic first wave in a large sample, determine for
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each the point where the pandemic growth starts slowing down and look for statistical
correlations with policy implementation dates.

2. General Description of Growth Slowdown

We have recently developed a formalism to describe any growth pattern with a
time-varying growth rate (Elitzur et al. 2020; hereafter EKZ20). A brief summary of
its main ingredients: Consider some quantity Q (> 0) such as national GDP, cumulative
number of COVID-19 infections, etc., whose long-term variation with time 7 meets two
criteria:

1. Q is monotonically increasing, so that its growth rate g = d1n Q/dt is > 0.
2. g remains finite when Q — 0, that is, the limit g, = g(Q — 0) is finite.

These conditions ensure an initial exponential growth phase where O = Qg exp(gu?),
with Qp an initial value. Subsequent growth may slow down for whatever reasons, an
effect we termed hindering, so that g(f) < g,. Then the general solution of the equation
of growth for Q(¢) can be written as

nQ+» a0l =gt +C, (1)

k>1

where a; (> 0)! are expansion coefficients that describe the hindering (slowdown) ef-
fect and C is an integration constant that ensures Q(r = 0) = Qp. Purely exponential
growth occurs when Q is sufficiently small that the logarithmic term dominates the left-
hand-side of eq. 1; this is the unhindered-growth regime with the unhindered growth
rate g,. When the algebraic terms dominate, growth slows down and Q increases only
as a power law—the hindered-growth phase. When the k-th order hindering term dom-
inates, Q ~ 1'/%; the higher is the hindering term the slower is the rise of Q with ¢.

Just as the Fourier series provides a generic description for all periodic phenom-
ena, eq. 1 provides a generic description for any growing quantity that meets the two
conditions listed above. This is the case even if Q displays occasional deviations from
these requirements; for example, national GDP may suffer sporadic periods of negative
growth, contracting during occasional recessions, but is still described by eq. 1 so long
as its long-term behavior is one of growth. Every growth pattern can be described with
a suitable set of hindering coefficients a;. A finite number of terms yields unbounded
growth, with Q — oo at a continually decreasing growth rate, while infinite power
series describe bounded growth, in which Q approaches asymptotically some upper
limit.

With this formalism we successfully described the time variation of GDP and pop-
ulation in the US and UK, two nations with more than 200 years of continuous data
coverage (EKZ20). In each of these cases the deviation of long-term growth from a
pure exponential required no more than a single hindering term; there was no signifi-
cant gain from adding more terms.

1Negative ay. describe accelerated growth (dg/dt > 0), which we do not consider here.
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3. Hindering Description for the Covid-19 First Wave

Pandemic growth fits naturally into a hindering description. Typically, the number
of infections grows exponentially at first, followed by a “flattening of the curve” as
the growth slows down from its initial rate. These two stages are, respectively, the
unhindered and hindered growth phases described above. The connection with standard
epidemiological modeling is established in Appendix A.

We employ eq. 1 to model separately reported cumulative numbers of COVID-19
infections and deaths, denoted Q in each case. Most locations have already experi-
enced a second and third pandemic wave in which the decline in the growth rate of Q
is reversed. Describing such time variation would require a large number of expansion
terms in eq. 1, some of which may need to be negative (see footnote 1). While this
is possible in principle, our aim here is not to perform modeling for the sake of it but
to gain insight into the impact of public policy on the growth of the pandemic. To en-
hance the analysis reliability, we simplify matters to the extent possible by restricting
modeling to the pandemic first wave. The first waves of infections and deaths need not
overlap. In fact, if every COVID-19 infection and death were detected and reported,
the reported death counts would lag behind the cases by the duration of the disease. In
practice, less-than-perfect detection and reporting afflict both datasets, especially the
case counts. We identify the boundaries of each first wave from the behavior of the
daily counts (dQ/dt). The first wave starts when the daily counts display unambigu-
ously a monotonically increasing trend. With the non-parametric Mann-Kendall test
(Appendix B.1) we determine the first occurrence of such a trend at the 95% confi-
dence level in a consecutive sequence of daily counts. The first-wave endpoint is taken
as the first minimum of the daily counts after the end of the initial exponential rise. To
determine this minimum, we smooth the daily counts data with a simple 7-day moving
average to avoid the impact of large fluctuations and the resulting outliers. Following
this selection we fit the data for the pandemic first-wave with eq. 1 by varying the free
parameters to minimize the residual sum of squares (RSS) of the cumulative counts Q.
Technical details of the fitting process are described in Appendix B.

As an example of our analysis, Figure 1 shows the detailed results for New York
State, one of the hardest hit locations in the early days of the pandemic. The data
are shown as dots, with the case counts in the left column, the death counts on the
right. Top panels show the cumulative counts, displaying a similar pattern: An initial
exponential rise followed by “flattening of the curve”. The more moderate behavior
during the latter phase is better discerned in the insets, which zoom in on the second
half of each dataset with a linear, instead of logarithmic, y-axis. This expanded view
also brings out problems in the data. The abrupt dislocation on day 106 (June 30) of
the death counts arises from changes in reporting protocols. The bottom panels show
the daily counts, whose overall trends are conveyed by the displayed 7-day moving
averages. The extreme outlier on day 106 of the daily death counts causes a seven-day
upward displacement of the moving average and the dislocation in the corresponding
cumulative count.

