ZDM - Mathematics Education (2022) 54:777-793
https://doi.org/10.1007/511858-022-01359-1

ORIGINAL PAPER q

Check for
updates

Using combinatorics problems to support secondary teachers
understanding of algebraic structure

Erik S. Tillema'® - Lori J. Burch'

Accepted: 30 March 2022 / Published online: 25 April 2022
© FIZ Karlsruhe 2022

Abstract

This paper presents data from the first of three iterations of teaching experiments conducted with secondary teachers. The
purpose of the experiments was to investigate how teachers’ combinatorial reasoning could support their development of
algebraic structure, specifically structural relationships between the roots and coefficients of polynomials. The data in this
paper examines the learning that occurred as one teacher transitioned from making a generalization from a sequence of
contextualized combinatorics problems to applying her combinatorial reasoning to symbolic problems common in algebra
curricula. The findings from the study include the identification of three planes of learning that can be used to differentiate
among ways that combinatorial reasoning can be used to engage in binomial expansion. The highest plane involved con-
structing a combinatorial scheme for binomial expansion, a scheme that supported the teacher to produce the equivalence,
(x+a)x+b)(x+c) =x+ (a+ b+ c)x* + (ab + ac + bc)x + abe), and to see important algebraic structure in it. The contri-
butions of the study include: (a) expanding earlier arguments about the ways that combinatorics can be integrated into goals
of extant curricula (e.g., Maher et al. in Combinatorics and reasoning: Representing, justifying and building isomorphisms.
Springer, 2011); and (b) proposing how reflecting abstraction can be used to study the transition between generalizations
learners make from contextualized problem situations to operating with and on generalizations expressed with conventional
algebraic symbols. This second contribution is an under-researched area in the algebra literature (Dorfler in ZDM - Int J
Math Educ 40(1):143-160, 2008), and points to an important role that combinatorial reasoning can play in algebra learning.

1 Introduction

Mathematics educators have routinely called for an increase
in discrete mathematics in K-12 curricula (e.g., Kapur,
1970). As part of making these calls, researchers interested
in integrating combinatorics, one branch of discrete math-
ematics, into K-12 curricula have provided arguments for
how combinatorics can support mathematical processes
(e.g., Maher et al., 2011). To a lesser extent, researchers have
made arguments for how combinatorics can be integrated
with current content standards, with the strongest arguments
being presented for connections between combinatorics and
probability (e.g., Batanero et al., 2016).

Given the centrality of algebra in curricula internation-
ally, we use this paper to present empirical data about how
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combinatorial reasoning can support powerful forms of alge-
braic reasoning at the secondary level (grades 9-12). The
data we present comes from the first of three teaching exper-
iments (Steffe & Thompson, 2000) whose purpose was to
understand how combinatorial reasoning could support sec-
ondary teachers to engage with advanced algebraic identities
(e.g., @+ a)x+b)(x+¢)=x + @+ b+ c)x% + (ab + ac + be)x + abc)
in novel ways. This paper focuses on the learning of a sin-
gle pre-service secondary teacher (PSST). We focus on this
PSST to illustrate one facet of the learning that we aimed
to engender with the teachers more broadly. We respond to
the following research question in this paper: What learning
occurred as a PSST transitioned from symbolizing regulari-
ties and constraints of contextualized combinatorics prob-
lems to applying her combinatorial reasoning to operate on
conventional algebraic symbols?
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Core Aspects and Strands

Two Core Aspects

systems.

(A) Algebra as systematically symbolizing generalizations of regularities and constraints.
(B) Algebra as syntactically guided reasoning and actions on generalizations expressed in conventional symbolic

Core Aspects A & B are Embodied in Three Strands

1. Algebra as the study of structures and systems abstracted from computations and relations, including those
arising in arithmetic (algebra as generalized arithmetic) and in quantitative reasoning.

2. Algebra as the study of functions, relations, and joint variation.

3. Algebra as the application of a cluster of modeling languages both inside and outside of mathematics.

Fig.1 Kaput’s (2008/2017) framework for algebraic reasoning (p. 11)

2 Literature review

Research on students’ combinatorial reasoning has identi-
fied how combinatorics problems can support mathematical
processes like problem solving and posing (English, 1999),
generalization (Speiser et al., 2007), and justification and
proof (Mabher et al., 2011). These processes are often identi-
fied as lacking in algebra courses at the secondary level. For
example, many secondary algebra textbooks in the United
States present symbolic problems first, delaying or omit-
ting application problems designed for students to engage
in problem solving (Sherman et al., 2016). Moreover, U.S.
textbooks routinely present pre-given formulas as “useful”
rather than provide opportunities for students to generate,
justify, or prove their own generalizations (Thompson et al.,
2012).1 Thus, the domain of combinatorics, with its poten-
tial to support these processes, has significant promise for
enhancing algebra curricula at the secondary level.

Kaput (2008/2017) has framed algebraic reasoning
around three strands and two core aspects (Fig. 1). An
important component of secondary school algebra is for
students to engage in Core Aspect B of Kaput’s framework
(Kieran, 2007). Mathematics education researchers, how-
ever, have tended to focus on Core Aspect A, leaving open
the question as to how work on Core Aspect A could support
work on Core Aspect B (Dorfler, 2008). We use this paper
to illustrate how symbolizing regularities and constraints
in the solution of contextualized combinatorics problems
(Core Aspect A) can support powerful forms of reasoning on

! We note that our argument about curricula is rooted in the United
States context and may not be the case for countries that have worked
to more substantively integrate discrete mathematics into their cur-
ricula (e.g., Spain, Hungary, Germany, Israel, etc.). However, we con-
sider this issue an important point for discussion among international
researchers—understanding in what ways and how different countries
have taken up calls to integrate discrete mathematics in curricular
materials.
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conventional algebraic symbols (Core Aspect B). Our work
is situated within Strand 1 of Kaput’s framework. Strand 1
has received a significant amount of attention at the elemen-
tary and middle grades level (e.g., Stephens et al., 2017), but
less attention at the secondary level where more attention
has been given to Strand 2, functions (e.g., Thompson &
Carlson, 2017). To address Strand 1, we build from work
where we have articulated connections between combinato-
rial and quantitative reasoning (e.g., Tillema, 2018; Tillema
& Gatza, 2016).

3 Conceptual framework

We use this section to: (a) define the conceptual constructs
we use to study learning; (b) outline the two combinatorial
schemes we consider central to the learning that we docu-
ment; and (c) discuss our use of reflecting abstraction to
study the transition from Core Aspect A to B.

3.1 Constructs for studying learning

We use operations and schemes to investigate mathemati-
cal learning. Following Glasersfeld (1995), an operation
is a mental action. Operations are the building blocks of
schemes. A scheme contains three parts: an assimilatory
mechanism, activity, and result. A scheme opens when a
person assimilates a problem situation by making an inter-
pretation of it. Assimilation triggers an activity, which
involves carrying out operations on figurative material that
may be perceptually present (e.g., a deck of playing cards or
a physical array) or mentally generated (e.g., imagined cards
or an imagined array). The operations a person carries out
produces a result.

