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Abstract
This paper presents data from the first of three iterations of teaching experiments conducted with secondary teachers. The 
purpose of the experiments was to investigate how teachers’ combinatorial reasoning could support their development of 
algebraic structure, specifically structural relationships between the roots and coefficients of polynomials. The data in this 
paper examines the learning that occurred as one teacher transitioned from making a generalization from a sequence of 
contextualized combinatorics problems to applying her combinatorial reasoning to symbolic problems common in algebra 
curricula. The findings from the study include the identification of three planes of learning that can be used to differentiate 
among ways that combinatorial reasoning can be used to engage in binomial expansion. The highest plane involved con-
structing a combinatorial scheme for binomial expansion, a scheme that supported the teacher to produce the equivalence, 
(x + a)(x + b)(x + c) = x

3 + (a + b + c)x2 + (ab + ac + bc)x + abc ), and to see important algebraic structure in it. The contri-
butions of the study include: (a) expanding earlier arguments about the ways that combinatorics can be integrated into goals 
of extant curricula (e.g., Maher et al. in Combinatorics and reasoning: Representing, justifying and building isomorphisms. 
Springer, 2011); and (b) proposing how reflecting abstraction can be used to study the transition between generalizations 
learners make from contextualized problem situations to operating with and on generalizations expressed with  conventional 
algebraic symbols. This second contribution is an under-researched area in the algebra literature (Dörfler in ZDM - Int J 
Math Educ 40(1):143–160, 2008), and points to an important role that combinatorial reasoning can play in algebra learning.

1  Introduction

Mathematics educators have routinely called for an increase 
in discrete mathematics in K-12 curricula (e.g., Kapur, 
1970). As part of making these calls, researchers interested 
in integrating combinatorics, one branch of discrete math-
ematics, into K-12 curricula have provided arguments for 
how combinatorics can support mathematical processes 
(e.g., Maher et al., 2011). To a lesser extent, researchers have 
made arguments for how combinatorics can be integrated 
with current content standards, with the strongest arguments 
being presented for connections between combinatorics and 
probability (e.g., Batanero et al., 2016).

Given the centrality of algebra in curricula internation-
ally, we use this paper to present empirical data about how 

combinatorial reasoning can support powerful forms of alge-
braic reasoning at the secondary level (grades 9–12). The 
data we present comes from the first of three teaching exper-
iments (Steffe & Thompson, 2000) whose purpose was to 
understand how combinatorial reasoning could support sec-
ondary teachers to engage with advanced algebraic identities 
(e.g., (x + a)(x + b)(x + c) = x

3 + (a + b + c)x2 + (ab + ac + bc)x + abc ) 
in novel ways. This paper focuses on the learning of a sin-
gle pre-service secondary teacher (PSST). We focus on this 
PSST to illustrate one facet of the learning that we aimed 
to engender with the teachers more broadly. We respond to 
the following research question in this paper: What learning 
occurred as a PSST transitioned from symbolizing regulari-
ties and constraints of contextualized combinatorics prob-
lems to applying her combinatorial reasoning to operate on 
conventional algebraic symbols?
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2 � Literature review

Research on students’ combinatorial reasoning has identi-
fied how combinatorics problems can support mathematical 
processes like problem solving and posing (English, 1999), 
generalization (Speiser et al., 2007), and justification and 
proof (Maher et al., 2011). These processes are often identi-
fied as lacking in algebra courses at the secondary level. For 
example, many secondary algebra textbooks in the United 
States present symbolic problems first, delaying or omit-
ting application problems designed for students to engage 
in problem solving (Sherman et al., 2016). Moreover, U.S. 
textbooks routinely present pre-given formulas as “useful” 
rather than provide opportunities for students to generate, 
justify, or prove their own generalizations (Thompson et al., 
2012).1 Thus, the domain of combinatorics, with its poten-
tial to support these processes, has significant promise for 
enhancing algebra curricula at the secondary level.

Kaput (2008/2017) has framed algebraic reasoning 
around three strands and two core aspects (Fig.  1). An 
important component of secondary school algebra is for 
students to engage in Core Aspect B of Kaput’s framework 
(Kieran, 2007). Mathematics education researchers, how-
ever, have tended to focus on Core Aspect A, leaving open 
the question as to how work on Core Aspect A could support 
work on Core Aspect B (Dörfler, 2008). We use this paper 
to illustrate how symbolizing regularities and constraints 
in the solution of contextualized combinatorics problems 
(Core Aspect A) can support powerful forms of reasoning on 

conventional algebraic symbols (Core Aspect B). Our work 
is situated within Strand 1 of Kaput’s framework. Strand 1 
has received a significant amount of attention at the elemen-
tary and middle grades level (e.g., Stephens et al., 2017), but 
less attention at the secondary level where more attention 
has been given to Strand 2, functions (e.g., Thompson & 
Carlson, 2017). To address Strand 1, we build from work 
where we have articulated connections between combinato-
rial and quantitative reasoning (e.g., Tillema, 2018; Tillema 
& Gatza, 2016).

3 � Conceptual framework

We use this section to: (a) define the conceptual constructs 
we use to study learning; (b) outline the two combinatorial 
schemes we consider central to the learning that we docu-
ment; and (c) discuss our use of reflecting abstraction to 
study the transition from Core Aspect A to B.

3.1 � Constructs for studying learning

We use operations and schemes to investigate mathemati-
cal learning. Following Glasersfeld (1995), an operation 
is a mental action. Operations are the building blocks of 
schemes. A scheme contains three parts: an assimilatory 
mechanism, activity, and result. A scheme opens when a 
person assimilates a problem situation by making an inter-
pretation of it. Assimilation triggers an activity, which 
involves carrying out operations on figurative material that 
may be perceptually present (e.g., a deck of playing cards or 
a physical array) or mentally generated (e.g., imagined cards 
or an imagined array). The operations a person carries out 
produces a result.

Schemes are goal-directed: a person establishes a goal in 
the act of assimilation, monitors the goal during the activ-
ity, and determines whether the result satisfies the goal. If a 
scheme’s result satisfies the goal, the scheme closes. If the 
result does not satisfy the goal, or the activity produces an 

Fig. 1   Kaput’s (2008/2017) framework for algebraic reasoning (p. 11)

1  We note that our argument about curricula is rooted in the United 
States context and may not be the case for countries that have worked 
to more substantively integrate discrete mathematics into their cur-
ricula (e.g., Spain, Hungary, Germany, Israel, etc.). However, we con-
sider this issue an important point for discussion among international 
researchers—understanding in what ways and how different countries 
have taken up calls to integrate discrete mathematics in curricular 
materials.
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unexpected result, a person may experience a perturbation. 
In such cases, a person may make changes to their scheme. 
When a more or less permanent change occurs while the 
schemes are in use (Steffe, 1991), we consider these changes 
to be functional accommodations and functional accommo-
dations to be acts of learning.

As part of characterizing a person’s schemes, we attend 
to the extent to which a person carries out the activity of 
their schemes and the kind of figurative material on which 
they carry them out. We use the term implemented to discuss 
the extent to which a person carries out the activity of their 
scheme. At times, all operations of a scheme may be imple-
mented, while at other times, operations may be evoked but 
not implemented. We use the term enactive scheme when a 
person is constrained to carrying out the scheme with the 
support of perceptually available figurative material. By con-
strained, we mean that, without the perceptually available 
material (e.g., a set of cards, a list, or a physical 3-D array), 
the person cannot carry out the activity of their scheme and 
accomplish their goal. We use the term interiorized scheme 
when a person can carry out a scheme on mentally generated 
figurative material produced in visualized imagination (cf. 
Steffe, 1992). Mentally generated figurative material may 
or may not manifest as perceptually present. For example, a 
person who operates on a 3-D array in visualized imagina-
tion, may operate exclusively in visualized imagination or 
they may create some perceptually present figurative mate-
rial (e.g., draw part of a 3-D array they are imagining) as a 
record of having operated in visualized imagination.

