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Abstract
In recent decades, there has been considerable research that explores the teaching and learning of combinatorics. Such work 
has highlighted the fact that understanding and justifying combinatorial formulas can be challenging for students, and there 
is a need to identify ways to support students’ combinatorial reasoning. In this paper, we contribute to research that explores 
effective ways to foster students’ combinatorial reasoning by highlighting the role that shifts in representational registers 
can play in supporting students’ combinatorial reasoning and activity. In particular, we present a case in which two students, 
aged 12 and 14, reasoned about, and developed a formula for, binomial coefficients. This occurred in a teaching experiment 
designed to examine their generalizing activity. In these interviews, the students first solved problems about determining the 
volume of a cube and then shifted to a combinatorial interpretation of this task, leveraging binomial coefficients as a way 
to consider growth in higher dimensions. The students demonstrated sophisticated reasoning about combinatorial tasks and 
were ultimately able to generate and understand a formula for binomial coefficients. In framing this case, we focus on the 
students’ use of different representations, highlighting the power of being able to transition between representational registers 
as a way of supporting students’ combinatorial reasoning. In this way, our case demonstrates the value of representational 
registers specifically as a mechanism by which to potentially improve the teaching and learning of combinatorics.

Keywords Combinatorics · Representation · Binomial coefficients · Discrete mathematics

1  Introduction and motivation

Counting problems are important yet are known to be dif-
ficult for students (e.g., Batanero et al., 1997), and there is a 
perennial need to investigate ways to foster rich combinato-
rial thinking for students. We are motivated generally by a 
desire to improve the teaching and learning of combinatorics 
by improving students’ success in solving counting problems 
and understanding combinatorial topics. In this paper, we 
present a case study in which two secondary students tran-
sitioned from an algebraic to a discrete combinatorial set-
ting as they reasoned about and developed a general formula 
for binomial coefficients. To do this, the students moved 
between different representational registers (Duval, 2006), 
which was an explicit aspect of our design that we used to 

facilitate and support the students’ combinatorial reason-
ing. Our goal in this paper, then, is to demonstrate a case in 
which shifting across representational registers supported 
secondary students in successfully developing a formula for 
binomial coefficients in a relatively short amount of time.

In a recent commentary that made a case for research on 
combinatorics education, Lockwood et al. (2020) encour-
aged developments in the field of combinatorics education, 
articulating a need for more evidence-based research that 
highlights ways to support students’ combinatorial reason-
ing. We address this need by examining secondary students’ 
thinking about the particular topic of binomial coefficients. 
Although the scope of this research is fairly narrow, our 
detailed investigation offers specific insights about represen-
tational registers. In particular, we make explicit connections 
to representations in combinatorics, which are commonly 
used in solving counting problems but are rarely examined 
in and of themselves. * Elise Lockwood 
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2  Literature review

Work exploring students’ reasoning about different types of 
counting problems highlights differences among problems 
with certain constraints, such as whether or not repetition is 
allowed when constructing outcomes, and whether or not 
differently ordered elements count as distinct outcomes. 
Such investigations began with work by Piaget and Inhelder 
(1975) and was continued by Fischbein and colleagues (e.g., 
Fischbein et al., 1970), who focused on developmental stages 
and orders of difficulty of problem types for young students. 
Since then, more studies have explored students’ reason-
ing about problem types (Batanero et al., 1997), including 
having undergraduate students develop formulas (Reed & 
Lockwood, 2021) and leveraging computer programming 
to reason about distinctions among problems (Lockwood & 
De Chenne, 2020). We focus on combinations in this paper, 
noting the tradition to examine students’ reasoning about a 
variety of problem types.

2.1  Student reasoning about binomial coefficients

Binomial coefficients 
(

n

k

)

=
n!

(n−k)!k!
 are so named because 

they are the coefficients of the terms in resulting expansions 
when binomials are multiplied together. The binomial theo-
rem, which is stated as follows (for real numbers x, y, and 
nonnegative integers n), shows these terms as being the coef-
ficients of the resulting polynomial:

One way to interpret these coefficients is that of n binomi-
als that are being multiplied together, any coefficient of 
xkyn−k will consist of k x’s and n – k y’s. To get such a term, 
we can simply select an x from k of the n terms, and the rest 
of the n – k terms will contribute a y. There are 

(

n

k

)

 such 
possibilities for how many ways this selection can happen, 
and there is a combinatorial interpretation for this solution. 
Binomial coefficients count the number of unordered selec-
tions, or combinations, of k elements from an n-element set. 
Thus, binomial coefficients can be thought of as another 
term for combinations, and we use both terms interchange-
ably in this paper.

2.1.1  K-12 students’ reasoning about binomial coefficients

Understanding that there is much available research on K-12 
students’ combinatorial reasoning (e.g., Batanero et al., 
1997; English, 1991; Tillema, 2013), we focus on students’ 

(x + y)n =

n
∑

k=0

(

n

k

)

xkyn−k

understanding of binomial coefficients; most relevant are 
findings from the longitudinal study conducted by Maher 
and colleagues (see Maher et al., 2011). Their work demon-
strated that students could make connections among a vari-
ety of contexts involving combinations, including colored 
towers, pizzas, and patterns in Pascal’s triangle. There are 
similarities with our work presented here, in that, like Maher 
et al., we have investigated K-12 students in the context of 
solving combination problems. However, there are also key 
differences. Firstly, our data come not from students’ long-
term, repeated exposure to problems, but from two sessions 
of a 5-session teaching experiment in which the students had 
no prior combinatorial experience, demonstrating that it is 
possible for students to engage with this material in a short 
amount of time. Secondly, our students’ work began with 
and emerged from a context that is not typically viewed as 
being combinatorial, namely dimensions and volume growth 
in cubes. Finally, we characterize students’ understanding 
and development of a formula for combinations, which has 
not been the focus of previous work with middle and second-
ary students.

2.1.2  Undergraduate students’ reasoning about binomial 
coefficients

Lockwood and colleagues highlighted some potential chal-
lenges that undergraduate students might face when reason-
ing about binomial coefficients. Even though we worked 
with younger students, these studies highlight findings that 
framed our work. For example, Lockwood and Caughman 
(2016) explored students’ reasoning about set partition prob-
lems, which involve binomial coefficients; they found that 
because students associate order “not mattering” with com-
binations, they may find it difficult to address subtleties that 
arise in problems involving binomial coefficients. Lockwood 
et al. (2018) explored whether undergraduate students dif-
ferentiate between different kinds of combination problems. 
The authors found that students were more likely to interpret 
what they called Category 1 combination problems (prob-
lems whose solutions are modeled as an unordered selection 
of distinguishable objects) as involving binomial coefficients 
than Category 2 combination problems (problems whose 
solutions are modeled as an ordered sequence of two (or 
more) indistinguishable objects). Their findings suggest that 
binomial coefficients are indeed a subtle and complex topic. 
Together, these studies highlight the importance of exploring 
students’ reasoning about combination problems.

In light of such prior work at the K-12 and undergradu-
ate levels, we were motivated to explore whether younger 
students could reason about and develop a formula for com-
binations. Thus, our overall research aim is to report on 
the students’ success in formulating a correct formula for 
binomial coefficients by building out of an algebraic context 
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involving dimensions of a cube, and to examine what role 
shifts in representational registers played in that successful 
formulation. To analyze and interpret the students’ work, 
we sought a framework that would help us account for some 
key shifts in representations they used as they progressed 
through tasks. We elaborate these perspectives in the fol-
lowing section.