Schemes are goal-directed: a person establishes a goal in
the act of assimilation, monitors the goal during the activ-
ity, and determines whether the result satisfies the goal. If a
scheme’s result satisfies the goal, the scheme closes. If the
result does not satisfy the goal, or the activity produces an
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unexpected result, a person may experience a perturbation.
In such cases, a person may make changes to their scheme.
When a more or less permanent change occurs while the
schemes are in use (Steffe, 1991), we consider these changes
to be functional accommodations and functional accommo-
dations to be acts of learning.

As part of characterizing a person’s schemes, we attend
to the extent to which a person carries out the activity of
their schemes and the kind of figurative material on which
they carry them out. We use the term implemented to discuss
the extent to which a person carries out the activity of their
scheme. At times, all operations of a scheme may be imple-
mented, while at other times, operations may be evoked but
not implemented. We use the term enactive scheme when a
person is constrained to carrying out the scheme with the
support of perceptually available figurative material. By con-
strained, we mean that, without the perceptually available
material (e.g., a set of cards, a list, or a physical 3-D array),
the person cannot carry out the activity of their scheme and
accomplish their goal. We use the term interiorized scheme
when a person can carry out a scheme on mentally generated
figurative material produced in visualized imagination (cf.
Steffe, 1992). Mentally generated figurative material may
or may not manifest as perceptually present. For example, a
person who operates on a 3-D array in visualized imagina-
tion, may operate exclusively in visualized imagination or
they may create some perceptually present figurative mate-
rial (e.g., draw part of a 3-D array they are imagining) as a
record of having operated in visualized imagination.

3.2 Combinatorial schemes

We use the Password Problem to illustrate two combinatorial
schemes whose coordination was important for character-
izing the learning we aimed to engender with teachers.

Password Problem. Using the characters A and B,
how many three-character passwords could you make
(order matters)?

Upon reading the Password Problem, a person may form
a goal of finding all possible three-character passwords,
which is when the scheme opens. We provide one example
of how a person may proceed with that goal in mind. A per-
son may interpret the situation as involving three composite
units, where a composite unit involves a person treating
multiple units (e.g., letters A and B) as a single entity (e.g.,
a set of letter possibilities). The activity of the person’s
scheme can involve ordering the three composite units (a
first set of letters, a second set, a third set); ordering the
units of each composite unit (e.g., A is first, B is second);
pairing the first unit of each composite unit to produce an
ordered triple (i.e., AAA); pairing the first unit of the first

Fig.2 Listing passwords using

lexicographic ordering A AA
AAB
ABA
A BB
BAA
B AB
BBA
B BB

Exactly three A’s| A A A
A AB
Exactly two A’s ABA
BAA
A BB
Exactly one A B AB
BBA
No A’s B BB

Fig. 3 Listing passwords by the number of A’s

two composite units with the second unit of the third com-
posite unit to produce another ordered triple (i.e., AAB).
The person may then continue with this activity in a lexico-
graphic order where the first two positions are fixed and all
possibilities are put into the third position before changing
the character in the second position (Fig. 2, English’s [1991]
odometer method).

With this example, the operations that make up the activ-
ity of the person’s scheme are ordering and pairing opera-
tions (Tillema, 2014). The figurative material could be per-
ceptually present (e.g., actual cards with letters) or mentally
generated (e.g., letters a person imagines). The person’s
activity transforms the three composite units into the result
of the scheme, eight ordered triples (i.e., eight three-char-
acter passwords). A person may then use the lexicographic
order to confirm that they have satisfied their goal to produce
all possible ordered triples at which point the scheme closes.
We call this scheme a multiplicative pairing scheme (MPS)
for 3-D combinatorics problems.

The second scheme we discuss is similar to the first in
that: (a) a person assimilates the Password Problem using
three composite units and (b) the activity of the scheme
involves ordering and pairing operations. The primary differ-
ence is the organizing principle of this scheme. The person
organizes the passwords according to the number of A’s in
them (i.e., exactly three, two, one, or no A’s) (Fig. 3). With

@ Springer



780

E.S.Tillema, L. J. Burch

this organizing principle in mind, the person may then use
ordering and pairing operations to accomplish their goal of
producing all possible ordered triples; with the goal satis-
fied, the scheme closes. We call this scheme a binomial coef-
ficient scheme (BCS).

3.3 Reflecting abstraction: moving from Kaput’s
core aspectAtoB

We use reflecting abstraction (Piaget, 1977/2001) to account
for how a person transitions from Core Aspect A to B of
Kaput’s (2008/2017) framework. Reflecting abstraction
involves a person abstracting the operations of a scheme or
a coordination among schemes as opposed to abstractions
related to specific figurative material on which the opera-
tions or coordinations are carried out. As such, the scheme
or coordination among schemes is freed from specific figura-
tive material (Glasersfeld, 1995). This criterion of reflect-
ing abstraction is focused on abstraction in that a person
can impose a scheme or coordination among schemes on
new situations or contexts, which involve different figura-
tive material. To claim that a person has moved from Core
Aspect A to B means that their scheme is freed from both
the specific figurative material and context in which it was
developed and that the coordination is being applied to new
figurative material, in this case algebraic symbols. It is in
this way that we consider reflecting abstraction as a way to
operationalize moving from Core Aspect A to B of Kaput’s
framework.

Piaget (1977/2001) uses two additional features to char-
acterize reflecting abstraction: (a) there is a projection of
a scheme or coordination among schemes from a lower
to higher plane of learning and (b) a reorganization of the
schemes at the higher plane of learning. Our data analysis
focuses on a functional accommodation involving a coordi-
nation among the MPS and BCS. Therefore, we differenti-
ate between two ways a person can coordinate schemes—
sequentially or by inserting one scheme inside another. A
sequential coordination of schemes means that the schemes
are activated in sequence with one scheme closing before
the next scheme opens. An insertion of schemes means a
person embeds one scheme inside another scheme where
the two schemes become a single scheme. Identifying an
insertion, rather than a sequential use, of schemes is how we
operationalize the notion of projection in the definition of
reflecting abstraction. That is, one scheme may be inserted
into another to become a single scheme where the single
scheme is at a higher plane of learning precisely because the
new single scheme was previously multiple schemes. The
reorganization part of reflecting abstraction, then, entails
how the new singular scheme gets integrated with a person’s
prior schemes.
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4 Methods
4.1 Methodology, participants, and data collection

We report on Olive, a PSST, who participated in the first
of three iterations of teaching experiments that we con-
ducted with secondary teachers. One purpose of a teaching
experiment is to identify and document authentic learning
that occurs in the context of teaching (Steffe & Thompson,
2000). To this end, a teacher-researcher plans tasks for par-
ticipants in order to learn about and test conjectures related
to their ways of reasoning.

Olive participated in 13 teaching episodes that ranged
from 60 to 90 min. The first author served as the teacher-
researcher. All episodes occurred with a partner, Aaron, and
were videotaped using three cameras: one to capture inter-
action, one camera to capture each PSSTs” written work.
The video files were mixed into a single file for analysis.
Five mathematics education graduate students were also
part of the research team, including the second author. They
attended all teaching episodes, assisted in data collection,
and supported the planning of tasks to test conjectures about
the PSSTs’ reasoning.

4.2 Design and goals of the teaching episodes

We now outline relevant portions of the design and goals
of the problems we presented to the PSSTs. Our teaching
experiments have begun with the Card Problem.