Lines show our models, obtained by fitting eq. 1 to the cumulative counts (top
panels). The point where the model-calculated growth rate g decreases to half its initial
value, the unhindered g, is marked #,. This is where the deviation of g from g, becomes
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COVID-19 1st Wave, New York State
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Figure 1: The Covid 19 pandemic first wave in New York State. Left column shows reported cases, right
column reported deaths. Dots show the data, lines are best fits with eq. 1 for single- and two-power models,
as labeled. Top panels: Cumulative number from start of the exponential phase; this phase ends in the
transition to hindering, marked , (see text for details). The insets zoom-in on the second half of each dataset
with linear y-axis instead of logarithmic. Bottom panels: Daily counts; dot-dashed line is the 7-day moving
average. The fitting was done for the cumulative counts (Q; top panels). The bottom-panel curves show
dQ/dt and involve no fitting, fully determined from the models in the top panels.

significant, an indicator of the end of the initial exponential phase and the transition to
hindered growth. For the most part, the data points are barely distinguishable from
the model plots in both top panels. The quality of the fits is further illustrated by
the fraction of variance unexplained (FVU = 1 — R?> where R? is the coefficient of
determination), which is only ~1% in both cases. Although the curves for single-
term models are hardly distinguishable from their 2-term counterparts, the additional
hindering term of the latter does improve the fit for Q. The F-test null hypothesis that
the coefficient of the 2nd term vanishes (see Appendix B.2) can be rejected at high
confidence levels: more than 99% (p-value of 2.5-1077) for the case counts and 98%
for the death counts. The impact of the second power-law becomes evident in the insets,
and stands out prominently in the lower panels, which show the daily counts. While
the best-fitting single-power models describe properly the growth initial slowdown,
they are clearly inadequate for the subsequent steeper falloff.

Adding more hindering terms would further improve the fits, at the risk of over-
fitting and chasing noisy structure in the data. This we wish to avoid as we are only
interested in capturing meaningful long-term trends. Two hindering terms successfully
achieve that for the displayed datasets. Importantly, although the single-term models
do not properly describe the late hindering stages of the first wave, they are practically
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indistinguishable from the two-term solutions during the exponential rise and early
hindering phase. The unhindered growth rates g, are the same to within a fraction of a
percent, the hindering times #, differ by less than a day.

The plots of dQ/dt involve no fitting. They are fully derived from the models for
Q(1), shown in the upper panels. Since daily counts are frequently noisy and irregular,
modeling the cumulative counts is a significant advantage of our method. The cumula-
tive counts are produced in a running sum, effecting a simple smoothing that preserves
the underlying trends as evidenced by the fact that the long-term variation of dQ/dt is
captured reasonably well by our models for Q .

4. Policy Impact

A variety of factors can play a role in arresting the exponential rise of the pandemic,
many of them unknown. The one we wish to study is the potential impact of policy
decisions, such as business closures, lockdown (stay at home), etc. The approach we
take here is: (1) Construct hindered-growth models of the first wave of the pandemic in
a sample of locations, (2) determine from them the observable f,, the onset of hindering,
for every sample member, and (3) look for correlations with policy implementation
dates, the independent variables.

We study five different policy categories, which are the most commonly used around
the world in attempts to slow the growth of the pandemic: Educational facility closures,
essential and non-essential business closures, travel restrictions, restrictions on gather-
ings, and stay-at-home orders. With data on policy implementation from the Institute
of Health Metrics and Evaluation (IHME)? and Brauner et al. (2020) we selected 52
countries and 47 U.S. states. All 99 entries on this list instituted at least one of the
aforementioned policies.

4.1. Modeling and results

The key quantity in assessing the potential impact of a policy in slowing the growth
of the pandemic is the length of the exponential phase—same as the onset day of hin-
dering f,. We determine this parameter by modeling the COVID-19 data of our sample
members® with a single hindering term in eq. 1. As shown above, single-power hin-
dering yields reliable estimates of #,. With a single hindering term, our models modify
pure exponential growth with the minimal number of parameters: the power k and
coeflicient ay.

Excessive irregularities in the daily counts of some locations caused difficulties to
our data selection algorithm, which hampered modeling of those data sets. We ended up
with 89 reliable models for case counts and 81 for death counts. Detailed tabulations of
our data and model results are provided in Appendix C. Figure 2 presents histograms
of key results. Panel (a) shows that the first wave lasts, on average, a full month longer

2http://www.healthdata.org/

3pandemic data for nations were taken from the Johns Hopkins University COVID-19 Data Repos-
itory https://github.com/CSSEGISandData/COVID-19, for US states from the New York Times site
https://github.com/nytimes/covid-19-data.


https://doi.org/10.1101/2021.03.16.21253764
http://creativecommons.org/licenses/by-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.03.16.21253764; this version posted March 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-ND 4.0 International license .

length of 1st wave length of expenential phase (tg)
T T T T T = T T T T T T
(a) mean (days) mean (days) 40
17.5f [ cases: 88.2 1 cases: 19.1
CIZIZZIZ2 deaths: 125.7 CIZIZZIZZ2 deaths: 20.7
15.0} 1L 130
12.5F 8
10.0| 1 F 420
7.5 8
5.0 1t 110
[ - Pl
2.5 '--: o
0 0 L 1 L 1 1 I-I-. 11 ) ro o == 1 0
. 0 50 100 150 200 250 300 60 80 100 120

days days

lags between reported cases & deaths unhindered growth rate
mean (%/day) {55
[ cases: 349