3  Theoretical perspective

3.1  Mathematical representations

We explicitly designed the teaching experiment to involve 
key shifts in representations to facilitate the students’ pro-
gression in their combinatorial reasoning, and, in observ-
ing the students’ work, we saw that representations indeed 
played a key role for their progress. We thus sought to under-
stand what sense students made of different representational 
contexts. Because we saw shifts within and across represen-
tations, we found that Duval’s (2006) framework for repre-
sentational registers, specifically his constructs of treatments 
and conversions, provided particularly useful ideas for our 
analysis.

Duval (2006) described a representation as something 
that stands for something else. Mental representations can 
be individuals’ beliefs, ideas, and conceptions, which can 
be accessed through their verbal or schematic productions. 
Examples of representations are “diagrams, number lines, 
graphs, arrangements of concrete objects or manipulatives, 
physical models, mathematical expressions, formulas and 
equations, or depictions on the screen of a computer or cal-
culator—that encode, stand for, or embody mathematical 
ideas or relationships” (Goldin, 2014, para. 1). They are 
produced according to a set of rules, and allow the descrip-
tion of a system, a process, or a phenomenon (Duval, 2006).

3.2  Representational registers, treatments, 
and conversions

In considering how learners navigate different represen-
tational systems, Duval (2006) relied on the notion of a 
representational register, that is, a system that permits a 
transformation of representations. There are two types of 
transformations: treatments and conversions. Treatments 
are transformations of representations that occur within the 
same register. This can entail, for instance, manipulating 
geometric figures such as showing that the area of a paral-
lelogram is equivalent to the area of a rectangle with the 
same length and height, or making transformations to an 
equation in order to solve it. Conversions, in contrast, are 
transformations of representations that consist of changing 
a register without changing the objects being denoted. This 

can include moving from an equation to a graph (moving 
from a symbolic register to a graphical register), or translat-
ing a word problem into a set of equations (moving from a 
natural language register to a symbolic register).

Duval (2006) noted that although treatment is generally 
emphasized in mathematics teaching, conversion is more 
complex because the change of register “first requires recog-
nition of the same represented object between two represen-
tations whose contents have very often nothing in common” 
(p. 112). This recognition is nontrivial, as it can change the 
properties that are made explicit in each register. Research-
ers investigating students’ representational transformations 
have reported that the ability to make transformations and, in 
particular, conversions is important for meaningful concep-
tualization of mathematical objects (Deelice & Kertil, 2014).

In this paper, we use the constructs of treatments, conver-
sions, and representational registers to frame the students’ 
work. In light of this theoretical perspective, and building on 
existing literature in combinatorics education, we now frame 
the research questions we seek to address in this paper. Our 
overall goal is to identify ways to improve the teaching and 
learning of combinatorics, and we want to investigate the 
ways in which shifts in representational registers may sup-
port students’ combinatorial reasoning. We situate these two 
research specific questions within this broader goal.

(1) As two secondary students reasoned about and devel-
oped a formula for binomial coefficients, how did the 
students’ work within and across different representa-
tional registers support their combinatorial reasoning 
about binomial coefficients?

(2) In particular, what treatments and conversions did the 
students make between and across registers, and how 
did those treatments and conversions support specific 
aspects of their combinatorial reasoning about binomial 
coefficients?

4  Methods

4.1  Data collection

This study was part of a three-year project investigating 
students’ processes of generalizing in algebra, precalculus, 
and combinatorics. For that project, we conducted a series 
of teaching experiments (Steffe & Thompson, 2000) with 
middle-school, high-school, and undergraduate students 
(see Ellis et al. 2021, for more details). The data reported in 
this paper come from one paired teaching experiment with 
a 12-year-old middle-school student and a 14-year-old high 
school student (we call these secondary students, where sec-
ondary encompasses middle and high school (grades 6–12); 
this is in contrast to elementary and undergraduate students). 
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Previous work (e.g., Lockwood et al. 2016) had explored 
and established undergraduate students’ engagement with 
such tasks. Given our research aim of examining the extent 
to which younger students could also reason about bino-
mial coefficients via shifts in representational registers (and 
leverage algebraic contexts and representations to explore 
combinatorial ideas), we focused on this particular teaching 
experiment within our broader data set. This was the only 
teaching experiment in which we used these combinatorial 
tasks with students of this age; these data are thus unique 
among our broader set, which is why we focused on them 
for this paper.

4.1.1  Participants

The participants were Barney, a 12-year-old 7th-grade stu-
dent, and Homer, a 14-years old 9th-grade student. (Barney 
and Homer are pseudonyms the participants chose.) Our aim 
was to conduct a paired teaching experiment, and Barney 
and Homer were the first two available students who were 
able to participate in a series of summer sessions which coin-
cided with the researchers’ availability. Our only require-
ment for participation was the completion of (at minimum) 
a pre-algebra course. At the time of the teaching experiment, 
Barney had just completed a pre-algebra course, which was 
part of the advanced mathematics track at his school. Barney 
had studied linear equations and functions, but had not yet 
encountered quadratic or higher-order polynomial functions 
or learned algebraic manipulations such as multiplying bino-
mials. Homer had just completed Algebra I, and was familiar 
with quadratic and exponential functions, but had not yet 
encountered higher-order polynomial functions. The two stu-
dents were comfortable with one another and communicated 
well together and with the teacher-researcher.

4.1.2  The teaching experiment and data sources

The teaching experiment consisted of five sessions that 
occurred over the course of 8 days, with each session rang-
ing from 60 to 90 min. The sessions were audio and video 
recorded, and the second author was the teacher-researcher. 

This particular teaching experiment was the third such 
instantiation from the larger project, and thus the teacher-
researcher had already developed and revised an initial set of 
tasks during the first two rounds with different participants. 
The tasks for the first three days were revisions of those 
previously developed (and focused on growth of dimen-
sions of rectangles and cubes), and those for the final two 
days were new (and focused on connecting such growth to 
combinatorial contexts). We address these final two days in 
this paper. The teaching experiment setting allowed for the 
creation and testing of hypotheses in real time while engag-
ing in teaching actions, as well as in reflection between each 
session. Between sessions, the second author met with the 
first author to review the data, debrief the session, and then 
revise or develop the tasks for the next session. The data 
sources consisted of the video and audio recordings of the 
teaching sessions, the students’ written work, and transcripts 
from the video recordings.

4.2  Representational registers and tasks

4.2.1  Representational registers

Drawing on Duval (2006), we frame the students’ work in 
terms of four different registers, each relying on its own 
method of representation. Table  1 shows each register 
and when it occurred, as well as the instructor moves we 
employed to elicit students’ thinking and activity within and 
across those registers. We briefly describe each register and 
the associated types of tasks we elicited within the register.

The physical register involves reasoning about com-
ponent pieces of volume while manipulating physical 
cubes. In this register, the students worked with pieces of 
a cube that were part of a physical manipulative. Figure 1a 
shows the original cube, which the students reasoned with 
as a generic cube with a side-length N. They added three 
N × N × 1 pieces (1b), then three N × 1 × 1 pieces (1c), 
and a 1 × 1 × 1 piece (1d). Treatments within this register 
entailed comparing two different decompositions of a cube 
as ways to represent the same amount of added volume, 
or building up component pieces of the cube in multiple 

Table 1  Representational registers and instructor moves to promote them

Representationalregister Instructor moves

Physical (Days 1, 2, 3, and 4) • Provision of physical cubes to model volume
• Allowance of open exploration with the cubes
• Prompting to explain volume representations by showing pieces on the cubes

Algebraic (Days 3 and 4) • Explicit direction to write and represent added volume for a generic N x N x N cube in 
terms of expressions involving 1s and Ns

Arrangements (Day 4) • Explicit direction to write and represent dimensions of pieces as arrangements of 1s and Ns
Sets (Days 4 and 5) • Explicit direction to write and represent arrangements of 1s and Ns as sets of numbers that 

represent positions of the Ns in a given arrangement
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ways. Students could also make conversions by algebrai-
cally representing the added volume that they had built 
on the cube.