Card Problem. You have the 2, 3, and K of Diamonds
in a draw pile. A three-card hand is created by drawing
a card, replacing it, drawing a card, replacing it, and
drawing a third card. How many possible three-card
hands could you make? How many three-card hands
have no face cards, exactly one face card, exactly two
face cards, and exactly three face cards?

The intent of this problem is to support PSSTs
to develop the equivalence that 3*=Q2+1) =
12 +3(22-1') +3(2' - 12) + 1(13). We intend for
this equivalence to develop as follows: 3% as an out-
growth of counting all possible three-card hands (here-
after, hands) (response to the first question in the Card
Problem); (2 + 1) as an equivalent way to express all
possible hands that shows a binary choice between the
number of non-face and face cards in the draw pile; and
12%) +3(2% - 1') +3(2' - 12) + 1(1%) as an equivalent way
of counting all possible hands based on the number of face
cards in a hand (response to the second question in the Card
Problem). The final way of counting the hands involves rea-
soning about the number of ways to get a particular kind
of hand (e.g., there are three ways to get a hand with one
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Fig.4 3-D array representation a
(a) as constructed by PSSTs and
b highlighted according to the
number of face cards

Fig.5 Selection scenarios and
partial products corresponding

to (2 +3y)*

Exactly three x?2 factors | (x? + 3y)(x? + 3y)(x?2 + 3y) - x?-x?%-x?
Exactly two x2 factors | (x? + 3y)(x? + 3y)(x? +3y) - x?-x%-3y
(x?2+3y)(x?>+3y)(x*+3y) - x%:3y-x?
(x?2+3y)(x*+3y)(x*+3y) - 3y-x?-x?
Exactly one x? factor (x2+3y)(x2+3y)(x2+3y) - x?-3y-3y
(x?2+3y)(x?*+3y)(x2+3y) - 3y-x?-3y
(x2+3y)(x?2 +3y)(x?*+3y) - 3y-3y-x?
No x?2 factors (x?2+3y)x*+3y)(x*+3y) - 3y-3y-3y

face card because the face card could be in the first, sec-
ond, or third position) and reasoning about the total number
of hands within a particular way (e.g., there are a total of
(22 . 11) hands for each way because there are two non-face
card options [drawn twice] and one face card option [drawn
once]).

As part of solving the problem, PSSTs use snap cubes to
represent the ordered triples as a 3-D array (Fig. 4a). They then
locate regions in their 3-D arrays representing hands with no
(green), exactly one (blue, only two shown), exactly two (yel-
low), and exactly three face cards (red) (Fig. 4b). We provide
a multi-colored array (Fig. 4b) for the ease of the reader. How-
ever, in the teaching experiment, participants continue to use
monochrome arrays (Fig. 4a) because we want them to estab-
lish regions in the array from the implementation and abstrac-
tion of mental operations rather than introducing a color pat-
tern that might suggest a pre-given structure. PSSTs then work
on cases of the Card Problem, where the number of face and
non-face cards can vary, to develop the generalization that
x+yi=1. (x3) +3- (x2~y1) +3- (xl -yz) +1- (y3).

Once the teachers use the Card Problem to make a gener-
alization of regularities and constraints (Core Aspect A), we
have them work on applying their combinatorial reasoning to
symbolic problems common in algebra curricula, like
expanding (x> + 3y)3 (Core Aspect B). By “applying their
combinatorial reasoning”, we mean it is possible to conceive

of the three binomials as ordered (i.e., a first, second, and
third binomial), where each binomial represents a binary
choice between two variable expressions, x* and 3y (Fig. 5).
Given that there are three binomials and for each there is a
choice between two options, there are a total of eight partial
products (i.e., 23) where each partial product consists of three
factors (i.e., one factor from each binomial). When expand-
ing, there is only one way to create an (x2)3—term, selecting X2
from each of the three binomials and multiplying these terms.
There are three ways to create an (x2)2 . (3y)1-term, selecting
x* from two of the three binomials and 3y from the other
binomial. Continuing with this reasoning produces
@ +39° =" +3((2)7 60" +3((*)" - G»?) + @y’ Once
teachers work on this kind of reasoning, we have them extend
their combinatorial reasoning to the binomial theorem and
problems like (x + a)(x + b)(x + ¢).

One reason we have started the teaching experiments
with cases of the Card Problem prior to the work with
algebraic symbols is that we have considered it to be one
way to support teachers to develop algebraic symbols as
representing a variable number of possible options
rather than treating algebraic symbols simply as letters.
That is, we have considered working on cases of the
Card Problem as a way to support teachers to establish
algebraic symbols, x and y, in their generalization,

(x+y)3:1-(x3)+3~(x2~y1)+3~<x1'y2)+1-(y3) ,
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as representing a possible number of options for non-
face and face cards, respectively. Then, when they tran-
sition to problems where they work exclusively with
algebraic symbols, like expanding (x* + 3y)3, our aim is
for them to maintain, x? and 3y, as representing a vari-
able number of possible options rather than treating, x’
and 3y, simply as letters. We note that it is possible (not
preferable) to apply the combinatorial reasoning shown
in Fig. 5 by treating the problem simply as one about
making a choice between two kinds of letters, either one
chooses x? or one chooses 3y, where the letters do not
represent a possible number of options. Thus, the organ-
ization of tasks is linked to our goal of working with
teachers to develop algebraic symbols that represent a
variable number of possible options.

4.3 Data analysis

After the teaching episodes concluded, the research team
members independently watched the teaching episodes, took
low-inference notes, applied and developed codes, and docu-
mented conjectures about the data (Saldana, 2013). At bi-
weekly meetings, they discussed and triangulated individual
interpretations of data. Once the data had been partitioned
using codes, the research team established second order
models of the PSSTs’ reasoning. A second order model is
the constellation of constructs used to account for another
person’s reasoning (e.g., schemes, reflecting abstraction,
etc.) (Steffe et al., 1983). In our case, we examined the data
for evidence that Olive had constructed the two schemes in
the Conceptual Framework. We identified how she was coor-
dinating these two schemes in different instances of the data,
examined the data for changes she made to her schemes, and
iteratively proposed and refined our account of her reasoning
based on making a consistent and coherent account across
the data set.

5 Results

We now present results from Olive’s case to illustrate the
learning that enabled her to transition from a generalization
in the Card Problem to work on symbolic problems.

5.1 Episode 2: Olive’s MPS and BCS

During the second teaching episode, Olive solved the “three
case” of the Card Problem (two non-face and one face card)
without using a 3-D array. During her solution, there was
evidence that her MPS was enactive and BCS interiorized.
Evidence that her MPS was enactive came from her response
to determining the total number of hands. Olive stated that

@ Springer
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Fig.6 Olive’s MPS list

there were three possible options for the first, second, and
third positions, so the total number of hands was 3 X 3 x 3.
She then created a list (Fig. 6), explaining it as follows.

Excerpt 1: Olive’s explanation

O: As you can see this whole column starts with K [the
first column], this whole column starts with a 2 [the
second column], and this whole column starts with
a 3 [the third column] ....and then when you look at
the second spot [pointing back to the first column], I
rotated through....I exhausted all the ones that have
king in the second spot, and then all the ones that have
2, and all the ones that have 3. And then I went in
the same pattern (in the third spot) king, 2, 3; king,
2, 3; king, 2, 3....I kind of wish [describes how she
would reorganize her second and third columns so the
ordered triples are in a lexicographic order] So I could
look at each column and they would have the exact
same order.