CZZ22 deaths: 233

mean (days) L (d)
—] start: 183

2222 hindering: 18.7

| n o o | L n L
0 20 40 60 80 100 120 0 20 40 60 80 108
days percents per day

Figure 2: Histograms of the length of the COVID-19 (a) first wave and (b) initial exponential (unhindered)
phase (same as #,, the onset day of hindering). (c¢): Lag times between reported cases and deaths for the start
of the 1st wave and the onset of hindering, as labeled. (d): Histograms of the initial, unhindered growth rate
8u.

for deaths than for cases. Both histograms peak at around 90 days, but the deaths
histogram peaks again around 160 days and has an extended tail. In contrast, panel
(b) shows that the length of the exponential phase, which starts with the onset of the
first wave and ends #, days later, is essentially the same for both cases and deaths.
This can also be deduced from panel (c): deaths lag behind cases by the same amount,
on average, for both the starting date of the first wave and the hindering date; the
exponential phase of COVID-19 deaths is simply a shift of the cases by about 18 days.
The implication is that the much longer duration of the deaths first wave arises from
the hindered phase, indicating that beyond a certain threshold (about 120 days), the
death probability increases significantly with the length of the illness. Finally, panel
(d) shows that case counts rise faster than death counts during the unhindered phase; the
unhindered growth rate for case counts is (gy) = 34.9% per day, where angle brackets
denote the distribution mean, for death counts it is 23.3% per day. As a result, the
deaths:cases ratio, also known as the observed case-fatality ratio, is decreasing with
time. Such a decline may be triggered by increased testing, which makes the number
of reported cases rise faster than actual infections, as well as improvements in medical
treatment of the disease, which decrease the fraction of deaths.

Extraneous factors decrease the observed case-fatality ratio during the first ~70
days, yet that ratio rises significantly after ~120 days. This enhances confidence in the
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robustness of the conclusion that the late rise reflects an increase in the intrinsic fatality
of the disease when it lasts longer than ~4 months or so.

4.2. Correlations

Public policy is effective in controlling the pandemic if it shortens #,, the length of
the exponential phase. The policy history of each location is characterized by the or-
dered sequence of implementation dates for each of the five policy categories described
above, resulting in 120 possible combinations. Since this exceeds the number of our
data points, we collapse the space of independent variables by considering at every lo-
cation only the first policy implemented, whatever it is, and test for the correlation of
its implementation day #p.licy1 (days after start of the exponential phase) with #,. This is
done with simple regression analysis for the case counts; there is no need for a repeat
with the death counts because, as shown above, the exponential phase of COVID-19
deaths is, on average, a simple time shift of its case counterpart.

Table 1: Correlations between length of exponential phase and policy implementa-
tion

Ih = Ailpolicy1 + CONSE + arAjoek
sample full no lockdown lockdown lockdown
size 89 29 60 60
a 0.43(0.11)  0.357(0.20)  0.47 (0.12) 0.51 (0.12)
a 0.21% (0.16)

const 16.59 (1.00) 1549 (2.05) 17.02(1.07) 14.59 (2.15)

Notes: Regression coeflicients for #,, length of the exponential phase,
on Zpolicy1, implementation day of first policy, and Ao, the additional
number of days to lockdown. Numbers in parentheses are the standard
errors. All p-values are < 0.01 unless noted otherwise.

"The p-value for this entry is 0.10
#The p-value for this entry is 0.20

Regression analysis for the observable #;, and independent variable #,05icy1 yields a
highly significant linear correlation (p-value = 1.09-107#). The results are tabulated in
the first column of Table 1 and shown in panel (a) of Figure 3 together with the data
points. On average, the first policy was implemented 5.91 days into the exponential
phase, hindering occurred 13.21 days later. The point on the correlation line with #,o1icy1
=29.1 days has #, = fpelicy1, Which would imply that the first policy was imposed on the
same day hindering was setting in. This point is beyond the range of our sample—the
latest implementation of a first policy, by the United Kingdom, was on day 24 of the
exponential phase.

The zero-intercept of the correlation line, 16.6 days, is the mean length of the ex-
ponential phase when the first policy is implemented right at the start of this phase.
Twelve locations took action even earlier, which does not seem to have brought addi-
tional benefits: the mean value of #, for this group is 15.3 days, no different than the
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zero-intercept within the standard error of 5.97 days. Apparently, the benefits accrued
by early policy implementation are not improved further by acting before the start of
the exponential phase.

1st-policy impact on hindering

full sample no lockdown lockdown implemented

sol (@ : 1 Lo : 1 L@

0.43tpoicy1 + 16.59

0.35tpoiey1 + 15.49

047ty + 17.02

]

. , b I \ . | b . . | | | \ ,
-20 -10 0 10 20 -20 -10 0 10 20 -20 =10 o 10 20
tpaticy1 (day) policy1 (day) tpolicy1 (day)

Figure 3: Variation of the onset of hindering, #,, with the first implementation of a policy, fpolicy1, during the
first wave of COVID-19 case counts. Results for (a) the full sample, (b) the subsample of the entities that
did not implement lockdown and (c) those that did. The zero-point of every axis is the start of the initial
exponential phase. Dots show the data, straight lines the results of linear regression analysis (see Table 1).

The correlation shows that a delay of one week in implementing the first policy
adds, on average, 3 days to the continuation of exponential rise at its initial growth rate
(34.9% per day), increasing the cumulative case number by a factor of 2.85.

