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PLATEAU’S PROBLEM AS A SINGULAR LIMIT
OF CAPILLARITY PROBLEMS

DARREN KING, FRANCESCO MAGGI, AND SALVATORE STUVARD

ABSTRACT. Soap films at equilibrium are modeled, rather than as surfaces, as regions of
small total volume through the introduction of a capillarity problem with a homotopic
spanning condition. This point of view introduces a length scale in the classical Plateau’s
problem, which is in turn recovered in the vanishing volume limit. This approximation of
area minimizing hypersurfaces leads to an energy based selection principle for Plateau’s
problem, points at physical features of soap films that are unaccessible by simply looking
at minimal surfaces, and opens several challenging questions.
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1. INTRODUCTION

1.1. Overview. The theory of minimal surfaces with prescribed boundary data provides
the basic model for soap films hanging from a wire frame: given an (n — 1)-dimensional
surface I' ¢ R™*! without boundary, one seeks n-dimensional surfaces M such that

Hy=0, OM=T, (1.1)

where Hjs is the mean curvature of M (and n = 2 in the physical case). A limitation of
(1.1) as a physical model is that, in general, (1.1) may be non-uniquely solvable, including
unstable (and thus, not related to observable soap films) solutions. Area minimization can
be used to construct stable (and thus, physical) solutions, providing a strong motivation for
the study of Plateau’s problem; see [CM11]. Here we are concerned with a more elementary
physical limitation of (1.1), namely, the absence of a length scale: if M solves (1.1) for T,
then ¢ M solves (1.1) for ¢I', no matter how large ¢t > 0 is.

Following [MSS19], we introduce a length scale in the modeling of soap films by thinking
of them as regions £ C R"! with small volume |E| = . At equilibrium, the isotropic
pressure at a point y interior to the liquid but immediately close to its boundary OF is

p(y) =po + o Hop(y) - ve(y), (1.2)

where pg is the atmospheric pressure, o is the surface tension, vg the outer unit normal
to E/, and Hgg the mean curvature vector of OF; at the same time, for any two points y, z
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FIGURE 1.1. Minimizers of the capillarity problem in the unusual container 2
consisting of the complement of a J-neighborhood I5(I") of a curve I' (depicted in
light gray). The shape of E' is drastically different depending on whether or not a
homotopic spanning condition is prescribed: (a) without a C-spanning condition,
we observe tiny droplets sitting near points of maximal mean curvature of 92; (b)
with a C-spanning condition, small rounds droplets will not be admissible, and a
different region of the energy landscape is explored; minimizers are now expected
to stretch out and look like soap films.

inside the film we have

py) —p(z) =pg(z —y) ent1, (1.3)
where p is the density of the fluid, g the gravity of Earth and e, is the vertical direction.
In the absence of gravity, (1.2) and (1.3) imply that Hg = Hyp - vg is constant along
OF. A heuristic analysis shows that if OF is representable, locally, by the two graphs
{z £ (h(z)/2)vps(z) : © € M} defined by a positive function h over an ideal mid-surface
M, then Hjs should be small, but non-zero (even in the absence of gravity); see [MSS19,
Section 2]. As it is well-known, one cannot prescribe non-vanishing mean curvature with
arbitrarily large boundary data, see, e.g. [Giu78, DF90]. Hence this point of view can
potentially capture physical features of soap films that are not accessible by modeling
them as minimal surfaces.

The goal of this paper is starting the analysis of the variational problem playing for
(1.2) and (1.3) the role that Plateau’s problem plays for (1.1). The new aspect is not
in the energy minimized, but in the boundary conditions under which the minimization
occurs. Indeed, the equivalence between the constancy of Hr and the balance equations
(1.2) and (1.3), leads us to work in the classical framework of Gauss’ capillarity model for
liquid droplets in a container. Given an open set  C R™*! (the container), the surface
tension energy! of a droplet occupying the open region E C Q is given by

ocH"(QNIE),

where H" denotes n-dimensional Hausdorff measure (surface area if n = 2, length if n = 1).
In the case of soap films hanging from a wire frame I', we choose as container €2 the set

Q= RTH_I \ I(S(F) )

corresponding to the complement of the “solid wire” I5(I'), where I5 denotes the closed
d-neighborhood of a set. The minimization of H"(£2 N OF) among open sets £ C
with |E| = ¢ leads indeed to finding minimizers whose boundaries have constant mean
curvature. However, these boundaries will not resemble soap films at all, but will rather
consist of small “droplets” sitting at points of maximal curvature for I5(I"); see Figure 1.1,
and [BRO5, Fall0, MM16] for more information.

To observe soap films, rather than droplets, we must require that JF stretches out to
span I5(I"). To this end, we exploit a beautiful idea introduced by Harrison and Pugh in
[HP16a], as slightly generalized in [DLGM17]. The idea is fixing a spanning class, i.e. a

Lror simplicity, we are setting to zero the adhesion coefficient with the container; see, e.g. [Fin86].



FIGURE 1.2. The variational problem (1.5) with I" given by two parallel circles
centered on the same axis at a mutual distance smaller than their common radius.
Different choices of C lead to different minimizers S in ¢: (a) if C is generated by
the loops 1 and 79, then S is the area minimizing catenoid; (b) if we add to C the
homotopy class of 3, then S is the singular area minimizing catenoid, consisting of
two catenoidal necks, meeting at equal angles along a circle of Y-points bounding
a “floating” disk. Such singular catenoid cannot be approximated in energy by
smooth surfaces: hence the choice of casting ¢ in a class of non-smooth surfaces.

homotopically closed? family C of smooth embeddings of S into Q = R"+1\ I5(T'), and to
say® that a relatively closed set S C  is C-spanning I5(I) if

Sny#£0  Yyec. (1.4)

Given a choice of C, we have a corresponding version of Plateau’s problem
¢ =inf {’H”(S) : S is relatively closed in €2, and S is C-spanning L;(I‘)} ) (1.5)

as illustrated in Figure 1.2. The variational problem (¢) studied here is thus a reformu-
lation of ¢ as a capillarity problem with a homotopic spanning condition, namely:

Y(e) = inf {H”(Q NOE): ECQ, |E| =¢, QN OE is C-spanning L;(F)} , e>0.

We now give informal statements of our main results (e.g., we make no mention to singular
sets or comment on reduced vs topological boundaries); see section 1.2 for the formal ones.

Existence of generalized minimizers and Euler-Lagrange equations (Theorem
1.4 and Theorem 1.6): There always exists a generalized minimizer (K, E) for ¢ (g):
that is, there exists a set K C Q, relatively closed in Q and C-spanning I15(T), and there
exists an open set E C Q with QN OE C K and |E| = ¢, such that

U(e) = F(K,E) = 2H"(K \ 0F) + H"(QN OE) .

Moreover, (K, E) minimizes F with respect to all its diffeomorphic images: in particular,
QN OE has constant mean curvature A € R and K \ OF has zero mean curvature.

Convergence to the Plateau’s problem (Theorem 1.9): We always have ¢(g) — 2/
when ¢ = 0%, and if (K;,E;) are generalized minimizers for 1(g;) with ¢; — 0T, then,
up to extracting subsequences, we can find a minimizer S for £ with

2/ 90+/ s0—>2/s0 Vo e C2(),
Kj\OE; OE, S

as j — 00; in other words, generalized minimizers in (e;) with £; — 07 converge as
Radon measures to minimizers in the Harrison-Pugh formulation of Plateau’s problem.

2By this we mean that if 7o, y1 are smooth embeddings of S! into Q, o € C, and there exists a continuous
map f : [0,1] x S — Q with f(¢,-) = v, for t = 0,1, then 7, € C.

3Notice that, in stating condition (1.4), the symbol 7 denotes the subset 7(S') C Q. We are following
here the same convention set in [DLGM17].
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FIGURE 1.3. (a) If " consists of two points, then the minimizer is not collapsed,
and is bounded by two very flat circular arcs; (b) when I' consists of the vertices
of an equilateral triangle, the generalized minimizer is indeed collapsed. The three
segments defining K \ OF are depicted in bold, and F is a negatively curved
curvilinear triangle nested around the singular point of the unique minimizer of /.

Example 1.1 (Volume and thickness in the non-collapsed case). Let I' consists of two
points at distance r in the plane, or of an (n — 1)-sphere of radius r in R*""!. For ¢
small enough, 1 (¢) should admit a unique generalized minimizer (K, F), consisting of two
almost flat spherical caps meeting orthogonally along the torus I5(T") (so that K = OF
and collapsing does not occur); see Figure 1.3-(a). In general, we expect that when all the
minimizers S in £ are smooth, then generalized minimizers in () are not collapsed, and,
for small e, K = OF is a two-sided approximation of S, with Hg = ¢'(¢) — 0 and

Y(e) =20+ Ce? +o(e?), ase— 0", (1.6)

for a positive C'. This insight is consistent with the idea (see [MSS19]) that almost minimal
surfaces arise in studying soap films with a thickness. In particular, volume and thickness
will be directly related in terms of the geometry of I'. Sending ¢ — 0% with T' fixed
or, equivalently, considering tI' for large t at ¢ fixed, will make the thickness decrease
until it reaches a threshold below which we do not expect soap films to be stable. A
critical thickness can definitely be identified with the characteristic length scale of the
molecules of surfactant, below which the model stops making sense. But depending on
temperatures, actual soap films with even larger thicknesses should burst out due to the
increased probability of fluctuations towards unstable configurations.

Example 1.2 (Volume and thickness in the collapsed case). At small volumes, and in
presence of singularities in the minimizers of ¢, collapsing is energetically convenient, and
allows 1)(¢) to approximate 2/ from below. If I' C R? consists of the three vertices of an
equilateral triangle, for small § the unique minimizer of ¢ consists of a Y-configuration.
For small e, we expect generalized minimizers (K, E) of 1(¢) to be collapsed, see Figure
1.3-(b): there, E' is a curvilinear triangle made up of three circular arcs whose length is
O(v/e), and whose (negative) curvature is O(1/4/¢). The thickness of an actual soap film
in this configuration should thus be considerably larger near the singularity than along the
collapsed region, and the volume and the thickness of the film are somehow independent
geometric quantities. This suggests, in presence of singularities, the need for introducing
a second length scale in the model. A possibility is replacing the sharp interface energy
H"(QNOFE) with a diffused interface energy, like the Allen-Cahn energy

1
5n<u>=n/\w|2+—/vv<u>, >0,
Q nJo

for a double-well potential with {W = 0} = {—1,1}. We expect {u > 0} to (approxi-
mately) coincide with the union of a curvilinear triangle of area € with three stripes having
the collapsed segments as their mid-sections, and of width 7|logn|; cf. with [dPKWO08].
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FIGURE 1.4. (a) and (b): a four points configuration I" with a choice of C such
that ¢ admits two minimizers, one with and one without singularities; (c¢) and (d):
a six points configuration I' with a choice of C such that £ admits many minimizers,
possibly with a variable number of singularities; here we have depicted two of them,
including the one with four singular points that is selected by the 1(¢) problems.

Example 1.3 (Capillarity as a selection principle for Plateau’s problem). The following
statement holds (as a heuristic principle): Generalized minimizers of (e) converge to
those minimizers of Plateau’s problem (1.5) with larger singular set, and when no singular
minimizers are present, they select those whose second fundamental form has mazximal
L?-norm. Since the second part of this selection principle is justified by standard second
variation arguments, we illustrate the first part only. In Figure 1.4, I is either given by four
or by six points, that are suitably spaced so that ¢ has different minimizers. As e — 0,
1 (e) selects those f-minimizers with singularities over the ones without singularities; and
when more minimizers with singularities are present, it selects the ones with the largest
number of singularities. Indeed, the approximation of a smooth minimizer in ¢ will require
an energy cost larger than 2/. At the same time, each time a singularity is present,
minimizers of ¢(e) can save length in the approximation, thus paying less than 2/ in
energy, and the more the singularities, the bigger the gain. To check this claim, pick
N singularities, and denote by ¢; the volume placed near the i-th singularity and by r;
the radius of the three circular arcs enclosing ¢;. Each wetted singularity has area c; r?,
while the total relaxed energy of the approximating configuration is F =20 —cy Zf\il 5.



Minimizing under the constraint & = ¢; Zf\;l riz, we must take r; = y/e/Ncy, thus finding

Nmax
W(e) = 20—y ) ,
C1

if Npax is the maximal number of singularities available among minimizers of ¢. This
example suggests that (in every dimension) in the presence of singular minimizers of ¢,
one should have

Y'(e) = —oc0ase — 0T (1.7)
This is of course markedly different from what we expect to be the situation when ¢ has only
smooth minimizers, see (1.6). We finally notice that a selection principle for the capillarity
model (without homotopic spanning conditions) via its Allen-Cahn approximation has
been recently obtained by Leoni and Murray, see [LM16, LM17].

1.2. Statements of the results. We now give a more technical introduction to our paper,
with precise statements, more bibliographical references, and comments on the proofs.

Plateau’s problem with homotopic spanning: We fix a compact set W C R"*! (the
“wire frame”) and denote the region accessible by the soap film as

Q=R \W.

The typical case we have in mind is W = I5(I"), as discussed in section 1.1, but this is not
necessary. We fix a spanning class C, that is a non-empty family of smooth embeddings
of S! into Q which is closed by homotopy in . We assume that W and C are such that
the Plateau’s problem defined by C

¢ =inf {H"(5): S €S} (1.8)
is such that* ¢ < co. Here, for the sake of brevity, we have introduced
S = {S C Q: S is relatively closed in €2 and S is C-spanning W} .

