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Accurate week-long forecasting of load demand and generation scheduling is critical for efficient

operation of power grid systems. In this work we present an ensemble Gaussian process regression

(EGPR) method for week-ahead forecasting of periodic time series data. The proposed EGPR method

is based on the GPR method, and employs an ensemble constructed by periodic windowing of the

time series data to compute the GPR prior mean and covariance. To improve estimates of prior

statistics from a potentially small ensemble and avoid rank-deficiency issues, we propose a leave-

one-out cross-validation shrinkage approach to regularizing covariance estimates. Furthermore, we

evaluate existing shrinkage estimates available in the literature. A synthetic data set describing the

dynamics of a power grid with 700 buses and 134 generators and a real total system load data

set from Duke Energy Ohio are used to test the EGPR forecasting method. Both data sets contain

load data collected every hour over a 365-day period. The synthetic data set also contains power

generation profiles for each generator. We demonstrate that the proposed EGPR method is capable

of accurately forecasting weekly total load demand and power generation profiles and outperforms

traditional forecasting methods, including the standard data-driven GPR, autoregressive integrated

moving average (ARIMA), and TBATS (exponential smoothing state space model with Box-Cox

transformation, ARMA errors, trend, and seasonal components) methods.

KEY WORDS: Guassian process regression, time series forecasting, shrinkage

1. INTRODUCTION

Accurate week-long forecasting of electric power generation and load demand plays an essen-
tial role in the efficient management and operation of power grids. Many decisions including
system maintenance, security and reliability analysis, and generation scheduling are made based
on forecasting (Amjady, 2001). Nonlinear dynamics of power grid in combination with external
disturbances, which range from varying weather conditions to fluctuation of economic nature,
yields data with complicated patterns. This makes forecasting of the power grid dynamics very
challenging. Existing forecasting techniques are typically classified into two categories: statis-
tical approaches and machine learning (ML) methods. Statistical techniques include multiple
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linear regression (MLR) models (Charlton and Singleton, 2014; Hong et al., 2013, 2010; Wang
et al., 2016; Xie et al., 2016; Xie and Hong, 2016, 2017), semiparametric additive models (Fan
and Hyndman, 2011; Goude et al., 2013; Hyndman and Fan, 2009; Nedellec et al., 2014), au-
toregressive integrated moving average (ARIMA) models (Boroojeni et al., 2017, 2014), and ex-
ponential smoothing models (Taylor, 2008; Taylor and McSharry, 2007). ML techniques include
artificial neural network (ANN) (Bianchi et al., 2017; Din and Marnerides, 2017; Qingle and
Min, 2010; Ryu et al., 2017; Shi et al., 2017; Yun et al., 2008; Zheng et al., 2017), fuzzy regres-
sion models (Hong and Wang, 2014; Song et al., 2005), support vector machines (SVMs) (Chen
et al., 2004, 2017), gradient boosting machines (Lloyd, 2014; Taieb and Hyndman, 2014), and
Gaussian process regression (GPR) (Lloyd, 2014; Shepero et al., 2018; Yang et al., 2018b).
In MLR models, the load is usually modeled/regressed as a function of weather and cal-

endar variables (e.g., workdays, weekends, and national and local holidays). For example, an
integrated MLR framework was proposed for short-term load forecasting (STLF) in Hong et al.
(2010) that emphasizes the interactions (or cross effects) among weather and calendar variables.
A parametric model for STLF in Charlton and Singleton (2014) estimated the electricity de-
mand as a function of the temperature and calendar variables. A linear regression model with a
macroeconomic indicator was developed for long-term load forecasting (LTLF) in Hong et al.
(2013). This model was further extended in Wang et al. (2016) by including a large number of
lagged temperature and moving average temperature variables in the MLR models. A forecast-
ing model including a relative humidity variable and its polynomial transform was developed
in Xie et al. (2016). The shifted-date temperature scenario method was used in Xie and Hong
(2016) for probabilistic load forecasting. A probabilistic error measure was employed in Xie and
Hong (2017) to identify relevant variables for probabilistic forecasting. In MLR models, a chal-
lenging problem is to leverage the increased computing power to build large regression models
to enhance the load forecast accuracy. The semiparametric additive model falls within the re-
gression framework, but is designed to accommodate some nonlinear relationships and serially
correlated errors. In load forecasting, nonlinear and non-parametric terms are allowed within the
framework of additive models for estimating the relationship between the load and explanatory
variables such as temperature and calendar variables. The relationships between demand and the
driver variables for STLF and LTLF were estimated in Hyndman and Fan (2009) and Fan and
Hyndman (2011), respectively.
Many types of ANNs have been used for load forecasting, such as feed-forward neural net-

works, radial basis function (RBF) networks, and recurrent neural networks (RNN). A RBF
neural network model with the adaptive neural fuzzy inference system (ANFIS) was developed
in Yun et al. (2008) for STLF to account for the influence of real-time electricity prices on
short-term load. A novel pooling-based deep recurrent neural network was proposed in Shi et al.
(2017) for household load forecasting. A comparative analysis of RNN for STLF can be found
in Bianchi et al. (2017). Although these proposed systems were tested on real data, some of
them did not provide comparisons with standard benchmarks, while others did not follow stan-
dard statistical procedures in reporting the analysis of errors. In addition, ANN models may
“overfit” the data, possibly due to either overtraining or overparameterization. Fuzzy regres-
sion was introduced in order to overcome some of the limitations of linear regression, such as
a vague relationship between dependent and independent variables, insufficient numbers of ob-
servations, and hard-to-verify error distributions. For example, fuzzy linear regression was used
in Song et al. (2005) for STLF during holidays. A fuzzy interaction regression method for STLF
was proposed in Hong and Wang (2014) and shown to outperform fuzzy and linear regression
models that did not account for interaction effects. SVMs are supervised learning models with
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associated learning algorithms that are commonly used for pattern recognition, classification,
and regression. An SVM model for mid-term load forecasting (predicting daily maximum load
of the next 31 days) was proposed in Chen et al. (2004). In Chen et al. (2017) a new support vec-
tor regression (SVR) forecasting model was proposed with the ambient temperature of two hours
before demand response (DR) event as input variables. The gradient boosting method was used
in Taieb and Hyndman (2014) and Lloyd (2014) for the load forecasting track of GEFCom2012.
This machine learning technique for regression problems provides a forecast in the form of an
ensemble of weak prediction models.
Since some types of load demand are driven strongly by the weather, e.g., heating and cool-