4.3. Lockdown’s potential impact

Stay at home (lockdown) is the most restrictive of the policies implemented by
members of our sample. It was imposed by 60 of the 89 sample members, but never
as the first policy; in fact, it was the last one in all but 12 cases. As a result, the
th—tpolicy1 correlation just derived does not include lockdown direct effect, only its po-
tential added impact on top of other policies that were implemented earlier. To assess
the potential added impact of lockdown, we split the sample into those that did and did
not implement lockdown; the data points for each subsample are shown in panels (b)
and (c) of figure 3. First we tested whether the two subsamples come from different
distributions—if lockdown had no impact on #,, their #, data would have been drawn
from the same parent distribution. This hypothesis is rejected by the Kolmogorov-
Smirnov two-sample test with a p-value of 0.05, and by the Mann-Whitney rank test
with a p-value of 0.01. The two subsamples come from intrinsically different distri-
butions, but that does not establish a direct correlation between #, and lockdown. For
that we repeated the f—fpo1icy1 Tegression analysis for each subsample separately. The
resulting correlations are listed in Table 1 and plotted in Figure 3. The correlation is
statistically significant for the locations that did implement lockdown (p = 1.84-107%),
but not for those that didn’t; their #,—fyo1icy1 distribution is statistically indistinguish-
able from random scatter, differing from it by less than 2 standard deviations. At the
same time, the a; coefficients estimated from the two subsamples are also statistically
indistinguishable from each other. There is no definitive outcome to the comparison of
these two subsamples.
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Attempting to tease out the potential added impact of lockdown, we are forced
to rely solely on the subsample of 60 locations that did impose it. Denote by Ajocx
the number of days that passed from the implementation of the first policy (Zpolicy1) t0
lockdown; Aok ranges between 1 and 22 days, with a mean (Aj,x) = 10.58 day. There
is a small but significant (p = 0.05) negative correlation between the variables with
slope -0.20; that is, a 5-days delay in imposing a first policy hastened the subsequent
implementation of lockdown by a day. Adding A,k to the regression analysis as a
second independent variable yields the results listed in the last column of Table 1. The
coefficient a, is 0.21 with a p-value of 0.20, thus there is no statistically significant
evidence for the impact of Aj,x. However, lack of decisive statistical evidence does
not prove that lockdown had no impact. The 95% confidence interval for a; is [-0.11,
0.52], suggesting that approximately 90% of the distribution of its estimate is > 0.* It
must be noted, too, that lockdown was implemented, on average, only 3.03 days before
the onset of hindering. By that time, the first policy had already run 78% of its course.
Moreover, 19 of the 60 sample members, almost a third, imposed lockdown only after
ty, too late to make any impact the onset of hindering. The possibility that lockdown
might have shortened significantly the exponential phase had it been employed as first
resort instead of last remains open.

5. Summary and Discussion

In the first part of this study we construct phenomenological descriptions for the
COVID-19 data of numerous nations and US states, in the second we conduct statis-
tical analysis of the derived model parameters in search of evidence for the impact of
government policies on the pandemic growth trajectory. The phenomenological mod-
eling is aimed at getting an objective, reliable measure of “flattening of the curve”, a
day that marks consistent decline of the growth rate from the initial value it had during
the exponential outburst of the pandemic. Our recently developed hindering formal-
ism (EKZ20) identifies the desired parameter as the hindering time #,. We determine
t, from fits to the data done with minimal modification to pure exponential growth,
adding a single power-law term to the modeling function (eq. 1). The simplicity of this
method helps reduce the risk of potential pitfalls and makes it easy to study a large
sample that contains every nation and US state with relevant data. Modeling cumu-
lative, rather than daily, counts is another advantage of our method since daily count
data are frequently rather noisy, containing many spurious zeros; a standout example
is Sweden, which does not even report COVID-19 cases and deaths every day of the
week. While fitting cumulative counts, our models also capture the variation of daily
counts reasonably well, as evidenced by the example of NY State (figure 1).

With a sizeable sample, our models uncover some interesting properties of the
COVID-19 disease itself, showing that the mortality rate varies with the sickness du-
ration (figure 2). Other than an 18-19 day lag, the main segments of the histograms

4The t-statistic associated with this estimate is 1.30, hence the two-sided p-value of 0.20. Thus, the 80%
confidence interval has a lower bound of 0. This implies, assuming a symmetric distribution of the coefficient
estimate, that approximately 10% of the distribution density falls below zero.
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for death and case counts are similar, indicating that the mean duration of the disease
is ~18 days; after that, infected people either recover or die. This pattern lasts for
~70 days. The mortality rate rises for those that remain sick longer, with a significant
increase when the illness lasts for more than ~4 months.

The end of the pandemic initial exponential rise is controlled by numerous factors,
many of them unknown or unmeasurable. Here we searched for the potential impact
of the governmental policies implemented by our sample members. Linear regression
analysis yields a highly significant correlation between the implementation day of the
first policy, whatever that policy is, and flattening-of-the-curve day #,. Delaying the
former by one week almost triples the cumulative case number, on average. How-
ever, policy makers do not have all of the relevant information when making decisions,
and governmental policy is not the only factor controlling the pandemic trajectory. In
twelve locations, the first policy was implemented before the start of exponential rise,
yet their average #, is within a standard error of the zero intercept of the correlation we
find; that is, implementing the first policy on or before the first day of the exponential
rise limited its duration, on average, to 16—17 days, but not less. This minimal length
may reflect a combination of factors, including the virus incubation period, societal re-
sponse, etc. At the other end, our correlation implies that the initial exponential phase
would end just as the first policy is imposed if the latter were delayed until day 29;
namely, the initial growth would start slowing down after a month even without gov-
ernmental action. While no government waited that long, Denmark and South Korea
enacted their first policy after the initial exponential rise had already come to an end
and 13 other entities acted within 5 days of that end point. Yet except for one ex-
treme outlier (Nebraska, with #, = 53 days), the length of the exponential phase never
exceeded 36 days, within the errors of our correlation’s prediction. A possible expla-
nation for why uncontrolled growth slows down on its own after 36 days is a change in
public behavior without government action, triggered by the severity of the pandemic
toll.