As proved in [HP16a, DLGM17], if ¢ < oo, then there exists a compact, H"-rectifiable
set S such that H"(S) = ¢; see also [Harl4, Dav14, Fanl6, HP16b, HP16c, DPDRGI6,
DLDRG19, GLF17, HP17, FK18, DR18| for related existence results. In addition, S
minimizes H" with respect to Lipschitz perturbations of the identity localized in 2, so
that: (i) S is a classical minimal surface outside of an H"™-negligible, relatively closed set
in Q by [Alm76]; (i) if n = 1, S consists of finitely many segments, possibly meeting in
three equal angles at singular Y-points in ; (iii) if n = 2, S satisfies Plateau’s laws by
[Tay76]: namely, S is locally diffeomorphic either to a plane, or to a cone Y = T* x R, or
to a cone T2, where T™ is the cone over the origin defined by the (n — 1)-dimensional faces
of a regular tetrahedron in R™*!. The validity of Plateau’s laws in this context makes
(1.8) more suitable when one is motivated by physical considerations: indeed, minimizers
of the codimension one Plateau’s problem in the class of rectifiable currents are necessarily
smooth if n < 6. Although smoothness is desirable for geometric applications, it creates
an a priori limitation when studying actual soap films; see also [Dav14, HP16a, DLGM17].

The capillarity problem and the relaxed energy: Next, we give a precise formulation
of the capillarity problem (g) at volume ¢ > 0, which is defined as

Y(e) = inf {’H”(Q NOE): E €&, |E|=¢, QNOE is C-spanning W} . (1.9)
Here we have introduced the family of sets

E= {E C Q: Eis an open set and OF is ”H”-rectiﬁable} . (1.10)

4The condition ¢ < co clearly implies that no v € C is homotopic to a constant map.



If £ € &, then OF is H™-finite and covered by countably many Lipschitz images of R™
into R™*1. Thus, F is of finite perimeter in Q by a classical result of Federer, and its
(distributional) perimeter P(E;U) in an open set U C (2 is equal to H"(U N 0*E), where
O0*F is the reduced boundary of E (notice that, in general, P(E;U) < H"(UNOFE)). The
relaxed energy F is defined by

F(K,E;U) = H'(UNIE)+2H"(UN(K\JE)), U C Q open,
F(K.E) = F(K EQ),
on every pair (K, E) in the family K given by
K:{unEyEcxummmmthmd@vw:QmaEcA;
K € § and K is ‘H"-rectifiable in Q} .

By the requirement K € S, K is C-spanning W, while 2 N JF, which is always a subset of
K, may be not be C-spanning W; we expect this when collapsing occurs, see Figure 1.3.

Assumptions on : We make two main geometric assumptions on W and C. Firstly, in
constructing a system of volume-fixing variations for a given minimizing sequence of v (¢)
(see step two of the proof of Theorem 1.4) we shall assume that

379 > 0 such that, for every 7 < 79, R"*1\ I.(W) is connected . (1.11)

This is compatible with the idea that, in the physical case n = 2, W represents a “solid
wire”. Secondly, to verify the finiteness of 1)(¢) (see step one in the proof of Theorem 1.4),
we require that

31 > 0 and a minimizer S in ¢ s.t. v\ I, (S) # 0 for every v € C. (1.12)

This is clearly a generic situation, which (thanks to the convex hull property of stationary
varifolds) is implied, for example, by the much more stringent condition that v\ Z # ()
for every v € C where Z is the closed convex hull of W. Finally, we shall also assume
that “02 = OW is smooth”: by this we mean that locally near each = € 9%, Q can be
described as the epigraph of a smooth function of n-variables.

Existence of minimizers and Euler-Lagrange equations: Our first main result is
the existence of generalized minimizers of ¥ (e).

Theorem 1.4 (Existence of generalized minimizers). Let ¢ < oo, W be smooth and let
(1.11) and (1.12) hold. If {E;}; is a minimizing sequence for 1(c), then there exists a
pair (K, E) € K with |E| = ¢ such that, up to possibly extracting subsequences, and up to
possible modifications of each E; outside a large ball containing W (with both operations
resulting in defining a new minimizing sequence for \(e), still denoted by {E;};), we have
that

E; — E in L(Q),

% 1.13
H'(QNOE;) = 0 H" K as Radon measures in €, (1.13)

as j — oo, where 0 : K — R is an upper semicontinuous function with
0=2H"-ae on K\IE, 0=10onQNO'E. (1.14)
Moreover, 1(¢) = F(K, E) and, for a suitable constant C, (g) < 24+ C ™/ (n+1),

Remark 1.5. Whenever (K, F) € K is such that |E| = ¢, F(K,E) = ¢(e) and there
exists a minimizing sequence {E;}; for ¢(¢) which converges to (K, E) as in (1.13), we
say that (K, F) is a generalized minimizer of ¢(¢). We say that (K, E) is collapsed
it K\ OFE # 0. If (K, E) is not collapsed, then F is a (standard) minimizer of ¢ (e).



Next, we derive the Euler-Lagrange equations for a generalized minimizer and apply
Allard’s theorem.

Theorem 1.6 (Euler-Lagrange equation for generalized minimizers). Let ¢ < oo, OW be
smooth and let (1.11) and (1.12) hold. If (K, E) is a generalized minimizer of ¥ (g) and
f:Q = Qis a diffeomorphism such that |f(E)| = |E|, then

F(K,E) < F(f(K), f(E)) . (1.15)

In particular:
(i) there exists A € R such that

A X-uEd”H”:/ divKXdH"+2/ div® X dH™, (1.16)
E B K\o*E
for every X € CHR"LR™Y) with X - vg = 0 on 99, where divE denotes the
tangential divergence along K ;

(ii) there exists ¥ C K, closed and with empty interior in K, such that K \ ¥ is a
smooth hypersurface, K \ (XU OFE) is a smooth embedded minimal hypersurface,
HY(E\OE) =0, QN (0E \ 0*E) C ¥ has empty interior in K, and QN O*E is a
smooth embedded hypersurface with constant scalar (w.r.t. vg) mean curvature X.

Remark 1.7. Although we do not pursue this point here, we mention that we would
expect (K, E) to be a proper minimizer of F among pairs (K’, E') € K with |E'| = ¢ (and
not just when K’ = f(K) for a diffeomorphism f, as proved in (1.15)). To show this we
would need to approximate in energy a generic (K’, E') by competitors {F}}; for i(e).
The natural ansatz for this approximation would be taking F; = U, (K'UE")\ I, (K'NE")
for n; — 07, where U, denotes the open n-neighborhood of a set. The convergence of this
approximation is delicate, and can be made to work by elaborating on the ideas contained
in [ACV08, Vil09] at least for (K’, E’) in certain subclasses of K.

Remark 1.8. Theorem 1.6 points at two interesting free boundary problems. The first
problem concerns the size and properties of 9E\0* E, which is the transition region between
constant and zero mean curvature; similar free boundary problems (on graphs rather than
on unconstrained surfaces) have been considered, e.g., in [CJK02, CDSS16, CDSS17]. The
second problem concerns the wetted region 9€2 N JFE, which could either be H"-negligible
or not, recall Figure 1.3: in the former case, 9Q2NOE should be (n — 1)-dimensional, while
in the latter case 02 N OF should be a set of finite perimeter inside 02, and Young’s law
vo - vg = 0 should hold at generic boundary points of 92 N OF relative to 0€2; see for
example [DPM15, DPM17].

Convergence towards Plateau’s problem: The next theorem establishes the nature
of Plateau’s problem ¢ as the singular limit of the capillarity problems 1 (g) as ¢ — 0.

Theorem 1.9 (Plateau’s problem as a singular limit of capillarity problems). If £ < oo,

OW be smooth, and (1.11) and (1.12) hold, then 1 is lower semicontinuous on (0,00) and
lim () =2¢. (1.17)
e—0t

In addition, if {(Kp, Ep)}n is a sequence of generalized minimizers of 1 (ep,) for e, — 0

as h — oo, then there exists a minimizer S in £ such that, up to extracting subsequences

and as h — o0,

H(QNO*Ey) + 2H" (K, \ 0" Ep) = 2H".S, as Radon measures in Q. (1.18)

Remark 1.10. The behavior of ¥(g) —2¢ as ¢ — 07 is expected to depend heavily on
whether minimizers of ¢ have or do not have singularities, as noticed in (1.6) and (1.7). In
particular, we expect ¢'(¢) — 0T only in special situations: when this happens, we have a



FIGURE 1.5. (a) the cup competitor of a set S in B,.(z) relative to an H"-
maximal connected component A of dB,.(x) \ S; (b) the cone competitor of S in
B, (x).

vanishing mean curvature approximation of Plateau’s problem which is related to Rellich’s
conjecture, see e.g. [BC84].

Remark 1.11. The Hausdorff convergence of K, to S is not immediate (nor is the con-
vergence in varifolds sense). Given (1.18), Hausdorff convergence would follow from an
area lower bound on Kj. In turn, this could be deduced (thanks to area monotonicity)
from a uniform LP-bound, for some p > n, on the mean curvature vectors ﬁvh of the
integer varifolds V}, supported on K}, with multiplicity 2 on K \ 0* Ej, and multiplicity
1 on O*E}. Notice however that, by (1.16), if Ay, is the Lagrange multiplier of (K}, Ey),
then ﬁvh = A\ Vg, lo<g,, so that, even when n = 1, the only uniform LP-bound that can
hold is the one with p = 1; see Example 1.2.

Proofs: We approach Theorem 1.4 with the method introduced in [DLGM17] to solve
(1.8), which is now briefly summarized. The idea in [DLGM17] is considering a minimiz-
ing sequence {S;}; for ¢, which (up to extracting subsequences) immediately leads to a

sequence of Radon measures p; = H"LS; X 1 as Radon measures in 2, with S = spt
C-spanning W. By comparing S; with its cup competitors S;, see Figure 1.5-(a), and then
letting j — oo, it is shown that p(B,(x)) > fp(n) r™ for every x € spt uu; by comparing S
with its cone competitors S;-, and then letting j — oo, it is proved that r~" u(B,(x)) is
increasing in . By Preiss’ theorem [Pre87, DLO8] it follows that = 0 H"LS and that S is
‘H"-rectifiable. Finally, spherical isoperimetry and a geometric argument imply that 6 > 1
‘H"-a.e. on S, which in turn suffices to conclude that S is a minimizer in ¢ since, by lower
semicontinuity, H™(S) < u(Q2) < liminf; 1;(©2) = ¢, and because S is in the competition
class of £.

Adapting this approach to a minimizing sequence {E;}; for 1(e) requires the intro-
duction of new ideas. First, cup and cone competitors for {£;}; have to be defined as
boundaries, a feature that requires taking into consideration two kind of cup competitors,
and that also leads to other difficulties. Second, local variations need to be compensated
by volume-fixing variations, which must be uniform along the elements of the minimizing
sequence. At this stage, we can prove that p; = H" (2 N OE;) A= OH"K for an
H"-rectifiable set K which is C-spanning . The same argument as in [DLGM17] shows
that # > 1, and the lower bound 6 > 2 H"-a.e. on K \ 0*E requires a further elabo-
ration which takes into account that we are considering the convergence of boundaries.
We cannot conclude that F(K, E) = 1(e) just by lower semicontinuity because clearly
(K, E) is not in the competition class of 1)(¢). We thus improve lower semicontinuity by
some non-concentration estimates: at infinity, at the boundary and by folding against K.
The latter are the most interesting ones, and they require a careful comparison argument
based on the introduction of a third kind of competitors, called slab competitors. The
construction of the various competitors is discussed in section 2, while the proof of Theo-
rem 1.4 is contained in section 3. Slab competitors are also used in the delicate proof of



(1.15), whose starting point are some ideas originating in [DPHO03], as further developed
in [DLGM17] when addressing the formulation of Plateau’s problem for David’s sliding
minimizers; see section 4. Finally, in section 5 we prove Theorem 1.9: the main difficulty,
explained there in more detail, is that, at vanishing volume, we have no non-trivial local
limit sets to be used for constructing uniform volume-fixing variations.

Structure of generalized minimizers: Theorem 1.4, Theorem 1.6 and Theorem 1.9
lay the foundations to study the properties of generalized minimizers of ¢)(¢). The most
intriguing questions are concerned with the relations between the properties of minimizers
in Plateau’s problem /, like the presence or the absence of singularities, and the properties
of minimizers in v (g) at small e: collapsing vs non-collapsing and the sign of A, limiting
behavior of A as e — 07, dimensionality of the wetted part of the wire, etc. This is of course
a very large set of problems, which will require further investigations. In the companion
paper [KMS21], we start this kind of study by proving that collapsed minimizers have
non-positive Lagrange multipliers, deduce from this property that they satisfy the convex
hull property, and lay the ground for the forthcoming paper [KFS20], where we further
investigate the regularity of the collapsed set K \ 0*E.
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2. CONE, CUP AND SLAB COMPETITORS, NUCLEATION AND COLLAPSING

Section 2.1 contains the notation and terminology used in the paper. Section 2.2 collects
some basic properties of C-spanning sets. Sections 2.3, 2.4 and 2.5 deal with cup, slab and
cone competitors. Section 2.6 contains the nucleation lemma for volume-fixing variations,
and section 2.7 concerns density lower bounds for collapsing sequences of sets of finite
perimeter.