The algebraic register involves writing and rea-
soning about symbolic, algebraic expressions such as 
 N3 +  3N2 + 3 N + 1 (as opposed to manipulating physical 
pieces of a cube). Here, the students made sense of algebraic 
symbols, and they often made conversions between this and 
other registers. The arrangements register involves repre-
senting ideas in terms of arrangements of characters (in our 
case, arranging some number of 1s and some number of Ns), 
and not physical pieces or algebraic expressions. For exam-
ple, work within the arrangements register might involve 
counting how many arrangements there are of four Ns and 
two 1s. Students could list arrangements and consider what 
counts as an outcome, and what makes outcomes distinct. 
Finally, the sets register involves counting an unordered set 
of numbers. Here, the objects of focus are not arrangements 
or symbolic expressions, but sets of numbers, such as {1, 2, 
3, 4} or {3, 4, 5, 6}.

Importantly, there is a bijection between the arrangements 
of Ns and 1s and sets of numbers, where the sets of num-
bers correspond to the positions of the Ns in an arrangement 
of 1s and Ns. So, {1, 2, 3, 4} represents the arrangement 
NNNN11, and the arrangement 11NNNN represents {3, 4, 
5, 6}. We leveraged this bijection in designing our tasks, as 
we hypothesized that it would be easier for the students to 
notice structure and patterns by considering lists of sets.

Although we are articulating different registers, they 
are all related. Let us consider as an example the term  3N2, 
which can be interpreted within all four registers. In the 
physical register, there are three 2-dimensional  N2 pieces of 
volume that are added to the original cube. In the algebraic 
register, the symbolic representation is the written expres-
sion, “3N2”. Students can represent these terms as algebraic 
symbols of numbers and variables. In the arrangements reg-
ister, there are three ways of arranging one 1 and two Ns: 
NN1; N1N; 1NN. In the sets register, this represents that 
there are three 2-element sets of the number 1, 2, and 3: 

{1,2}, {1,3}, and {2, 3}. These four registers offer four dif-
ferent ways of representing the same idea.

4.2.2  Tasks

The first two days of the teaching experiment emphasized 
linear growth as a representation of a constant rate of 
change, and quadratic growth as a representation of a con-
stantly-changing rate of change. We created a task sequence 
exploring rates of change within the contexts of speed, area, 
and volume, from which students could develop a founda-
tion of thinking about functional growth from a covariation 
perspective to leverage when exploring cubic and higher-
order polynomial functions (Carlson et al., 2002; Ellis et al. 
2022)—see Table 2 for representative tasks presented each 
day. On Day 3, we transitioned to volume tasks to explore 
the students’ generalizations about volumes of growing 
cubes and rectangular prisms. The students manipulated a 
dynamic geometry software image of a smoothly growing 
cube, and also worked with physical cubes to build up mod-
els to think about the parts of the added volume.

On Day 4, we encouraged a shift in representational reg-
isters and asked the students to think about volume growth 
for higher dimensions that they could not visualize (4, 5, 
6, and N dimensions). This activity involved shifting from 
working with the dimensions of a physical cube to working 
with arrangements of the characters 1 and N (where 1 and N 
each represented dimensions of a growing piece of a physi-
cal cube). Our intention was to have the students connect the 
pieces of the cube to arrangements of Ns and 1s. In this way, 
we prompted a shift from a physical register to an arrange-
ments register that would foster combinatorial reasoning.

Day 5 saw an additional shift in registers, from reasoning 
about arrangements of 1s and Ns to sets of numbers. We fos-
tered student reasoning about a particular bijection in which 
the students could connect a particular arrangement of 1s and 
Ns (such as 1N1NN) with a set of numbers that represented 
the positions of the Ns in the arrangement. Because binomial 
coefficients exactly count such sets, we were trying to pre-
pare the students to develop a formula for counting such sets. 

Fig. 1  Constituent parts of a cube that has grown by 1 cm in height, length, and width
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Table 2  Representative tasks presented during the teaching experiment

Day Representative tasks

1 Task 1. Graph the area of the triangle (y-axis) versus the total distance traveled by point p (x-axis). Then, graph the area of the triangle 
(y-axis) versus the shortest distance along the square between point p and A (x-axis). 

Task 2. Imagine you are sweeping out a rectangle with a fixed height that increases in length from left to right. Graph the amount of area 
versus the length swept.

Task 3. Imagine that you sweep out a rectangle with a fixed height as before. It glides along for 2 seconds, then immediately extends to be 
twice as tall and sweeps out for another two seconds. a) Draw a picture of this scenario. b) Graph the amount of area versus the length 
swept.

Task 4. Say you sweep out one rectangle with a height of 10 cm. Write an expression for the area of the rectangle after it has swept out x 
cm in length.

2

Task 1. Graph the area versus the length of the stairstep figure:  

Task 2. Graph the relationship between the area and the length of each of the following triangles as they sweep out from left to right: 

Task 3. a) Imagine a triangle that sweeps out with a height to length ratio of 1:1. What would be the area of the triangle for any swept length 
L? b) Now suppose the ratio of height to length was 2:3. What is the area of the triangle for any swept length L? c) Now suppose the ratio 
of height to length was 3:2. What is the area of the triangle for any swept length L? d) What would be the area of a triangle for any swept 
length L when the ratio of height to length is a:b?

3 Task 1. a) Let’s think about a cube that starts growing from a point, and it grows the way we saw in the movie, from 0 cm x 0 cm x 0 cm to 
a cube that is 10 cm x 10 cm x 10 cm. How much volume did the cube gain as each side grew from 0 cm to 10 cm? b) Imagine that cube 
on the journey from 0 cm x 0 cm x 0 cm to N cm x N cm x N cm. It has grown to be some size and we don’t know how big it is. How 
much volume will the cube gain when it grows 1 more cm on each side?

Task 2. a) Now instead of a cube, let’s think about a rectangular prism (we’ll call it a box) that has the dimensions 1 cm by 2 cm by 3 cm. 
Imagine this box growing from a point (0 cm x 0 cm x 0 cm) to a 10 cm by 20 cm by 30 cm box. How much volume did the box gain on 
its journey?

Task 3. a) How does the volume of an N x N x N cube grow when each side grows by x cm? b) How does the cube’s volume grow if it 
grows by a cm in one dimension, b cm in the second dimension, and c cm in the third dimension?

4 Task 1. Now say you have an N x N x N x N hypercube. How much would its “volume” grow if the hypercube grew by 1 cm in each direc-
tion?

Task 2. How many ways you can arrange two 1s and two Ns?
Task 3. a) Extend this task to the  5th dimension. Write an expression for the total volume of an N x N x N x N x N cube that grew by 1 cm 

in each direction. b) How many ways can you arrange three 1s and two Ns?
5 Task 1. How many ways can you arrange 3 1s and 3 Ns?

Task 2. a) Say you have the numbers from 1 to 6. How many 2-number combinations are there, where order doesn’t matter? b) How many 
3-number combinations are there, where order doesn’t matter?

Task 3. a) Say you have six numbers, and two slots. How many ways can you put the numbers in the slots, if order doesn’t matter? b) Say 
you have six numbers, and two slots. How many ways can you put the numbers in the slots, if order doesn’t matter?