ing, changes in weather conditions have a significant effect on the load profiles. As such, methods
that do not use weather or calendar variables as explanatory variables may be at a disadvantage.
Nevertheless, in the present work we restrict our attention to developing forecasting methods
that do not use explanatory variables, as they have lower data requirements.
ARIMA and the exponential smoothing method are examples of univariate models that do

not rely on explanatory variables. ARIMA provides a parsimonious description of a stationary
stochastic process in terms of two polynomials, autoregression and moving average. Based on
maximum-likelihood estimator (MLE) and ARIMA models, Boroojeni et al. (2014) proposed a
novel two-tier scheme for forecasting the power demand and generation in a general residential
electrical grid which uses the distributed renewable resources as the primary energy resource.
In Boroojeni et al. (2017) ARIMA is employed to model historical load data in the form of a
time series with different cycles of seasonality (e.g., daily, weekly, quarterly, annually) in a given
power network without requiring any additional inputs such as historical weather data (which
might not be available in some cases). The exponential smoothing method assigns weights to
past observations that decrease exponentially over time (Hong and Fan, 2016; Taylor, 2008;
Taylor and McSharry, 2007).
GPR is another univariate model that does not rely on explanatory variables for load fore-

casting (Lloyd, 2014; Shepero et al., 2018; Yang et al., 2018b). In the standard data-driven GPR
method, a time series is assumed to be a realization of a Gaussian process with prescribed param-
eterized mean and covariance functions. The parameters of these mean and covariance functions
are learned from the time series measurements by maximizing the marginal likelihood function
of the measurements or other pseudolikelihoods.
To improve the forecasting performance of GPR, we propose the ensemble GPR (EGPR)

method. In EGPR, we compute the prior mean vectors and covariance matrices from ensembles
composed of subsets of the observation time series. For example, for weekly load forecasting,
we treat the N weeks prior to the beginning of the forecast week as realizations of the same
Gaussian process. Then, the mean and covariance are computed as the ensemble statistics of the
ensemble formed by these N weeks. The number N cannot be too large as the statistics could
be affected by seasonal variations. On the other hand, N should not be too small as to result
in inaccurate, noisy ensemble statistics. A synthetic data set describing a power grid with 700
buses and 134 generators and a real load data set from Duke Energy Ohio are used to validate
the proposed forecasting method. Both data sets are collected at an hourly rate over a 365-day
period. We demonstrate that the proposed EGPR outperforms traditional forecasting methods,
including standard data-driven GPR and the ARIMA and TBATS Livera et al. (2011) meth-
ods. We also employ shrinkage estimation (Chen et al., 2009; Steland, 2018) to regularize the
covariance matrix estimates with the goal of overcoming the rank-deficiency problem arising
from estimating covariance matrices from small ensembles. The shrinkage coefficient is esti-
mated via a novel leave-one-out cross validation (LOOCV)-based approach and by using the
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Rao-Blackwell Ledoit-Wolf (RBLW) and oracle approximating shrinkage (OAS-EGPR) esti-
mates presented in Chen et al. (2009). Comparisons among these methods are carried out to
illustrate their performances.
The EGPRmethod is conceptually similar to the physics-informedGPRmethod (Tartakovsky

and Tipireddy, 2019; Yang et al., 2019). In physics-informed GPR, ensemble realizations of the
states to be estimated are generated by repeatedly sampling stochastic models of the dynamics
to be forecasted. For example, in Tartakovsky and Tipireddy (2019) physics-informed GPR was
used for the forecasting of the dynamics of a single-machine infinite-bus (SMIB) system pow-
ered by randommechanical wind power fluctuations. The mechanical wind power was treated as
a random process and the ensemble was generated by repeatedly solving the SMIB swing equa-
tions. An open question is how to apply this ensemble-based approach to GPR for forecasting
problems where either there is no stochastic model or the stochastic model is computationally
costly to evaluate, but historical time series observations are available. One such problem is the
forecasting of load demand and generation scheduling for large power grid systems as consid-
ered in this work. For this problem, repeatedly solving the power flow and economic dispatch
problems is computationally costly, and we aim to calculate forecasts using historical data.
This paper is organized as follows. In Section 2, we introduce the EGPR method and the

LOOCV-EGPR, RBLW-EGPR, and OAS-EGPR extensions. Section 3 describes the synthetic
data set of load demand and generation scheduling for a power grid system with 700 buses and
134 generators. EGPR is applied to this synthetic data set for weekly forecasting of load demand
and generation scheduling. Section 4 presents the application of EGPR to the Duke Energy Ohio
data set for weekly forecasting of load demand. Comparisons between EGPR and other methods
are carried out in both Section 3 and Section 4. Final conclusions are given in Section 5.