Olive’s explanation indicated that she connected her
multiplication statement to her list; she saw three possible
options for each position in her list (e.g., “I went in the same
pattern (in the third spot) king, 2, 3””). We take this connec-
tion as one key criterion for inferring the construction of an
MPS. The second criterion is organizing the list according to

Fig.7 Olive’s BCS list
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Fig.8 Ordered products cor- a
responding to Kings in a first
draw and b second draw

a lexicographic order. Olive described a lexicographic order
in her first column, and then outlined how she would change
the second and third columns to have the “exact same (lexi-
cographic) order.” Therefore, establishing a lexicographic
order occurred as she looked at her list (i.e., in the context
of perceptually present figurative material) rather than as
an organizing principle for producing it, which is why we
conclude that initially her MPS was enactive.

There was strong evidence of Olive’s construction of an
interiorized BCS within the “three case” of the Card Prob-
lem. As part of her solution of the “three case,” Olive created
a list (Fig. 7) for the number of hands that contained no face
cards. When Olive finished her list, she stated, “I got eight,
and I’m confident with that answer,” explaining, “I started
with all threes. And then all the ways there could be two
threes. And then all the ways there could be one three. And
then no threes.” We interpret her list as a record of hands that
she was creating in visualized imagination and this record
was organized according to the number of threes in a hand.
Thus, her explanation was evidence she had constructed an
interiorized BCS.

5.2 Episodes 3: Ordered products emerge
from work on the 3-D array

We conjectured that Olive’s explanation of the lexicographic
order in her list (Fig. 6) during episode two was a possible
site for her to interiorize her MPS. We tested this conjecture
with two problems at the beginning of the third teaching
episode. Olive assimilated these using her MPS where she
first wrote multiplication statements, and then produced the
ordered triples in a lexicographic order. We took that as suf-
ficient evidence to infer she had interiorized her MPS.

At that point, Olive transitioned to solving additional
cases of the Card Problem where she represented all hands
using a 3-D array. To work with her 3-D array, she ordered
the units of each composite unit along the axes of the array
(king was first, two was second, and three was third) and

b 3" draw

3-1-3

ordered the composite units themselves (there was a first
draw, a second draw, and a third draw). However, she did
not actually pair the king with the king with the king; the
king with the king with the two, etc. Thus, the operations of
her MPS were evoked, but not fully implemented in working
with the 3-D array.’

As part of the PSSTs’ work with the 3-D array, they
located subsets of the ordered triples. For example, Olive
located all hands with a face card in the first position
(Fig. 8a) and Aaron located all hands with a face card in the
second position (Fig. 8b). During this time, Aaron proposed
that they use ordered products to show in their multiplication
statements that subsets of ordered triples were located in dif-
ferent places in the 3-D array. For example, Aaron offered
that they should write the multiplication statement 1 - 3 - 3
for the number of hands with king in the first draw (one pos-
sible option for the first draw, three options for the second
and third draws) (Fig. 8a) and 3 - 1 - 3 for the number of
hands with king in the second draw (Fig. 8b). Olive agreed,
saying “if we are being precise” we would “put the one in the
correct position.” The 3-D array, then, supported the PSSTs
to use ordered products because they wanted the product to
indicate the location of a subset of ordered triples. Using
ordered products in this way opened a new opportunity for
them.

5.3 Episode 4: A new opportunity

During the fourth teaching episode, Olive continued solving
cases of the Card Problem. We illustrate how her reasoning
developed with the “five case” (one face and four non-face
cards). Olive began by selecting a 5 X 5 X 5 3-D array and
organizing the first, second, and third axes in the same way

2 Establishing the 3-D array as a representation for ail ordered triples
involves spatial operations, rotation and translation. We do not ana-
lyze those operations, here, because this paper is focused on the way
Olive coordinated her MPS and BCS.

@ Springer



784

E.S.Tillema, L. J. Burch

47 ok

"X \\ o = 4%

(et 4)%
gl -

577115
(114125

Fig.9 Olive’s expressions to determine a the total number of three-
card hands and b the number of each type of hand

as in Fig. 8a, b. She recorded the total number of hands in
two different ways (Fig. 9a). She then located in her 3-D
array the zero- and one-face-card regions and wrote notation
for them (Fig. 9b, green, blue, respectively). She explained
her notation for the one-face-card regions by saying that the
multiplication problem would be “four times four.” Aaron
had written the notation, (1 - 4 - 4) - 3, for the one-face-card
regions, explaining his multiplication statement as “you have
one option of a face card, call that the first draw, and then
the second draw you have four options of a non-face card,
and then the third draw you have four options of a non-face
card. And then you have to rotate where the face card is,”
which gives you three possible ways to have one face card.
After hearing Aaron, Olive proceeded to locate the ordered
triples in her array with a face card in the first and second
positions and a non-face card in the third position. She then
recorded notation for all ordered triples with two face cards
(Fig. 9b, yellow).

Excerpt 2: Olive explains her notation

TR [pointing to Fig. 9b, yellow]: Do you want to
explain the multiplication problem?

O: If we want to make sure we for sure have two
kings, there is only one option for two of the separate
draws. Either the first and second draw both have to
be a king, or the first and third both have to be a king,
or the second and third both have to be a king. But
either way we’re multiplying one times one because
two of them are fixed, and then times four because
there are four more options for it to not be a king for
the third draw. I could have expanded it out to show
all of the different ways, but I know they are all going
to be equivalent, so one times one times four. So I just
did times three.

TR: [asks O and A to locate the three-face-card region.
O does and records the notation in Fig. 9b, red. TR
asks if she can make an equivalence between Fig. 9a
and Fig. 9b. Instead, Olive writes the following equiva-
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lence 5% = (1 + 4)3 = 125. She then looks at Fig. 9b
and says she cannot remember what 43 represented.]

When Olive was done locating and writing notation for
the zero-, one-, two-, and three-face-card regions in her array
(Fig. 9b), she did not equate the sum of these regions with
530r (1+ 4)3. We take that as evidence that she began her
solution of the “five case” by sequentially using her MPS,
meaning that her scheme closed after each time she found
a particular kind of hand. Her goal was simply to locate a
specific kind of hand and record a multiplication problem
for it. Doing so was not situated within a broader goal of
finding hands with zero, one, two, and three face cards as
another way to produce the total number of hands. Thus, she
used her MPS, first to determine the total number of ordered
triples (i.e., 5%), then to determine the number of ordered tri-
ples with zero face cards, then the number of ordered triples
with one face card.

Olive introduced a novelty into her way of operating
when she located the ordered triples with two face cards. She
located one region in her 3-D array where there were ordered
triples with two face cards, identifying the ordered product
as1 x 1 x 4. Having done so, she explained, “one option for
two of the separate draws...four more options for it to not be
a king for the third draw.” She then took the numerals 1, 1,
and 4, using the position of the numerals to indicate the three
different ways she could get two kings in a hand. We infer
that moving the numerals’ positions evoked the operations
she used to locate ordered triples in her 3-D array, but that
she only implemented those operations when she found the
region with a face card in the first and second positions. Her
ordered product rather than the array, then, became the figu-
rative material on which she was operating. We consider her
operating on the numerals as evidence that she inserted her
MPS into a portion of her BCS (i.e., the portion of her BCS
related to hands that included two face cards). We note that
she operated on numerals that represented possible options
rather than actual cards in making this insertion. Thus, when
she inserted her MPS into her BCS the material she operated
on was different than it had been during the second teaching
episode when she was imagining cards (see Fig. 6).