Task 4. Say you have a list of seven numbers, and you are going to choose two numbers. How many different combinations are there, if 
order doesn’t matter?
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Finally, the students developed a formula for counting sets of 
numbers—that is, for binomial coefficients, or the number of 
k-element subsets of an n-element set.

4.3  Data analysis

A member of the research team created enhanced transcripts 
from the video recordings, which included relevant time 
stamps, images from the video data and students’ written 
work, and descriptions of students’ pauses and gestures. To 
analyze the data, the first author re-watched Days 4 and 5 
and reviewed the enhanced transcripts of the teaching experi-
ments. From the transcripts, she pulled relevant episodes into 
a document, writing a narrative and aiming to tell a com-
prehensive story of what had occurred. She recorded overall 
shifts in representations that the students had made (not yet 
using Duval’s (2006) framework of representational regis-
ters), and she also identified particular combinatorial insights 
that were afforded for the students as they made progress in 
the teaching experiment.

Then, she shared this narrative with the second author, 
who reviewed the document and made sure it aligned with 
her viewing of the video and reading of the transcripts (and 
her experience as teacher-researcher in the experiment). 
They discussed the data and made sense of the big ideas pre-
sented in the narrative, ultimately agreeing on the accuracy 
of the overall narrative. The second author then used Duval’s 
(2006) framework of representational registers to articulate 
the main shifts that occurred. Based on the narrative and on 
her reading of representational registers, the second author 
created Table 3 (shown in Sect. 5.4), which summarizes and 
presents the characterizations of conversions and treatments 
within the various representational registers. The first author 
then went through and compared the table with the narrative, 
adjusting and finalizing the table as an accurate representa-
tion of the data. Together, the authors resolved any discrep-
ancies as they finalized the results section.

5  Results

In Sect. 5.1 we highlight initial student work about growth 
of a cube, which led to the set of tasks in this paper. Then, 
in Sect. 5.2 we share the bulk of our results, in which we 
account for the variety of representational registers in which 
students engaged as they came to understand a formula for 
binomial coefficients. Due to space, this is not a compre-
hensive account of every shift and all of the episodes in our 
data; instead, we focus on two major shifts that illuminate 
the ways in which different representational registers might 
be leveraged to foster combinatorial reasoning.

5.1  The physical and algebraic registers—homer 
and barney’s initial work on dimensions 
of a cube

On Day 3, Barney and Homer investigated the change in vol-
ume of a cube that grew in 1-cm increments. They worked 
in the physical register to establish the component pieces of 
a larger cube (Fig. 1). The teacher-researcher asked the stu-
dents to make a conversion between the physical register and 
the algebraic register. Pointing to a 4 × 4 × 4 cube, she asked, 
“Can you express that algebraically if this was, instead of 
a 4 × 4 × 4, it was an N × N × N?” Both students wrote the 
expression  3N2 + 3 N + 1, and then they explained each term 
of the expression in relation to the component pieces of the 
cube. The teacher-researcher asked Homer, “Where’s the 
 3N2?” Homer pointed to the three N × N × 1 pieces on the 
physical cube (Fig. 1b), and said, “The three little extra.” 
Barney pointed to the three N × 1 × 1 pieces (Fig. 1c), and 
said, “These are the Ns.” Homer then pointed to the 1 × 1 × 1 
piece (Fig. 1d) and said, “And then the one’s just this one.” 
In this manner, the students began to establish relationships 
between component pieces of the cube in the physical reg-
ister and analogous terms of an expression in the algebraic 
register.

5.2  The students’ treatments 
among and conversions between the physical, 
algebraic, and arrangements registers

In the following sections we discuss the students’ treatments 
among and conversions between the physical, algebraic, 
and arrangements register, and their treatments within the 
arrangement register. In doing so, we describe what treat-
ments and conversions among registers the students made, 
and these episodes set the stage for us describing how these 
treatments and conversions ultimately supported certain 
aspects of their combinatorial reasoning.

5.2.1  Conversion from the physical to the algebraic register

Given an N × N × N cube, the teacher-researcher asked the 
students to recall from their activity in the prior day what 
pieces were being added and what the dimensions were if the 
cube grew by 1 unit in each direction. The students wrote the 
expression for the added volume (Fig. 2), and the teacher-
researcher started to transcribe what they had written onto 
a new page (Fig. 3a, b). 

Notice that the teacher-researcher prompted the algebraic 
register, in which each term in the expression was re-written 
in terms of 1s and Ns, which stood for dimensions of the 
cube. Notably, the students spoke flexibly about the two 
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representations—the physical cube itself and the written 
algebraic expressions involving 1s and Ns. Even though 1s 
and Ns were written here, we view this expression as within 
the algebraic register because the students viewed them as 
algebraic representations of the dimensions, not yet as a new 
combinatorial representation of arrangements of 1s and Ns.

Teacher-Researcher:  is there anything you notice about the 
way I wrote it?

Barney:  Uh, yes. So it always goes height, 
length, width or height, width, 
length I think.

  […]
Teacher-Researcher:  Okay. And what about the order in 

which I wrote the 1s and the Ns?
Barney:  It goes, height, then width, then 

length.
Homer:  And they’re all different because.

Barney:  ‘Cause this is the 1 height, this is the 
1 wide, this is the 1 long.

Teacher-Researcher:  Okay. And you said they’re all differ-
ent Homer?

Homer  Well, no they’re not different pieces 
but they’re represented differently, 
yeah.

Table 3  A summary of the registers in the results, including the transformation type, the register the students used, and a description of the reg-
ister

Transfor-mation Register(s) Description

Conversion Physical Algebraic Students established relationships between terms of an algebraic expression 
and component pieces of the cube.

Conversion Physical Algebraic Arrange-ments Students explained each term of  3N2 + 3N + 1 on the cube and in terms of 
the dimensions 1 and N.

Conversion Algebraic Arrangements Barney noted that the 4 of  4N3 represented “every possible permutation”, i.e. 
(N*N*N*1), (N*1*N*N), (N*N*1*N), (1*N*N*N). Homer used similar 
reasoning for the 4N term.

Conversion Algebraic Arrangements Barney and Homer reasoned that the second term for the expression of added 
hypervolume for a 4-dimensional cube should be  6N3 because there are 6 
ways to arrange two Ns and two 1s.

Conversion Algebraic Arrangements Barney and Homer determined coefficients from Pascal’s triangle to write 
algebraic expressions for added hypervolume, and then justified the coef-
ficients through listing Ns and 1s.

Treatment Arrangements Barney took the listing outcome of arranging three Ns and two 1s and used 
it to determine the listing outcome of arranging three 1s and two Ns by 
switching the 1s and Ns. Homer did the same with four Ns and one 1.

Treatment Arrangements Students determined the number of outcomes for three Ns and two 1s can be 
represented as 4 + 3 + 2 + 1.

Conversion Sets Arrangements Barney transformed “145” in the sets register to “NIINNI” in the arrange-
ments register.

Treatment Sets Homer took the listing outcome of 6 choose 2 and represented it as groups of 
5, 4, 3, 2, and 1.

Treatment Sets Homer and Barney took the listing outcome of 6 choose 3 and represented it 
as groups of 10, 6, 3, and 1.

Conversion Sets Arrangements Homer equated the first 10 sets of numbers that included a 1 for 6 choose 3 to 
combinations starting with 1 when listing 1s and Ns, and the second 10 sets 
of numbers as those that would begin with N.

Treatment Sets The students conduct calculations within the sets register to determine a way 
to find 6 choose 3 without listing.