2. EGPR FOR ELECTRIC POWER GRID FORECASTING

In this section, we formulate the EGPR method for forecasting states of the power grids using
historical observations of the states. Furthermore, we present several methods for overcoming
the rank deficiency in computing covariances from small ensembles, including LOOCV-EGPR,
RBLW-EGPR, and OAS-EGPR.

2.1 EGPR Method

The proposed EGPR method, as all GPR-based methods, uses the covariances and cross co-
variances of and between observed and forecasted times to evaluate a probabilistic (Gaussian)
estimate at the forecasted times. Consider the process of time x(t), for which there are (noise-
less) observations available at times toi , t = 1, . . . , No; we aim to estimate x(t) at times t

f
i ,

i = 1, . . . , Nf . In GPR, we model x(t) as a realization of the Gaussian process (GP) of time
X(t). Let X⊤ = [(Xo)⊤, (Xf )⊤] be the vector of values of X(t) at times toi and tfi , with
Xo = [X(to1), . . . , X(toNo

)]⊤, Xf = [X(tf1 ), . . . , X(tfNf
)]⊤, and distribution

[

Xo

Xf

]

∼ N

([

X̄o

X̄f

]

,

[

Koo (Kfo)⊤

Kfo Kff

])

. (1)

X̄o and X̄f are the so-called prior (or unconditional) mean vector of Xo and Xf , respec-
tively; Koo, and Kff are the prior covariance matrices of Xo and Xf , respectively; and Kfo
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is the cross covariance between Xf and Xo. The covariance and cross covariance matrices are
given by

Kαβ =









κ(tα1 , t
β
1 ) · · · κ(tα1 , t

β
Nβ

)
...

. . .
...

κ(tαNα
, tβ1 ) · · · κ(tαNα

, tβNβ
)









,

for α,β ∈ (o, f), where κ(·, ·) is the Gaussian process’s covariance kernel.
Let xo = [x(to1), . . . , x(t

o
No

)]⊤ denote the vector of observed values of x(t). Given xo and
κ(·, ·), the conditional (or posterior) mean and covariance ofXf are given by

X̂f = X̄f +Kfo(Koo)−1
(

xo − X̄o
)

, (2)

K̂ff = Kff −Kfo(Koo)−1(Kfo)⊤. (3)

The posterior means serves as the GPR forecast estimate, while the posterior covariance provides
a measure of uncertainty of this estimate.
Estimation of the prior statistics X̄o, X̄f ,Koo,Kfo, andKff is one of the main challenges

in GPR-based methods. The standard data-driven GPR method assumes parameterized forms
for these prior statistics; these so-called “hyperparameters” are estimated by minimizing the
negative marginal likelihood or another pseudolikelihood of the measurements xo (Lloyd, 2014;
Shepero et al., 2018; Yang et al., 2018b).
In EGPR, we assume that the data are periodic, and that each period can be accurately mod-

eled as realizations of a certain random process. Then, the prior statistics can be estimated via
sample averaging from an ensemble constructed by periodic windowing of the historical data.
Therefore, in EGPR the estimation of the prior statistics strongly depends on the structure of the
data.
To illustrate this process consider a data set with uniform frequency and a weekly period

consisting ofM weeks of observations, and let the end of the data set correspond to the present
time. We aim to forecast 1 week into the future from the last 24 hr of observations. The EGPR
ensembles are constructed as follows: First, we split the data set into weeks, and select the last
N ≤ M weeks of data to construct the EPGR ensemble. We employ the counter i = 1, 2, . . . , N
to denote the last week in the data set, the next to last week, etc., up to the N th last week. Next,
we denote by Lf

i the ith last week of data, and by L
o
i the 24 hr of data prior to the ith last week.

This procedure is illustrated in Fig. 1.
Once the EGPR ensemble is constructed, the unconditional statistics are computed as

X̄α =
1
N

∑N

i=1
Lα
i , Kαβ =

1
N − 1

∑N

i=1

(

Lα
i − L̄α

)(

Lβ
i − L̄β

)⊤
, (4)

for α,β ∈ (o, f), whereLo
i andL

f
i are understood to be vector columns. Once the prior statistics

X̄o, X̄f , Koo, Kfo, and Kff have been estimated, the forecast mean and covariance can be
computed using Eqs. (2) and (3).
As stated above, the number of ensemble members, N , can be chosen to be less or equal to

the number of weeks in the data, M . This choice of N affects the performance of EGPR. For
data with seasonal periods,N cannot be too large as to violate the assumption that allN periods
of the ensemble can be modeled as realizations of the same Gaussian random process. On the
other hand, small ensembles may result in rank deficiency in the estimation of the covariance
and cross covariance matrices. In Sections 3 and 4, we select N by analyzing the structure of
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the resulting ensemble covariances. In Section 2.2, we present several methods for covariance
estimation from small ensembles.