When the teacher-researcher asked her to write an equiva-
lence between the non-case breakdown of the problem and
the case breakdown of the problem (Fig. 9a, b), Olive could
not remember which region 43 represented. She continued to
say, “I don’t remember,” indicating she was experiencing a
perturbation. The teacher-researcher encouraged her to fig-
ure it out. She spent about six minutes producing notation
(Fig. 10) without locating the regions on her array.

From her notation, we infer that Olive inserted her MPS
into her BCS. She implemented even fewer of the operations
of her MPS than she had when locating ordered triples in
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Fig. 10 Olive’s revised notation for the “five case”

her array, while fully implementing the operations of her
BCS (cf. Excerpt 2). We infer the only operation she imple-
mented of her MPS was ordering the positions in a three-part
product. Having done so, Olive took the number of possible
options for non-face and face cards in a three-part product
as the figurative material on which she fully implemented
her BCS. We make the inference that she fully implemented
her BCS based on her notation: selecting zero 1’s (Fig. 10,
green); selecting one 1 for either the first, second, or third
position (Fig. 10, blue); selecting two 1’s for either the first
and second, first and third, or second and third positions
(Fig. 10, yellow); selecting three 1°s (Fig. 10, red). We infer
that this coordination of schemes allowed her to keep track
of which ordered products she had created until she pro-
duced all eight of them. We note that inserting her MPS
into her BCS meant the result of her BCS was eight ordered
products (e.g.,1-4-4,4.1-4) not eight ordered triples
(e.g., Fig. 7 where she listed three card hands like 333).

We leave open whether the insertion of her MPS into her
BCS was enactive or interiorized. The figurative material
that she carried this insertion out on was numerals, which
she certainly could carry out in visualized imagination (i.e.,
leading to the conclusion that it was interiorized). However,
she had relied extensively on the physical 3-D array to deter-
mine the ordered products. Therefore, it was unclear how
tied her work was to the physical 3-D arrays; if it was tied to
the physical 3-D array then we would conclude the insertion
was enactive.

After she finished writing her notation, the following
interaction took place.

Excerpt 3: Olive continues work on the “five case”
TR: We have ones with no kings, one king, two kings,
and three kings [points to Fig. 10]. How much is that
total?

O: All of this [points to Fig. 10.] Sixty-four plus forty-
eight plus twelve plus one, I think it is probably one
(hundred) twenty-five.

TR: Why do you think ‘it is probably’ that?

O: Because there is no other option. Either you have
no king, one king, two king, or three king. There is

no other alternative. So that should encompass all the
total options. You could add it up to check them.

TR: Do you feel compelled to add them up?

O: No, I’'m confident.

Olive verbally equated the case and non-case breakdowns,
saying that the sum of her case breakdown was “probably
one (hundred) twenty-five”. We take Olive’s subsequent jus-
tification, coupled with her confidence, to indicate an expec-
tation of equivalence, rather than an uncertainty. We infer
from this data that her goal changed. Her goal was now to
use the case break down to determine the total number of
hands, which differs from her earlier goal to determine the
total number of hands within a single case (e.g., how many
hands have no face cards?). We attribute this change in goal
to her new coordination of schemes, inserting her MPS into
her BCS.

We further infer that she had two distinct ways to pro-
duce all ordered triples. The first was using her MPS, which
she symbolized either as 5° or (1 + 4)*. The second was by
inserting her MPS into her BCS. We infer that these two
ways of operating occurred sequentially—she could deter-
mine the total number of ordered triples was 5° or (1 + 4)3
using her MPS, then that scheme closed. She then had a
second way to determine the total number of ordered triples,
which was to insert her MPS into her BCS to produce eight
ordered products, which produced all hands because “there
is no other alternative.” We make the inference that these
two ways of determining the total occurred sequentially for
two reasons. First, there was an extended period of time
between when she produced her notation for each, indicating
that they were likely two distinct ways of producing the total
number of ordered triples. Second, in stating the equiva-
lence, she focused exclusively on the fact that she had pro-
duced a second way to count the total number of hands, the
case break down. We see this explanation as indication that
she was focused on two distinct ways of counting the hands.

We could attribute these ways of operating to Olive
during the third and fourth teaching episodes. During this
time, she continued to refine and condense her notation. For
example, she solved a problem with a draw pile contain-
ing two face cards and three non-face cards, working with
the 3-D array and producing notation (Fig. 11a). At the
end of the fourth episode, she wrote the general statement
(Fig. 11b) where we infer (f + n)* symbolized her first way
of counting all possible ordered triples using her MPS and
P+ 3(n -fz) + 3(n2 -f) + n? symbolized her second way
of counting all possible ordered triples where she inserted
her MPS into her BCS. We note that she defined f as the
number of face cards and n as the number of non-face cards,
indicating she was treating the letters as whole number vari-
ables not simply as letters. However, her choice of which
letters to use as whole number variables (f and n) were still
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closely connected to the Card Problem context, a hallmark
of symbolizing regularities and constraints of contextualized
problems.

5.4 Episode 5 and 6: A surprise

At the end of the fourth teaching episode, the teacher-
researcher anticipated that Olive was ready to begin the
process of transitioning from the generalization she made
in the Card Problem to solving problems intended to expand
the values that she considered for her variable (i.e., so that
the variable could take on integer and rational number val-
ues). However, the fifth and sixth teaching episodes brought
a surprise: Olive showed she was not ready for this work.
We use a data excerpt from the sixth teaching episode to
illustrate this surprise. The teacher-researcher asked Olive
to recall the generalization she had symbolized or cases of
it (e.g., Fig. 11a, b).

Excerpt 4: Olive begins the sixth teaching episode

O: Um, can you remind me what you mean by the
identity because it’s not, I don’t know what you are
referring to?

TR: Yeah, ok. So we did things like finding what five
cubed was. And how did we find what five cubed was?
What were we doing?

O: Five times five times five.

TR: That’s one way. But then we also found another
way.

O: Were we like expanding it?

TR: Mmhmm (yes).

O: Sorry I just really don’t remember.

O [The TR begins to talk about a “five card”
case of the Card Problem with two face and
three non-face cards. O makes a first attempt
at writing a symbolic statement, writing
S$=2+3° =2+ (22+43") + (2! +32) +3°

She expresses uncertainty about it, so the TR
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asks O to think further about it using a 5X5X5
array. O locates the hands with three face cards,
then the hands with face cards in the first and sec-
ond positions, and finally the hands with face cards
in the second and third positions. After locat-
ing these three regions, she stops and writes,
5 =02+3)°=23+3(22-3") +3(2!-32) +37].

We interpret this data excerpt as showing that Olive’s
insertion of her MPS into her BCS was enactive; she still
needed the physical 3-D array to make the insertion. That
is, we infer that locating the three regions on her array, and
their associated ordered products, entailed Olive inserting
her MPS into a portion of her BCS. Once she had located
three regions and produced the first three ordered products,
she was able to correct her symbolic statement without
implementing the remainder of the insertion of her MPS
into her BCS. Nonetheless, producing her equivalence,
5 =(@2+3y =23+3(22-3") +3(2' - 3%) + 33, was con-
tingent upon having the physical 3-D array present. For this
reason, we infer that she could not operate solely on the
numeric symbols themselves to call forth this coordination.