2.1. Notation and terminology. We denote by |A| and H*(A) the Lebesgue and the
s-dimensional Hausdorff measures of A C R"*1 by I,,(A) and U, (A) the closed and open
n-neighborhoods of A, by B,(z) the open ball of center at z and radius . We work in the
framework of [Sim83, AFP00, Magl2]. Given k € N, 1 < k < n, a Borel set M C R"*! is
countably #H*-rectifiable if it is covered by countably many Lipschitz images of R¥; it
is (locally) H*-rectifiable if, in addition, M is (locally) H*-finite. If M is locally H*-
rectifiable, then for H*-a.e. € M there exists a unique k-plane T, M such that, as r — 01,
HE(M —z)/r = H*_T,, M as Radon measures in R"**; T, M is called the approximate
tangent plane to M at x. Given a Lipschitz map f : R**! — R"*!, we denote by JM f
its tangential jacobian along M, so that if f is smooth and f(z) = z + ¢ X (x) + o(t)
in C' as t — 0%, then JMf = 1 4+ tdiv™X + o(t) where div™ X is the tangential
divergence of X along M; moreover, M has distributional mean curvature vector
He LIIOC(U;HkLM) in U open, if

/divMXd’Hk:/ X -HdHF, VX eCXU;R™,
M M

see [Sim83, Sections 8 and 9]. A Borel set E C R"*! has finite perimeter if there exists
an R™*!-valued Radon measure on R"*!, denoted by pg, such that (up, X) = [, divX
whenever X € CHR"TL; R and P(E;R"™) = |ug|(R™™!) < co. The set of points
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x € R" such that |ug|(B,(z) "t up(Br(z)) — ve(r) € S® as r — 07 is denoted by
0*FE, and called the reduced boundary 9*F of E. Then ug = vg H"LO*FE, 0*F is
H-rectifiable in R™*!, and T,0*E = vg(x)* for every = € 9*E. The set E(*) of points
of density t € [0,1] of E is given by those z € R"™ with |E N B,.(z)|/|B-(z)| — t as
r — 07, and (see, e.g., see [Magl2, Theorem 16.2]),

{0°E, B0 EM} is a partition of R™*! modulo H". (2.1)

Federer’s criterion [Fed69, 4.5.11] states that if the essential boundary 9°F = R*™!\
(E(O)UE(I)) is H"-finite, then E is of finite perimeter in R**!. If E is open, then 0°E C JF:
hence, if £ € £ and H"™(0N2) < oo, then F is of finite perimeter.

2.2. Some preliminary results. In the following, W is a compact set, C a spanning
class for W and = R\ W.

Lemma 2.1. If {K;}; are relatively closed sets in Q, such that each K; is C-spanning W
and H"LK; X4 as Radon measures in Q, then K = QN spty is C-spanning W .

Proof. See [DLGM17, Step 2, proof of Theorem 4]. O

Lemma 2.2. Let K be relatively closed in  and let B,.(x) CC Q. Then K is C-spanning
W if and only if, whenever v € C is such that v N K \ B.(z) = (), then there exists a
connected component of v N cl(B,(x)) which is diffeomorphic to an interval, and whose
end-points belong to distinct connected components of cl (B, (z))\ K, as well as to distinct
components of 0B, (x) \ K.

Proof. This is [DLGM17, Lemma 10]. O

Lemma 2.3. If K is C-spanning W, B.(x) CC Q, and f : R""1 — R*"" s q bi-Lipschitz
map with {f #id} CC B.(z) and f(B.(z)) C B,(x), then f(K) is C-spanning W .

Proof. By f(K)\ B.(x) = K\ B.(x), if f(K) is not C-spanning W, then there exists
v € C with y N K \ B.(z) = 0 such that yN f(K) = (. Hence, the curve 7 := f~1 oy
is a continuous embedding of S in Q, homotopic to 7 in €, and such that ¥ N K = 0.
Since 4 and W are compact and K is closed, 4 has positive distance from K U W, and
by smoothing out 7 we define a smooth embedding 4 of S! into €, disjoint from K, and
homotopic to 4 (and therefore to «) in 2, a contradiction. O

Lemma 2.4. If 09 is smooth, then there exists ro > 0 with the following property. If
zed, QCQ, f:c() = () = f(cl(R)) is a homeomorphism with f(0) = OV,
{f #id} CcC By, (x), and (B (x)Ncl(Q)) = By, (z)Ncl (), and if K is C-spanning W,
then K' = f(K NQ*) is relatively closed in Q and is C-spanning W, where Q* = f=1(Q).

Proof. Step one: We show that, for K relatively closed in 2 and B, (z) as in the statement,
K is C-spanning W if and only if, whenever v € C is such that yNK\ B, (x) = (), then there
exists a connected component of v N cl(B,,(z)), diffecomorphic to an interval, and whose
end-points belong to distinct connected components of QN cl (B, (x))\ K. We only prove
the “only if” part. First of all, we notice that v cannot be contained in QN B, (z), because
ro can be chosen small enough to ensure that QN B, (z) is simply connected, and because
¢ < oo implies that no element of C is homotopic to a constant. Arguing as in [DLGM17,
Step two, proof of Lemma 10] we can assume that v and 0B,,(z) intersect transversally,
so that there exist finitely many disjoint I; = [a;,b;] C S! such that v N cl (B, (7)) =
U7 (L:) with 5 0By, (2) = Uy{7(as), 7(50)} and 7 0 Byg(@) = U, 7((ai, ). Assume by
contradiction that for each i there exists a connected component A; of QNcl (B, (z)) \ K
such that y(a;),v(b;) € A;. If o is small enough, then cl (2 N B,,(z)) is diffeomorphic to
cl (B1(0)N{z1 > 0}) through a diffeomorphism mapping B, (z)NdS2 into By (0)N{z; = 0}.
Using this fact and the connectedness of each A;, we define smooth embeddings 7; : I; — A;
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with 7;(a;) = v(a;), 7(b;) = v(b;) and 7; homotopic in 2 N By, (x) to the restriction of
to I;. Moreover, this can be done with 7;(I;) N 7j(I;) = 0. The new embedding ¥ of S
obtained by replacing ~ with 7; on I; is thus homotoplc to v in Q, and such that yN K = (),
a contradiction.

Step two: Since K N Q* is relatively closed in Q*, K’ = f(K N Q*) is relatively closed in
Q = f(2*). Should K’ not be C-spanning W, given that K’ \ B,,(z) = K \ B,,(x), we
could find v € C with yN K \ Byy(z) = 0 and vy N K’ = (. By step one, there would
be a connected component o of v N cl(By,(x)), difftomorphic to an interval, and such
that: (i) the end-points p and ¢ of o (which lie on B, (z)) belong to distinct connected
components of QNcl (B, (z))\ K; and (ii) p and ¢ belong to the same connected component
of @Ncl(By,(x))\ K'. Since f is a homeomorphism, f(p) = p, and f(¢q) = ¢, by (i) we
would find that p and ¢ belong to distinct connected components of

FQN (B () \ K) = Q' Nl (B (2)) \ f(K)
while, by (ii), there would be an arc connecting p and ¢ in Q Nl (By,(z)) \ K’, where

QA (By@)\K' = QNel(By(2)\ f(KNQ)

QN (Bry(2)\ f(K) C Q' nel(Bry(x)\ f(K),
and hence p and ¢ would belong to a same component of Q' Ncl (B, (x)) \ f(K). O

2.3. Cup competitors. Given E € &, B.(zr) CC Q and a connected component A of
0B, (x) \ OF, cup competitors are used to compare H" (B, (z) NOFE) with H"(0B,(z)\ A).
The construction is more involved than in the case of Plateau’s problem considered in
[DLGM17] as we need to construct cup competitors as boundaries, and we have to argue
differently depending on whether ANE =0 or A C E.

Lemma 2.5 (Cup competitors). Let E € £ be such that Q N IE is C-spanning W, let
x€Q,0<r<dist(x,00), and let A be a connected component of 0B, (x) \ OE. Assume
that OF N OB, (z) is H" '-rectifiable. Then, for every n € (0,7/2) there exists a set
F=F, c& sothat QN IF is C-spanning W, and

OF \ cl(B,(x)) = 0FE \ cl (B,(x)), (2.2)
11%1 H"((0B,(z) NOF) A (0B, (z) \ A)) =0, (2.3)

n—0+

limsup H"(QNOF) < H"(QNOE\ By(x)) + 2H"(0B,(z) \ 4). (2.4)
n—07+

Moreover,
(i) If ANE =0, then

lim sup H"(B, (z) N OF) < H" (aBr(az) \ (AU(EN aBT))) ; (2.5)

n—0t

(ii) If AC E, then

lim sup H"(B,(z) N OF) < H"(E N8B, (x) \ A). (2.6)
n—0t
Remark 2.6. Before proceeding with the proof of the lemma, let us first provide some
additional details on the construction of the competitors F' = F,), which, as anticipated, is
different depending on whether AN E =0 or A C E. In what follows, given Y C 0B, (z),
we set

Ny(Y) = {y—thr(x>(y) yeY.te (O,n)}, O<n<r.
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FIGURE 2.1. Cup competitors when: (a) ANE =0 and S=10; (b) ANE =10
and S # 0; (¢) A C E. Picture (b) really pertains to the case n > 2, in which the
component A in the picture is not necessarily disconnected by the presence of S.
In the situation of picture (b) the set F' defined by (2.9) may fail to intersect a
test curve v which was intersecting with 2 N OF only at points in S.

The case when AN E = (): In this case, we define
Y =0B,(z) \ (c1(ENJB(z)) Ucl(A)), (2.7)
and then we further distinguish two scenarios, depending on whether the set
S=0EnNcl(A)\[cl (ENIB,(z))Ucl(Y)] (2.8)
is empty or not. When S = () the cup competitor defined by E and A is given by
F=(E\c(Br(z)) U Ny(Y), (2.9)

see Figure 2.1-(a), and step one of the proof. When S # (), see Figure 2.1-(b), if we define F’
as in (2.9), then QN OF may fail to be C-spanning W; we thus need to modify (2.9), and to
this end, denoting by dg the distance function from S and by U,(S) = 0B, (z) N{ds(y) <
n}, we set

F=(E\d(By(2)))UN,(2Z), Z=YU(UpyS)\cl(ENB.(x))) , (2.10)

see, again, Figure 2.1-(b). This situation, discussed in detail in step two of the proof, is
made more delicate since we can prove that the sets defined in (2.10) are well-behaved in
the limit as n — 0T only along along a suitable sequence 7 | 0. For this reason, we will
actually define F), as in (2.10) only when 7 = 1, and then extend the definition by setting
F, = F,, for all n € (nr41,m%) (so that, for the sake of homogenity, (2.4) can be stated as
an 1 — 07-limit in all three cases).



The case when AN E = (: Finally, when A C E the cup competitor defined by F and A
is given by
F=(EUB@)\d(Ny(Y)), Y =(ENdB,x)\c(4),  (211)
see Figure 2.1-(c). We treat this case in step three of the proof.
Proof. Step one: We assume that A N E = () and, after defining Y as in (2.7) and S as in
(2.8), we suppose first that
S=90. (2.12)

We then define F' by (2.9). For the sake of brevity we set B, = B,(x). We claim that
(2.2) holds, and that we have

B, NOF = B,NON,(Y), (2.13)

Y C O0FNJB,, (2.14)

ENoB, C 0FNJIB,, (2.15)

0B, \cl(A) C O0FNJB,, (2.16)
oOFENJB, C O0FNJB,, (2.17)

A, ENJB,, Y are open and disjoint in 05, , (2.18)
OFNoB, C 0B, \A, (2.19)

0B, \cl(E) Cc AUY, (2.20)
d(Y)\Y C 9B, NIE, (2.21)

cd(A)\A C 0B, NIE, (2.22)
d(ENdB,)\ (ENJB,) = 0B, NJE. (2.23)

Indeed, (2.2) and (2.13) follow from F'N B, = N,(Y) N B, and F'\ cl(B,) = E'\ cl(B,).
To prove (2.14): Y C cl (N, (Y)) gives Y C cl (F), and FNOB, = () implies Y N F = (). To
prove (2.15): ENOB, C cl(E\cl(By)), so that ENJB, C cl(F'), while FN9IB, = () gives
(ENJB,)NF = (. (2.18) is obvious, and (2.16) follows from (2.14) and (2.15). (2.17)
is then an immediate consequence of (2.14), (2.15), (2.16), and the condition in (2.12).
To prove (2.19): A is open in 0B, \ OE and AN E = (), thus AN cl(E) = (); moreover,
Ancl(Y) =10 by (2.18), hence

AFNOB, C c(F)NdB, C cl(B)U (cl (N, (Y)) DE)BT) = (BE)Ud(Y),

and we deduce (2.19). To prove (2.20): if y € 9B, \ cl(E), then y belongs to one of the
open connected components of B, \ OF, so it is either y € A, or y € 0B, \ cl(4) C Y.
To prove (2.21): by (2.18) we have ANcl(Y) = 0, so that by (2.20)

A(Y)\Y C 8B, \ (AUY) C 8B, Ncl(E),

and we conclude by (EN0B,)Ncl(Y) =0 (again, thanks to (2.18)). Finally, (2.22) and
the inclusion “C” in (2.23) are obvious, while the other inclusion in (2.23) follows from
(2.12). Having proved the claim, we complete the proof. By definition, F' C €2 is open. We
show that QN IF is C-spanning W. Given v € C, if yNOE \ cl(B,) # 0, then yNIF #
by (2.2); if instead v N OE \ ¢l (B,) = 0, then necessarily vy N IE Ncl(B,) # 0. Now, if
YNIENIB, # 0 then yNIF # () by (2.17); otherwise we actually have yNOE \ B, = 0,
and thus, by Lemma 2.2, « intersects two distinct connect components of 0B, \ OF, and
at least one of them is contained in F N dB,: indeed, 0F N 0B, contains 0B, \ cl (A) by
(2.16), where cl(A) is disjoint from all the connected components of 9B, \ OF that are
different from A.