2.2 Techniques to Overcome Rank Deficiency

It is known that the sample covariance estimate of Eq. (4) has rank of at most N − 1, possibly
leading to singular covariance matrices when N is small. To address this challenge, we propose
replacing the sample covariance estimate of (4) with the regularized “shrinkage” estimate,

Kreg = ρreg
Kr

tr(Kr)
tr(K) + (1− ρreg)K, (5)

whereKreg denotes the regularized estimate, tr(·) denotes the trace operator,Kr denotes a “cor-
rection” matrix, and ρreg ∈ [0, 1] is a regularization coefficient. This estimate mixes the sample
estimate (4) with the correction matrix Kr to ensure that the regularized estimate is full rank.
Kr is often chosen to be the identity matrix; alternatively, one can choose Kr to be a full-rank
covariance matrix similar to the covariance structure of the data.
In the remainder of this section we discuss how to select Kr and ρreg in Eq. (5). First, we

propose a novel leave-one-out cross validation (LOOCV)-based shrinkage estimator. Addition-
ally, we also discuss two additional shrinkage estimators often used in practice, namely, Oracle
approximating shrinkage (OAS) and Rao-Blackwell-Ledoit-Wolf (RBLW) (Chen et al., 2009).
For LOOCV, we assume that the random process we employ to model the data has a periodic

and a nonperiodic component; therefore, we chooseKr as the covariance matrix corresponding
to the semiperiodic kernel,

κr(t1, t2) = θ21 exp

(

−
|t1 − t2|

2

2θ22
−
2
θ23

sin2
[ π

24
(t1 − t2)

]

)

, (6)
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FIG. 1: Construction of the EGPR ensemble. Top: the data are split into M weeks and the most recent
N ≤ M weeks of data are selected. For the ith week, Lf

i denotes the ith week of data, and L
o
i denotes the

24 hr of data preceding said week. Bottom: the sample mean and covariance of the ensemble of N weeks
of data are used as the prior statistics for GPR estimation.
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where θ1 denotes the kernel amplitude, θ2 controls the correlation across 24-hr periods, and
θ3 controls the hourly (i.e., hour-to-hour) correlation. The kernel hyperparameters (θ1, θ2, and
θ3) and the regularization coefficient ρLOOCV are estimated by minimizing the negative marginal
likelihood of the observations, given by

−logp =
1
2
(xo − X̄o)⊤(xo − X̄o)

Koo
LOOCV

+
1
2
log |Koo

LOOCV|+
1
2
No log 2π, (7)

whereKLOOCV is given by Eq. (5) with ρreg = ρLOOCV and Kr is given by Eq. (6), andKoo
LOOCV

is the oo portion ofKLOOCV as illustrated in Fig. 1.
Various alternative shrinkage approaches have been proposed in the literature. In this work

we study the Oracle approximating shrinkage (OAS) and Rao-Blackwell-Ledoit-Wolf (RBLW)
estimators proposed in Chen et al. (2009). Both of these estimators use Kr = I and have regu-
larization parameters given in closed form, namely,

ρRBLW = min

{

[(N − 2)/N ] tr(K2) + tr2(K)

(N + 2)
[

tr(K2)− tr2(K)/(No +Nf )
]

}

,

ρOAS = min

{

(1− 2/(No +Nf )) tr(K
2) + tr2(K)

(N + 1− 2/(No +Nf ))
[

tr(K2)− tr2(K)/(No +Nf )
]

}

,

whereK is the sample estimate (4).
We note that the RBLW and OAS estimators can be computed directly from the sample

covariance estimate, whereas the LOOCV estimator requires solving an additional unconstrained
minimization problem; nevertheless, the LOOCV estimator provides flexibility in modeling the
features of the covariance. In the sequel, we will denote by “EGPR” the EGPR method without
shrinkage, and by “LOOCV-EGPR,” “RBLW-EGPR,” and “OAS-EGPR” the EGPR methods
that use LOOCV, RBLW, and OAS covariance estimation, respectively.

3. WEEKLY FORECASTING OF LOAD DEMAND AND GENERATION
SCHEDULING FOR A SYNTHETIC DATA SET

In this section we apply the proposed EGPR method to a synthetic load demand and generation
scheduling data set in order to produce week-ahead forecasts of both load demand and generation
scheduling.

3.1 Generation of the Synthetic Data Set

We consider synthetic data of a power grid system with 700 buses and 134 generators over a
365-day period, with hourly measurements of load and power generation for each node. The
synthetic data set is constructed as follows: First, we generate the chronological system-level
total load for 1 year with 1-hr time resolution based on the data and method provided in Grigg
et al. (1999). Then, the “base case” power flow is generated as described in Young et al. (2018).
The historical Duke Energy hourly load shape (Duke Energy Ohio Inc., 2021) is used to develop
hourly load values with the same participation factor as the original “base case” power flow.
The peak load of the system is 12,926 MW, occurring on December 17 at 18:00. Second, the
total system load profile and the generator parameters are fed into a unit commitment and hourly
dispatch program, which outputs the on/off status and the real power output of each generator
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with hourly time resolution. Third, the chronological alternating-current power flow is computed
for the power grid using the PSS/E software to generate different power flow scenarios with
hourly time resolution. The chronological system-level load profile is disaggregated to produce
load for each bus in the system and is used as input to PSS/E, together with the on/off status
and real power of each generator from the unit commitment and hourly dispatch results. PSS/E
provides a converged power flow solution for each scenario. Finally, we reinforce scenarios by
adjusting voltage and line flows, multiblock switchable shunts, and lines.
We use this data set to demonstrate and validate the proposed EGPR methods for weekly

forecast of the total load and generation scheduling (specifically the real power output of each
generator; the on/off status of each generator is not considered in this work). Specifically, we
forecast both the total load demand and the generation scheduling for Generator 15 for the weeks
of 6/16–6/22, 8/18–8/24, 10/20–10/26, and 12/22–12/28. These four weeks represent the seasons
of summer, fall, and winter. For total load demand forecasting, comparisons between EGPR,
standard data-driven GPR, ARIMA, and TBATS are carried out.