To address this issue, the teacher-researcher made an on-
the-spot conjecture that he would ask Olive to interpret each
of her notational statements: 23, 3 (22 .31 ), 3 (2' . 32), and 33.
In particular, he pressed her to find a way to show all of the
hands for each notational statement. He anticipated that this
would necessitate Olive implementing more fully the opera-
tions of her MPS in the context of inserting it into her BCS.
Olive spent 2.5 min creating Fig. 12a for her notation 33,
explaining, “I visualized the axes (of my 3-D array). Like the
first choice, second choice, and third choice axes [motioning
to show the direction of each axis].” She indicated the large
numbers (Fig. 12a, yellow) represented the card in the third
draw and, for example, all the ordered triples with 4 in the
third draw (Fig. 12a, purple) represented a “slice” in her 3-D
array (Fig. 12b, color-coordinated with Fig. 12a).

In responding to the teacher-researcher’s request, Olive
transitioned from working with a physical 3-D array to
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working on a 3-D array in visualized imagination. Thus,
we interpret Fig. 12a as a record of the hands with no face
cards in a region of an array that she produced in visualized
imagined (Fig. 12b). While the teacher-researcher antici-
pated that she would need to implement the operations of
her MPS more fully while inserting it into her BCS, he did
not anticipate that she would necessarily carry out these
operations on an array in visualized imagination. Because
she was operating on an array in visualized imagination, we
take producing Fig. 12a as initial indication of interiorizing
her insertion of her MPS into her BCS; that is, she took
Fig. 12b (colored slices altogether), as the first of eight pos-
sible ordered products that she would produce. An alterna-
tive explanation would be that Olive simply used her MPS
to produce these ordered triples (i.e., that she did not insert
her MPS into her BCS). Because there is only one way to
have no face cards, it is difficult to know from this data alone
if her BCS was activated. To examine this issue, we present
data from how she interpreted the request to show all the
hands for her notational statement 3 (22 .31 ) (i.e., hands with
two face cards).

Excerpt 5: Olive interprets 3(2% - 3')

O [makes two unsuccessful attempts at recording the
hands with two face cards. The attempts make apparent
she is confusing the two different meanings of ‘three’
in the notational statement, 3(22 - 3') where the first
three means the three different ways to have two face
cards and the second three means the three possible
non-face card options. She then makes Fig. 13a—c
without a physical array. Her explanation, however,
indicates she is imagining one. She relates Fig. 13a—c
to Fig. 12a and her imagined array, explaining]: For
this one [points to Fig. 12a] I only had to make one
because when I'm thinking of a 3-D axis, and when
we look at like this [grabs the physical array] this is
all in one section so that’s why there is only one. But

ara w

this [points to Fig. 13a—c] is three different sections of
this whole (array). So you have to, if I did it the same
way, [ had to do three different diagrams. So, this is the
one [points to Fig. 13a, yellow] where my third axis
or the last spot in my sequence is the non-face card,
and there are three options. [O continues to explain
that she is imagining the face card options on the first
and second axes of her 3-D array (Fig. 13a, red). She
then says the ordered triples in Fig. 13a are slices in
her array that she is imagining (Fig. 13d, color coded
to match Fig. 13a). She makes similar explanations
for Fig. 13b, c.]

We consider this data excerpt to be confirmation that
Olive was inserting her MPS into her BCS, while fully
implementing the operations of her MPS to produce ordered
triples in a lexicographic order. Given Olive’s two unsuc-
cessful attempts to make Fig. 13a where it was evident she
was conflating the two meanings of three in her notation,
3 (22 -3! ), we infer that fully implementing her MPS in the
context of inserting it into her BCS was occasion for her
to reflect on how she was coordinating these two schemes.
Like Fig. 12a, Fig. 13a—c were a record of Olive operating
on an array that she imagined rather than her operating on a
physical array. Therefore, we take this data excerpt as indica-
tion that Olive interiorized the insertion of her MPS into her
BCS; she was now working only on an array in visualized
imagination.

Beyond Olive’s interiorization of this coordination, we
make an additional inference about Olive’s coordination of
schemes in Excerpt 5 that is different from how we inter-
preted Olive’s coordination of schemes in Excerpt 3. To sup-
port making this inference, we first point out that, as Olive
created Fig. 13a—c, she seemed to maintain that each axis in
her array had five options and appropriately selected either
two or three options from each axis. We draw this conclusion
based on comparing across Fig. 13a—c where five choices are
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represented along each axis. For example, Fig. 13a (yellow)
has the 2, 3, 4 as choices for the third axis while Fig. 13b
(yellow) has K, Q as the choices on her third axis. A similar
comparison across Fig. 13a—c shows that all five choices are
represented for the first and second axis as well (Fig. 13a—c,
red). We take the fact that Olive maintained all five pos-
sibilities on each axis as initial evidence for the inference
that she inserted the case breakdown into her way of count-
ing the total number of hands without the case breakdown.
Thus, her way of counting the case breakdown, symbolized
as23 4+3(2%-31) +3(2" - 3%) + 33, was contained inside her
way of counting the non-case break down, symbolized as
53 or (2 4+ 3)°. This insertion meant that she could use the
number of possible face options, 2, and number of possible
non-face options, 3, either to generate the total number of
three card hands without the case breakdown (i.e., 5 possible
options that could be used to produce, 5° hands) or to pro-
duce the case breakdown through an appropriate selection
of the number of face card options or number of non-face
card options.

This inference differs from the explanation we gave in
Excerpt 3 when Olive solved the “five case” with one face
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card and four non-face cards. In that case, we interpreted
Olive as having two sequential ways of counting the total
number of hands. The first was a result of her MPS which
she expressed as 5% or (1 + 4)* and the second was the case
breakdown that involved inserting her MPS into her BCS
(see Fig. 10 for her notation). They were equivalent because
both counted all of the hands. However, they were still two
distinct ways to count all of the hands. We explain Excerpt
5 in terms of schemes in the following way: Olive inserted
into her MPS (i.e., her way of counting the total number of
hands not using the case breakdown) the insertion of her
MPS into her BCS (i.e., her way of counting the case break-
down). Doing so was a recursive insertion of her schemes
where the case and non-case ways of counting hands were
contained in a singular scheme. We consider this recursive
insertion to be a functional accommodation where we call
the single scheme it produced a combinatorial scheme for
binomial expansion (CSBE). We infer this scheme was inte-
riorized given that Olive operated on an array in visualized
imagination.

We note that Olive’s recursive insertion of schemes, and
construction of a CSBE, meant that the equivalence (i.e.,
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Fig. 15 Olive writes (x*+3y)° as the product of three binomials

(2 +3)’ =2° +3(22-3") +3(2" - 3%) + 3 would no longer
grow out of having two different ways of counting the total
number of hands, as it had when she sequentially used her
MPS to find the total number of hands, and then inserted her
MPS into her BCS to find the total number of hands through
the case breakdown. Instead, she would be able to use an
appropriate process of selecting options from (2 + 3)* to
produce 2% + 3(2% - 3') + 3(2! - 3%) + 33. We look for sup-
porting evidence of Olive’s construction of a CSBE from
later in the sixth teaching episode.