3.2 � Combinatorial schemes

We use the Password Problem to illustrate two combinatorial 
schemes whose coordination was important for character-
izing the learning we aimed to engender with teachers.

Password Problem. Using the characters A and B, 
how many three-character passwords could you make 
(order matters)?

Upon reading the Password Problem, a person may form 
a goal of finding all possible three-character passwords, 
which is when the scheme opens. We provide one example 
of how a person may proceed with that goal in mind. A per-
son may interpret the situation as involving three composite 
units, where a composite unit involves a person treating 
multiple units (e.g., letters A and B) as a single entity (e.g., 
a set of letter possibilities). The activity of the person’s 
scheme can involve ordering the three composite units (a 
first set of letters, a second set, a third set); ordering the 
units of each composite unit (e.g., A is first, B is second); 
pairing the first unit of each composite unit to produce an 
ordered triple (i.e., AAA); pairing the first unit of the first 

two composite units with the second unit of the third com-
posite unit to produce another ordered triple (i.e., AAB). 
The person may then continue with this activity in a lexico-
graphic order where the first two positions are fixed and all 
possibilities are put into the third position before changing 
the character in the second position (Fig. 2, English’s [1991] 
odometer method).

With this example, the operations that make up the activ-
ity of the person’s scheme are ordering and pairing opera-
tions (Tillema, 2014). The figurative material could be per-
ceptually present (e.g., actual cards with letters) or mentally 
generated (e.g., letters a person imagines). The person’s 
activity transforms the three composite units into the result 
of the scheme, eight ordered triples (i.e., eight three-char-
acter passwords). A person may then use the lexicographic 
order to confirm that they have satisfied their goal to produce 
all possible ordered triples at which point the scheme closes. 
We call this scheme a multiplicative pairing scheme (MPS) 
for 3-D combinatorics problems.

The second scheme we discuss is similar to the first in 
that: (a) a person assimilates the Password Problem using 
three composite units and (b) the activity of the scheme 
involves ordering and pairing operations. The primary differ-
ence is the organizing principle of this scheme. The person 
organizes the passwords according to the number of A’s in 
them (i.e., exactly three, two, one, or no A’s) (Fig. 3). With 

Fig. 2   Listing passwords using 
lexicographic ordering

Fig. 3   Listing passwords by the number of A’s
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this organizing principle in mind, the person may then use 
ordering and pairing operations to accomplish their goal of 
producing all possible ordered triples; with the goal satis-
fied, the scheme closes. We call this scheme a binomial coef-
ficient scheme (BCS).

3.3 � Reflecting abstraction: moving from Kaput’s 
core aspect A to B

We use reflecting abstraction (Piaget, 1977/2001) to account 
for how a person transitions from Core Aspect A to B of 
Kaput’s (2008/2017) framework. Reflecting abstraction 
involves a person abstracting the operations of a scheme or 
a coordination among schemes as opposed to abstractions 
related to specific figurative material on which the opera-
tions or coordinations are carried out. As such, the scheme 
or coordination among schemes is freed from specific figura-
tive material (Glasersfeld, 1995). This criterion of reflect-
ing abstraction is focused on abstraction in that a person 
can impose a scheme or coordination among schemes on 
new situations or contexts, which involve different figura-
tive material. To claim that a person has moved from Core 
Aspect A to B means that their scheme is freed from both 
the specific figurative material and context in which it was 
developed and that the coordination is being applied to new 
figurative material, in this case algebraic symbols. It is in 
this way that we consider reflecting abstraction as a way to 
operationalize moving from Core Aspect A to B of Kaput’s 
framework.

Piaget (1977/2001) uses two additional features to char-
acterize reflecting abstraction: (a) there is a projection of 
a scheme or coordination among schemes from a lower 
to higher plane of learning and (b) a reorganization of the 
schemes at the higher plane of learning. Our data analysis 
focuses on a functional accommodation involving a coordi-
nation among the MPS and BCS. Therefore, we differenti-
ate between two ways a person can coordinate schemes—
sequentially or by inserting one scheme inside another. A 
sequential coordination of schemes means that the schemes 
are activated in sequence with one scheme closing before 
the next scheme opens. An insertion of schemes means a 
person embeds one scheme inside another scheme where 
the two schemes become a single scheme. Identifying an 
insertion, rather than a sequential use, of schemes is how we 
operationalize the notion of projection in the definition of 
reflecting abstraction. That is, one scheme may be inserted 
into another to become a single scheme where the single 
scheme is at a higher plane of learning precisely because the 
new single scheme was previously multiple schemes. The 
reorganization part of reflecting abstraction, then, entails 
how the new singular scheme gets integrated with a person’s 
prior schemes.

4 � Methods

4.1 � Methodology, participants, and data collection

We report on Olive, a PSST, who participated in the first 
of three iterations of teaching experiments that we con-
ducted with secondary teachers. One purpose of a teaching 
experiment is to identify and document authentic learning 
that occurs in the context of teaching (Steffe & Thompson, 
2000). To this end, a teacher-researcher plans tasks for par-
ticipants in order to learn about and test conjectures related 
to their ways of reasoning.

Olive participated in 13 teaching episodes that ranged 
from 60 to 90 min. The first author served as the teacher-
researcher. All episodes occurred with a partner, Aaron, and 
were videotaped using three cameras: one to capture inter-
action, one camera to capture each PSSTs’ written work. 
The video files were mixed into a single file for analysis. 
Five mathematics education graduate students were also 
part of the research team, including the second author. They 
attended all teaching episodes, assisted in data collection, 
and supported the planning of tasks to test conjectures about 
the PSSTs’ reasoning.

4.2 � Design and goals of the teaching episodes

We now outline relevant portions of the design and goals 
of the problems we presented to the PSSTs. Our teaching 
experiments have begun with the Card Problem.

Card Problem. You have the 2, 3, and K of Diamonds 
in a draw pile. A three-card hand is created by drawing 
a card, replacing it, drawing a card, replacing it, and 
drawing a third card. How many possible three-card 
hands could you make? How many three-card hands 
have no face cards, exactly one face card, exactly two 
face cards, and exactly three face cards?

The intent of this problem is to support PSSTs 
to develop the equivalence that  3

3 = (2 + 1)
3
= 

1(2
3
) + 3

(

2
2
⋅ 1

1
)

+ 3
(

2
1
⋅ 1

2
)

+ 1(13) .  We intend for 
this equivalence to develop as follows: 33 as an out-
growth of counting all possible three-card hands (here-
after, hands) (response to the first question in the Card 
Problem); (2 + 1)

3 as an equivalent way to express all 
possible hands that shows a binary choice between the 
number of non-face and face cards in the draw pile; and 
1(2

3
) + 3

(

2
2
⋅ 1

1
)

+ 3
(

2
1
⋅ 1

2
)

+ 1(13) as an equivalent way 
of counting all possible hands based on the number of face 
cards in a hand (response to the second question in the Card 
Problem). The final way of counting the hands involves rea-
soning about the number of ways to get a particular kind 
of hand (e.g., there are three ways to get a hand with one 
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face card because the face card could be in the first, sec-
ond, or third position) and reasoning about the total number 
of hands within a particular way (e.g., there are a total of 
(

2
2
⋅ 1

1
)

 hands for each way because there are two non-face 
card options [drawn twice] and one face card option [drawn 
once]).