Stay at home (lockdown) is excluded from the evidence we find for the impact of
the first implemented policy. Because of reluctance to employ it, this severe restriction
was generally imposed as a last resort (never the first), too late to do much good;
policy makers did not realize that the initial exponential rise was about to end, or even
already ended, thanks to the less restrictive measures implemented earlier. There is a
small negative correlation between Ajqck and fpo1icy 1, namely, the longer decision makers
waited to implement their first policy, the less time they took subsequently to impose
lockdown. We conducted separate analysis in search of an added impact of lockdown
and did not find statistically significant evidence for it.

Two recent studies serve as important benchmarks for our results. The one by
Brauner et al. (2020) constructed detailed epidemiological models of 41 nations, all
included in our sample, and reached the same conclusions—strong evidence for the
impact of the first policy but not of lockdown. It is encouraging that we independently
find the same results with such widely different approaches. However, despite the lack
of decisive statistical evidence for an added impact from the late implementation of
lockdown, a close examination of our regression results shows that the possibility of
such impact cannot be rejected. It remains entirely possible that lockdown might have
shortened significantly the initial exponential phase had it been employed as first, rather
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than last resort. The study by Hsiang et al. (2020) extensively examined the impact of
policy implementation on the evolution of the COVID-19 pandemic at the local, re-
gional, and national levels in six large countries. Their findings suggest that in the
absence of policy action, early growth rates in these nations averaged approximately
38%; by comparison, we find an average unhindered growth rate for case counts of
34.9%, well within a single standard error of their estimate. Along with estimating the
aggregate impact of all implemented policies on the COVID-19 growth rate by coun-
try, they estimate individual impacts as well. These support our findings that “home
isolation” (i.e. lockdown) had a lesser impact on slowing the growth than other notable
policies implemented earlier on, including emergency declarations, school closures,
and other social distancing measures. In the six nations they study, home isolation was
never the very first policy implemented.® It is clear that when extending the sample of
analyzed entities to the 89 we examine here, the timing of policy implementation was
a more important factor in inducing hindering than the strictness of the policy.

Epidemiology models solve detailed rate equations specific to an epidemic to de-
scribe its growth trajectory. Such approach is essential for modeling of individual coun-
tries and for gaining insight into the various factors affecting the pandemic spread. The
phenomenological description presented here is not specific to COVID-19, in fact to
any epidemic—the same hindering function (eq. 1) was also used to fit time variation of
GDP and population (EKZ20). Hindering is a generic description of any growth pattern
just as Fourier analysis is a generic description of all periodic phenomena. Although
such phenomenological modeling does not provide insight into the mechanisms driving
the growth, it is a useful method to concentrate on the minimal number of parameters
most relevant for the problem at hand, model large samples and classify growth pat-
terns, providing a practical, complementary tool to guiding policy decisions.
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Appendix A. Epidemiology Models and Hindering

Our hindering formalism can describe any growing quantity Q, irrespective of the
underlying processes driving its growth. The connection with such processes can be
done through the growth rate g = dln Q/dr and its relation to the parameters of a
dynamic model for the growth of Q. A key concept in epidemiology modeling is
the basic reproduction number of an infection, Ry, defined as the expected number
of secondary infections generated by an average infectious case in a fully susceptible
(uninfected) population. This quantity determines the potential for an infectious agent
to start an outbreak, the extent of transmission in the absence of control measures, and
the ability of control measures to reduce spread. The effective reproduction number R,
(also denoted R,), is the number of infections directly generated by a single infectious
individual at time ¢ after the outbreak, and thus is applicable to an ongoing epidemic.
Since R, is dimensionless while g is rate, relating the two requires an independent time
scale that characterizes the epidemic.

The spread of infectious diseases is traditionally described with compartmental
models—the population is assigned to labeled compartments and rate equations de-
scribe the movement between them. In the most basic SIR models, S denotes suscep-
tible individuals that have never been infected and I infectious ones (Miller, 2017). A
susceptible individual that contracts the disease transitions to the I compartment and
later removed into the R compartment as a result of recovery, and presumably devel-
oping resistance, or death. The resulting rate equation for the number of infectious
individuals, those in the I-compartment, can be written as a growth equation, yielding

Ri=1+1g (A1)

where 71 is the mean infectious period (r; = y~! where 7 is the transition rate from
compartment I to R).

An infection can have a significant incubation period during which an individual
has been infected but is not yet infectious himself. During this period the individual is
in compartment E (for exposed), resulting in SEIR models (for Susceptible-Exposed—
Infectious—Removed) which have been employed in numerous studies of COVID-19
(e.g. Annas et al., 2020; Brauner et al., 2020; He et al., 2020; Hsiang et al., 2020; Lai
et al., 2020; Ma, 2020; Mwalili et al., 2020). If g denotes the mean latent period,
i.e., time from infection to onset of infectiousness, the sum 7 + 7 is called the serial
interval (Lipsitch et al., 2003). A common growth rate for the E- and /-fractions can be
obtained from a solution of an eigenvalue problem. The result is the quadratic relation

Ro=1+ (11 +Tp)g + TiTE & (A.2)

(Lipsitch et al., 2003). The limit 7g = 0 (no latent period) reverts to the SIR model
result (eq. A.1).