Conversion Sets Arrangements Students knew 7 choose 4 was the same as 7 choose 3 because it is equivalent 
to substituting 3 and 4 with I and N.

Fig. 2  Barney’s expression for the volume of growth of a 3-dimen-
sional cube
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Here, Homer noted that they were “represented” differ-
ently. We interpret that he meant that the three N pieces 
1NN, N1N, NN1 were all being represented differently, even 
though they were all the same shape, and they had different 
positions on the cube. The students considered the different 
algebraic terms, which they connected to the physical cube, 
and had the following exchange:

Teacher-Researcher:  Okay, and what are the dimensions 
of those [the pieces that represent the 
3N]?

Barney:  Uh, they are 1, by 1 by N.
Teacher-Researcher:  Okay.
Barney:  And then it’s 1 by N by 1, and then 

no N by 1 by 1.

This exchange suggests that Homer and Barney connected 
the sequences 11N, 1N1, and N11 with the dimensions of 
pieces of the cube that were being added, a conversion 
between the physical and algebraic registers.

From this initial work with the 3-dimensional cube, we 
see that the students seemed to understand the relationship 
between the physical register and the algebraic register. 
Some listing occurred here when the teacher-researcher 
wrote arrangements of 1s and Ns, but we interpret that 
this activity was viewed as representing the pieces alge-
braically. This would lay the groundwork for the arrange-
ments register, but these representations as arrangements 
was not the focus here. At this point, they had completed 

the 3-case, and written, as shown in Fig. 3b, the expression 
 N3 +  3N2 + 3N + 1 as a way to describe the total volume of 
an N × N × N cube that was increased by one unit in each 
direction.

5.2.2  Conversion to arrangements register, and focusing 
on systematic listing in the 4-dimensional case

We now highlight episodes that occurred during the students’ 
exploration on the 4-dimensional case, in which they were 
predicting an expression for extending the previous problem 
to an N × N × N × N situation. The teacher-researcher asked 
the students to consider what would happen if they extended 
the problem to 4 dimensions. The teacher-researcher and the 
students discussed the physical limitations of this scenario, 
and Barney noted, “It’s literally impossible to imagine.” This 
highlights their understanding of a need for a way to conceive 
of growth in dimensions that they could not visualize. Homer 
made an astute observation, saying, “So the real question is, 
how many, how many extra pieces would we have to add on 
like these (referring to pieces of the growing cube)?” This sug-
gests that they understood that they were still connecting their 
work to dimensions in the physical register.

The students then made an incorrect but reasonable pre-
diction for an algebraic expression of the added hypervolume 
when a hypercube grew 1 cm in each direction (see Fig. 4): 
 4N3 +  4N2 + 4N +  14. In their guess, only the coefficient of  N2 
is incorrect; the correct answer is  4N3 +  6N2 + 4N +  14.1 

To resolve this incorrect term, the teacher-researcher asked 
the students to inspect the accuracy of their expression, draw-
ing their attention to listing combinations of 1s and Ns to 
reason about how many of each term there might be (that is, 
to check whether their prediction was correct). For instance, 
she asked the students to think about the first term,  4N3, in 
terms of the dimensions of the pieces added to the hypercube. 

Fig. 3  a, b The physical cube 
and the volume expressed as 1s 
and Ns

Fig. 4  The students’ guess at the 4-dimensional case

1 We note the similarity between their guess and the expression for 
the 3-dimensional case, which was  3N2 + 3 N + 1.
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This is in line with their previous work in the 3-dimensional 
case (see Fig. 3), but here the teacher-researcher intentionally 
reoriented the students to writing out 1s and Ns. Homer and 
Barney noted that there would be four different pieces to add 
with four different dimensions, which, through discussion, 
the teacher-researcher wrote down (Fig. 5). Throughout this 
episode, the teacher-researcher’s choice of representation was 
an intentional instructional move to foster conversion—this 
was manifest not by the teacher-researcher telling the students 
to use 1s and Ns, but rather by modeling that representation 
through her inscription.

Referring to the teacher-researcher’s inscription in Fig. 5, 
Barney noted, “So the 4 represents every possible thing we 
could do, every possible permutation.” Homer responded 
by saying, “Oh okay, oh okay that makes sense…Yeah I 
thought it was 4, but I did not know how to prove it.” This 
suggests that seeing the four ways in which to write three Ns 
and one 1 (as indicated in Fig. 5) helped to convince Homer 
why four made sense as the coefficient of  N3. This is the 
first explicit evidence for the students enacting a conversion 
between the algebraic register and the arrangements register; 
the student’s language suggested that they made sense of 
the coefficient, 4, of  4N3 (a term in the algebraic register) in 
terms of the representation in Fig. 5 (a representation in the 
arrangements register).

The students and teacher-researcher then moved on to the 
coefficient of N (which is also 4), with the teacher-researcher 
asking them to explain why they got 4. Homer explained it 
as follows, describing 4 arrangements of three 1s and one N:

Homer:  Well yes, wait let me explain it. Because it’s 4 by 
N because it’s […] 1 by 1 by 1 by N then N by 1 
by 1 by 1, and N by no then 1 by N by 1 by 1 and 
then 1 by 1 by N by 1. And there’s 4 of them.

We note that here, Homer was still referring to dimen-
sions, and it seems that the 1s and Ns were representing 
to him those dimensions, simply expressed as 1s and Ns. 
This reinforced Homer’s relationship between the physi-
cal and algebraic registers, but it is not clear the extent to 
which he was thinking of arrangements in this statement. 
We note that to this point, the students spoke in terms of 
dimensions, but they also referred to inscriptions of 1s 

and Ns and, at times, to arrangements of Ns and 1s. Here 
there seemed to be a tacit understanding of the idea that 
the dimensions, the algebraic expressions, and the arrange-
ments of Ns and 1s were connected, but to this point the 
students had not yet explicitly addressed these relation-
ships in their discussion of the problem. Further, while the 
students were describing Ns and 1s, it was not always clear 
whether they viewed those as arrangements of characters 
or simply as ways of representing (through characters of 1s 
and Ns) the dimensions from the physical register.

The students then turned to the  N2 term, which they had 
guessed was  4N2. The teacher-researcher asked them to 
list out ways in which two of the dimensions were grow-
ing, which is equivalent to arranging two 1s and two Ns. 
Importantly, the teacher-researcher introduced language 
that drew attention to arrangements of 1s and Ns—refer-
ring to slots (or, positions) that would contain 1s or Ns:

Teacher-Researcher:  So, the only one we haven’t worked 
through is the  4N2. So, I want you 
both to list out all the ways you can 
arrange the N squared piece, so 2 
dimensions are growing 1…So two 
of the slots are going to be 1s, and 
two of the slots are going to be Ns. 
So, list out all the ways.

Here the teacher-researcher, in one utterance, connected 
three different representational registers, the physical, 
the algebraic, and the arrangements registers. This was a 
deliberate attempt to engender a conversion to the arrange-
ment register; as we will see, even though the students 
made this conversion, they did not lose track of the overall 
picture, which was related to questions of dimensionality. 
In doing what the teacher-researcher asked, the two stu-
dents each listed such arrangements systematically, now 
working in the arrangements register, and arrived at an 
answer of 6 (Fig. 6).

The teacher-researcher then asked the students to revise 
their equation for the added volume. Barney adjusted the 
 4N2 to be a  6N2, writing  4N3 +  6N2 + 4N +  14, which we see 
as evidence that he could interpret his work in the arrange-
ments register in terms of the algebraic register. Barney 
then suggested that they write an expression for the second 
dimension, and they wrote the expression  N2 + 2N + 1 for the 
total area of the 2-dimensional figure. The teacher-researcher 
included this in her summary and reorganization of their 
work so far, which we discuss in the next section.