As part of solving the problem, PSSTs use snap cubes to 
represent the ordered triples as a 3-D array (Fig. 4a). They then 
locate regions in their 3-D arrays representing hands with no 
(green), exactly one (blue, only two shown), exactly two (yel-
low), and exactly three face cards (red) (Fig. 4b). We provide 
a multi-colored array (Fig. 4b) for the ease of the reader. How-
ever, in the teaching experiment, participants continue to use 
monochrome arrays (Fig. 4a) because we want them to estab-
lish regions in the array from the implementation and abstrac-
tion of mental operations rather than introducing a color pat-
tern that might suggest a pre-given structure. PSSTs then work 
on cases of the Card Problem, where the number of face and 
non-face cards can vary, to develop the generalization that 
(x + y)3 = 1 ⋅

(

x3
)

+ 3 ⋅
(

x2 ⋅ y1
)

+ 3 ⋅

(

x1 ⋅ y
2
)

+ 1 ⋅
(

y3
)

.
Once the teachers use the Card Problem to make a gener-

alization of regularities and constraints (Core Aspect A), we 
have them work on applying their combinatorial reasoning to 
symbolic problems common in algebra curricula, like 
expanding 

(

x2 + 3y
)3 (Core Aspect B). By “applying their 

combinatorial reasoning”, we mean it is possible to conceive 

of the three binomials as ordered (i.e., a first, second, and 
third binomial), where each binomial represents a binary 
choice between two variable expressions, x2 and 3y (Fig. 5). 
Given that there are three binomials and for each there is a 
choice between two options, there are a total of eight partial 
products (i.e., 23) where each partial product consists of three 
factors (i.e., one factor from each binomial). When expand-
ing, there is only one way to create an (x2)3-term, selecting x2 
from each of the three binomials and multiplying these terms. 
There are three ways to create an (x2)2 ⋅ (3y)1-term, selecting 
x2 from two of the three binomials and 3y from the other 
binomial. Continuing with this reasoning produces 
(x2 + 3y)

3
= (x2)

3
+ 3

(

(

x
2
)2

⋅ (3y)1
)

+ 3

(

(

x
2
)1

⋅ (3y)2
)

+ (3y)3 . Once 
teachers work on this kind of reasoning, we have them extend 
their combinatorial reasoning to the binomial theorem and 
problems like (x + a)(x + b)(x + c).

One reason we have started the teaching experiments 
with cases of the Card Problem prior to the work with 
algebraic symbols is that we have considered it to be one 
way to support teachers to develop algebraic symbols as 
representing a variable number of possible options 
rather than treating algebraic symbols simply as letters. 
That is, we have considered working on cases of the 
Card Problem as a way to support teachers to establish 
algebraic symbols, x and y , in their generalization, 
(x + y)3 = 1 ⋅

(

x3
)

+ 3 ⋅
(

x2 ⋅ y1
)

+ 3 ⋅

(

x1 ⋅ y
2
)

+ 1 ⋅
(

y3
)

 ,  

Fig. 4   3-D array representation 
(a) as constructed by PSSTs and 
b highlighted according to the 
number of face cards

Fig. 5   Selection scenarios and 
partial products corresponding 
to (x2 + 3y)3
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as representing a possible number of options for non-
face and face cards, respectively. Then, when they tran-
sition to problems where they work exclusively with 
algebraic symbols, like expanding 

(

x2 + 3y
)3 , our aim is 

for them to maintain, x2 and 3y , as representing a vari-
able number of possible options rather than treating, x2 
and 3y , simply as letters. We note that it is possible (not 
preferable) to apply the combinatorial reasoning shown 
in Fig. 5 by treating the problem simply as one about 
making a choice between two kinds of letters, either one 
chooses x2 or one chooses 3y , where the letters do not 
represent a possible number of options. Thus, the organ-
ization of tasks is linked to our goal of working with 
teachers to develop algebraic symbols that represent a 
variable number of possible options.

4.3 � Data analysis

After the teaching episodes concluded, the research team 
members independently watched the teaching episodes, took 
low-inference notes, applied and developed codes, and docu-
mented conjectures about the data (Saldana, 2013). At bi-
weekly meetings, they discussed and triangulated individual 
interpretations of data. Once the data had been partitioned 
using codes, the research team established second order 
models of the PSSTs’ reasoning. A second order model is 
the constellation of constructs used to account for another 
person’s reasoning (e.g., schemes, reflecting abstraction, 
etc.) (Steffe et al., 1983). In our case, we examined the data 
for evidence that Olive had constructed the two schemes in 
the Conceptual Framework. We identified how she was coor-
dinating these two schemes in different instances of the data, 
examined the data for changes she made to her schemes, and 
iteratively proposed and refined our account of her reasoning 
based on making a consistent and coherent account across 
the data set.

5 � Results

We now present results from Olive’s case to illustrate the 
learning that enabled her to transition from a generalization 
in the Card Problem to work on symbolic problems.

5.1 � Episode 2: Olive’s MPS and BCS

During the second teaching episode, Olive solved the “three 
case” of the Card Problem (two non-face and one face card) 
without using a 3-D array. During her solution, there was 
evidence that her MPS was enactive and BCS interiorized. 
Evidence that her MPS was enactive came from her response 
to determining the total number of hands. Olive stated that 

there were three possible options for the first, second, and 
third positions, so the total number of hands was 3 × 3 × 3 . 
She then created a list (Fig. 6), explaining it as follows.

Excerpt 1: Olive’s explanation
O: As you can see this whole column starts with K [the 
first column], this whole column starts with a 2 [the 
second column], and this whole column starts with 
a 3 [the third column] ….and then when you look at 
the second spot [pointing back to the first column], I 
rotated through….I exhausted all the ones that have 
king in the second spot, and then all the ones that have 
2, and all the ones that have 3. And then I went in 
the same pattern (in the third spot) king, 2, 3; king, 
2, 3; king, 2, 3….I kind of wish [describes how she 
would reorganize her second and third columns so the 
ordered triples are in a lexicographic order] So I could 
look at each column and they would have the exact 
same order.

Olive’s explanation indicated that she connected her 
multiplication statement to her list; she saw three possible 
options for each position in her list (e.g., “I went in the same 
pattern (in the third spot) king, 2, 3”). We take this connec-
tion as one key criterion for inferring the construction of an 
MPS. The second criterion is organizing the list according to 

Fig. 6   Olive’s MPS list

Fig. 7   Olive’s BCS list
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a lexicographic order. Olive described a lexicographic order 
in her first column, and then outlined how she would change 
the second and third columns to have the “exact same (lexi-
cographic) order.” Therefore, establishing a lexicographic 
order occurred as she looked at her list (i.e., in the context 
of perceptually present figurative material) rather than as 
an organizing principle for producing it, which is why we 
conclude that initially her MPS was enactive.

There was strong evidence of Olive’s construction of an 
interiorized BCS within the “three case” of the Card Prob-
lem. As part of her solution of the “three case,” Olive created 
a list (Fig. 7) for the number of hands that contained no face 
cards. When Olive finished her list, she stated, “I got eight, 
and I’m confident with that answer,” explaining, “I started 
with all threes. And then all the ways there could be two 
threes. And then all the ways there could be one three. And 
then no threes.” We interpret her list as a record of hands that 
she was creating in visualized imagination and this record 
was organized according to the number of threes in a hand. 
Thus, her explanation was evidence she had constructed an 
interiorized BCS.