In these results, the growth rate g is that of I, the infection daily counts. The
quantity that we model is Q, the cumulative case count. The hindering formalism
(EKZ20) shows that the general description of Q can be written as (cf equation 1)

InQ+o0¢=gut+C, where o = Zaka (A.3)
k=1
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The free parameters g, (the unhindered growth rate of Q), {a;} (the expansion coef-
ficient set) and C (an integration constant that ensures an initial condition) are deter-
mined by best-fitting the data for Q with this expansion. The required growth rate g
of dQ/dt, the daily counts, can then be derived through straightforward differentiation
and algebraic manipulations:

l+o0y—02

8= 8T e (A4)

where 4 J
90 k g1 2 Ak
0'1=Q—= kakQ, O—ZZQ_: kakQ
dQ ; dQ ;
The effective reproduction number, and its time variation, can be obtained by inserting
this result in eq. A.2.

Appendix B. Data Analysis

Datasets of points gg, q; ... at times #y,?; ... are modeled with the function Q(?),
defined in parametric form in eq. 1. Best-fitting models are obtained by minimizing the
residual sum of squares (RSS) of the data and model points Q; = Q(t;). Because of the
large dynamic range spanned by typical datasets, we give all data points equal relative
weights (o; o g;) so that the minimization is performed on RSS = }; (Q;/q; — D2 It
is important to note that we only seek the minimum of RSS; its actual magnitude is
irrelevant (no need to specify the magnitude of the proportionality constant in o; « g;).

Appendix B.1. Mann-Kendall Test

The logarithmic term in eq. 1 describes pure exponential growth, corresponding to
a constant growth rate. The first step is to determine whether any hindering corrections
(the algebraic terms) need to be included in the model. Such terms describe slowdown
of growth, thus the first step is to determine whether the data provide evidence for such
slowdown, i.e., a decline in the growth rate g. To that end we compute g from the data
with a finite-differences calculation and perform the Mann-Kendall (hereafter MK) test
on its time series. This non-parametric test determines whether or not there is a mono-
tonic trend in a given dataset. Its Z-statistic is computed from the signs of differences
between data pairs.% There are no assumptions regarding the distribution of data points
and no requirement that the errors be normally distributed. The null hypothesis (Ho)
is no trend in the time series, in which case the test statistic Z is distributed accord-
ing to the normal distribution with zero mean and unity standard deviation. Positive
(negative) Z indicates an increasing (decreasing) trend. To determine the presence of
hindering we test the null hypothesis against the alternative hypothesis (H,) that there
is a downward monotonic trend (Z < 0) in a one-tailed test. The presence of hindering
is established at the 99% confidence level when Z < —2.33, which can be achieved with
as few as 6 data points. By example, the NY dataset analyzed in §3 yields Z = —16.1

SFor a detailed description of the MK-test see Kocsis et al. (2017).
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for the case counts and —18 for the death count, therefore in each case the null hypoth-
esis can be rejected in favor of the alternative H, with a p-value that is essentially zero
within the numerics capacity. The MK-test provides robust statistical confirmation that
neither dataset can be meaningfully described with pure exponential growth. Hindering
corrections must be added in both cases.

Appendix B.2. Hindering Terms; F-Test

When the modeling function must contain at least one hindering (i.e., algebraic)
term, the question is what power-law to use for that term and how many additional
ones might be needed. Our approach in EKZ20 was to handle this as a Taylor se-
ries expansion: start with £ = 1 and add consecutive powers until reaching negligible
marginal contribution. Here we adopt a different approach because of a significant dif-
ference between the two situations. As is evident from eq. 1, the independent variable
is the dimensionless x = gt = t/T,, where T, = 1/g, is the growth time during the un-
hindered phase. For both the GDP and population datasets of the US and UK, analyzed
in EKZ20, the magnitude of g, is less than ~4% per year so that T, is at least 25 years.
With a time span of ~200 years, x was at most ~8 in those datasets. In contrast, g,
for the COVID-19 data is ~30% per day so that T}, is ~3 days and x typically extends
to more than ~40. Because of the much larger range of x, proper modeling of these
datasets could require a large number of terms to describe structures that may reflect
noise rather than fundamental trends.

To avoid such potential pitfalls we devised an alternative approach that seeks to
identify the long-term trends in the data rather than construct the absolute best fit. In
the first step we model the data with a single hindering term and determine the power
that provides the best fit; this ended up being k = 2 for the NY case count and 3
for the deaths (fig. 1). Next we employ a two-terms model whose first power is k
of the best-fitting single-term model. The power of the second term is varied along
k+ 1,k +2...until achieving the best fit with this two-term model. For the NY case
counts the 2nd term ended having a power of 18, for death counts 22 (figure 1). Since
the addition of a term can be expected in itself to improve fitting, we must determine the
statistical significance of this improvement. The single-term model is a restricted form
of the two-term model, with the coefficient of the 2nd term restricted to zero, thus the
problem can be handled with the F-test, assuming that the unobserved error is normally
distributed (Wooldridge, 2009).” The null hypothesis is that the additional term has no
effect on the dependent variable so that its coefficient should be zero. The number of
data points, the ratio of RSS for the two models and their number of free parameters
are combined to form the F-statistic (or F ratio); it follows an F-distribution, which
arises as the ratio of two normal random variates. The F-statistic is compared with a
critical value F;;, determined by the degrees of freedom for each model and an error
level @. When F' > F;, the null hypothesis can be rejected at the confidence level
1 — a, the probability of a false rejection is less than a.