3.2 Weekly Forecasting of Total Load

3.2.1 EGPR

To employ the proposed EGPR method, we split the synthetic data into weekly time series. The
EGPR ensemble is constructed using second to last to the N + 1th last week of the data set,
and we aim to forecast the last week of data, which we employ as reference. Figure 2 shows the
ensemble load covariance for the week of 6/16–6/22, computed using N = 5 and N = 20. We
observe that in the synthetic data set, Monday’s total load demand is weakly correlated to the
total load demand of the other weekdays, while the loads on Tuesday to Friday are strongly cor-
related with each other. Specifically, there is practically no correlation between loads on Monday
and the other weekdays (the covariance is near zero) for all considered weeks if the ensemble is
not large enough (e.g., N = 5). Increasing N to 20 produces stronger correlation between loads
on Monday and the other weekdays.
Figure 2 also shows the eigenvalues of the ensemble covariances computed usingN = 5 and

N = 20. It can be seen that the eigenvalues of the covariance for Tuesday to Sunday decay faster
than those of the covariance for Monday to Sunday. Therefore, the GP representation of Tuesday
to Sunday data has a lower random dimension (the number of “significant” eigenvalues) than the
GP representation of the Monday to Sunday data. Both GP representations have less than 15

FIG. 2: Ensemble covariance for the week of 6/16–6/22 computed using five realizations (left) and 20
realizations (middle). Eigenspectrum of ensemble covariance for the week of 6/16–6/22 computed using
20 realizations, with and without Monday.
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significant eigenvalues; therefore, we expect that accurate ensemble statistics can be estimated
using relatively small ensembles. We note here that the real load data studied in Section 4 does
not exhibit the same correlation pattern as this synthetic data set; this pattern can be in fact
considered as an artifact of the synthetic data set generation process. However, we consider this
synthetic data set in this section as it helps us investigate the accuracy of the proposed EGPR
method.
Given the different correlation between Monday and the other weekdays, we perform two

forecasts: (i) forecasting Wednesday to Sunday given 24 hr data on Tuesday with N = 10, and
(ii) forecasting for Tuesday to Sunday using 24 hr data on Monday with N = 20. We perform
these two load forecasts for the four different weeks previously listed and show the comparison
of these forecasts against the reference data on Figs. 3 and 4, respectively. Figures 3 and 4 also
show the individual ensemble members and the prior mean.
Figure 3 shows that theWednesday to Sunday forecast using 24 hr of data on Tuesday closely

agrees with the reference total load demand for all tested weeks. This figure also shows that there
is significant variability in the load in the previous N weeks and that the prior mean provides a

(a) (b)

(c) (d)

FIG. 3: Weekly forecasts of total load for 4 weeks using 24 hourly observations on Tuesday. Top panel:
prediction (blue) compared against reference (red) and the prior mean (black). Bottom panel: ensemble of
ten time series used to compute the empirical covariance. (a) 6/16–6/22, (b) 8/18–8/24, (c) 10/20–10/26,
and (d) 12/22–12/28.
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(a) (b)

(c) (d)

FIG. 4: Weekly forecasts of total load for 4 weeks using 24 hourly observations on Monday. Top panel:
prediction (blue) compared against reference (red) and the prior mean (black). Bottom panel: ensemble of
20 time series used to compute the empirical covariance. (a) 6/16–6/22, (b) 8/18–8/24, (c) 10/20–10/26,
and (d) 12/22–12/28.

less accurate prediction than EGPR. Similarly, Fig. 4 shows that the Tuesday to Sunday forecast
using 24 hr of data on Monday data is less accurate, esspecially for the weeks of 6/16–6/22
and 8/18–8/24. Nevertheless, the EGPR forecast is better than the prior mean. Results in Figs. 3
and 4 demonstrate that the strong correlation between past and future values of the state to be
forecasted is important for the performance of EGPR.
Figure 5 shows the posterior standard deviations for the forecast of the week of 6/16–6/22

using 24 hr data on Tuesday and Monday. The posterior standard deviation, which provides a
measure of uncertainty in the forecast, is approximately two orders of magnitude smaller for
the Wednesday to Sunday forecast than for the Tuesday to Sunday forecast. This shows that
the forecast using Monday data is more uncertain, in addition to being less accurate, than the
forecast based on the Tuesday data.

3.2.2 Comparison against Standard Data-Driven GPR, ARIMA, and TBATS

In this section we compare the performance of EGPR with the state-of-the-art forecasting meth-
ods, specifically against standard data-driven GPR, ARIMA, and TBATS. To evaluate the
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FIG. 5: Posterior standard deviation of the weekly forecast for the week of 6/16–6/22. Top: using 24 hr
observations on Tuesday. Bottom: using 24 hr observations on Monday.

forecasting performance of EGPR against GPR we employ the log predictive probability, which
corresponds to the sum of the pointwise log probabilities of the reference values being observed
given the statistical forecast (Williams and Rasmussen, 2006). For a certain estimated state α(t),
it is given by

log predictive probability = −

Nf
∑

k=1

{

[

µf (tk)− α(tk)
]2

2 [σf (tk)]
2 +

1
2
log 2π

[

σf (tk)
]2

}

,

where Nf is the number of forecasted values; µf (tk) and σf (tk) are the posterior mean and
standard deviation of the forecast at time tk, respectively; and α(tk) is the reference value at
time tk. The larger the log predictive probability, the more accurate is the model estimation or
forecast.
The standard data-drivenGPR forecast is computed using as parameterized covariance kernel

the following combination of a squared exponential, rational quadratic, and periodic kernels:

κ(t1, t2) = θ24 exp

(

−
|t1 − t2|

2

2θ25

)

+ θ26

(

1+
|t1 − t2|

2

2θ7θ28

)−θ7

+ θ29 exp

(

−
2
θ210

sin2
[ π

24
(t1 − t2)

]

)