5.2 � Episodes 3: Ordered products emerge 
from work on the 3‑D array

We conjectured that Olive’s explanation of the lexicographic 
order in her list (Fig. 6) during episode two was a possible 
site for her to interiorize her MPS. We tested this conjecture 
with two problems at the beginning of the third teaching 
episode. Olive assimilated these using her MPS where she 
first wrote multiplication statements, and then produced the 
ordered triples in a lexicographic order. We took that as suf-
ficient evidence to infer she had interiorized her MPS.

At that point, Olive transitioned to solving additional 
cases of the Card Problem where she represented all hands 
using a 3-D array. To work with her 3-D array, she ordered 
the units of each composite unit along the axes of the array 
(king was first, two was second, and three was third) and 

ordered the composite units themselves (there was a first 
draw, a second draw, and a third draw). However, she did 
not actually pair the king with the king with the king; the 
king with the king with the two, etc. Thus, the operations of 
her MPS were evoked, but not fully implemented in working 
with the 3-D array.2

As part of the PSSTs’ work with the 3-D array, they 
located subsets of the ordered triples. For example, Olive 
located all hands with a face card in the first position 
(Fig. 8a) and Aaron located all hands with a face card in the 
second position (Fig. 8b). During this time, Aaron proposed 
that they use ordered products to show in their multiplication 
statements that subsets of ordered triples were located in dif-
ferent places in the 3-D array. For example, Aaron offered 
that they should write the multiplication statement 1 ⋅ 3 ⋅ 3 
for the number of hands with king in the first draw (one pos-
sible option for the first draw, three options for the second 
and third draws) (Fig. 8a) and 3 ⋅ 1 ⋅ 3 for the number of 
hands with king in the second draw (Fig. 8b). Olive agreed, 
saying “if we are being precise” we would “put the one in the 
correct position.” The 3-D array, then, supported the PSSTs 
to use ordered products because they wanted the product to 
indicate the location of a subset of ordered triples. Using 
ordered products in this way opened a new opportunity for 
them.

5.3 � Episode 4: A new opportunity

During the fourth teaching episode, Olive continued solving 
cases of the Card Problem. We illustrate how her reasoning 
developed with the “five case” (one face and four non-face 
cards). Olive began by selecting a 5 × 5 × 5 3-D array and 
organizing the first, second, and third axes in the same way 

Fig. 8   Ordered products cor-
responding to Kings in a first 
draw and b second draw

2  Establishing the 3-D array as a representation for all ordered triples 
involves spatial operations, rotation and translation. We do not ana-
lyze those operations, here, because this paper is focused on the way 
Olive coordinated her MPS and BCS.
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as in Fig. 8a, b. She recorded the total number of hands in 
two different ways (Fig. 9a). She then located in her 3-D 
array the zero- and one-face-card regions and wrote notation 
for them (Fig. 9b, green, blue, respectively). She explained 
her notation for the one-face-card regions by saying that the 
multiplication problem would be “four times four.” Aaron 
had written the notation, (1 ⋅ 4 ⋅ 4) ⋅ 3 , for the one-face-card 
regions, explaining his multiplication statement as “you have 
one option of a face card, call that the first draw, and then 
the second draw you have four options of a non-face card, 
and then the third draw you have four options of a non-face 
card. And then you have to rotate where the face card is,” 
which gives you three possible ways to have one face card. 
After hearing Aaron, Olive proceeded to locate the ordered 
triples in her array with a face card in the first and second 
positions and a non-face card in the third position. She then 
recorded notation for all ordered triples with two face cards 
(Fig. 9b, yellow).

Excerpt 2: Olive explains her notation
TR [pointing to Fig. 9b, yellow]: Do you want to 
explain the multiplication problem?
O: If we want to make sure we for sure have two 
kings, there is only one option for two of the separate 
draws. Either the first and second draw both have to 
be a king, or the first and third both have to be a king, 
or the second and third both have to be a king. But 
either way we’re multiplying one times one because 
two of them are fixed, and then times four because 
there are four more options for it to not be a king for 
the third draw. I could have expanded it out to show 
all of the different ways, but I know they are all going 
to be equivalent, so one times one times four. So I just 
did times three.
TR: [asks O and A to locate the three-face-card region. 
O does and records the notation in Fig. 9b, red. TR 
asks if she can make an equivalence between Fig. 9a 
and Fig. 9b. Instead, Olive writes the following equiva-

lence 53 = (1 + 4)
3
= 125 . She then looks at Fig. 9b 

and says she cannot remember what 43 represented.]

When Olive was done locating and writing notation for 
the zero-, one-, two-, and three-face-card regions in her array 
(Fig. 9b), she did not equate the sum of these regions with 
5
3 or (1 + 4)

3 . We take that as evidence that she began her 
solution of the “five case” by sequentially using her MPS, 
meaning that her scheme closed after each time she found 
a particular kind of hand. Her goal was simply to locate a 
specific kind of hand and record a multiplication problem 
for it. Doing so was not situated within a broader goal of 
finding hands with zero, one, two, and three face cards as 
another way to produce the total number of hands. Thus, she 
used her MPS, first to determine the total number of ordered 
triples (i.e., 53) , then to determine the number of ordered tri-
ples with zero face cards, then the number of ordered triples 
with one face card.

Olive introduced a novelty into her way of operating 
when she located the ordered triples with two face cards. She 
located one region in her 3-D array where there were ordered 
triples with two face cards, identifying the ordered product 
as 1 × 1 × 4 . Having done so, she explained, “one option for 
two of the separate draws…four more options for it to not be 
a king for the third draw.” She then took the numerals 1, 1, 
and 4, using the position of the numerals to indicate the three 
different ways she could get two kings in a hand. We infer 
that moving the numerals’ positions evoked the operations 
she used to locate ordered triples in her 3-D array, but that 
she only implemented those operations when she found the 
region with a face card in the first and second positions. Her 
ordered product rather than the array, then, became the figu-
rative material on which she was operating. We consider her 
operating on the numerals as evidence that she inserted her 
MPS into a portion of her BCS (i.e., the portion of her BCS 
related to hands that included two face cards). We note that 
she operated on numerals that represented possible options 
rather than actual cards in making this insertion. Thus, when 
she inserted her MPS into her BCS the material she operated 
on was different than it had been during the second teaching 
episode when she was imagining cards (see Fig. 6).

When the teacher-researcher asked her to write an equiva-
lence between the non-case breakdown of the problem and 
the case breakdown of the problem (Fig. 9a, b), Olive could 
not remember which region 43 represented. She continued to 
say, “I don’t remember,” indicating she was experiencing a 
perturbation. The teacher-researcher encouraged her to fig-
ure it out. She spent about six minutes producing notation 
(Fig. 10) without locating the regions on her array.

From her notation, we infer that Olive inserted her MPS 
into her BCS. She implemented even fewer of the operations 
of her MPS than she had when locating ordered triples in 

Fig. 9   Olive’s expressions to determine a the total number of three-
card hands and b the number of each type of hand
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her array, while fully implementing the operations of her 
BCS (cf. Excerpt 2). We infer the only operation she imple-
mented of her MPS was ordering the positions in a three-part 
product. Having done so, Olive took the number of possible 
options for non-face and face cards in a three-part product 
as the figurative material on which she fully implemented 
her BCS. We make the inference that she fully implemented 
her BCS based on her notation: selecting zero 1’s (Fig. 10, 
green); selecting one 1 for either the first, second, or third 
position (Fig. 10, blue); selecting two 1’s for either the first 
and second, first and third, or second and third positions 
(Fig. 10, yellow); selecting three 1’s (Fig. 10, red). We infer 
that this coordination of schemes allowed her to keep track 
of which ordered products she had created until she pro-
duced all eight of them. We note that inserting her MPS 
into her BCS meant the result of her BCS was eight ordered 
products (e.g., 1 ⋅ 4 ⋅ 4 , 4 ⋅ 1 ⋅ 4 ) not eight ordered triples 
(e.g., Fig. 7 where she listed three card hands like 333).