Fig. 5  Expressing the four pieces in terms of 1s and Ns
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5.2.3  Focusing on patterns and relationships among cases 
in the algebraic register

The students had now established correct expressions for 
the 2, 3, and 4-dimensional cases. After this discussion, the 
teacher-researcher began to write down each of the expres-
sions for dimensions 2, 3, and 4 in a particular way; as shown 
in Fig. 7, she listed them out as rows on top of each other 
(the red numbers and blue lines were added later). Here, as 
with systematic listing, we see an intentional instructional 
move to focus on certain properties and relationships within 
the algebraic representational register that directs their focus 
on observing numerical patterns. Once the students observed 
these numerical relationships, we will see that they could 
still convert to both the physical register and the arrange-
ments register.

When the teacher-researcher drew the work in Fig. 7, 
Homer became excited and recognized Pascal’s trian-
gle, which both students recognized from their school 
experiences:

Homer:  Oh, I know what’s happening, I know 
what’s happening, I know what’s 
happening, I know what’s happen-
ing, I know what’s happening

Teacher-Researcher:  Okay.
Barney:  Wow chill bro, settle down.

Homer:  I KNOW what is happening, Barney. 
It is simple, as 2 sorry I’m writing 
on it [begins to add the blue lines]. 2 
plus 1 is 3 and 2 plus 1 is 3, 3 plus 3 
is 6, 3 plus 1 is 4, 1 plus 3 is 4.

The fact that the students understood how to generate the 
next row in Pascal’s triangle was useful, because it allowed 
them to hypothesize the values for the 5th dimensional 
case, which they could then check via listing. The teacher-
researcher asked them to determine an expression for the 
5th dimensional case. Homer wrote out the 1, 5, 10, 10, 5, 
1 as the fifth row in Pascal’s triangle, and, notably, both he 
and Barney started to list to check their work. Here the stu-
dents shifted to engaging in activity that was entirely within 
the algebraic and arrangements registers, and they were no 
longer focusing on the physical register.

Barney used the coefficients from the fifth row of Pascal’s 
triangle to write out the terms in Fig. 8. Barney seemed to 
make sense of the  1N5 and  5N4 terms and the 5N and  15 
terms fairly quickly, and, importantly, when he was thinking 
about why there might be 5 for arranging one N and four 
1s, he said, “Yeah, there’s five places the N can go. Okay, 
that’s easy enough.” This suggests that in reasoning about 
the term 5N, Barney demonstrated a conversion, justifying 
a term in the algebraic register via the arrangements register 
(reasoning combinatorially about arranging 1s and Ns). That 
is, he articulated why that made sense in terms of producing 
combinations of two kinds of characters, and he justified the 
5 in terms of arranging 1s and Ns.

The middle two cases of  N3 and  N2 were the more diffi-
cult coefficients. To justify the accuracy of the coefficient 10, 
Barney and Homer made a conversion to the arrangements 
register, both engaging in listing on these cases, producing 
lists for three Ns and two 1s (the  N3 case) in Fig. 9. As they 

Fig. 6  a, b Homer’s and Bar-
ney’s lists of arrangements of 
two Ns and two 1s

Fig. 7  A summary of the students’ work so far

Fig. 8  Barney’s expression for 5 dimensions
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wrote and discussed their lists, they were operating fully 
within the arrangements register. Their exchanges suggest 
that they were reasoning about and justifying how many 
arrangements there are of three Ns and two 1s and engaging 
in systematic listing.2 Seeing the list of 10 confirmed the 
result they had predicted based on the pattern in Pascal’s 
triangle.

5.2.4  Finalizing day 4, and a brief discussion of a formula

Toward the end of this Day 4 work, the students reasoned 
about a formula for the number of 5-character arrangements 
of three Ns and two 1s (there are 10). We briefly summarize 
what occurred because it relates to their eventual articulation 
of the formula for binomial coefficients during Day 5. As 
the students worked, they started to hypothesize a formula 
for the number of arrangements of Ns and 1s. This began by 
noticing structure and regularity within their list of three Ns 
and two 1s, which was prompted by the teacher-researcher. 
In particular, she directed them to list these outcomes by 
attending to how many outcomes started with a 1. After 
some discussion, they created the following list (Fig. 10), 
noting that there were 10 total. They all discussed their sys-
tematic process (listing arrangements that started with 1, and 
with N, with NN, and with NNN) and articulated that the 
total would be 4 + 3 + 2 + 1.

The teacher-researcher asked them to determine another 
way to express that sum, and they drew on previous expe-
rience to come up with a formula, N(N + 1)/2 (they had 

developed this formula in Day 2 in an area context). They 
noted that there would be 5∙4

2
= 10 outcomes. Thus, through 

their recollection of a prior formula, the students conceived 
of the 10 in Pascal’s triangle both as 10 = 4 + 3 + 2 + 1 and 
as 10 =

(4+1)∙4

2
 , two instances of treatment transformations 

within the arrangements register (which were communicated 
via the algebraic register).

However, when Homer and Barney went to consider the 
third entry in the  6th row of Pascal’s triangle, they experi-
enced a perturbation. As they generalized their two options, 
on the one hand they thought 

(

6

3

)

 should be 
21 = 6 + 5 + 4 + 3 + 2 + 1 (adding a 6 to the 15), but in Pas-
cal’s triangle the number of outcomes should be 20, since it 
is the sum of the previous two entries, 10 and 10. So, they 
reasoned that something was incorrect about their sum, and 
they wanted to explore it more. Their goal for Day 5 was to 
determine the correct coefficient for  N3 in the 6th-dimen-
sional case.

5.3  The sets register

5.3.1  Second shift among representational registers: 
from the arrangements register to the sets register

At the beginning of Day 5, Barney and Homer 
used the Pattern from Pascal’s triangle to write 
the following expression for the 6th dimension: 
 1N6 +  6N5 +  15N4 +  20N3 +  15N2 + 6N +  16. Based on this, 
their guess was 20 for the  N3 term.

Fig. 9  Barney’s and Homer’s lists of arranging three Ns and two 1s

Fig. 10  A structured list of three Ns and two 1s

2 We note that because of how the students wrote 1s, they sometimes 
referred to the 1s as Is.
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Next, an important exchange occurred in which the 
teacher-researcher explicitly directed the students’ attention 
toward another way of thinking about and representing out-
comes. We elaborate this episode to highlight the students’ 
thinking about this new register.

Teacher-Researcher:  I’m going to introduce some new 
notation. So if you want to figure 
out that it’s  20N3, remember we’re 
thinking about dimensions right. So 
how many dimensions does this cube 
exist in?

Homer:  Six.
Teacher-Researcher:  Six dimensions. And so, basically 

we’re saying okay, there’s six differ-
ent dimensions it can grow in so sort 
of six slots (Fig. 11), I’m going to 
kind of do it like this 3, 4, 5, 6 and 
it’s growing in one centimeter each 
direction. So for this one, how many 
N’s would there be and how many 
1’s would there be?

Barney:  There’d be three N’s and three 1’s. 
Because it’s  N3.

At this point, the students volunteered that they wanted 
to list all of the outcomes (Fig. 12).