Now, we prove (2.3), (2.4), and (2.5). First notice that (2.16), (2.19), (2.22), and
H" (OB, NOF) = 0 imply that

OFNOB, = 0B,\A modulo H", (2.24)
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which in turn implies (2.3). Next, we claim that

H'(QNOF) < H'(QNOE\B,)+H'(ENJB,) (2.25)
+(24 C(n)n) H" (8BT \(AU(EN 8BT))) +C(n)nH" " (OENOB,).

To prove the claim, first by H"(OF N 0B,) = 0, (2.2) and (2.19) we have

H'(QNOF) = HYQNIE\ B,) + H"(cl(B,) N IF)
< HYQNOE\ B,) +H (0B, \ A) + H"(B, NOF).  (2.26)

If g(y,t) =y — tvp,(y), then by (2.13)
B, NOF = B, NON,(Y) = g(Y,n) U g<(c1 (Y)\Y) x [0,77]) ,

so that (2.21), the H" L-rectifiability of OE N 0B, and the area formula give us

H" (B, NOF) < (1+C(n)n)H (Y) +C(n)nH" L (OENOB,). (2.27)
By H"(OENOB,) =0, (2.22) and (2.23) we have
H'(Y)=H"(0B, \ (AU(ENIB,))), (2.28)

so that (2.26), (2.27) and (2.28) imply (2.25). Letting n — 0" in (2.25) we find (2.4), and
doing the same in (2.27) and (2.28), we deduce (2.5).

Step two: In the case AN E = (), we now allow for the set S defined in (2.8) to be non-
empty. In this case, if F' is defined as in (2.9) then the inclusion (2.17) is not true in
general, and 2 N JF may fail to be C-spanning W. We then modify the construction as
detailed in Remark 2.6, defining F' as in (2.10). We notice that F' C Q is open, and that
(2.2) holds true, since once again F'\ cl(B,) = E'\ cl(B,). Moreover, we have

B,NOF = B,NON,(2), (2.29)

Z C 0FNJB,, (2.30)

ENnoB, Cc 0FNOB,, (2.31)

0B, \cl(A) C OFNJB,, (2.32)

OENOB, C 0FNOB,, (2.33)

A, ENOJB,, Y are open and disjoint in 0B, , (2.34)
OFNOB, C [0B,\ AJU[0B, N{ds <n}], (2.35)

8B, \cl(E) C AUY, (2.36)

cd(Y)\Y <C 0B, NOE, (2.37)

c(A)\A C 0B, NOE, (2.38)

cd(ENJB,)\ (EFNOB,) C 0B, NJE. (2.39)
The proofs of (2.29), (2.30), (2.31), (2.32) are identical to the proofs of the corresponding

statements in step one with Z replacing Y’; (2.33) then follows from (2.30), (2.31), and
(2.32), since S C Uy(S) \ cl(ENOB,) C Z; (2.34) is obvious. To prove (2.35): as in step
one, ANcl(E) =0 and Ancl(Y) =0 by (2.34), and
OFNOB, C c(F)NOB, C cl(E£)U (cl(N,(Z))NoB,)
C c(E)uc(Y)Ucl(Uy,(S)),
so that (2.35) follows from the fact that cl(U,(S)) C 0B, N {ds < n}. Next, we notice
that (2.36), (2.37), (2.38), and (2.39) are shown analogously to step one (with the identity

in (2.23) which becomes an inclusion in (2.39) due to S possibly being not empty). With
the above at our disposal, we proceed now to verify the claims of the lemma. First, the

15



proof that Q N JF is C-spanning W follows wverbatim the argument from step one. Next,
(2.32), (2.35), (2.38), and H"(OE N IB,) = 0 imply that

H"((OF N0B,) A (0B, \ A)) < H" (0B, N{ds < n}). (2.40)
In particular, since H" *(S) < oo, it holds
lim H" (OF N9B,)A (0B, \ A)) =0, (2.41)
n—0t

that is (2.3). Next, we proceed with estimating H"(2NJF'). We first notice that, by (2.2)
and H"(OEN0B,) =0

HYQNOF) = HYQNOE\ B,) + H"(cl(B,)NOF)
< H'(QNOE\ B,)+H"(OF NdB,) + H"(B,NOF). (2.42)
Setting, as in step one, g(y,t) =y — tvp,(y), we then have from (2.29) that
B, NOF = B, NONy(Z) = g(Z,n) Ug ((c1(Z) \ Z) x [0,n]) . (2.43)
By the area formula, we can easily estimate
H"(9(Z,m) < A+ C(n)n)H"(Z)
< (1+C(n)n) (H'(V) + H* (9B, N {ds < n}))

< (1+C(n)n) (H”(@Br \ (AU (EN8B,))) + H (0B, N {dg < n})) .

(2.44)

On the other hand, it holds
A (Z)\ Z C [ (Y)\ (V)] Ul (U)\ U], (2.45)
where U = U, (S) \ ¢l (ENB,). Since cl (U) C cl (U,(S)) \ (ENIB,), (2.39) implies that
1 (U)\ U c (0B, N {dg =n}) U (8B, N OE) , (2.46)

and thus (2.37) yields
H" (9((c1(2)\ 2) x [0,1])) < Cn)n (K"~ (OB, NOE)+H"" (9B, N {ds = n})) . (247)
By applying the coarea formula to dg, it holds for every 0 < o < 1/2

/00 H" (OB, N {ds =n})dn = H" (0B, N{ds < 0}) < o0, (2.48)

and thus there exists a decreasing sequence {n; }2°; with limy_,~, 7, = 0 such that 0B, N
{dg = ni} is H" lrectifiable and

Jim H* (OB, N {ds =m}) =0. (2.49)
—00
If Fy, is the sequence of cup competitors defined by (2.10) in correspondence with the choice

n = N, we then have from (2.43), (2.45), (2.37), and (2.46) that QN OF}, is H"-rectifiable,
and from (2.42), (2.41), (2.44), (2.47), and (2.49) that

limsupH"(B, NOF;) < H"(0B,\ (AU (ENJB,))), (2.50)
k—o0
limsup H"(QNOF,) < H'(QNOE\ B,) +2H"(0B, \ A). (2.51)
k—o0

Defining F;, = F,, for all € (141, 7%) then allows to conclude both (2.4) and (2.5).
Step three: We now assume that A C F, and define F' by (2.11), that is
F=(EUB,)\cl(N,(Y)), Y =(ENdB,)\cl(A). (2.52)
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We claim that (2.2) holds, as well as

Y C 0FNOB,, (2.53)

0B, \E C 0FNOJB,, (2.54)

0B, \cl(A) C O0FNOJB,, (2.55)

B, NOF C B,NON,(Y), (2.56)

A,0B, \ cl(E),Y are open and disjoint in 0B, , (2.57)
OFNOB, C 0B,\A, (2.58)

c(A)\A C 0B, NIE, (2.59)

cd(Y)\Y C 0B,NOE. (2.60)

First, F'\ cl(B;) = E \ cl(B;) implies (2.2). To prove (2.53): since F is open we have
ENoB, Ccl(E\c(By))=cl(F\cl(B,)) (by (2.52)), thus Y C cl(F'); we conclude as
YNF =0. As FNOB, C EN9JB,, to prove (2.54) we just need to show that 0B, \E C cl (F):
since ¢l (U) \ el (V) C el (U \ el (V)) for every U,V C R™™, by 0B, Ncl (N, (Y)) C cl(E),

OB, \cl(E) C c(By)\c(Ny(Y)) Cecl(Br\cl(Ny(Y)) Ccl(F),
(0B, NOE)\ cl(N,(Y)) C cl(E)\c(Ny(Y)) C cl(E\c(Ny(Y))) C cl(F),
0B, NOENc(N,(Y)) C 0ENcl(Y) C OF,
where the last inclusion follows by (2.53). Next, (2.55) follows by (2.53), (2.54) and
OB, \cl(A)=[(ENoB,)\cl(A)]U[0B,\ (EUcl(A))] CYU (OB, \ E).

To prove (2.56): setting V¢ =R""\ V, by B,NF = B, Ncl(N,(Y))¢ we find B, NOF =
B, N [cl(N,(Y))], where, as a general fact on open set U C R""!, we have

el (U)] =cl(cl(U)°)\cl (U)¢ =cl(U)Nel(cl(U)), c(cl(U)°) cU°,

and thus 9d[cl (U)°] € 9U. Next, (2.57) is obvious, and implies A Ncl(Y) = 0 where
cl(Y) =cl(N,(Y))NOB,, so that ANOB, C ENJB, \ cl(N,(Y)) = FNOB,, and (2.58)
follows. To prove (2.59), just notice that A C E and A is a connected component of
0B, \ OE. To prove (2.60): trivially, c1(Y)\Y C cl(Y) C 0B, Ncl(E), while by definition
of Yand by cl(Y)NA=1

En(d)\Y) = (d(Y)N(ENIB))\Y =c(Y)N(ENIB,)Ncl(A)
= (ENdB,)Ncl(Y)NOAC EN(cl(A)\ A) =0,

thanks to (2.59). We have completed the claim. Next, by (2.55), (2.58), (2.59), and by
H" (OB, NOE) = 0, we deduce (2.24) and thus (2.3), while QNOF is C-spanning W thanks
0 (2.2), Lemma 2.2, (2.55), and (2.54). Finally,

H'(QNOF) < H"(OE\ B,) + H" (0B, \ E) (2.61)
+(2+C(n)n) H*(EN OB, \ A) + C(n)nH" 1 (OENIB,) .
Indeed, by H"(OFE N9dB,) =0, (2.2), and (2.58)
H'(QNOF) < H"OE\ B,)+H"(OF Ncl(B,)) (2.62)
H"(OFE\ By) + H" (0B, \ A) + H" (B, N OF)
H"(OE\ By) + H" (0B, \ E) + H"((EN0B,)\ A) + H"(B, N OF);
by (2.56), (2.60), the H" !-rectifiability of E N dB,, and the area formula
H"(B,NOF) < H"(B,NON,(Y)) (2.63)
< (1+Cm)nH"(Y)+Cn)nH" Y(OENIB,),
while (2.59) and H"™(0B, N OFE) = 0 give
H'(Y)=H"(ENIB,)\cl(A) =H"(ENIB,)\ A).

<
<
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M(U,(S))

\S

FIGURE 2.2. An exterior cup competitor. Notice that for S to be non-emtpy,
and non-disconnecting A, it must be n > 2.

We thus deduce (2.61). Asn — 0" in (2.61) and in (2.63) we get (2.4) and (2.6). O

In the following lemma we introduce the notion of exterior cup competitor. We set

My(Y) = {y+tval) iy eY e Om},  7>0,

whenever B is an open ball and Y C 0B.

Lemma 2.7 (Exterior cup competitor). Let E € £ be such that QN OE is C-spanning W,
let R > 0 be such that W CC Br(0) and OE N OBR(0) is H" ‘-rectifiable, and let A be
a connected component of 0Br(0) \ OF such that AN E = (). For every n € (0,1) there
erists a set I’ = I, € £ such that Q2N OF is C-spanning W and

limsup H"(Q N OF) < H™ (2N Br(0) NOE) + 2H"(0BR(0) \ A). (2.64)

n—0+

Proof. The proof consists of a minor modification of step one and step two in the proof of
Lemma 2.5. Precisely, the exterior cup competitor defined by F and A is given by

F = (ENBg(0)) U M,y (2), (2.65)
where

= YU (U,(9)\dl (BN 0BR(0))) .

A

Y = 9Bx(0)\ (cl(EN0BR(0) Ucl(4)),
Uy(S) = 0Bgr(0)N{ds <n},

5 = 9ENd(A)\ (d(ENaBR0) Uel(Y));

see Figure 2.2. If v € C is such that yNOE Ncl(Bgr(0)) = 0, then an adaptation of step
one in the proof of Lemma 2.4 shows that there exists a connected component of v\ Br(0)
which is diffeomorphic to an interval, and whose end-points belong to distinct connected
components of (R"T1\ B(0))\ OF. Using this fact, and since 0F N Br(0) = OE N Br(0),
we just need to show that 0B (0) N OF contains 0Br(0) N OF as well as dBr(0) \ cl (A)
in order to show that 2 N OF is C-spanning W. This is done by repeating with minor
variations the considerations contained in step two of the proof of Lemma 2.5. The proof
of (2.64) is obtained in a similar way, and the details are omitted. (]

2.4. Slab competitors. Bi-Lipschitz deformations of cup competitors can be used to
generate new competitors thanks to Lemma 2.3. We will crucially use this remark to
replace balls with “slabs” (see Figures 3.2, 3.3 and 3.4) and obtain sharp area concentration
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estimates in step five of the proof of Theorem 1.4, as well as in the proof of Theorem 1.6,
see e.g. (4.7). Given 7 € (0,1), x € R*"! r > 0, and v € S", we set

S:’T(:L‘) = {y €By(z):|(y—x) v < 7'7“},
and we claim the existence of a bi-Lipschitz map ® : R"T! — R**! with
{® #id} CC By, (z), ®(Bar(z)) = Bar(), <I>(8ST”¢($)) = 0B(z) Vte (0,r),

and such that Lip ® and Lip ®~! depend only on n and 7. Indeed, assuming without loss
of generality that x = 0, there is a convex, degree-one positively homogenous function
¢ : R"1 — [0, 00) such that S¥,(0) = {¢ < t} for every ¢ > 0. Taking 7, : [0, 00) — [0, 00)
smooth, decreasing and such that n =1 on [0,4r/3] and n = 0 on [5r/3,00), we set

o(x)
®(x) = nr(|]) T 2t (L =np(|]) =
Noticing that ® is a smooth interpolation between linear maps on each half-line {tz : ¢t >
0}, and observing that the slopes of these linear maps change in a Lipschitz way with
respect to the angular variable, one sees that ® has the required properties.