5.5 Episodes 6: Olive’s CSBE

The teacher-researcher asked the PSSTs to consider what
the expansion of (x> + 3y)3 would be. Olive wrote Fig. 14a.
The teacher-researcher asked her how she would explain her
equivalence. She wrote the ordered products in Fig. 14b,
explaining the different ways to arrange the terms. Aaron
gave a similar justification, but then asked how the binomi-
als to be expanded, i.e., %+ 3y)3, were connected to the
ordered products (Fig. 14b). Olive responded to Aaron’s
question.

Excerpt 6: Olive explains how (x> + 3y)3 can be used
to generate Fig. 14b

O: Um, I’m thinking of when you write out, like x
squared, like this [writes Fig. 15].

Cause, I don’t know, when you think of FOIL, you
know—Iike, when you think of FOIL, first [covers up
the third binomial and only focuses on the first two
binomials], you like multiply this [points to the x* in
the first binomial] by the first one [points to x* in the

second binomial] and then you multiply it [x> from
the first binomial] by the second one [3y in the second
binomial]. And so like, the order in which you multiply
them changes like—you have to make sure that you
account for each one. [Olives attempts twice to make
a description of how she would apply this thinking to
all three binomials. She loses track of which partial
products she has produced, saying] It (FOIL) doesn’t
make sense when I’'m looking at all (three) of them
(binomials) at once.

O [TR encourages her to continue. O seems to have
an insight and says excitedly] Yeah, yeah, ok! And
then, yeah, so you have to multiply this [x? in the first
binomial] by each thing [gestures across the second
and third binomials]. And so you have to—it’s like
drawing cards! Like you’re—it’s like drawing cards,
you—you start with this one [x? in first binomial], this
one [x? in second binomial, and this one [x2 in third
binomial]. Then you have to do this one [x? in first
binomial], this one [x2 in second binomial], and this
one [3y in third binomial. Continues her explanation
about how appropriate selection from the binomials
produces each term of the polynomial.] So you have
to make sure you multiply—you’re taking care of all
the terms multiplied by every single term. So that is
why there’s three ways to do x squared x squared three
y. [O exclaims] When I was in high school, I wouldn’t
have realized that. That was fun! That was worth really
struggling.

We consider this excerpt to be confirmation of Olive’s
construction of a CSBE because she connected the initial
binomials (Fig. 15) to the ordered products they produced
(Fig. 14b), indicating that she was no longer considering her
equivalence as standing for two distinct ways of counting the
same set of ordered triples. Had that been the case, she
would have seen the expression, (x> + 3y)3, as similar to her
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first way of finding the total number of hands and the expres-
sion (x2)3 + 3(()62)2 . (3y)1) + 3(()62)1 . (3y)2) +(3y)’ as
similar to her second way of counting the total number of
hands, but she would have been unable to produce one way
of counting from the other. Instead, she was able to use the
binomials to produce the ordered products. Thus, we take
this excerpt as confirmation of her recursive insertion of her
schemes (i.e., her construction of a CSBE), which character-
izes the projective aspect of reflecting abstraction.

This excerpt also illustrates Olive’s abstraction of the
operations of her CSBE, and application of them to novel
figurative material in the form of algebraic symbols. We
infer from Fig. 15 that she ordered the binomials as a first,
a second, and a third binomial, which was similar to how
she operated in the Card Problem ordering the draws. She,
then, tried using two binomial to explain why there would
be different arrangements of the ordered products, stating
that she was thinking about FOIL. Thinking about “FOIL”,
however, did not help her explain the product of three bino-
mials. She got lost twice, and then stated, “It doesn’t make
sense when I’m looking at all (three) of them (binomials) at
once.” We take this as indication that she had entered a state
of perturbation. She resolved her perturbation on the spot by
envisioning x? and 3y as the possible number of face or non-
face card options in the Card Problem. She then produced
all of the possible ways to select from these two options,
differentiating between when she selected a term from the
first, second, or third binomial in order to produce all of the
possible partial products that made up the final polynomial.
We consider this excerpt as evidence that she abstracted the
operations from the Card Problem context and used them
to re-interpret how she thought about binomial expansion.

@ Springer

We look to teaching episode seven for evidence of how
her CSBE supported her to reorganize her extant schemes
for binomial expansion, the third component of reflecting
abstraction.

5.6 Episodes 7: Olive’s reorganization

The seventh teaching episode began with Olive explaining
two symbolic problems involving cubing binomials similar
to the one in Excerpt 6. She suggested that she could gener-
alize her reasoning to (a + b)° where z represented a variable
number of draws. She and Aaron spent much of the seventh
teaching episode justifying the z = 4 and 5 cases. At the end
of the seventh teaching episode, Olive solved two problems
involving binomial expansion of non-identical binomial fac-
tors, for example, of the form, (x + a)(x + b)(x + ¢), where
x is a variable; a, b, ¢ are parameters; and a # b # c. Her
solution of these problems showed the power of her CSBE
in supporting her to operate on problems involving con-
ventional algebraic symbols and to develop novel algebraic
structure.

Excerpt 7: Olive’s expansion of non-symmetric bino-
mials

TR [Asks the PSSTs to consider how they could
expand (x + 1)(x + 2)(x + 3). A writes Fig. 16a; O
writes Fig. 16b]: What’s hiding in this last expression
[circles where O has written x> + 6x% + 11x + 6]?

O: It doesn’t show you what order you are picking the
three different ways you can get two x’s. And then the
three different ways you can get one x. It’s just hiding
that. Like that fixing process.
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O: And also the parentheses [referring to A’s expres-
sion (Fig. 16a)] shows you, kind of like, each choice. It
is separating like ‘this is how you can get two x’s one
way [points to x - x - 3]. This is how you can get two
x’s another way [points to x - 2 - x]. This is how you
can get two x’s another way [points to 1 - x - x].

TR: So we lost something [referring to the expression
x3 4+ 6x2 + 11x + 6]. Is there some way you could write
that coefficient [pointing to the 6 in 6x7] and still show
some relationship to this [points to the initial binomi-
als]?

O: Yeah [writes > + B3 +24+ D> +(2-3+2-1
+3-Dx+1-2-3].

TR [Asks the PSSTS to determine (x + a)(x + b)(x + ¢).
O writes Fig. 17]: Did you guys know that that was
true?

O & A: No.

O: Nope! That was fun!

TR: Does what we are doing feel different from
“FOILing” to you?

O: Yeah. So when I'm multiplying, I don’t normally
think about taking out the three and the two and the
one and adding them together and multiplying that by
the x squared. I kind of think of just multiplying three
things together over and over again. So this kind of
makes it appear simpler for sure because there is this
many times [pointing to the coefficient (a + b + ¢) in
Fig. 17], yeah, this many times I’'m going to have an
x squared. Cause you’re doing x times x times three,
and you’re also doing x times two times x, and you’re
also doing one times x times x. You’re kind of like sim-
plifying. Instead of doing the x times x three different
times you're seeing, you're looking ‘I’m going to have
it three times’ and this (referring to (@ + b + ¢)) is what
I’m going to be multiplying it by.