+ θ211δ(t1, t2),

(8)

where δ denotes the Dirac delta function, and θi, i = 4, . . . , 11 are the kernel hyperparameters.
Such a combination of periodic and nonperiodic have been employed in other studies to model
data exhibiting periodicity (see, e.g., Grunblatt et al., 2015; Klenske et al., 2016; Tolba et al.,
2019; Wilson and Adams, 2013). These parameters are estimated by minimizing the negative
marginal likelihood function from previousNf observed data. Figure 6 shows the standard data-
driven GPR forecast of total load for Wednesday to Sunday and Tuesday to Sunday for the week
of 06/16–06/22, respectively. The log predictive probabilities of EGPR and standard data-driven
GPR for weekly forecasts of load using 24 hourly observations on Tuesday and Monday are
presented in Table 1. As we can see from Fig. 6 (in comparison with Figs. 3 and 4) and Table 1,
the proposed EGPR method outperforms standard data-driven GPR.
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(a) (b)

FIG. 6:Weekly total load forecasting using data-driven GPR for the week of 06/16–06/22, using 24 hourly
observations on Tuesday (a) and Monday (b)

TABLE 1: Log predictive probabilities for weekly forecasts of load demand using 24 hourly
observations on day d

d Method 06/16–06/22 08/18–08/24 10/20–10/26 12/22–12/28

Tuesday
EGPR 642.825 636.445 706.173 610.729

Data-driven GPR 198.142 239.694 173.26 156.91

Monday
EGPR 358.162 385.995 347.498 378.112

Data-driven GPR 263.412 273.605 224.426 250.085

We now proceed to compare EGRP against ARIMA and TBATS. Specifically, we employ
the nonseasonal ARIMA method (Brockwell and Davis, 2016; Hyndman and Athanasopoulos,
2018) to forecast total load demand. The ARIMA forecast is given as a linear combination of p
measurements prior to the forecast time tk, that is,

x(tk)− α1x(tk−1)− α2x(tk−2)− · · · − αpx(tk−p) = ek

+ β1ek−1 + β2ek−2 + · · ·+ βqek−q ,

where x(tk) is the forecast at time tk; p and αi, i = 1, . . . , p are the order and the parameters
of the autoregressive part, respectively; q and βi, i = 1, . . . , q are the order and parameters
of the moving averaging part, respectively; and the ei, i = 1, . . . , q are zero-mean independent
normally distributed error terms. Nonseasonal ARIMAmodels are generally denoted as ARIMA
(p, d, q), p and q are given above, and d is the degree of differencing (i.e., the number of times
the data have had past values subtracted). Additionally, we also employ the TBATS method
to forecast total load demand. The TBATS model is a time series model for series exhibiting
multiple complex seasonalities (Livera et al., 2011), which uses a combination of Fourier terms
and an exponential smoothing state space model with Box-Cox transformation, ARMA errors,
and trend and seasonal components, in an automated manner.

Figure 7 shows the ARIMA and TBATS forecasts of total load for Wednesday to Sunday
and Tuesday to Sunday of the week of 06/16–06/22, respectively. The ARIMAmodels for Fig. 7
are ARIMA (40, 0, 1) and ARIMA (25, 0, 1), respectively. It can be seen that both ARIMA and
TBATS perform worse than the proposed EGPR method.
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(a) (b)

(c) (d)

FIG. 7: Weekly total load forecasting using ARIMA (a), (b) and TBATS (c), (d) for the week of 06/16–
06/22, using 24 hourly observations on Tuesday (a), (c) and Monday (b), (d)

3.3 Weekly Forecasting of Generation Scheduling

Finally, we use the EGPR method for weekly forecasting of the optimal power output of Gener-
ator 15 for the weeks of 6/16–6/22, 8/18–8/24, 10/20–10/26, and 12/22–12/28 using the power
output observation data from up to 20 previous weeks. Figures 8 and 9 show the comparison of
the forecast and the reference values for five (Wednesday to Sunday) and six (Tuesday to Sun-
day) days, respectively. As in the case with the total load forecast, we see that Monday data are
weakly correlated with the rest of the data. As a result, the optimal power output forecast is more
accurate for Wednesday-Sunday using the previous Tuesday data than for the Tuesday-Sunday
using the previous Monday data, in accordance with Figs. 3 and 4. An accurate Wednesday-
Sunday forecast can be obtained using ten previous weeks’ observations for computing the prior
statistics, while 20 previous weeks observations are required for an accurate Tuesday to Sunday
forecast. It can also be seen that Tuesday to Sunday forecasts for the weeks of 6/16–6/22 and
10/20–10/26 suffer from collapse to the prior mean, indicating poor forecasting performance.
The poorer performance of Tuesday-Sunday forecasts compared to Wednesday-Sunday fore-
casts highlights the importance of analyzing the historical data in order to properly construct the
ensembles for EGPR.

4. WEEKLY FORECASTING OF REAL LOAD DATA

In this section we apply the proposed EGPR method to a real total system load data set from
the Duke Energy system. The data consist of total system load measurements taken at an hourly
rate over a 365-day period of time. Specifically, we forecast the total load demand for the weeks
of 07/31–08/06, 09/18–09/24, 10/23–10/29, and 11/27–12/03 using EGPR, standard data-driven
GPR, ARIMA, and TBATS, respectively.
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(a) (b)

(c) (d)

FIG. 8:Weekly forecasts of generation scheduling for 4 weeks using 24 hourly observations on Tuesday.
Top panel: prediction (blue) compared against reference (red) and the prior mean (black). Bottom panel:
ensemble of ten time series used to compute the empirical covariance. (a) 6/16–6/22, (b) 8/18–8/24, (c)
10/20–10/26, and (d) 12/22–12/28.