We leave open whether the insertion of her MPS into her 
BCS was enactive or interiorized. The figurative material 
that she carried this insertion out on was numerals, which 
she certainly could carry out in visualized imagination (i.e., 
leading to the conclusion that it was interiorized). However, 
she had relied extensively on the physical 3-D array to deter-
mine the ordered products. Therefore, it was unclear how 
tied her work was to the physical 3-D array; if it was tied to 
the physical 3-D array then we would conclude the insertion 
was enactive.

After she finished writing her notation, the following 
interaction took place.

Excerpt 3: Olive continues work on the “five case”
TR: We have ones with no kings, one king, two kings, 
and three kings [points to Fig. 10]. How much is that 
total?
O: All of this [points to Fig. 10.] Sixty-four plus forty-
eight plus twelve plus one, I think it is probably one 
(hundred) twenty-five.
TR: Why do you think ‘it is probably’ that?
O: Because there is no other option. Either you have 
no king, one king, two king, or three king. There is 

no other alternative. So that should encompass all the 
total options. You could add it up to check them.
TR: Do you feel compelled to add them up?
O: No, I’m confident.

Olive verbally equated the case and non-case breakdowns, 
saying that the sum of her case breakdown was “probably 
one (hundred) twenty-five”. We take Olive’s subsequent jus-
tification, coupled with her confidence, to indicate an expec-
tation of equivalence, rather than an uncertainty. We infer 
from this data that her goal changed. Her goal was now to 
use the case break down to determine the total number of 
hands, which differs from her earlier goal to determine the 
total number of hands within a single case (e.g., how many 
hands have no face cards?). We attribute this change in goal 
to her new coordination of schemes, inserting her MPS into 
her BCS.

We further infer that she had two distinct ways to pro-
duce all ordered triples. The first was using her MPS, which 
she symbolized either as 53 or (1 + 4)

3 . The second was by 
inserting her MPS into her BCS. We infer that these two 
ways of operating occurred sequentially—she could deter-
mine the total number of ordered triples was 53 or (1 + 4)

3 
using her MPS, then that scheme closed. She then had a 
second way to determine the total number of ordered triples, 
which was to insert her MPS into her BCS to produce eight 
ordered products, which produced all hands because “there 
is no other alternative.” We make the inference that these 
two ways of determining the total occurred sequentially for 
two reasons. First, there was an extended period of time 
between when she produced her notation for each, indicating 
that they were likely two distinct ways of producing the total 
number of ordered triples. Second, in stating the equiva-
lence, she focused exclusively on the fact that she had pro-
duced a second way to count the total number of hands, the 
case break down. We see this explanation as indication that 
she was focused on two distinct ways of counting the hands.

We could attribute these ways of operating to Olive 
during the third and fourth teaching episodes. During this 
time, she continued to refine and condense her notation. For 
example, she solved a problem with a draw pile contain-
ing two face cards and three non-face cards, working with 
the 3-D array and producing notation (Fig. 11a). At the 
end of the fourth episode, she wrote the general statement 
(Fig. 11b) where we infer (f + n)3 symbolized her first way 
of counting all possible ordered triples using her MPS and 
f 3 + 3

(

n ⋅ f 2
)

+ 3
(

n2 ⋅ f
)

+ n3 symbolized her second way 
of counting all possible ordered triples where she inserted 
her MPS into her BCS. We note that she defined f  as the 
number of face cards and n as the number of non-face cards, 
indicating she was treating the letters as whole number vari-
ables not simply as letters. However, her choice of which 
letters to use as whole number variables (f and n) were still 

Fig. 10   Olive’s revised notation for the “five case”
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closely connected to the Card Problem context, a hallmark 
of symbolizing regularities and constraints of contextualized 
problems.

5.4 � Episode 5 and 6: A surprise

At the end of the fourth teaching episode, the teacher-
researcher anticipated that Olive was ready to begin the 
process of transitioning from the generalization she made 
in the Card Problem to solving problems intended to expand 
the values that she considered for her variable (i.e., so that 
the variable could take on integer and rational number val-
ues). However, the fifth and sixth teaching episodes brought 
a surprise: Olive showed she was not ready for this work. 
We use a data excerpt from the sixth teaching episode to 
illustrate this surprise. The teacher-researcher asked Olive 
to recall the generalization she had symbolized or cases of 
it (e.g., Fig. 11a, b).

Excerpt 4: Olive begins the sixth teaching episode
O: Um, can you remind me what you mean by the 
identity because it’s not, I don’t know what you are 
referring to?
TR: Yeah, ok. So we did things like finding what five 
cubed was. And how did we find what five cubed was? 
What were we doing?
O: Five times five times five.
TR: That’s one way. But then we also found another 
way.
O: Were we like expanding it?
TR: Mmhmm (yes).
….
O: Sorry I just really don’t remember.
….
O [The TR begins to talk about a “five card” 
case of the Card Problem with two face and 
three non-face cards. O makes a first attempt 
at  wr it ing a symbolic statement,  wr it ing 
5
3 = (2 + 3)

3
= 2

3 +
(

2
2 + 3

1
)

+
(

2
1 + 3

2
)

+ 3
3   . 

She expresses uncertainty about it, so the TR 

asks O to think further about it using a 5 × 5 × 5 
array. O locates the hands with three face cards, 
then the hands with face cards in the first and sec-
ond positions, and finally the hands with face cards 
in the second and third positions. After locat-
ing these three regions, she stops and writes, 
5
3 = (2 + 3)

3 = 2
3 + 3

(

2
2
⋅ 3

1
)

+ 3
(

2
1
⋅ 3

2
)

+ 3
3].

We interpret this data excerpt as showing that Olive’s 
insertion of her MPS into her BCS was enactive; she still 
needed the physical 3-D array to make the insertion. That 
is, we infer that locating the three regions on her array, and 
their associated ordered products, entailed Olive inserting 
her MPS into a portion of her BCS. Once she had located 
three regions and produced the first three ordered products, 
she was able to correct her symbolic statement without 
implementing the remainder of the insertion of her MPS 
into her BCS. Nonetheless, producing her equivalence, 
5
3 = (2 + 3)

3 = 2
3 + 3

(

2
2
⋅ 3

1
)

+ 3
(

2
1
⋅ 3

2
)

+ 3
3 , was con-

tingent upon having the physical 3-D array present. For this 
reason, we infer that she could not operate solely on the 
numeric symbols themselves to call forth this coordination.

To address this issue, the teacher-researcher made an on-
the-spot conjecture that he would ask Olive to interpret each 
of her notational statements: 23 , 3

(

2
2
⋅ 3

1
)

 , 3
(

2
1
⋅ 3

2
)

 , and 33 . 
In particular, he pressed her to find a way to show all of the 
hands for each notational statement. He anticipated that this 
would necessitate Olive implementing more fully the opera-
tions of her MPS in the context of inserting it into her BCS. 
Olive spent 2.5 min creating Fig. 12a for her notation 33 , 
explaining, “I visualized the axes (of my 3-D array). Like the 
first choice, second choice, and third choice axes [motioning 
to show the direction of each axis].” She indicated the large 
numbers (Fig. 12a, yellow) represented the card in the third 
draw and, for example, all the ordered triples with 4 in the 
third draw (Fig. 12a, purple) represented a “slice” in her 3-D 
array (Fig. 12b, color-coordinated with Fig. 12a).