Lemma 2.8 (Slab competitors). Let E € &€ be such that Q N OE is C-spanning W, and
let Bar(z) CC Q, v €S, 7 € (0,1) with dSY,(x) NOE H" -rectifiable. Let A be an open
connected component of St (x) \ OE. Then for every n € (0,7/2), there exists F' € €
such that Q N OF is C-spanning W,

F\cl(S7,(z) = E\cl(S7,(z)), (2.66)
nl—i>%1+ H" ((OF N 0S7,(2)) A (087, (x) \A4)) =0, (2.67)
and such that if ANE =0, then
limzlip H" (S, (x)NOF) < C(n,7)H" (8S;fr(x) \ (AU E)) : (2.68)
77—)
while, if A C E, then
lim zlip H" (S, (x)NOF) < C(n,7)H" (ENn 0S7,(z) \ A). (2.69)
n—

Proof. Let us set for brevity S, = SY,.(z) and B, = B,(r). By Lemma 2.3, ®(F) € £ and
QNOP(E) is C-spanning W. Since ¢ is an homeomorphism between 955, and 0B,., ®(A) is
an open connected component of dB,.\0®(E). Depending on whether ANE =0 or A C E,
and thus, respectively, depending on whether ®(A) N ®(E) = () or ®(A) N P(FE) # 0, we
consider the cup competitor G defined by ®(E) and ®(A), so that

G = (®(E)\cl(B,)) U N, (2), Z=YU (UH(S) \ cl(®(E)N 8BT)) :
where
Y = 0B, \ (c1(®(E)NdB,) Ucl(®(A4))), U,(S) = 0B, N{ds < n},
with
S =0®(E)Ncl(®(A))\ [cl(®(E)NIB,)Ucl(Y)],
if ANE =0, see (2.10), and
G = (®(E)UB,) \c(N,(Y)), Y = (®(E)NdB,) \ cl(2(A4)),

if AC E, see (2.11). Finally, we set F' = ®~1(G). Since G € £ and QN JG is C-spanning
W, by Lemma 2.3 we find that F' € £ and that QN JF is C-spanning W. By construction
G\ cl(B;) = ®(E)\ cl(By), so that (2.66) follows by

F\cl(S,) =@ H(G\cl(B,) = 7H(B(B) \ cl(B)) = E\ cl(S,).
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FIGURE 2.3. In this picture, the cone competitor F' defined by F N 9B, as in
(2.70) may fail to be C-spanning W. Notice that the dashed lines are part of the
cone competitor K’ defined by K = QN JF in B,(z), which is indeed strictly
larger than Q N OF.

By (2.3), H" (0B, N0G) A (0B, \ ®(A))) — 0 as n — 0T, which gives (2.67) by the area
formula. Finally, (2.68) and (2.69) are deduced by the area formula, (2.5) and (2.6). O

2.5. Cone competitors. As customary in the analysis of area minimization problems,
we want to compare H"(B,(z) N OF) with H"(B,(z) N OF), where F is the cone spanned
by E N 0B, (x) over z,

F=(E\c(By(z)U{(l—t)z+ty:y€ ENIB,(z),t € (0,1]}. (2.70)

Following the terminology of [DLGM17], given K € S, the cone competitor K’ of K in
B, (z) is similarly defined as

K' = (K\B(2))U{(1—t)z+ty:ye KNdB(x),t€[0,1]},

and is indeed C-spanning W (since K was). However, for some values of r, 0F N B, (x) may
be strictly smaller than the cone competitor K’ defined by the choice K = QNOFE in B,(z),
and thus it may fail to be C-spanning; see Figure 2.3. By Sard’s lemma, if ¥ has smooth
boundary in €2 this issue can be avoided as, for a.e. r, OF and 0B, intersect transversally,
and thus 0E N 0B, (x) is the boundary of ENJB,(x) relative to B, (x); but working with
smooth boundary leads to other difficulties when constructing cup competitors. We thus
approximate F' (as defined in (2.70)) in energy by means of diffeomorphic images of E.

Lemma 2.9 (Cone competitors). Let E € £ be such that QNOE is C-spanning W, and let
B = B,(z) CC Q be such that ENOB,(z) is H"-rectifiable, DENIB,.(x) is H" ‘-rectifiable
and v is a Lebesgue point of the maps t — H"(E N OB(z)) and t — H" Y(OE N 0By (x)).
Then for each n € (0,7/2) there exists F € £ such that FAE C B.(z), QN JF is C-
spanning W, and

limsup H™(Q N OF) < H(DE \ By (z)) + % H Y OE N B, (z)), (2.71)

n—0+

. roo
lzni(l)rif |F| > |E\ By(x)] + T H"(E N OB, (z)). (2.72)

Proof. Let x =0, r =1, B, = B,(0), and define a bi-Lipschitz map f, by f,(0) = 0 and
fn(@) = uy(|z|) & if © # 0, where & = x/|z| and u,, : R — [0, 00) is given by

max{0,nt}, fort <1-n,
() = (1 =) + E (1 — (1 —n)), forte[L—n1], (2.73)
t, fort>1,

so that u,(t) <t for t > 0. Clearly, {f, # id} C B; and f,(B1) C By. The open set
F = f,(E) is such that QN OF = f,(2 N OE), so that N OF is H"-rectifiable and, by
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Lemma 2.3, C-spanning W. Thanks to the area formula, (2.71) will follow by showing
1
lim sup/ JOEf dH" < —H" L (OENIBy). (2.74)
n—0+ JB1NOE n

Trivially, the integral over Bi_, N OF is bounded by C(n)n" H" (2N JE). The integral
over By \ Bi_, is treated as in [DLGM17, Step two, Theorem 7]; by the coarea formula,

J@E‘ f77

1
/ JO fydH™ = / dt / ———L—dH"!
(B1\B1—)NOE 1y Josinoen{ve-al<1y /1 — (Ve - )2 (2.75)
+ / JOE £ dH™,
(Bl\Bl_n)ﬂaEﬂﬂI/E“il:l}
where vg(z) € T,(OE) NS™ at H"-a.e. z € OE. By
Vfy(x) = % Id + <u;7(\ac|) - %) P®d, (2.76)
if [vp(z) - & = 1, then JOE £, = (u,(|2|)/|z[)* < 1. Since
lim H"(OE N (B \ Bi—y,)) =0, (2.77)
n—0t

the second term on the right-hand side of (2.75) converges to 0 as n — 0. As for the first
term, by (2.76), we have, as explained later on,

JaEfn(ar) <1+ \/1 — (ve(x) - 2)? u%(|:13|) (un(|a:|))n—1 for H"-a.e. x € OE. (2.78)

]

The term corresponding to 1 in (2.78) converges to 0 as n — 07 by (2.77). At the same
time,

lim sup
n—0+t

since t = 1 is a Lebesgue point of ¢t +— H" 1(0B, N OF), and since u,(t) < 1/n and
(uy(t)/t) <1 for t > 0. Finally,

/1 , (un>"_1dt < 1 Uy (1)" — uy (1L —n)" 1 1—n"(1—n)"
1

/11 (H"—1(8E NOBy) —H" L (OEN 8B1)) o) (%)n—l dt‘ 0

-n

t

1
T =y n R n T

as 7 — 07, thus completing the proof of (2.71). The proof of (2.72) follows an analogous
argument. The goal is to show that

-n

1
Jim inf / Jf,de > ——HYENOB), (2.79)
ENB; n + 1

n—0t

and by the coarea formula and (2.76) it is immediate to see that

L un ()" n
/EmB1 andmz/l uj (t) <UT> H"(ENOBy)dt.

-
The estimate in (2.79) then readily follows using that ¢ = 1 is a Lebesgue point for the
map t — H"(E N JB;), together with

1 n n+1 n+1
t 1— 1— 1
/ uy (t) <un_()> dt > (=) — asn — 0T .
1—p t n+1 n+1

We finally explain how to deduce (2.78) from (2.76). For x € 0*E, let {r;}I"; be an
orthonormal basis of T,,0* E such that {;}7-' C 2. In this way, we can take

_ 2= (@ vp(@))ve(z)

V1 (@ ve)?

n bl
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and therefore compute by (2.76) that

v = i e
|z
VOEf (2)[m] = ul(|z])/1—(2-v 2i—un(|x‘)§c-1/ —VE_W.VE)Q:’
il = el VTGP e~ T 6 vp) D
where we have set for brevity vg in place of vg(x). Therefore
N 2
JOEf(x)? = ‘ /\ VaEfn(:L’)[Ti]
i=1
2n — (7 - T\ |2
_ (un(lw\)) (@,VE)z‘TlA.__Mn_lA <VE (a:A VE)xM
‘z| 1——(17-UE)2
2(n—1) 2
+(M) (|22 (1 = (& - vi)?) ‘Tl/\”'/\Tn_l/\i"
|z
up(Jz]) \2(n=1) 2 8 2
< 1+ ( " ) e (1= @),
from which (2.78) follows thanks to v/1+a <1+ +/a for a > 0. O

2.6. Nucleation lemma. The following nucleation lemma can be found, with slightly
different statements, in [Alm76, VI(13)] or in [Magl2, Lemma 29.10].

Lemma 2.10. Let £(n) be the constant of Besicovitch’s covering theorem in R, If T
is closed, A=R"™'\ T, 0 < |E| < o0, P(E;A) < o0, 7 >0, and

. (IE\NL(T)] &)
”:mm{ 7 P(E; A) ’n+1} >0

then there exists x € EW \ I.(T) such that

|EN B, (z)| > (25‘2”))”“ ey

Proof. By contradiction one assumes that

BN B ()] < (57 ))"+1 e EON 1(T). (2.80)

2¢(n
Setting a = £(n) /o, so that & > n+ 1, we claim that (2.80) implies the existence, for each
z € EW\ I(T), of 7, € (0,7) such that
P(E;B.,(x)) > ~|EN By, (). (2.81)
T

In turn (2.81) is in contradiction with (2.80): indeed, by applying Besicovitch’s theorem
to {cl (B, (z)) : # € EM\ I(T)} we find an at most countable subset I of B\ I(T)
such that {cl (B, (x))}ser is disjoint and

|E\NI(T)] < &(n) Y |EN B, (2) ZPE B, (z
xel zel
E(n) T P(E; A)

=710 P(E;A) <|E\ I.(T)],

(07

a contradiction. We show that (2.80) implies (2.81): indeed, if (2.80) holds but (2.81)
fails, then there exists € E() \ I(T) such that, setting m(r) = |E N B,(z)| for 7 > 0,

m >0 on (0,00), m(T) < (%)nﬂ (2.82)
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and (a/7)m(r) > P(E; By(x)) for every r € (0,7). Adding up H"(0B,(x) N E), which
equals m/(r) for a.e. r > 0 by the coarea formula, we obtain

m'(r) + %m(r) > P(E N B(z)) > m(r)™ "D for a.e. € (0,7). (2.83)

where in the last inequality we have used that P(F) > |F|"/ (1) whenever 0 < |F| < oo;
see e.g. [Magl2, Proposition 12.35]. Since m > 0 on (0, 00) we find

Zm(r) < (1/2m(r) /0D {mm < (7/20)""!
Vr € (0,7) vr € (0,7)

where the last condition holds by (2.82). Thus (2.83) gives m/(r) > (1/2)m(r)* "+ for
a.e. 7 € (0,7), thus m(7) > (7/2(n+1))""! > (1/2a)"*! as a > n+1, a contradiction. [

it m(r) < (i)"+1 ,

2.7. Isoperimetry, lower bounds and collapsing. Given an L'-converging sequence
of sets of finite perimeter {E;};, the boundary of the L!-limit set £ will be (in general)
strictly included in K = sptu, where p is the weak-star limit of the Radon measures
defined by the boundaries of the E;’s. In the next lemma we show that, under some mild
bounds on p and Ej, if u is absolutely continuous with respect to H"LK then the Radon-
Nikodym density 6 of i is everywhere larger than 1, and is actually larger than 2 at a.e.
point of K\ 0*F (that is, a cancellation can happen only when boundaries are collapsing).

Lemma 2.11 (Collapsing lemma). Let K be a relatively compact and H"-rectifiable set
in Q, let E C Q be a set of finite perimeter with QN O*E C K, and let {E;}; C € such
that E; — E in LL (Q), and p; = p as Radon measures in Q, where juj = H" (N OE;)
and p = O H"LK for a Borel function 6. If Q' C Q and r. > 0 are such that for every
re KN and a.e. v < r, with B,(z) CC Q' we have

W(B() = cln)r™, (2.84)
liminf H"(B,(z) NOE;) < C(n) liminf H™(0B,(z)\ A},), (2.85)
Jj—00 Jj—00 §

where Ag’j denotes an H"-mazimal connected component of 0B, (x) \ OF;, then §(x) > 1

for H"-a.e. x € KN, and 0(x) > 2 for H"-a.e. z € (K \*E)NQ .