Figure 10 shows the ensemble load covariance for the week of 07/31–08/06 computed via
EGPR and RBLW-EGPR usingN = 30. It can be seen that the real load data exhibit correlations
through both weekdays and weekends, a different correlation pattern than that exhibited by the
synthetic data set considered in Section 3. Figure 10 also shows 30 eigenvalues of these ensemble
covariances. We find that the 2-norm condition number for these two covariance matrices are
9.6226× 1010 and 1.4919× 103, respectively. This indicates that the covariance matrix obtained
via RBLW-EGPR is better conditioned than the covariance matrix obtained via EGPR.
In the EGPR methods, the ensemble is constructed using hourly measurements of total load

for second to last to theN+1th last week of the data set. We aim to forecast the last week of data
(which we use as reference) by using the previous 24 hr as observations. To study the effect of the
choice ofN on the predictive accuracy of the EGPR methods, we show in Fig. 11 log predictive
probability as a function of realization numbers for EGPR, LOOCV-EGPR, RBLW-EGPR, and
OAS-EGPR, respectively. It can be seen that for all EGPR methods and all the forecast weeks
considered the log predictive probability increases with the ensemble size up to a plateau, before
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(a) (b)

(c) (d)

FIG. 9:Weekly forecasts of generation scheduling for 4 weeks using 24 hourly observations on Monday.
Top panel: prediction (blue) compared against reference (red) and the prior mean (black). Bottom panel:
ensemble of 20 time series used to compute the empirical covariance. (a) 6/16–6/22, (b) 8/18–8/24, (c)
10/20–10/26, and (d) 12/22–12/28.

FIG. 10: Ensemble covariance for the week of 07/31–08/06 computed using 30 realizations (left: EGPR,
middle: RBLW-EGPR). Eigenspectrum of ensemble covariance for the week of 07/31–08/06 computed by
EGPR and RBLW-EGPR using 30 realizations (right).

slightly decreasing. Based on this analysis, we choose N for EGPR, LOOCV-EGPR, RBLW-
EGPR, and OAS-EGPR to be (30, 10, 13, 38), (8, 19, 36, 11), (8, 10, 7, 38), and (8, 10, 7, 38)
for the weeks of 07/31–08/06, 09/18–09/24, 10/23–10/29, and 11/27–12/03, respectively.
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(a) (b)

(c) (d)

FIG. 11: Log predictive probability as a function of realization numbers by using the EGPR methods. (a)
07/31–08/06, (b) 09/18–09/24, (c) 10/23–10/29, and (d) 11/27–12/03.

Figures 12–15 show the load forecasting for the weeks of 07/31–08/06, 09/18–09/24, 10/23–
10/29, and 11/27–12/03 using LOOCV-EGPR, RBLW-EGPR, OAS-EGPR, and standard data-
driven GPR, respectively. The standard data-driven GPR forecast is computed using the covari-
ance kernel (8) and the second to last week of hourly measurements as observations. It can be
seen that the regularized EGPR methods exhibit comparable performances among themselves,
and in general perform better than standard data-driven GPR. We also note that standard data-
driven GPR yields better performance for the weeks of 07/31–08/06 and 09/18–09/24 than for
the weeks of 10/23–10/29 and 11/27–12/03; this is due to the periodic term in Eq. (8), which
induces strong periodicity in the forecast.
Log predictive probabilities of the EGPR methods and standard data-driven GPR for the first

day, first two days, the first five days, and the whole week of load forecasts during the weeks
of 07/31–08/06, 09/18–09/24, 10/23–10/29, and 11/27–12/03 are presented in Table 2. It can be
seen that RBLW-EGPR and OAS-EGPR demonstrate comparable performances. For the first day
load forecasting, standard data-driven GPR has the largest log predictive probabilities for 07/31,
09/18 and 11/27, while LOOCV-EGPR has the largest log predictive probabilities for 10/23.
This indicates that for very short forecast windows standard data-driven GPR performs better
than the proposed EGPR method. Nevertheless, as the length of the forecast window increases,
we find that the EGPR methods perform better than standard data-driven GPR.

Journal of Machine Learning for Modeling and Computing



Electric Load and Power Forecasting Using Ensemble Gaussian Process Regression 103

(a) (b)

(c) (d)

FIG. 12:Weekly forecasts of total load for 07/31–08/06 using 24 hr of observations with different EGPRs
and data-driven GPR. Prediction (blue) compared against reference (black). (a) LOOCV-EGPR, (b) RBLW-
EGPR, (c) OAS-EGPR, and (d) Data-driven GPR.

In addition to the log predictive probability, we also compute the mean absolute percentage
error (MAPE) in order to compare the performance of the GPR-based forecasting methods. For

(a) (b)

FIG. 13.
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(c) (d)

FIG. 13:Weekly forecasts of total load for 09/18–09/24 using 24 hr of observations with different EGPRs
and data-driven GPR. Prediction (blue) compared against reference (black). (a) LOOCV-EGPR, (b) RBLW-
EGPR, (c) OAS-EGPR, and (d) Data-driven GPR.