In responding to the teacher-researcher’s request, Olive 
transitioned from working with a physical 3-D array to 

Fig. 11   Olive’s a quantita-
tive equivalence and b general 
statement
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working on a 3-D array in visualized imagination. Thus, 
we interpret Fig. 12a as a record of the hands with no face 
cards in a region of an array that she produced in visualized 
imagined (Fig. 12b). While the teacher-researcher antici-
pated that she would need to implement the operations of 
her MPS more fully while inserting it into her BCS, he did 
not anticipate that she would necessarily carry out these 
operations on an array in visualized imagination. Because 
she was operating on an array in visualized imagination, we 
take producing Fig. 12a as initial indication of interiorizing 
her insertion of her MPS into her BCS; that is, she took 
Fig. 12b (colored slices altogether), as the first of eight pos-
sible ordered products that she would produce. An alterna-
tive explanation would be that Olive simply used her MPS 
to produce these ordered triples (i.e., that she did not insert 
her MPS into her BCS). Because there is only one way to 
have no face cards, it is difficult to know from this data alone 
if her BCS was activated. To examine this issue, we present 
data from how she interpreted the request to show all the 
hands for her notational statement 3

(

2
2
⋅ 3

1
)

 (i.e., hands with 
two face cards).

Excerpt 5: Olive interprets 3
(

2
2
⋅ 3

1
)

O [makes two unsuccessful attempts at recording the 
hands with two face cards. The attempts make apparent 
she is confusing the two different meanings of ‘three’ 
in the notational statement, 3

(

2
2
⋅ 3

1
)

 where the first 
three means the three different ways to have two face 
cards and the second three means the three possible 
non-face card options. She then makes Fig. 13a–c 
without a physical array. Her explanation, however, 
indicates she is imagining one. She relates Fig. 13a–c 
to Fig. 12a and her imagined array, explaining]: For 
this one [points to Fig. 12a] I only had to make one 
because when I’m thinking of a 3-D axis, and when 
we look at like this [grabs the physical array] this is 
all in one section so that’s why there is only one. But 

this [points to Fig. 13a–c] is three different sections of 
this whole (array). So you have to, if I did it the same 
way, I had to do three different diagrams. So, this is the 
one [points to Fig. 13a, yellow] where my third axis 
or the last spot in my sequence is the non-face card, 
and there are three options. [O continues to explain 
that she is imagining the face card options on the first 
and second axes of her 3-D array (Fig. 13a, red). She 
then says the ordered triples in Fig. 13a are slices in 
her array that she is imagining (Fig. 13d, color coded 
to match Fig. 13a). She makes similar explanations 
for Fig. 13b, c.]

We consider this data excerpt to be confirmation that 
Olive was inserting her MPS into her BCS, while fully 
implementing the operations of her MPS to produce ordered 
triples in a lexicographic order. Given Olive’s two unsuc-
cessful attempts to make Fig. 13a where it was evident she 
was conflating the two meanings of three in her notation, 
3
(

2
2
⋅ 3

1
)

 , we infer that fully implementing her MPS in the 
context of inserting it into her BCS was occasion for her 
to reflect on how she was coordinating these two schemes. 
Like Fig. 12a, Fig. 13a–c were a record of Olive operating 
on an array that she imagined rather than her operating on a 
physical array. Therefore, we take this data excerpt as indica-
tion that Olive interiorized the insertion of her MPS into her 
BCS; she was now working only on an array in visualized 
imagination.

Beyond Olive’s interiorization of this coordination, we 
make an additional inference about Olive’s coordination of 
schemes in Excerpt 5 that is different from how we inter-
preted Olive’s coordination of schemes in Excerpt 3. To sup-
port making this inference, we first point out that, as Olive 
created Fig. 13a–c, she seemed to maintain that each axis in 
her array had five options and appropriately selected either 
two or three options from each axis. We draw this conclusion 
based on comparing across Fig. 13a–c where five choices are 

Fig. 12   Olive a records and b 
imagines three-card hands with 
no face cards
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represented along each axis. For example, Fig. 13a (yellow) 
has the 2, 3, 4 as choices for the third axis while Fig. 13b 
(yellow) has K, Q as the choices on her third axis. A similar 
comparison across Fig. 13a–c shows that all five choices are 
represented for the first and second axis as well (Fig. 13a–c, 
red). We take the fact that Olive maintained all five pos-
sibilities on each axis as initial evidence for the inference 
that she inserted the case breakdown into her way of count-
ing the total number of hands without the case breakdown. 
Thus, her way of counting the case breakdown, symbolized 
as 23 + 3

(

2
2
⋅ 3

1
)

+ 3
(

2
1
⋅ 3

2
)

+ 3
3 , was contained inside her 

way of counting the non-case break down, symbolized as 
5
3 or (2 + 3)

3 . This insertion meant that she could use the 
number of possible face options, 2, and number of possible 
non-face options, 3, either to generate the total number of 
three card hands without the case breakdown (i.e., 5 possible 
options that could be used to produce, 53 hands) or to pro-
duce the case breakdown through an appropriate selection 
of the number of face card options or number of non-face 
card options.

This inference differs from the explanation we gave in 
Excerpt 3 when Olive solved the “five case” with one face 

card and four non-face cards. In that case, we interpreted 
Olive as having two sequential ways of counting the total 
number of hands. The first was a result of her MPS which 
she expressed as 53 or (1 + 4)

3 and the second was the case 
breakdown that involved inserting her MPS into her BCS 
(see Fig. 10 for her notation). They were equivalent because 
both counted all of the hands. However, they were still two 
distinct ways to count all of the hands. We explain Excerpt 
5 in terms of schemes in the following way: Olive inserted 
into her MPS (i.e., her way of counting the total number of 
hands not using the case breakdown) the insertion of her 
MPS into her BCS (i.e., her way of counting the case break-
down). Doing so was a recursive insertion of her schemes 
where the case and non-case ways of counting hands were 
contained in a singular scheme. We consider this recursive 
insertion to be a functional accommodation where we call 
the single scheme it produced a combinatorial scheme for 
binomial expansion (CSBE). We infer this scheme was inte-
riorized given that Olive operated on an array in visualized 
imagination.

We note that Olive’s recursive insertion of schemes, and 
construction of a CSBE, meant that the equivalence (i.e., 

Fig. 13   Olive a–c records 
ordered triples from an d imag-
ined 3-D array
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(2 + 3)
3
= 23 + 3

(

2
2
⋅ 3

1
)

+ 3
(

2
1
⋅ 3

2
)

+ 3
3 ) would no longer 

grow out of having two different ways of counting the total 
number of hands, as it had when she sequentially used her 
MPS to find the total number of hands, and then inserted her 
MPS into her BCS to find the total number of hands through 
the case breakdown. Instead, she would be able to use an 
appropriate process of selecting options from (2 + 3)

3 to 
produce 23 + 3

(

2
2
⋅ 3

1
)

+ 3
(

2
1
⋅ 3

2
)

+ 3
3 . We look for sup-

porting evidence of Olive’s construction of a CSBE from 
later in the sixth teaching episode.

5.5 � Episodes 6: Olive’s CSBE

The teacher-researcher asked the PSSTs to consider what 
the expansion of (x2 + 3y)

3 would be. Olive wrote Fig. 14a. 
The teacher-researcher asked her how she would explain her 
equivalence. She wrote the ordered products in Fig. 14b, 
explaining the different ways to arrange the terms. Aaron 
gave a similar justification, but then asked how the binomi-
als to be expanded, i.e., (x2 + 3y)

3 , were connected to the 
ordered products (Fig. 14b). Olive responded to Aaron’s 
question.