The bound 6 > 1 follows by arguing exactly as in [DLGM17, Proof of Theorem 2, Step
three], and has nothing to do with the fact that the measures p; are defined by boundaries;
the latter information is in turn crucial in obtaining the bound 6 > 2, and requires a new
argument. For the sake of clarity, we also give the details of the § > 1 bound, which in
turn is based on spherical isoperimetry.

Lemma 2.12 (Spherical isoperimetry). Let ¥ C R"*! denote a spherical cap® in the n-
dimensional unit sphere S, possibly with ¥ = S™. If K is a compact set in R"! and
{Ah};’fzo is the family of the open connected components of ¥\ K, ordered so to have
H(AR) > HP (AL then

HY(\ A% < C(n)HH(Z N K)Y (D) (2.86)

Moreover, if ¥ = S", o, = H™(S") and H* ' (S"NK) < oo, then each A" is a set of finite
perimeter in S™ and for every T > 0 there exists o > 0 such that

min {H”(AO),H"(Al)} = Hn(Al) > 0—2” p (2.87)
implies
min {H"—l(a*AO),H”—l(a*Al)} > op_y — T (2.88)

Here 0* A" denotes the reduced boundary of A" in S™.

5That is, ¥ = S" N H where H is an open half-space of R* .
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Proof. This is [DLGM17, Lemma 9]. However, (2.88) is stated in a weaker form in
[DLGM17, Lemma 9], so we give the details. Arguing by contradiction, we can find
7 > 0 and {Kj;}; such that, for « = 0,1, 7-[”_1(8*A]0-‘) < op—1 — 7 for every j, but
H"(A) — on/2 as j — oo. Since o, = H"(S") and A(;- N A} = (), we find that, for
a=01 A - A% in L'(S™) where A° N A' = () and A° U A! is H"-equivalent to S™.
Therefore H"~1(9*A%) = H"1(0*A) < 0,1 — 7, where we have used lower semiconti-
nuity of perimeter. Since inf H" 1(9*A) with H"(A) = 0,,/2 is equal to 0,1 we have
reached a contradiction. O

Proof of Lemma 2.11. Step one: We fix x € K N Q' such that H" (K — z)/r = H" T, K
as r — 07. Setting v(z)* = T, K for v(x) € S", by the lower density estimate (2.84) we
easily find that for every o > 0 there exists ro = (0, z) € (0, min{r,, dist(x,9’)}) such
that |[(y — x) - v(z)| < or for every y € K N B, (x) and every r < rg. In particular,

lim H"(0E; N{y € By(x) : |(y —x) -v(z)| >0or})=0 for every r < g,
j—00

and thus by the coarea formula (see [DLGM17, Equation (2.13)])

lim H" 1S5, NOE;) =0  forae. r<rg, (2.89)
j—o0 ’
where we have set
5f, = {y€0B(0): (y—2) w(@) > o1},
Yoo = {y€iB(x): (y—x) v(r)<—or}.

Let A:fj be an H"-maximal connected component of X} \ OF}, and define similarly A~ IE
Equations (2.89) and (2.86) imply that, for a.e. r < rg,

lim H"(A;;) = H"(7,) - (2.90)

j—o0
Now let {A,}f’j}ﬁ“;o denote the open connected components of 0B, (z) \ OF;, ordered by

decreasing H™-measure. We claim that

if (2.90) holds, then either A:f’j or A, is not contained in AQJ. (2.91)
Indeed, if for some r we have A:f’j UA,,; C AV . then by (2.85) and (2.90) we find

Ti] )

u(Br(w)) < liminf (B, (2)) < C(n) liminf H"(9B: \ AN <Cn)ro,  (292)
a contradiction to (2.84) if o < gg(n) for a suitable og(n). By (2.91) and (2.90),
min {H”(AQJ),H"(A;J»)} > (0—2” —C(n) a) P for ae. T < 1p. (2.93)
By Lemma 2.12 and (2.93), given 7 > 0, if o is small enough in terms of n and 7, then
min {7—["_1(8*1427]-),H”_1(8*Ai7j)} > (op1 —7)r" ! for a.e. < rg, (2.94)

where 9*A7; is the reduced boundary of A7, as a subset of 0B, (x). Since A%j is a
connected component of 0B, (x) \ OE; we have

(on1—7)r" P <HTHO%AY) < HYTH OB, (2) NOE;) . (2.95)

Now if f;(r) = pj(Br(x)) and f(r) = pu(By(x)) then by the coarea formula we easily find
that f; — f a.e. with liminf; o fi(r) < f'(r) < Df, where D f denotes the distributional
derivative of f. Hence, letting j — oo and 7 — 0T in (2.95) we obtain Df > o, 17" 1dr
on (0,79). As w, = noy,_1, we conclude that #(x) > 1. We stress once more that so far
we have just followed the argument of [DLGM17, Proof of Theorem 2, Step three].

24



Step two: We use the boundary structure to show that § > 2 H"-a.e. on Q' N (K \ 0*E).
Since {E©) | EM §*E} is an H"-a.e. partition of R"*!, we can assume that z € (E(©)
E(l)) N K NQ. We consider first the case z € E(©). Given o > 0, up to decreasing ry,
7o
org™ > lim |E; N Byy(x)] = lim H™"(E; N OB, (x))dr. (2.96)
j—o0 Jj—o Jo
Let us consider the measurable set I; C (0,79)
I; = {r € (0,79) : A%j U A,{’j C 0B, (z)\ cl (E])} .

We claim that

HH O AY ;N0 AL) =0 Vrel;. (2.97)
Indeed, if r € I}, then AQJ, A%J, and 0B, (z) N E; are disjoint sets of finite perimeter in
0B, (x), and in particular
Vao = Val H" Lae. on 8*A9’j N 8*A$’j ,
I/Ag:j = _Vaér(m)mEj H" l-a.e. on *A); N O*[OB,(x) N Ej],
Var. = —VoB,(a)nE H" -ae. on 9* A ; N O*[0B,(z) N Ej].

At the same time, since {AZ} i }heo are connected components of 9B, (z) \ OEj,
O* Al C 0*[0B,(x) N E;]  modulo H"

and thus H" 1-a.e. on O*A%j N O*A%J- we have
VoBy(x)nE; = ~VAQ, = VAl . = TVoB.(2)NE;

a contradiction. By (2.94) and (2.97), given 7 > 0 and provided o is small enough in terms
of n and 7, for a.e. r € I; we find

fitr) = H"N0B,(x) NOE;) > H" 1 (0*AY; UO* A, )
H' U O AY ) +H O AL) 2 2(on 0 —7) "
Hence,
fi(ro) > 2(op_1—1) o _ O(n)/ " dr
n (0,r0)\1;
ry 1/n n (n=1)/n
> 2(op1—7) 2 —=C(n)ry (/ T dr) . (2.98)

n (0,70)\J;

We notice that for a.e. 7 € (0,79) \ I, (2.93) gives

H"(E; N 9B, (x)) > min {H"(A,QJ),H”(A,%J)} > (”—2" —C(n) a) .

so that (2.96) implies
orytt > ¢(n) lim sup/ r'dr. (2.99)
(0,70)\Z;

Jj—o0
If we combine (2.98) and (2.99) and let j — oo, then we find

7"8 1/n

J(ro) = lim fi(ro) > 2 (001 —7) 0 = Cln) g (o157 (1)

Dividing by 7{ and letting 7o — 07, 0 — 0% and 7 — 0T we find 6(z) > 2 whenever
z € EONKNQ. The case when 2 € E() is analogous and the details are omitted. [
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3. EXISTENCE OF GENERALIZED MINIMIZERS: PROOF OF THEOREM 1.4

Given the length of the proof, we provide a short overview. In step one, we check
that ¢(¢) < oo by using the open neighborhoods of a minimizer S of ¢ as comparison
sets for ¢(g). We remark that this is the only point of the proof where (1.12) is used.
It is important here to allow for sufficiently non-smooth sets in the competition class &:
indeed, minimizers of ¢ are known to be smooth only outside of a close H"-negligible set
in arbitrary dimension. Once ¥ (g) < oo is established, we consider a minimizing sequence
{E;}; for ¢(e), so that E; € &, |E;| =€, QN OE; is C-spanning W and

1
H'(QNOE;) <H"(QNOF) + ; VFE €&, |F|=¢e,2NOF is C-spanning W . (3.1)

We want to apply (3.1) to the comparison sets constructed in section 2, but, in general,
those local variations do not preserve the volume constraint. A family of volume-fixing
variations acting uniformly on {£}}; is constructed through the nucleation lemma (Lemma
2.10) following some ideas introduced by Almgren in the existence theory of minimizing
clusters [Alm76]; see steps two and three. In step four we exploit cup and cone com-
petitors to show that, up to extracting subsequences, H"L (2 N OE;) A= 0H"K as
Radon measures in €2, and E; — E in Li (), for a pair (K, E) € K and for an upper
semicontinuous function 8 > 1 on K. An application of Lemma 2.11 shows that 8 > 2
H"-a.e. on K\0*E, thus proving ¢(¢) > F(K, E). In order to show that ¢(¢) = F(K, E),
and thus that (K, F) is a generalized minimizer of ¢(¢), we need to exclude that QN OE;
concentrates area by folding against K, at infinity, or against the wire frame. By using
slab competitors we prove that 2 N OEj, in its convergence towards K, cannot fold at all
near points in 9* E, and can fold at most twice near points in K N (E© UEM) (step five).
In step six, concentration of area at the boundary is ruled out by a deformation argument
based on Lemma 2.4. Finally, in step seven, we exclude area (and volume) concentration
at infinity by using exterior cup competitors to construct a uniformly bounded minimizing
sequence.

Proof of Theorem 1.4. Step one: We show that
Ple) <204 C(n) ™™ e >0, (3.2)

Let S be a minimizer of ¢, and let 19 > 0 be such that (1.12) holds. If n € (0,7), then
the open n-neighborhood U, (S) of S is such that Q N oU, (S) is C-spanning W: otherwise
we could find 7 € (0,70) and v € C such that v N 0U,(S) = 0. Since v is connected, we
would either have v C {z : dist(z, S) > n}, against the fact that S is C-spanning; or we
would have v C U, (S), against (1.12). Hence QN 90U, (S) is C-spanning V.

As proved in [DLGM17], S is H"-rectifiable. Moreover, as shown in Theorem B.1 in
the appendix, we have

H"(SNBy(z)) > c(n)r" Vo € cl(S),r < po (3.3)

where pg depends on W, so that H"(S) < oo implies that cl(S) is compact. This density
estimate has two more consequences: first, combined with [Magl2, Corollary 6.5], it implies
H"(cl(S)\ S) = 0; second, it allows us to exploit [AFP00, Theorem 2.104] to find

|Up(S)] =2nH"(cl(S)) +o(n) =2nH"(S) + o(n) asn — 0", (3.4)

By the coarea formula for Lipschitz maps applied to the distance function from S, see
[Magl2, Theorem 18.1, Remark 18.2], we have

n n
\UU(S)HA\:/ P(Ut(S);A)dt:/ H(ANOUL(S)) dt, YA C R™L gpen,
0 0
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so that U,(9) is a set of finite perimeter in R"™ and H"(dU,(S) \ 9*U,(S)) = 0 for a.e.
n > 0. Summarizing, we have proved that, for a.e. n € (0,79),

F,=QnU,(S) €&, QNcl(0*F,)) = QN 0F, is C-spanning W,
and, by (3.4),

n n
fm%ﬂﬂﬂzllehmdﬁ=A P(UL(S); Q) dt < 20H"(S) + of)

Notice that f (s) is absolutely continuous with f(n) = [ f/(t)dt and f'(t) = P(F;Q)
for a.e. t € (0,n). Hence, for every n > 0 there exist tl(n) ta(n) € (0,m) such that
f’(tl(n)) < f(n)/n < f’(tg(n)). Setting Fj = Fy,(y,) for a suitable 7; — 07, we get

limsup P(Fj;Q) <2/,

Jj—00

where |F;| — 07. Finally, given ¢ > 0, we pick j such that |Fj| < e, and construct
a competitor for ¢(e) by adding to F}; a disjoint ball of volume ¢ — |F}|. In this way,

Y(e) < P(F};;Q) 4 C(n) (e — |Fj|)n/(n+l), and (3.2) is found by letting j — oo.

Since ¢(¢) < oo, we can now consider a minimizing sequence {£;}52, for ¢ (). Given
that P(E;) < H"(0Q) + H" (2N OE;) < H™(02) +1(e) + 1 for j large, and that |E;| =¢
for every j, there exist a set of ﬁmte perimeter £ C 2 and a Radon measure p in ) such
that, up to extracting subsequences,

E; - FE inLL.(Q), pj=H"(Q2NIE;) > as Radon measures on 2,  (3.5)

as j — oo, see e.g. [Magl2, Section 12.4]. We consider the set, relatively closed in €2,
defined by

K=Qnsptp={zeQ:puBr(z)) >0 Vr>0},
and claim that
K is C-spanning W', QNI'ECK. (3.6)

Indeed, the first claim in (3.6) is obtained by applying Lemma 2.1 to K; = QN JE};; and
if v € QNO*E and B,(x) C Q, then

0 < P(B; By(x)) <liminf P(Ej; B (2)) < liminf 1;(B, (x)) < (el (B,())

Jj—o0 Jj—o0
so that x € K. Notice that, at this stage, we still do not know if (K, E) € K: we still need
to show that K is H"-rectifiable and, possibly up to Lebesgue negligible modifications,

that E is open with Q Ncl(0*E) = QN OE. Moreover, we just have |E| < e (possible
volume loss at infinity), and we know nothing about the structure of p.