(a) (b)

(c) (d)

FIG. 14: Weekly forecasts of total load for 10/23–10/29 using 24 hr observations with different EGPRs
and data-driven GPR. Prediction (blue) compared against reference (black). (a) LOOCV-EGPR, (b) RBLW-
EGPR, (c) OAS-EGPR, and (d) Data-driven GPR.

a certain forecasted state α(t), MAPE is given by

MAPE =
1
Nf

∑Nf

k=1

∣

∣

∣

∣

α(tk)− α̂(tk)

α(tk)

∣

∣

∣

∣

, (9)
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(a) (b)

(c) (d)

FIG. 15: Weekly forecasts of total load for 11/27–12/03 using 24 hr observations with different EGPRs
and data-driven GPR. Prediction (blue) compared against reference (black). (a) LOOCV-EGPR, (b) RBLW-
EGPR, (c) OAS-EGPR, and (d) Data-driven GPR.

whereNf denotes the number of forecast times, α̂(tk) is the forecast at time tk , and α(tk) is the
reference value at time tk. The lower the MAPE, the more accurate is the forecast. We present
the MAPEs of standard data-driven GPR and the EGPR methods in Table 3. It can be seen that
RBLW-EGPR has the lowest MAPEs for the weeks of 07/31–08/06, LOOCV-EGPR has the
lowest MAPE for the week of 09/18–09/24 and 10/23–10/29, and EGPR has the lowest MAPEs
for the weeks of 11/27–12/03. These results, together with the results of Table 2, indicate that
EGPR (specially the regularized EGPR methods) outperform standard data-driven GPR for fore-
casting tasks. Of the regularized EGPR methods, LOOCV-EGPR is either comparable or better
than RBLW-EGRP and OAS-EGPR, at the cost of having to estimate the LOOCV shrinkage
coefficient via marginal likelihood maximization; on the other hand, as noted in Section 2.2,
the RBLW and OAS shrinkage coefficients are given in closed form and do not require solving
additional minimization problems.
Finally, we also compare the EGPR methods to demonstrate against the ARIMA and TBATS

methods. The ARIMA and TBATS forecasts for the 4 weeks under consideration are shown
in Fig. 16. The ARIMA models are ARIMA (2, 0, 0), ARIMA (2, 0, 3), ARIMA (4, 0, 0) and
ARIMA (4, 1, 1), respectively. By comparing Fig. 16 against Figs. 12–15 it can be seen that the
EGPR method outperforms both ARIMA and TBATS.
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TABLE 2: Log predictive probabilities for total load forecasts of different lengths using
different GPR methods. Largest values are indicated in italics

Forecast window Method 07/31 09/18 10/23 11/27

First day

EGPR –8.28989 4.4535 16.6451 –15.8943
LOOCV-EGPR –9.9158 1.0484 19.5029 –27.6376
RBLW-EGPR –12.0248 3.6806 10.8394 –19.9724
OAS-EGPR –10.8668 2.8115 8.2497 –20.1926

Data-driven GPR 0.0272 11.9359 10.2287 –13.3667

First 2 days

EGPR –13.8783 4.45345 24.0393 –16.6298
LOOCV-EGPR –19.4996 –7.0471 30.7093 –39.7709
RBLW-EGPR –15.8853 5.4647 15.328 –25.1011
OAS-EGPR –15.8947 3.9194 11.1685 –25.7069

Data-driven GPR –20.518 13.6451 15.3259 –29.051

First 5 days

EGPR –77.5001 0.1726 28.8518 –29.1826
LOOCV-EGPR –54.5577 26.8323 29.0811 –48.5338
RBLW-EGPR –40.5786 –7.9555 24.3287 –42.1176
OAS-EGPR –42.5929 –12.1781 15.7516 –43.1073

Data-driven GPR –71.9269 –40.4197 –41.0583 –74.4628

Full week

EGPR –116.135 –31.0167 –12.9992 –44.1647
LOOCV-EGPR –85.9404 24.4772 0.363776 –58.9145
RBLW-EGPR –76.2976 –46.0508 –27.4528 –57.9922
OAS-EGPR –75.835 –51.8968 –28.0166 –59.0892

Data-driven GPR –58.5933 28.099 42.4793 2.3705

TABLE 3: Mean absolute percentage error (MAPE) for the weekly load forecasts
using different GPR methods. Smallest errors are indicated in italics

Method 07/31–08/06 09/18–09/24 10/23–10/29 11/27–12/03
EGPR 0.0762 0.0545 0.0440 0.0409

LOOCV-EGPR 0.0530 0.0279 0.0347 0.0568
RBLW-EGPR 0.0470 0.0548 0.0449 0.0452
OAS-EGPR 0.0483 0.0555 0.0457 0.0456

Data-driven GPR 0.0628 0.0646 0.0855 0.0718

5. DISCUSSION AND CONCLUSIONS

We have proposed the ensemble Gaussian process regression (EGPR) method for the forecast-
ing of time series with a periodic structure. The proposed EGPR method is based on GPR, but
instead of employing parameterized models for the prior mean and covariance, these prior statis-
tics are computed via sample averaging from an ensemble constructed by periodic windowing
of the time series. We have employed EGPR for the weekly forecasting of total load demand
and generation scheduling (optimal generator output) for a power grid with 700 buses and 134
generators using synthetic historical data. We have also applied EGPR for the weekly forecast of
total load demand using real historic data. These numerical experiments demonstrate that EGPR
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(a) (b)

(c) (d)

FIG. 16: Weekly forecasts of total load for four weeks using ARIMA and TBATS. (a) 07/31–08/06, (b)
09/18–09/24, (c) 10/23–10/29, and (d) 11/27–12/03.

provides accurate forecasts and in general outperforms the standard data-driven GPR, ARIMA,
and TBATS forecasting methods. Furthermore, we employ shrinkage estimation to overcome
the rank-deficiency problem of estimating covariance matrices with small ensembles. To esti-
mate the shrinkage coefficient we employ leave-one-out cross-validation (LOOCV), and both
the Rao-Blackwell Ledoit-Wolf (RBLW) and Oracle approximating shrinkage (OAS) estimates.
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