"The F-test is closely related to the odds ratio test in Bayesian statistics. The two become the same if
and only if one assumes scale-invariant Jeffreys’ prior for RSS (Ivezié et al., 2014).
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Appendix B.3. Modeling of the Full Sample

The full sample was fitted with single-term models. This simplest form of hinder-
ing suffices to reproduce reliably the quantities of interest here—the hindering time #,,
an objective measure of the “flattening of the curve” day, and the unhindered growth
rate g,. Each dataset was also fitted with the logistic function (Griliches, 1957), which
became the best overall fit when it produced a smaller RSS than the best-fitting hin-
dering model. This was the case in a number of datasets for death counts. Since the
regression analysis to determine the impact of public policy on the growth of the pan-
demic employed only the case counts, it did not involve any logistic models. The full
results are tabulated below.

Appendix C. Tables

Tables of our model results for case and death counts during the COVID-19 pan-
demic first wave are presented here in printed form and supplied separately in csv file
format. Column headers are as follows:

day Starting date (month/day in 2020) of the pandemic initial expo-
nential outburst; zero day of time ¢

th Ending day of exponential phase and beginning of the hindered
growth phase, i.e., “flattening of the curve”

Tpolicy1 Implementation day of first policy; negative entries mean that the
policy was imposed before day

Alock Number of days from fpglicy1 to stay-at-home (lockdown) order
where applicable

fend Ending day of the pandemic first wave; number of points in
model

8u Initial (unhindered) growth rate; see eq. 1

k Power of the best fitting single-term hindering model; k = —1 de-

notes the logistic function (occurs only in the death count models)

The columns for the policy data #,icy1 and Ay, are entered only in the tables for case
counts; they are not repeated in the tables for death counts.
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Table Appendix C.1: COVID-19 case counts; Nations

daYO tpolicyl Alock I fend 8u k
Albania 3/16 -7 12 18 51 1338 2
Andorra 3/15 -1 NA 5 81 96.11 2
Argentina 3/13 2 5 17 28 2343 2
Austria 3/1 9 6 23 99 2728 4
Belgium 2/29 13 5 18 107 4468 1
Bosnia and Herzegovina 3/9 2 NA 15 71 3219 1
Brazil 3/7 17 NA 23 45 31.03 1
Bulgaria 3/10 3 4 7 75 5332 1
Canada 3/1 22 NA 36 121 2084 2
Colombia 3/10 6 9 13 34 4163 1
Croatia 3/13 -4 8 16 78 229 3
Cyprus 3/23 -10 11 16 83 1096 7
Denmark 3/5 11 NA 5 119 9277 1
Dominican Republic 3/16 3 NA 10 64 46.14 1
Ecuador 3/13 0 4 18 171 3249 1
Finland 3/5 7 NA 22 126 2286 2
France 2/24 9 14 23 98 3345 1
Hungary 3/14 2 16 24 91 1644 2
Iceland 2/29 16 NA 17 91 3289 2
Ireland 3/13 -1 15 22 98 2022 2
Israel 2/25 8 21 34 79 2449 3
Italy 2/20 14 5 15 127 55.3 1
Latvia 3/7 6 NA 15 104 3559 2
Lithuania 3/10 4 1 17 105 3517 3
Malaysia 2/26 16 5 31 123 1779 3
Malta 4/1 -19 NA 5 99 1272 4
Mexico 3/10 13 10 17 38 33.13 1
Moldova 3/9 2 14 18 36 3358 1
Morocco 3/9 7 4 20 78 3097 1
Netherlands 2/28 11 NA 15 126 4974 1
New Zealand 3/13 10 3 16 69 32.66 4
Norway 2/29 12 NA 19 134 2781 3
Poland 3/5 5 14 18 121 3956 1
Portugal 3/3 13 3 24 149 3228 2
Romania 3/3 3 17 24 85 2923 1
S Korea 2/15 16 NA 14 73 4405 4
Serbia 3/9 7 12 18 78 3755 1
Slovakia 3/7 5 NA 8 82 6133 1
Slovenia 3/7 5 NA 9 71 4387 2
South Africa 3/7 11 8 15 32 4398 1
Spain 2/24 17 2 26 125 3692 2
Sweden 2/25 15 NA 23 183 3349 1
Switzerland 2/26 2 NA 21 96 39.02 2
Turkey 3/12 4 NA 14 79 6548 1
Ukraine 3/16 -4 NA 21 68 29.79 1
United Kingdom 2/25 24 3 36 125 2179 2
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Table Appendix C.2: COVID-19 case counts; US states