The students’ listing activity took place within the 
arrangements register. Wanting to help them move toward 
a more general formula, the teacher-researcher then made 
an explicit connection between the students’ lists and a set 
of three numbers chosen from the numbers 1 through 6. 
She hypothesized that such a representation would high-
light properties that would make generating the formula 
for binomial coefficients easier for the students. (Note that 
at this point, the students had begun to use the term “I” 
instead of “1”, confusing the two symbols due to their 
visual similarity. In the transcript below, the teacher-
researcher had taken up the students’ use of the term “I”, 
but she was referring to the 1s.)

Teacher-Researcher:  As you were listing what you were 
doing is, 1 2 3 4 5 6 there were six 
spots right? And you were choosing 
where to put the three Ns right? […] 
For instance, what’s one 3-number 
string that you could choose?

Homer:  145.
Teacher-Researcher:  145. So, do you believe that choosing 

all of the different 3-number strings 
out of 6 is the same as what you were 
doing here, listing the Is and the Ns?

Homer:  Mhm. Well, assuming that all the 
numbers are in, so like, if there was 
541 [TR writes 541] that wouldn’t be 
another one because--

Fig. 11  Slots as a way to consider options for arrangements

Fig. 12  Homer and Barney’s 
lists of three Ns and three 1s
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Teacher-Researcher:  Correct, yes say why.
Homer:  --because, we could say, alright, this 

is 1, 2, and 3 [points to arrangement 
NNN111], like for this one but we 
could also say oh it’s 321 because so. 
Uh these [points to 145 and 541] are 
the same.

Teacher-Researcher:  Yes.
Barney:  These [the numbers] are the spots 

where you’re going to put Ns.
Teacher-Researcher:  Yes. The numbers are the spots where 

you’re going to put Ns. That’s right. 
So, if you chose 145, what would 
that look like in the string that you 
listed?

Barney:  That would be, this one, number 
eight, NIINNI.

In asking what 145 would mean in the string the students 
had listed, the teacher-researcher explicitly asked the stu-
dents to make a conversion between the new sets register 
and the arrangements register. Barney was able to transform 
“145” into “NIINNI” (here he used the symbol “I” instead 
of “1”). Furthermore, we consider this conversion to be a 
bijection between arrangements of 1s and Ns and sets of 
numbers. This relates to encoding outcomes, where students 
can think of counting one type of object (an arrangement of 
3 Ns and 3 1s) as another type of object (a set of three num-
bers that represents positions of the Ns). Further, Barney 
articulated a specific mapping within that bijection between 
the set {1,4,5} and the arrangement NIINNI.

This is an impressive realization for any student, par-
ticularly one of Barney’s age, as it is a difficult relationship 
to see. It is exactly related to the Category 2 combination 
problems that Lockwood et al. (2018) discussed, and there 
is evidence that students find it difficult to make connec-
tions between subsets and selecting positions. While the 

teacher-researcher did make that connection, it is notewor-
thy that Barney and Homer could articulate that connection 
and seemed to understand why making note of the order was 
relevant. This provides further evidence that they were rea-
soning combinatorially throughout the teaching experiment.

Continuing to draw attention to the sets of numbers, the 
teacher-researcher asked the students to list out 2-element 
subsets. (Note, she called them strings, but she also specified 
that order did not matter, so we consider this to be within this 
sets register.) Working within the sets register, the students 
produced the list in Fig. 13, counting 15 total, which Homer 
organized as groups of 5, 4, 3, 2, and 1. Thus, within the sets 
register as in within the arrangements register, the students 
could make a treatment transformation by representing the 
organized list of 2-element sets as 5 + 4 + 3 + 2 + 1.

They then went about investigating the three case, and 
they wrote the list in Fig. 14. Note that the students per-
formed another treatment by organizing the outcomes into 
groups of 10, 6, 3, and 1.

Importantly, right after they wrote these out, Homer 
articulated a profound insight that again highlights the ways 
in which they converted across representational registers. 
This episode shows a sophisticated level of reasoning about 
outcomes and understanding how one representation (an 
arrangement of 1s and Ns) is related to another in a differ-
ent representational system (a set of numbers). Here, Homer 
looked at the sets of numbers he had just listed, and he real-
ized that the 10 sets of numbers that included a 1 represented 
the 10 arrangements of 1s and Ns in which an N is in the 
first position:

Fig. 13  2-elements subsets of 
the integers 1 through 6

Fig. 14  An organized list of 3-element subsets  of the integers 1 
through 6
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Homer:  Oh, what I like to think, how I like to think about 
this is, these are combinations starting with 1 
[right part of Fig. 14], and these are combinations 
starting with N [left part of Fig. 14]. Because if 
there’s an N in the first spot, it’d be the first 10 
combinations…

Here, not only did Homer demonstrate that he could 
associate the numbers he was listing as being associated 
with positions (a conversion between the sets and arrange-
ments registers), but he also actually volunteered that he 
could think of any set that includes a 1 as representing an 
arrangement that starts with an N. Given documented dif-
ficulties that undergraduate students face with encoding out-
comes, this is extremely impressive. It also highlights how 
the particular conversion between the arrangements and sets 
registers supported an important and nuanced combinatorial 
insight.

5.3.2  Positional reasoning and equivalent outcomes 
in deriving a formula for binomial coefficients

We now describe the students’ reasoning about a formula 
for binomial coefficients, and they again leveraged particular 
properties within the sets register to do so. Once they real-
ized they could think about subsets as being related to their 
arrangements, we encouraged them to come up with a for-
mula for binomial coefficients. They discussed the fact that 
they could use Pascal’s triangle to determine any binomial 
coefficient recursively; however, they realized this had limi-
tations, and they were thus motivated to derive an explicit 
formula.

In the following exchange, the teacher-researcher pro-
vided explicit guidance, but the students jumped on it right 
away, making connections for themselves. We view this as 
another instructional move, within this representation, to 
draw attention to important structure and properties of the 
representation that can help them gain insight about a more 
general formula for binomial coefficients. Barney and Homer 
determined a way to find the binomial coefficient 

(

6

2

)

 with-
out listing by arguing that they would multiply 6 options for 
the first number and 5 options for the second, and Homer 
noted, “But you divide by two. Because, because there’s two 
and so you would have them backwards, like you’d have 12 
and then you’d have 21 […] So it’s 15.” They then reasoned 
about what it would be for 

(

6

3

)

 , and they recognized that 
they had to decide between dividing the product of 6 ∙ 5 ∙ 4 
by 3 or dividing by 3!. The teacher-researcher had them con-
sider an arbitrary 3-digit combination, {2, 4, 6}, and deter-
mine how many ways there were to rearrange those three 

numbers. The students were able to reason about why they 
needed to divide by 3!, noting that there were 3 ∙ 2 ∙ 1 = 6 
options for arranging three objects. Note that the students’ 
ability to determine 6∙5∙4

3!
 was a consequence of multiple 

treatments within the sets register, as they were able to rea-
son about why the 3! could be thought of as arranging three 
objects.

They then tested their formula on a few specific examples, 
using Pascal’s triangle as verification for 

(

7

2

)

,

(

7

3

)

, and 
(

7

4

)

 . To confirm they had a stable understanding, the 
teacher-researcher asked them to explain the components of 
the formula for 

(

8

3

)

 and why it would be 8∙7∙6∙5∙4
5!

 . We con-
tend that the following quote indicates that the students 
understood the formula and could explain i t 
combinatorially:

Barney:  So there’s 8 possible numbers that can go here. 
And if there’s uh, a single number that goes here 
it can’t be that number so there’s only 7 numbers 
that could go here, and there’s 2 numbers here so 
only 6 of the numbers can go here, and 5 here, 
and 4 here. And then you divide it by 5 factorial 
because, it’s hard to explain without writing it 
out but we already explained it with the other one 
with the 6 and the stuff.