Excerpt 6: Olive explains how (x2 + 3y)
3 can be used 

to generate Fig. 14b
O: Um, I’m thinking of when you write out, like x 
squared, like this [writes Fig. 15].
Cause, I don’t know, when you think of FOIL, you 
know—like, when you think of FOIL, first [covers up 
the third binomial and only focuses on the first two 
binomials], you like multiply this [points to the x2 in 
the first binomial] by the first one [points to x2 in the 

second binomial] and then you multiply it [ x2 from 
the first binomial] by the second one [ 3y in the second 
binomial]. And so like, the order in which you multiply 
them changes like—you have to make sure that you 
account for each one. [Olives attempts twice to make 
a description of how she would apply this thinking to 
all three binomials. She loses track of which partial 
products she has produced, saying] It (FOIL) doesn’t 
make sense when I’m looking at all (three) of them 
(binomials) at once.
….
O [TR encourages her to continue. O seems to have 
an insight and says excitedly] Yeah, yeah, ok! And 
then, yeah, so you have to multiply this [ x2 in the first 
binomial] by each thing [gestures across the second 
and third binomials]. And so you have to—it’s like 
drawing cards! Like you’re—it’s like drawing cards, 
you—you start with this one [ x2 in first binomial], this 
one [ x2 in second binomial, and this one [ x2 in third 
binomial]. Then you have to do this one [ x2 in first 
binomial], this one [ x2 in second binomial], and this 
one [ 3y in third binomial. Continues her explanation 
about how appropriate selection from the binomials 
produces each term of the polynomial.] So you have 
to make sure you multiply—you’re taking care of all 
the terms multiplied by every single term. So that is 
why there’s three ways to do x squared x squared three 
y. [O exclaims] When I was in high school, I wouldn’t 
have realized that. That was fun! That was worth really 
struggling.

We consider this excerpt to be confirmation of Olive’s 
construction of a CSBE because she connected the initial 
binomials (Fig. 15) to the ordered products they produced 
(Fig. 14b), indicating that she was no longer considering her 
equivalence as standing for two distinct ways of counting the 
same set of ordered triples. Had that been the case, she 
would have seen the expression, (x2 + 3y)

3 , as similar to her 

Fig. 14   Olive a expands 
(x2 + 3y)3 and b records corre-
sponding ordered products

Fig. 15   Olive writes (x2 + 3y)3 as the product of three binomials
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first way of finding the total number of hands and the expres-
sion 

(

x2
)3

+ 3

(

(

x2
)2

⋅ (3y)1
)

+ 3

(

(

x2
)1

⋅ (3y)2
)

+ (3y)3 as 
similar to her second way of counting the total number of 
hands, but she would have been unable to produce one way 
of counting from the other. Instead, she was able to use the 
binomials to produce the ordered products. Thus, we take 
this excerpt as confirmation of her recursive insertion of her 
schemes (i.e., her construction of a CSBE), which character-
izes the projective aspect of reflecting abstraction.

This excerpt also illustrates Olive’s abstraction of the 
operations of her CSBE, and application of them to novel 
figurative material in the form of algebraic symbols. We 
infer from Fig. 15 that she ordered the binomials as a first, 
a second, and a third binomial, which was similar to how 
she operated in the Card Problem ordering the draws. She, 
then, tried using two binomial to explain why there would 
be different arrangements of the ordered products, stating 
that she was thinking about FOIL. Thinking about “FOIL”, 
however, did not help her explain the product of three bino-
mials. She got lost twice, and then stated, “It doesn’t make 
sense when I’m looking at all (three) of them (binomials) at 
once.” We take this as indication that she had entered a state 
of perturbation. She resolved her perturbation on the spot by 
envisioning x2 and 3y as the possible number of face or non-
face card options in the Card Problem. She then produced 
all of the possible ways to select from these two options, 
differentiating between when she selected a term from the 
first, second, or third binomial in order to produce all of the 
possible partial products that made up the final polynomial. 
We consider this excerpt as evidence that she abstracted the 
operations from the Card Problem context and used them 
to re-interpret how she thought about binomial expansion. 

We look to teaching episode seven for evidence of how 
her CSBE supported her to reorganize her extant schemes 
for binomial expansion, the third component of reflecting 
abstraction.

5.6 � Episodes 7: Olive’s reorganization

The seventh teaching episode began with Olive explaining 
two symbolic problems involving cubing binomials similar 
to the one in Excerpt 6. She suggested that she could gener-
alize her reasoning to (a + b)z where z represented a variable 
number of draws. She and Aaron spent much of the seventh 
teaching episode justifying the z = 4 and 5 cases. At the end 
of the seventh teaching episode, Olive solved two problems 
involving binomial expansion of non-identical binomial fac-
tors, for example, of the form, (x + a)(x + b)(x + c) , where 
x is a variable; a, b, c are parameters; and a ≠ b ≠ c . Her 
solution of these problems showed the power of her CSBE 
in supporting her to operate on problems involving con-
ventional algebraic symbols and to develop novel algebraic 
structure.

Excerpt 7: Olive’s expansion of non-symmetric bino-
mials
TR [Asks the PSSTs to consider how they could 
expand (x + 1)(x + 2)(x + 3) . A writes Fig.  16a; O 
writes Fig. 16b]: What’s hiding in this last expression 
[circles where O has written x3 + 6x2 + 11x + 6]?
O: It doesn’t show you what order you are picking the 
three different ways you can get two x’s. And then the 
three different ways you can get one x . It’s just hiding 
that. Like that fixing process.

Fig. 16   a Aaron’s and b Olive’s 
equivalences for (x + 1)(x + 2)
(x + 3)
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….
O: And also the parentheses [referring to A’s expres-
sion (Fig. 16a)] shows you, kind of like, each choice. It 
is separating like ‘this is how you can get two x ’s one 
way [points to x ⋅ x ⋅ 3 ]. This is how you can get two 
x ’s another way [points to x ⋅ 2 ⋅ x ]. This is how you 
can get two x ’s another way [points to 1 ⋅ x ⋅ x].
….
TR: So we lost something [referring to the expression 
x3 + 6x2 + 11x + 6] . Is there some way you could write 
that coefficient [pointing to the 6 in 6x2 ] and still show 
some relationship to this [points to the initial binomi-
als]?
O: Yeah [writes x3 + (3 + 2 + 1)x2 + (2 ⋅ 3 + 2 ⋅ 1

+3 ⋅ 1)x + 1 ⋅ 2 ⋅ 3].
….
TR [Asks the PSSTs to determine (x + a)(x + b)(x + c) . 
O writes Fig. 17]: Did you guys know that that was 
true?
O & A: No.
O: Nope! That was fun!
TR: Does what we are doing feel different from 
“FOILing” to you?
….
O: Yeah. So when I’m multiplying, I don’t normally 
think about taking out the three and the two and the 
one and adding them together and multiplying that by 
the x squared. I kind of think of just multiplying three 
things together over and over again. So this kind of 
makes it appear simpler for sure because there is this 
many times [pointing to the coefficient (a + b + c) in 
Fig. 17], yeah, this many times I’m going to have an 
x squared. Cause you’re doing x times x times three, 
and you’re also doing x times two times x, and you’re 
also doing one times x times x. You’re kind of like sim-
plifying. Instead of doing the x times x three different 
times you’re seeing, you’re looking ‘I’m going to have 
it three times’ and this (referring to (a + b + c) ) is what 
I’m going to be multiplying it by.