We consider this data excerpt to illustrate how Olive was
reorganizing her extant schemes in relation to her CSBE.
Her CSBE allowed her to interpret binomial expansion as

more than “just multiplying three things together over and
over again,” which is how she had thought about it before.
Instead, she saw a common structure that would be involved
in expanding any three binomials—namely, that there
would be one way to get an x>-term, three ways to get an
x*-term, three ways to get an x-term, and one way to get a
constant term. We infer that this common structure is what
allowed her to move immediately from a specific case of a
cubic expansion, (x + 1)(x + 2)(x + 3), to the general case,
x+a)(x+Db)(x+c).

Her work on these two cubic expansions also involved her
in producing a new algebraic structure. The new structure
was that the coefficients for each term of the polynomial had
a specific relationship to the constant terms of the binomi-
als (“and this [referring to (a + b + ¢)] is what I’m going
to be multiplying it [the x’>-term] by”). This new structure
made binomial expansion “appear simpler”; we infer that
it appeared simpler because there was the same structure
for any given set of three binomials that allowed her to move
more directly to a final polynomial. Her work here involved
producing this new algebraic structure in the context of
working within a conventional algebraic symbol system.

6 Discussion
6.1 Three planes of learning

Olive’s case helps us to identify three “planes of learning”
that are important in the construction of a CSBE and, in
turn, helps us to operationalize the projective aspect of
reflecting abstraction. The first plane of learning entails
the plane at which a person can use their MPS and their
BCS to solve combinatorics problems. We identified that
Olive had entered the teaching experiment having an enac-
tive MPS (that quickly became interiorized) and an inte-
riorized BCS. It is possible to solve the Card Problem (or
similar problems) in two different ways at this first plane
of learning. The first way is that a person may sequentially
use their MPS to find each specific kind of hand where their
MPS closes after they find each kind. From the problem
solver’s perspective, their goal of finding how many hands,
for example, have no face cards is not situated in a broader
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a b

Exactly three 1’s 111 1x1x1
114 1x1x%x4

Exactly two 1’s 141 1x4x1
411 4x1x1

144 1x4x%x4

Exactly one 1 414 4x1x4
441 4x4%x1

No 1’s 444 4X4%x4

Fig. 18 Three choices between 1 and 4: a as ordered triples, b as
ordered products

goal that the case breakdown will produce all of the possible
hands. Olive operated in this way in her first solution of the
“five case” of the Card Problem with one face and four non-
face cards. The second way is that a person may only use
their BCS. This kind of reasoning in the “five case” of the
Card Problem would amount to treating one possible option
and four possible options simply as digits 1 and 4, where
the possible outcomes are ordered triples (Fig. 18a) rather
than products of possible options (Fig. 18b). We consider it
unlikely for a person to operate in this way in the context of
the Card Problem where a researcher can easily problematize
this meaning by, for example, asking a person to list hands
symbolized by the digits “1 4 4”. However, our studies have
shown that this way of operating is common when teachers
start with or move to symbolic tasks in algebra. In these
tasks, some teachers interpret the variables simply as letters
(e.g., the letters x and y). In the context of symbolic algebra
tasks, it is difficult to problematize this meaning because it
is not possible to represent the set of ordered triples that is
symbolized by, for example, xyy.

The second plane of learning is characterized by having
two sequential ways of counting all possible ordered triples.
First, a person uses their MPS to determine the total num-
ber of ordered triples; for example, 5° ordered triples in the
“five case” of the Card Problem. With the goal of their MPS
satisfied, this scheme closes before they initiate the second
way of counting all possible ordered triples. This second
way involves a person inserting their MPS into their BCS to
count the zero-, one-, two-, and three-face-card hands where
the goal of this insertion arises from the person’s establish-
ment of the case breakdown as a second way to count all
possible ordered triples. We emphasize that the two ways
of counting (the case and non-case break down) are done
sequentially. Thus, the equivalence that arises is derived
from having two distinct ways of counting the same ordered
triples. Olive engaged in this kind of reasoning when she
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produced 8 ordered products in the “five case” (one face and
four non-face) and equated them with her way of counting
all of the ordered triples for the non-case break down.

The third plane of learning is characterized by a recursive
insertion of schemes; a person inserts into their MPS (the
non-case breakdown) the insertion of their BCS into their
MPS (the case breakdown), which yields the construction of
a CSBE. At this plane of learning, the case breakdown is no
longer a distinct way of counting ordered triples. Instead, it
is contained within the non-case breakdown of the situation.
A marker of this kind of reasoning is maintaining the binary
choice as a sum of the total number of possible options. For
example, Olive maintained five as composed of two options
and three options, and used these options to produce all of
the possible ordered products. For Olive, one consequence
of constructing a CSBE was that she could see a connection
between the binomials she started with (e.g., (x> + 3y)3)
and the final polynomial she produced (e.g.,
()" +3( () <3y>13 +3(()" - Gy?) + @), This
consequence was profound: she reorganized how she thought
about binomial expansion in the cubic, quartic, quintic, etc.
cases and in non-symmetric binomial multiplication prob-
lems where she could see what she considered a novel alge-
braic structure.

6.2 Contributions and future directions

We propose two inter-related contributions of this
study. First, we have illustrated how developing com-
binatorial reasoning was instrumental in support-
ing Olive’s algebraic reasoning. Once she had con-
structed a CSBE, she established the equivalence
(+ @)+ b)Y +¢) = 2% + @+ b+ 62 + (ab +ac + box +abe With ease.
Olive interpreted this equivalence as a statement about a
relationship between the constant terms of binomials and
the coefficients of a polynomial. We consider this relation-
ship to be a significant step towards seeing how the roots
and coefficients of a polynomial are connected (i.e., Viete’s
formulas). Establishing this connection could be a powerful
basis for the study of polynomials and their roots at the sec-
ondary level. However, in the U.S. context, textbooks tend
to emphasize sequential distribution for binomial expan-
sion, which in Olive’s words involves, “multiplying three
things together over and over again,” rather than emphasiz-
ing combinatorial reasoning that can support seeing how the
roots and coefficients of a polynomial are connected (Burch
et al., 2021). We see this contribution as opening a conver-
sation with international audiences to compare the ways in
which discrete mathematics has or has not been integrated
into extant curricular materials to support students study of
polynomials and their roots. We consider this comparison
to be an important area for future research.
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The second contribution of this study is that we have
provided a way to operationalize how teachers and students
make the transition from Core Aspect A to B of Kaput’s
(2008/2017) framework vis-a-vis Piaget’s reflecting abstrac-
tion. Kieran (2007) noted the centrality of Core Aspect B
to secondary school algebra (what she calls the transfor-
mational aspect of algebra), while also identifying a lim-
ited number of studies that have investigated how students
or teachers engage in this work. Dorfler (2008) echoed
this observation suggesting that studies on, what he called
descriptive algebra (similar to Core Aspect A), were only
half of the story, and that further work was needed on opera-
tive aspects of algebra (similar to Core Aspect B). Reflect-
ing abstraction provides a tool to study how these two Core
Aspects of algebra might be connected so that students and
teachers can use their work in Core Aspect A to transition
to powerful work related to Core Aspect B. One important
question for further research in this arena is when and how
to move back and forth between these two Core Aspects so
that the two are mutually supportive of each other.
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