Barney then went on to explain that, like the case in 
which they argued for dividing by 3! (which is the 6 he 
referred to), they would divide by 5! because there are 5! 
ways to arrange 5 objects. Toward the end of the session, the 
teacher-researcher asked the students about a formula for 
(

n

p

)

 : “And so if it’s n choose p, what we do is, what would 
go on top?” Homer and Barney correctly described the for-
mula as being n!

p!(n−p)!
.

6  Summary of results

We now briefly summarize the results, emphasizing takea-
ways from Homer and Barney’s work and connecting to our 
research questions. We begin by providing Table 3, which 
gives an overview of the students’ trajectory and highlights 
the transformations and registers in which the students 
engaged across the sessions reported in this paper.

In answering our first research question, we saw the power 
of students being able to transition between representational 
registers as a way of supporting their combinatorial reason-
ing. The intentional shift between registers enriched their 
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combinatorial reasoning in important ways, namely by fram-
ing the work in terms of a combinatorial activity (listing 1s and 
Ns), and by recasting problems in a way that highlighted sali-
ent structure (listing subsets of numbers rather than sequences 
of 1s and Ns). Although we focus on the students’ combi-
natorial reasoning in this paper, we also gain insight more 
broadly into supporting students’ abilities to make sense of a 
mathematical pattern in one register via another register. We 
designed two intentional shifts in representational registers in 
our task sequence. The first was from conceiving of dimen-
sions not just as sequences of 1s and Ns where order mattered 
but as 1s and Ns that were indistinguishable (a transformation 
from the physical to algebraic to arrangements register). The 
second shift was conceiving of arrangements of 1s and Ns as 
sets of numbers (a transition from the arrangements register to 
the sets register). These overall shifts can be seen in Table 3. 
As one progresses through the registers column, we see overall 
the conversions from physical to algebraic, from algebraic to 
arrangements, and then conversions among sets and arrange-
ments registers over time.

We also saw that students were able to maintain contact 
with the big picture. We saw many instances of this, such 
as when Homer or Barney used the word dimensions even 
when speaking of arranging 1s and Ns. We hypothesize that 
an important factor in the students’ success was a rich concep-
tual understanding of their goals within each register, and how 
that related to their main goal of determining volume growth. 
As the teaching experiment progressed, the students at times 
shifted goals, but even with a translation of goals from one 
representational register into another, the students consistently 
demonstrated an understanding of how the different registers 
were related to each other. These insights about the role that 
the conversions among registers played in their success also 
gives insight into our second research question, as we see 
how specific treatments and conversions supported particular 
insights about the formula for binomial coefficients.

Our second research question addressed what treatments 
and conversions students made between and across registers, 
as well as how those treatments and conversions supported 
student’s combinatorial reasoning. We not only saw a variety 
of specific treatments and conversions (Table 3), we also saw 
how transformations among and within registers supported the 
students’ combinatorial reasoning. In particular, there were 
times when conversions played a key role in their progression 
toward reasoning about binomial coefficients. For example, 
the shift from reasoning within the arrangements register to 
reasoning within the sets register helped the students organize 
their lists of outcomes and determine an expression to count 
the total number of outcomes. There were also times when 
treatments were particularly important for offering combi-
natorial insight. For instance, there were occasions in which 
it was useful to rearrange written lists in order to see some 
structure that offered combinatorial insight. This happened in 

both the arrangements and the sets registers, when Homer and 
Barney realized that they could organize 10 arrangements of 
Ns and 1s as groups of 4 + 3 + 2 + 1, or when they organized 
lists of 20 sets as groups of 10, 6, 3, and 1. Such treatments 
facilitated recognition of regularity that they used to develop 
their formula for binomial coefficients. Overall, then, in our 
findings we have highlighted ways in which shifts within and 
among representational registers supported secondary students 
in their combinatorial reasoning and development of a formula 
for binomial coefficients.

7  Limitations, discussion, and avenues 
for future research

One limitation of our study was that we did not get to explore 
the students’ understanding and application of the general 
formula for binomial coefficients further and on additional 
problems. Due to time constraints, we needed to end the 
teaching experiment when we did, and it would have been 
beneficial to see how the students would have gone on to 
use and apply the formula in new settings. In future stud-
ies, researchers could build in more time to explore how 
students subsequently use and apply the formula. Also, with 
more time, we might have explored additional formulas and 
combinatorial ideas with the students, including giving more 
time for investigating Pascal’s triangle and justifying why 
certain identities hold.

Another limitation is that the study only involves two stu-
dents, and thus there are some limitations to overall general 
claims we can make about students more broadly. However, 
our study offers one potential model of how students can 
leverage treatments and conversions (in the sense of Duval, 
2006) within and across representational registers to build 
up powerful combinatorial reasoning. In this way, it serves 
as an existence proof of secondary students meaningfully 
engaging in combinatorial reasoning and developing a gen-
eral formula for combinations via shifts in representational 
registers, following a rich tradition of existence proofs in 
mathematics education that addresses both students’ under-
standing of particular mathematical ideas (e.g., Carpenter 
et al., 1998) and successful instructional interventions (e.g., 
Kramer & Keller, 2008). We have offered a non-traditional 
starting point for students to reason about discrete math-
ematics—namely, dimensions of a cube. The students made 
meaningful connections between combinatorics and an alge-
braic context of volume growth and dimensionality that is 
not traditionally the source of combinatorial thinking and 
activity (see Tillema, 2013, for other work that connects 
combinatorics and algebra). We demonstrated an instance 
in which students meaningfully moved between productive 
quantitative reasoning in an algebraic context and sophis-
ticated combinatorial reasoning in a discrete context. This 
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highlights potential implications for instructional interven-
tions that highlight and support relationships (and not just 
differences) between algebraic contexts and combinatorial 
contexts.

Our findings could be viewed in light of Harel’s (2008) 
necessity principle, which states that “For students to learn 
the mathematics we intend to teach them, they must have a 
need for it, where ‘need’ here refers to intellectual need” (p. 
900). We suggest that our shifts to new registers were neces-
sitated by the problems and tasks we gave to our students. 
They could not visualize hypervolume, and so there was 
an intellectual need to develop a new way to think about 
dimensionality via arranging Ns and 1s. Then, again, large 
lists of such arrangements can become too cumbersome, and 
the sets register offered an alternative way to keep track of 
such lists. We maintain that each register was necessitated 
for the students, helping them to resolve a problem in the 
prior register. Future work could explore more explicitly the 
role that necessity can and does play in these conversions 
and treatments of representational registers.

We also see a connection to our work in this paper and 
empirical reconceptualization (Ellis et al., 2021), which is 
“the process of re-interpreting an empirical generalization 
from a structural perspective” (p. 13). We saw that Pascal’s 
triangle served as a tool that facilitated numerical verifica-
tion, which helped to confirm some of the students’ work. 
First, it allowed for them to have some numerical check 
against which to confirm the results of their listing. Further, 
Pascal’s triangle highlighted numerical regularity and pat-
terns, but in a way that could help the students to reason 
carefully and thoughtfully about the relationships they were 
observing. Given the difficulty involved in verifying com-
binatorial ideas (e.g., Eizenberg & Zaslavsky, 2004), the 
use of Pascal’s triangle here was compatible with our goals 
of having students develop and use quantitative reasoning. 
Even though they used Pascal’s triangle to create empirical 
generalizations, the connections to the combinatorial work 
they did helped them make sense of and reason about the 
generalizations they had identified.
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