Step two: We show the existence of 7 > 0 such that for every Ej; there exist :17] , :17] e Rt!
such that {cl (Bz,(z )) cl (Bar(x )) W} is disjoint and

|E; N BT(mj)\ =K1, |E; N BT(m§)| = Ko, (3.7)

for some 1,k € (0,|B-|/2] depending on n, 7, € and ¢ only. With 7y as in (1.11), for
M € N\ {0} to be chosen later on, and by compactness of W, we can pick 7 > 0 so that

€
(M4 <7, |Bursl<g, U (W)\W] < 5 (3.8)
The value o in Lemma 2.10 corresponding to £ and T' = Ip; (W) is given by

E;\NI(T)]  &(n) : £/2 £(n)
mm{TP(Ej;RnH \T)’n—i—l} = mm{r(z/J(E) +1)’n+1} >0,
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since |E; \ I-(T)| > /2 by (3.8), and since P(E;;) < 1(e) + 1. Therefore, setting
£/2 §(n) }

T(We)+1) n+1J)7

an application of Lemma 2.10 yields y; € R" ! \ L(ar41)- (W) such that

12,0 Br)] > min { (2 ))"“Tnﬂ, Y

so that k1 € (0,|B;|/2] depends on n, ¢, ¢, and 7 only (observe that this is a consequence
of (3.2)). The continuous map = — |E; N B (x)| takes a value larger than x; at y; €
R™ N\ Iprp1) - (W); at the same time, by (1.11), R" ™\ I3/, 1y (W) is open and connected,
therefore it is pathwise connected [Dug66, Corollary 5.6], and |E;NB;(x)| — 0 as |z| — oo
in R" 1\ T(pp 41y (W). Therefore we can find zj € R"*'\ I(y741y (W) such that the first
identity in (3.7) holds and {cl (B4 T(:L“})), W} is disjoint. Setting B = cl (B(M_Q)T(x;:)),
the value o in Lemma 2.10 corresponding to E; and T'= I.(W) U B is given by
mm{ E\LT)] &) } me{ /4 &) } >0,
TP(E;;RHIN\T) n+1 T(WE)+1) ' n+1
so that, after setting

ol = min{

e/4 £(n)}
T(WpEe)+1) n+1J"7

we can find z; € R"\ (I, (W) Ucl (Bp—1)-(2}))) such that

: 02 ntl n+1 ‘BT|
) N> —
|E]ﬁBT(zJ)|_m1n{(2£(n)) T } K2,
with ko € (0,|B-|/2] depending on n, ¢, e, and 7 only. Since I2.(W) and cl (B(M_l)T(ajjl-))
are disjoint and since R" ™1\ I, (W) is pathwise connected by (1.11), we easily check that
R\ (I, (W) Ul (B(M_l)T(a;}))) is pathwise connected. By continuity,
Jat € R™N\ (I, (W) U el (Bar-1y-(z))) (3.9)

such that the second identity in (3.7) holds. Finally, (3.9) implies that the family of sets
{cl (B(M_g)T(m]l)),cl (BgT(m?)), W} is disjoint. We pick M =5 to conclude the proof.

o9 = min{

Step three: In this step we show that (3.1) can be modified to allow for comparison with
local variations F}; of E; that do not necessarily preserve the volume constraint. More
precisely, we prove the existence of positive constants r, and C, (depending on the whole
sequence {Fj;};, and thus uniform in j) such that if x € Q, r < r, and {F}}; is an
admissible local variation of {E;}; in B,(z), in the sense that

F;eg, F;AFE; CC By(x), 2N OFj is C-spanning W', (3.10)
(notice that we do not require B,(z) C ), then

H'(QNOE;) < H" (2N OF;) + C,

1
Bl = 1F5l|+ 5 (3.11)

We first claim that if B; C Q is a ball with dist(B;, B,(x)) > 0, ¢ : Q — Q is a diffeomor-
phism with ¢(B;) C B; and {¢ #id } CC Bj, and if

G; = (F] N Br(m)> U (C(Ej) N Bj) U (Ej \ (B; U Br(x))) (3.12)

then G; € £ and Q N 0G; is C-spanning W. The fact that G is open is obvious since
G, is equal to E; in a neighborhood of Q\ (B,(z) U B;), to F; in a neighborhood of
B,(x), and to ((E;) in a neighborhood of Bj, where E;, F; and ((E;) are open, and
where dist(Bj, B,(x)) > 0; this also shows that 0G; is equal to JE; in a neighborhood

28



of @\ (B(x) U Bj), to dF; in a neighborhood of B,(x), and to ¢(E;) = ((0E;) in a
neighborhood of Bj, so that Q2 N JG; is H"-rectifiable and, thanks to (3.10) and Lemma
2.3, that Q2 N 0G; is C-spanning W. Having proved the claim, we only have to construct
sets G; as in (3.12) and such that

Gil=¢,  H'QNIG;) <HMQNIFy) + C. ||Ey| — |Fj||, (3.13)

in order to deduce (3.11) from (3.1). To this aim, let {azf}k:m be as in step two: the sets

{(E; — xf) N B-(0)}; are bounded in B-(0), and have uniformly bounded perimeters, so
that, up to extracting a subsequence, for each k = 1,2 there exists a set of finite perimeter
E* C B;(0) such that (E; — xf) N B;(0) — E¥ in L'(R™*1). The crucial point is that, by
(3.7) and since ki € (0,|B;(0)|/2], we must have

B.(0)NO*EF £10.
Hence, by arguing as in [Magl2, Section 29.6], we can find positive constants C and e,
such that for every set of finite perimeter £’ C B,(0) with
|E'AEF| < e,
there exists a Cl-map @y : (—es,e4) X B-(0) — B(0) such that, for each |v] < e,: (i)
Dy (v,-) is a diffetomorphism with {®(v,-) # Id} cC B;(0); (ii) |®x(v, E")| = |E'| + v;
(iii) if ¥ is an H"-rectifiable set in B;(0), then

H (D (v, %)) — H'(S)| < CLHM(D) |v].

By taking E' = (E; — m?) N B;(0) (for j large enough), by composing the maps ®;, with a
translation by m?, and then by extending the resulting maps as the identity map outside
of BT(a;?), we prove the existence of Cl-maps WUy, : (—e,,¢e.) x R*"T1 — R"! such that,
for each |v| < e, (i) Yg(v,-) is a diffetomorphism with {¥g(v,-) # Id} CC BT(a;?); (i)
Uk (v, Ej)| = |Ej| +v; (iii) if ¥ is an H"-rectifiable set in R"!, then

1 (W0, )~ H(E)| < CLAH ) ol

Finally, we set

Ty = min {7’, <2 £ )1/(n+1)} , B; = Bf(x;?(j))

Wn+41

where k = k(j) € {1,2} is selected so that dist(B,(x),B;) > 0 (this is possible because
rpx < 7 and {cl (B, (7})), cl (BQT(I'?))} are disjoint). We finally define G; by (3.12) with

CZ‘I’k(j)(Uj,‘)a v; = |E; N By (2)| — |[Fj N By ()],

as we are allowed to do since E;AF; CC B,(z) and thus |v;] < wpe1 7Pt < e,/2. To
prove (3.13): first, we have G;AF; CC Q\ cl (B, (z)), while property (ii) of Wy, gives

Gl = 1E;| = [V (v, B5) N Bj| + [Fj 0 Br(z)| — [E; N Bj| — [Ej N Br(z)]
= Wy (vj, Ej) N Bj| —vj — [E; N Bj| = 0;
second, property (iii) applied to the H"-rectifiable set ¥ = B; N 0E; gives
H'(QNOG;) — H"(QNOF;)
= H (‘I’k(j)(vj, B;jn an)) — H"(B; NOE;)) < C |vj| H"(B; N OE;)
so that (3.13) follows by taking C\, = C. (¢(¢) + 1).

Step four: In this step we apply (3.11) to the cup and cone competitors constructed in
section 2 and show that K = Q Nspty is relatively compact in €2 and H"™-rectifiable, that
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pw=0H" K withf >1on K and 0 > 2 H"-a.e. on K\0*E, and, finally, that (K, F) € K.
To this end, pick x € K, set d(x) = dist(x, W) > 0, and let

fi(r) = pj(Br(x)) = H" (B, (z) NOE;),  [f(r) = pu(Bp(x)),  forevery r € (0,d(z)).

Denoting by D f the distributional derivative of f, and by f’ its classical derivative, the
coarea formula (see [DLGM17, Step one, proof of Theorem 2] and [Fed69, Theorem 2.9.19])
gives

fi = fae on (0,d(x)), Df;>fjdr, Df>f'dr, f'>g=Iliminff;, (3.14)
j—ro0
f]'-(r) > ’H”_l((‘)Br(az) NOEj) V4 and for a.e. r € (0,d(x)). (3.15)

Now let n € (0,7/2), let A; denote an H"-maximal open connected component of 0B, (x)\
OE;, and let F} be the cup competitor defined by E; and A; as in Lemma 2.5. More

precisely, when E;NA; = ), we let {ni}z‘;l be the decreasing sequence with limy_, ni =0

defined in step two of the proof of Lemma 2.5, and setting, for ni such that n € (ni 41 ni] ,

Y; = 0B.(2)\ (c1(E; NOB,(x)) Ucl(4;)),
S = OB;nel(4;)\ (cl(E; 0B, () Uc(¥y)) ,
Uj = 0B.(z)N{ds, <},

we define
Fy = (Bj\cl(By(2))) U Ny (Z5),  Z;=Y;U U\ (E;NOB:(x)) . (3.16)
When A; C Ej, instead, we define
Fj = (EjUBr(x)) \ L (Ny(Y;)) . ¥ = (E;N9Bx(2)) \ el (4;); (3.17)

see Figure 2.1. In both cases, {F}}; is an admissible local variation of {E;}; in B,/(x) for
some ' > r, and by (2.4), for a.e. r < d(z) we have

limsup H"(Q2 N OF;) < H"(OE; \ By(z)) + 2H" (0B, (x) \ 4;)

n—0+

so that, by (3.11), for a.e. r < min{d(z),r.}, we have

1
fi(r) <2H™(0B,(z) \ Aj) + C. limsup ||E;| — |Fj|| + = (3.18)
n—0+ J

The estimate of ||E;| — |F}|| is different depending on whether F; is given by (3.16) or by
(3.17). In both cases we make use of the Euclidean isoperimetric inequality

(Tl + 1) ‘Bl|1/(n+1) ‘U|n/(n+l) < P(U) ’ VU ¢ R*1 ’

and we also need the perimeter identities

P(Ej N Br(z)) = P(Ej; B (x)) + H"(E; N 9B, (x)) ,

P(B,(x)\ E;) = P(Ej; B(z)) + H"(9B.(x) \ E)), (3.19)

which hold for a.e. r > 0, with the exceptional set of r-values that can be made independent
from j. We now take Fj as in (3.16): up to further decreasing the value of r, so to entail
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Ciry/(n+1) <1/2, and assuming that r < r,, we have

Ci

1Bl = |

IN

Ci|E; N By(x)| + Cyc(n)r" ni

IN

Cy | By |V |E; N B, (z)[" ™) L ¢, e(n) r™ ni

IN

ni—:l r« P(E; N By(x)) + Cyc(n) r" ni
S{P(B; B(w)) + ' (B; 0 0B,(1) } + C.clm) ™ ]

S50+ H OB )\ A} + Ccm) o, (3.20)

IN

IN

where in the last inequality we have used 0*E; C OFE and A; N E; = () (that is the
assumption under which F} is chosen as in (3.16)). If instead we take Fj as in (3.17), then

Cy

Bl 1Rl = c.

\E; 0 By ()| — |F; N Br(a;)|‘ e

|Br(x) \ Ej| = |Br(2) \ Fjl

< OBV 7 |By(x) \ B/ Y 4 €. Ny (0B, (x) N Ej \ el (47))]
< %{P(Eﬁ B, (x)) + H"(0B,(x) \E])} + Cyeln)r™n
< %{fj(r) + H" (OB (z) \ Aj)} +Cucln) ™y, (3.21)

where in the last inequality we have used 0*E; C OF; and A; C E; (the assumption
corresponding to (3.17)). By combining (3.18) with (3.20) and (3.21), we conclude that

@ < 3H"(0B,(z) \ A;) + % , for a.e. r < min{r,,d(z)}. (3.22)

By the spherical isoperimetric inequality, Lemma 2.12, and by (3.15), for a.e. r < d(x),
H"(0B,(z) \ 4j) < C(n) H" 1 (0B, (x) NIE;)™ "D < C(n) f(r)™/ "),
which combined with (3.22) and (3.14), allows us to conclude (letting j — oo), that

f(r) < Cn) f'(ry™ =1 for a.e. r < min{r,,d(x)}. (3.23)
Since = € sptu, f is positive, and thus (3.23) implies the existence of 6y(n) > 0 such that
w(Br(z)) > 0wy " Ve e K,r <ry,B.(zr) CCQ. (3.24)

Since K = QN sptu, by [Mat95, Theorem 6.9] and (3.24) we obtain
>0 H" K on €. (3.25)

As a consequence of ;(£2) < oo and of (3.24) we deduce that K is bounded, thus relatively
compact in €. In turn, 0*F C K implies the boundedness of E. Notice that we have not
excluded |E| < ¢ yet.