dayo Tpolicyl Ajock Ih Tend 8u k
Arkansas 3/17 0 NA 5 46 4958 1
California 2/27 13 8 36 95 20.87 1
Colorado 3/8 9 9 18 93 33.66 1
Connecticut 3/8 4 NA 19 112 4332 1
Delaware 3/14 2 8 18 159 3009 1
District of Columbia ~ 3/13 0 17 19 108 27.31 1
Florida 3/2 15 17 27 52 32.8 1
Georgia 3/5 13 16 23 66 3405 1
Idaho 3/16 7 2 16 49 31.5 3
Tllinois 3/5 8 8 26 117 3305 1
Indiana 3/11 1 13 20 97 36.15 1
Towa 3/21 -4 NA 15 23 2042 2
Kansas 3/13 4 13 23 80 25.08 1
Kentucky 3/14 2 NA 19 27 2352 2
Louisiana 3/11 2 10 20 72 33.03 2
Maine 3/12 4 17 8 145 63.17 1
Maryland 3/7 9 14 29 102 2761 1
Massachusetts 3/4 9 NA 31 181 2831 2
Michigan 3/15 -2 11 15 86 38.11 2
Minnesota 3/7 10 11 13 23 46.06 1
Mississippi 3/14 5 15 11 18 4444 2
Missouri 3/11 12 14 16 58 46.78 1
Nebraska 3/13 3 NA 53 97 1141 2
Nevada 3/7 9 15 19 58 35.07 1
New Hampshire 3/12 4 11 14 155 329 1
New Jersey 3/5 11 5 26 132 378 2
New York 3/2 10 10 23 170 4556 2
North Carolina 3/13 1 16 16 33 3324 1
North Dakota 3/16 0 NA 12 69 40 1
Ohio 3/10 2 11 16 28 43 1
Oklahoma 3/12 5 NA 15 72 38.9 1
Oregon 3/6 6 11 18 75 29.72 1
Pennsylvania 3/7 10 15 29 98 28.87 2
Rhode Island 3/15 1 12 31 106 18.67 2
South Carolina 3/14 2 22 15 34 32.3 1
South Dakota 4/2 -17 NA 16 98 16.64 2
Tennessee 3/12 8 13 15 32 3594 1
Texas 3/3 16 14 35 77 2231 2
Utah 3/9 7 NA 16 61 37.09 1
Vermont 3/20 -7 11 11 50 2299 3
Virginia 3/7 8 15 15 24 4113 1
Washington 2/27 13 12 20 192 3164 1
Wisconsin 3/8 9 8 19 163 37.03 1
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Table Appendix C.3: COVID-19 death counts; Nations

dayo h Tend 8u k
Argentina 3/23 10 69  27.67 1
Austria 472 14 105 7.79 8
Belgium 3/13 24 164 2894 3
Bulgaria 4/18 116 150 2.72 1
Canada 3/21 33 165 1582 3
Colombia 3/31 14 22 17.81 3
Croatia 4/1 13 58 15.35 2
Czechia 3/25 13 99 2349 3
Denmark 3/15 19 149 2413 3
Dominican Republic ~ 3/21 6 292 57.31 1
Ecuador 3/18 22 276  24.04 1
Egypt 3/17 48 204  10.64 1
Estonia 4/11 6 106 8.48 -1
Finland 3/24 19 106 21.9 2
France 3/5 31 137 232 4
Germany 3/12 22 123 2848 2
Hungary 4/4 15 105 1429 3
Ireland 3/21 18 126 26.68 2
Israel 3/23 11 83 35.6 2
Ttaly 2/25 28 172 25.01 3
Malaysia 3/19 5 64 5259 2
Mexico 3/21 21 23 27.87 1
Moldova 3/31 12 139 22.79 1
Morocco 3/21 13 83 26.18 3
Netherlands 3/13 20 135 2607 3
New Zealand 4/9 5 55 41.81 4
Panama 3/21 6 67 50.88 1
Peru 3/26 39 280 14.33 1
Philippines 3/11 21 295  23.57 1
Portugal 3/17 14 136 3799 2
Romania 4/25 19 35 3.6 8
Serbia 4/8 12 43 9.05 -1
Singapore 4/1 22 79 7.49 -1
Slovenia 3/21 13 72 25.6 2
South Africa 5/14 81 161 5.12 -1
Spain 3/3 22 82 38.38 2
Sweden 3/13 22 164 2629 2
Switzerland 3/16 20 212 19.3 6
Turkey 3/18 18 140  36.51 2
Ukraine 4/17 29 45 6.53 -1
United Kingdom 3/11 23 156 2997 2
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Table Appendix C.4: COVID-19 death counts; US states

dayo h Tend 8u k
Alabama 326 10 182 3597 1
Arizona 3/28 39 193 9.86 1
California 3/8 28 246 23.22 1
Colorado 3/20 11 104 36.06 1
Connecticut 3/20 28 158  20.69 3
Delaware 4/5 21 141 12.78 2
District of Columbia 4/4 27 140 1004 4
Florida 3/17 26 63 19.5 2
Georgia 3/17 10 102  48.28 1
Idaho 4/5 5 57 2428 3
Illinois 319 17 117 322 1
Indiana 3/19 24 111 2206 2
Towa 4/18 30 72 7.56 -1
Kansas 3/26 16 76 20.51 2
Kentucky 327 16 78 19.9 2
Louisiana 3/20 16 80 25.72 2
Maryland 4/1 25 181 1465 3
Massachusetts 320 24 160 2854 2
Michigan 3/18 18 124  37.06 2
Minnesota 3/25 20 100 25.01 1
Mississippi 3/24 10 82 3929 1
Missouri 3/28 5 107 43.14 1
Nevada 3/27 15 86 1754 2
New Hampshire 3/31 33 150 10.89 2
New Jersey 3/15 25 157 2877 2
New Mexico 4/17 19 168 9.06 2
New York 3/14 22 142 35091 3
North Carolina 3/30 9 90 33.14 1
North Dakota 4/18 30 78 6.87 -1
Ohio 322 11 200 38.31 1
Oklahoma 3/21 16 83 27.21 2
Oregon 4/3 7 47 15.66 2
Pennsylvania 320 26 169 2622 2
Rhode Island 4/5 21 110 1275 2
South Carolina 327 11 76 20.24 1
Texas 3/28 6 54 32.75 1
Utah 4/13 24 151 6.84 1
Virginia 4/17 14 196 9.17 2
Washington 3/13 23 267 1208 2
Wisconsin 3/22 19 107 20.35 2
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