We consider this data excerpt to illustrate how Olive was 
reorganizing her extant schemes in relation to her CSBE. 
Her CSBE allowed her to interpret binomial expansion as 

more than “just multiplying three things together over and 
over again,” which is how she had thought about it before. 
Instead, she saw a common structure that would be involved 
in expanding any three binomials—namely, that there 
would be one way to get an x3-term, three ways to get an 
x2-term, three ways to get an x-term, and one way to get a 
constant term. We infer that this common structure is what 
allowed her to move immediately from a specific case of a 
cubic expansion, (x + 1)(x + 2)(x + 3) , to the general case, 
(x + a)(x + b)(x + c).

Her work on these two cubic expansions also involved her 
in producing a new algebraic structure. The new structure 
was that the coefficients for each term of the polynomial had 
a specific relationship to the constant terms of the binomi-
als (“and this [referring to (a + b + c) ] is what I’m going 
to be multiplying it [the x2-term] by”). This new structure 
made binomial expansion “appear simpler”; we infer that 
it appeared simpler because there was the same structure 
for any given set of three binomials that allowed her to move 
more directly to a final polynomial. Her work here involved 
producing this new algebraic structure in the context of 
working within a conventional algebraic symbol system.

6 � Discussion

6.1 � Three planes of learning

Olive’s case helps us to identify three “planes of learning” 
that are important in the construction of a CSBE and, in 
turn, helps us to operationalize the projective aspect of 
reflecting abstraction. The first plane of learning entails 
the plane at which a person can use their MPS and their 
BCS to solve combinatorics problems. We identified that 
Olive had entered the teaching experiment having an enac-
tive MPS (that quickly became interiorized) and an inte-
riorized BCS. It is possible to solve the Card Problem (or 
similar problems) in two different ways at this first plane 
of learning. The first way is that a person may sequentially 
use their MPS to find each specific kind of hand where their 
MPS closes after they find each kind. From the problem 
solver’s perspective, their goal of finding how many hands, 
for example, have no face cards is not situated in a broader 

Fig. 17   Olive’s equivalence for 
(x + a)(x + b)(x + c)
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goal that the case breakdown will produce all of the possible 
hands. Olive operated in this way in her first solution of the 
“five case” of the Card Problem with one face and four non-
face cards. The second way is that a person may only use 
their BCS. This kind of reasoning in the “five case” of the 
Card Problem would amount to treating one possible option 
and four possible options simply as digits 1 and 4, where 
the possible outcomes are ordered triples (Fig. 18a) rather 
than products of possible options (Fig. 18b). We consider it 
unlikely for a person to operate in this way in the context of 
the Card Problem where a researcher can easily problematize 
this meaning by, for example, asking a person to list hands 
symbolized by the digits “1 4 4”. However, our studies have 
shown that this way of operating is common when teachers 
start with or move to symbolic tasks in algebra. In these 
tasks, some teachers interpret the variables simply as letters 
(e.g., the letters x and y ). In the context of symbolic algebra 
tasks, it is difficult to problematize this meaning because it 
is not possible to represent the set of ordered triples that is 
symbolized by, for example, xyy.

The second plane of learning is characterized by having 
two sequential ways of counting all possible ordered triples. 
First, a person uses their MPS to determine the total num-
ber of ordered triples; for example, 53 ordered triples in the 
“five case” of the Card Problem. With the goal of their MPS 
satisfied, this scheme closes before they initiate the second 
way of counting all possible ordered triples. This second 
way involves a person inserting their MPS into their BCS to 
count the zero-, one-, two-, and three-face-card hands where 
the goal of this insertion arises from the person’s establish-
ment of the case breakdown as a second way to count all 
possible ordered triples. We emphasize that the two ways 
of counting (the case and non-case break down) are done 
sequentially. Thus, the equivalence that arises is derived 
from having two distinct ways of counting the same ordered 
triples. Olive engaged in this kind of reasoning when she 

produced 8 ordered products in the “five case” (one face and 
four non-face) and equated them with her way of counting 
all of the ordered triples for the non-case break down.

The third plane of learning is characterized by a recursive 
insertion of schemes; a person inserts into their MPS (the 
non-case breakdown) the insertion of their BCS into their 
MPS (the case breakdown), which yields the construction of 
a CSBE. At this plane of learning, the case breakdown is no 
longer a distinct way of counting ordered triples. Instead, it 
is contained within the non-case breakdown of the situation. 
A marker of this kind of reasoning is maintaining the binary 
choice as a sum of the total number of possible options. For 
example, Olive maintained five as composed of two options 
and three options, and used these options to produce all of 
the possible ordered products. For Olive, one consequence 
of constructing a CSBE was that she could see a connection 
between the binomials she started with (e.g., (x2 + 3y)

3 )  
and the f inal polynomial she produced (e.g. , 
(

x2
)3

+ 3

(

(

x2
)2

⋅ (3y)1
)

+ 3

(

(

x2
)1

⋅ (3y)2
)

+ (3y)3 ). This 
consequence was profound: she reorganized how she thought 
about binomial expansion in the cubic, quartic, quintic, etc. 
cases and in non-symmetric binomial multiplication prob-
lems where she could see what she considered a novel alge-
braic structure.

6.2 � Contributions and future directions

We propose two inter-related contributions of this 
study. First, we have illustrated how developing com-
binatorial reasoning was instrumental in support-
ing Olive’s algebraic reasoning. Once she had con-
structed a CSBE, she established the equivalence 
(x + a)(x + b)(x + c) = x

3 + (a + b + c)x2 + (ab + ac + bc)x + abc with ease. 
Olive interpreted this equivalence as a statement about a 
relationship between the constant terms of binomials and 
the coefficients of a polynomial. We consider this relation-
ship to be a significant step towards seeing how the roots 
and coefficients of a polynomial are connected (i.e., Viète’s 
formulas). Establishing this connection could be a powerful 
basis for the study of polynomials and their roots at the sec-
ondary level. However, in the U.S. context, textbooks tend 
to emphasize sequential distribution for binomial expan-
sion, which in Olive’s words involves, “multiplying three 
things together over and over again,” rather than emphasiz-
ing combinatorial reasoning that can support seeing how the 
roots and coefficients of a polynomial are connected (Burch 
et al., 2021). We see this contribution as opening a conver-
sation with international audiences to compare the ways in 
which discrete mathematics has or has not been integrated 
into extant curricular materials to support students study of 
polynomials and their roots. We consider this comparison 
to be an important area for future research.

Fig. 18   Three choices between 1 and 4: a as ordered triples, b as 
ordered products
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The second contribution of this study is that we have 
provided a way to operationalize how teachers and students 
make the transition from Core Aspect A to B of Kaput’s 
(2008/2017) framework vis-à-vis Piaget’s reflecting abstrac-
tion. Kieran (2007) noted the centrality of Core Aspect B 
to secondary school algebra (what she calls the transfor-
mational aspect of algebra), while also identifying a lim-
ited number of studies that have investigated how students 
or teachers engage in this work. Dörfler (2008) echoed 
this observation suggesting that studies on, what he called 
descriptive algebra (similar to Core Aspect A), were only 
half of the story, and that further work was needed on opera-
tive aspects of algebra (similar to Core Aspect B). Reflect-
ing abstraction provides a tool to study how these two Core 
Aspects of algebra might be connected so that students and 
teachers can use their work in Core Aspect A to transition 
to powerful work related to Core Aspect B. One important 
question for further research in this arena is when and how 
to move back and forth between these two Core Aspects so 
that the two are mutually supportive of each other.
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