To further progress in the analysis of y, given n € (0,7/2) let use now denote by F; the
set corresponding to n constructed in Lemma 2.9, so that, by (2.71), for a.e. r < d(x),

lim sup H"(Q N OF;) < H"(0F; \ B,(z)) + % HY(OE; N OB, (x)). (3.26)

n—07+

Using that {F}}; is an admissible local variation of {E;}; in B,(x), and combining (3.11)
and (3.26) with ||E;| — |Fj|| < C(n)r"*!, we find that

1
H(B,(x) N OE;) < % Fi(r) + Cor™ 4 5

31



so that, as j — oo, f(r) < (r/n) f'(r) + C. "L, By combining this last inequality with
Df > f'(r)dr and (3.24) we find that

D(Mf(r)/rm) = Zfil D+ (ﬂ $0) = () dr}
> Wl {f e D ) g )
— { rm (T)}erneAT{—C*+A92wn}d7’

so that, setting A > n C, /(Hown), we have proved
v 1(B(2)

o is non-decreasing on r < min{r,,d(z)} . (3.27)
By (3.27) and (3.25) we find that
By
O(x) = lim B (@) exists in (0, 00) for every z € K .

r—0t  wy "
By Preiss’ theorem, p = 0 H"_ K™ for a Borel function 6 and a countably H"-rectifiable set
K* C Q. Since K = QNsptu, we have H™(K*\ K) = 0, while (3.25) gives H" (K \ K*) = 0.
Thus K is countably H"-rectifiable and p = 8 H™L K. Moreover, 6 is upper semicontinuous
on K thanks to (3.27). Finally, consider the open set

E*={ze€Q:3r>0st. |B(z) =|ENB.(z)|}.
The topological boundary of E* is equal to
OE* ={z €cl(Q):0< |ENB,(z)| < |By(z)] Vr>0},

so that Q N cl(0*FE ) Q N OE* by [Magl2, Proposition 12.19]. Clearly E* ¢ EM:
moreover, if z € EM \ E* then 0 < |E N B,.(x)| < |B,(x)| for every » > 0, and thus
x € OF*. In particular,

QN(EW\E) CcQNIE* =QNc(9*E) C K,

where K is H"-rectifiable, and thus Lebesgue negligible. Since H™(0) < oo, we have
proved H"(EMW \ E*) < oo, and thus |[E() AE*| = 0. By the Lebesgue’s points theorem,
E* is equivalent to E, so that 0*E = 0*E*. Replacing F with E* we find (K, FE) € K.
Finally, the lower bounds # > 1 H™-a.e. on K and 6 > 2 H"-a.e. on K \ 0*F follow by
applying Lemma 2.11 with Q" = Q: notice indeed that assumptions (2.84) and (2.85) in
Lemma 2.11 hold by (3.24) and by (3.22).

Step five: We show that 6(z) < 1 at every x € QN O*FE and that 0(z) < 2 at every
z € KN (E®uUEW) such that K admits an approximate tangent plane at x (thus,
that < 2 H"a.e. on K \ 9*F). We choose v(x) € S" such that T, K = v(x)* (notice

that, necessarily, v(x) = vg(z) or v(z) = —vg(x) when, in addition, z € 9*F), and let
By, (z) cC Q. For 7 € (0,1) and o € (0,7) we set
Srr = {yeB(x):|(y—2) vx)|<7r}, (3.28)
Vor = {y € By(z): |(y—z) v(z) < a|y—x|} C Ser C Srrs
Weor = (S \d (Vo)) N{y : (y — 2) - vp(z) 2 0},
If,, = 0S.,n aw}ar,

that are depicted in Figure 3.1. By (3.24) and since H"_ (K —z)/p = H" T, K as p — 0,
the approximate tangent plane T, K is a classical tangent plane, and thus there exists
ro = 1o(0,x) > 0 such that K N B,(z) C S,, for every r < rg, or, equivalently,

KN By (x) C Vypy U{z}. (3.29)
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FIGURE 3.1. The sets defined in (3.28). Here 0 < 7 < 1, and S, is decomposed
into a central open cone V,, of small amplitude o, the upper and lower open
regions W=_ . and the closed cone Sy NIV, Forr <ry(o,z), By(x) N K lies

T,0,77

inside V;, by approximate differentiability of K" at x and by the density estimate
(3.24). When x € 0*E, if we choose v(x) = vg(z), then the divergence theorem
implies that E fills up the whole W ., and leaves empty W1, ..

In particular
W(Ser) = u(By(@),  Vr<ro. (3.30)
We also notice that for a.e. value of  we have
9S:» NOE; is H" Lrectifiable Vj. (3.31)
We now introduce the family of open sets
Aﬁ}ljt = {A C 0S5, : A is an open connected component
of 057, \ OF; and A is disjoint from Ej} ,
Af}j = {A C 05r, : A is an open connected component

of 057, \ OF; and A is contained in Ej} ,

and denote by Ao‘f and Am] ‘H"-maximal elements of Ao‘f and Am respectively. Finally,
given n € (0,7/2), we let I* be the slab competitor defined by E Ay and 7 in By(x)
for x € {out,in} as in Lemma 2.8: accordingly, F? e &, QN 8F x is C—spanning W,

Fi\cl(Sr,) = E;\cl(S:,), (3.32)
lim H" ((8S7,r NOF) A (0S;, \ Ar;)) =0, (3.33)
n—0t )
and
H" (957, \ (Aﬁ‘;t UE))), if x = out,
lim sup H"(S7,, N OF}) < C(n,7) ’ : ) ) (3.34)
n—0+ %n((E] N 857-7r) \ A;I}J) s if x=1in;

see (2.66), (2.67), (2.68) and (2.69). By (3.11), H"(9S-, N OE;) = 0 and (3.32),

1
H"(Srr NOE;) < H™(cl(Sr,) NOF)) + Cic(n) EARNE x Vx € {out,in}.
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FIGURE 3.2. The slab competitor F;’“t is used in proving that #(x) < 1. The
fact that x € 0"F is used to show that E; N 95, consists of a large connected
component whose area is close to w, ™ up to a o(r™) error as r — 0F.

By (3.33) and (3.34), taking the limit first as 7 — 07 and then as j — oo, and by taking
also into account that p; N w and that (3.30) holds, we find, in the case x = out, that

w(B(z)) < 1im_>sup H"(E; N 0Syy) (3.35)
j—00
+C(n, 1) lirgsup H" (957, \ (A?}‘jt UE;)) + Csc(n)r™t,
j—o00
and, in the case » = in, that
w(Br(z)) < linlsup H"(0S7, \ Ej) (3.36)
j—o0
+C(n,T) lirrl}sup H"((Ej NOS-r) \ A}nj) + Cyc(n) r" .
j—00

We now discuss the cases € 9*E, z € KNE©® and z € K N EW separately.

The case x € 0*E: We claim that, in this case, for every o € (0, 7) and for a.e. r < ro(o,z),
lim sup H" (857,,« \ (A?}‘jt U E])) < C(n)or", (3.37)
Jj—00

lim sup "H" (E;N0S:;) —wpr™

Jj—00

< C(n)rr™; (3.38)

see Figure 3.2. We notice that (3.37) and (3.38) combined with (3.35) imply

(Br(z))

— <wp+Cn)7+C(n,7)o+ Cyc(n)r, for a.e. r < g,
r

which gives 6(z) < 1 by letting, in the order, r — 07, ¢ — 0" and then 7 — 0". We now
prove (3.37) and (3.38). Since z € 0*E, we can set v(x) = vg(x). As vg(z) is the outer
normal to F, by 0*E C K, (3.29) and the divergence theorem, we obtain

|W7:U,7”0 \E| = |W7:t_0',7“0 ﬁ E| = 0

By [W; .., \ E| =0, the coarea formula and Fatou’s lemma, we deduce

70

0 = Jli{glo |WT,U,TQ \EJ| = ]li)rgo 0 H (857',7“ N (WT,U,TQ \EJ)) dr
T0
> / lim inf H" (F;M \ Ej) dr,
0 Jj—o00 7
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and by arguing similarly with |W. N E| = 0 we conclude that, for a.e. r < rg,

TUT()

lim H" (T, N Ej) =0, (3.39)

]—}OO

lim H" (T, \ Ej) = 0. (3.40)

]—}OO

By (3.39), (3.40), and since

8S,, =T7,, UTs,, U(8S,,NdS,,) (3.41)

we find that, as 7 — oo,

‘H"(@Sm« NEj) —wy r”| H"(0Sr, NOSe,) + "H" ror E;) — wy r”| +o(1)

<
S C( )UT +‘Hn Tar) WnT n|+0(1)
< C(n)rr"+o0(1),

that is (3.38). At the same time, again by (3.29) and by the coarea formula, assuming

without loss of generality that 1o = ro(o, x) also satisfies H"(K N0B,,(z)) = 0 in addition
o0 (3.29), we get

0 = pKNc(B, ())\VUTO)_hmH( o(®) NOE; \ Vo, )

> lim H" (Sm«0 NOE;\ Vo)
J—00

> lim Hn 1(857—7' N 8E \ Va’ 7‘0)

T j—oo Jy
that is
lim H"™ 1(85” NOE;\'V, ro) =0 for a.e. ¥ <rp. (3.42)

]—)OO

Notice that (3.42) implies in particular that
lim H"™ 1(F+ NOE;) =0 for a.e. 7 <rg. (3.43)

]—)OO T,0,T

Since F;f or 18 & bi-Lipschitz image of a hemisphere, by Lemma 2.12,
H YT, )Y > e(n, 7, 0) HUIE, \ A), (3.44)

T,0,T T,0,T

whenever J is relatively closed in I' and A is an H"-maximal connected component

T,0,1)

of T, .\ J. By (3.43) and (3.44) we find that, if
A+- is a maximal H"-component of I'f | .\ OF;,
then
lim H™(TF, .\ A:f) =0, for a.e. r <ryg. (3.45)
J—00 7 +J

By connectedness, AJr is either contained in A;’L;t, or in Ej, or in

Vj=J{A: Aec A A% AY
By combining (3.39) with (3.45) we find that for a.e. r < rg, if j is large enough, then
ALNE;=0.

Similarly, should there be a non-negligible set of values of r such that for infinitely many
value of j the inclusion A:fj C Y, ; holds, then by (3.40) and (3.45) there would be an
element of A‘;?jt different from A?}ljt with #{"-measure arbitrarily close to H" (T}, ,.); thanks

0 (3.40), we would then have H"(A2%) — 0, against the H"-maximality of Aout itself. In
conclusion, it must be

A;fj - A?}‘jt for a.e. 7 < rg and for j large enough . (3.46)
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FIGURE 3.3. The slab competitor used in proving that (z) < 2 when x € E(©)
is the one defined by A)?;. Since z € E© we can show that E; NS, is o(r") as
r—0t.

By combining (3.46) and (3.45) we conclude that
lim H" (T, \ A2%) =0. (3.47)

j—o00
By (3.41), (3.40) and (3.47) we conclude that
lim sup H" (8ST,T \ (A% U Ej)) < H™(0S,, N8S,,) < C(n)or™,

j—o0
that is (3.37). This completes the proof of #(z) <1 for z € 0*E.
The case z € E(©): We claim that, in this case, for every o € (0,7),

limsup H"(E; N 9S;,) < C(n)or", (3.48)
Jj—o00
limsup |H"(0S:, \ Ej) — 2w, 1| < C(n) 71", (3.49)

Jj—00
for a.e. r < ro(o,x), see Figure 3.3. The idea is using the competitor defined by A;f‘j:
indeed, (3.48), (3.49), and (3.36) give

p(BE) L H0S,, \ E)
" j—roo "
Hr((E; N9S,,) \ A
+C(n, ) limsup (2 o o)\ ’]) +Cic(n)r
Jj—00

< 2w, +C(n)T+C(n, 7)o+ Cie(n)r,

and then 6(z) < 2 by letting, in the order, r — 0%, ¢ — 07 and then 7 — 0". The
proof of (3.48) and (3.49) is simple: since z € E(®) and 9*E C K, by (3.29) and by the
divergence theorem we find that

|E N Byy(x)\ Vory| =0.
In particular, by the coarea formula we find that for a.e. r < rg,
0= lim ’H"((Ej \ Virrg) 1 asﬂr) = lim H" (Ej N (I, U r;,”)) ,
so that, by (3.41),
H"(E; N0S7y) = H"(0S:, NOSsr) +0(1) < C(n)or"™ +o(1),
as j — oo, that is (3.48), and
|H" (057, \ Bj) — 2wy 1| H" (057, NOSsy) + | H (T, UL ) — 2w, 1" | +0(1)

< T,0,7 T,0,7
< Cn)rr™+o0(1)
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FIGURE 3.4. The slab competitor used in proving that 6(z) < 2 when = € E()
is the one defined by Ap".

as j — oo, that is (3.49).
The case z € EM: We claim that for every o € (0,7),

limsup |H"(E; N 8S:,) — 2w, 1| < C(n) 71", (3.50)
J—00
limsup H" (857, \ Ej) < C(n)or", (3.51)
Jj—o0

for a.e. r < ro(o,z), see Figure 3.4. Indeed, by using as in the case x € 0*E the competitor

defined by AP, (3.50), (3.51) are combined with (3.35) to obtain

p(Be) (5 010S,)
rr j—00 rn
H"(0Sr, \ (A2 U E;
+C(n, ) limsup (957 \ (n < )) +Cic(n)r
j—00 r
< 2w, +Cn)T+C(n,7)o + Cyc(n)r, (3.52)

which gives 6(z) < 2 by letting once again r — 07, 0 — 0% and finally 7 — 07. To
prove (3.50) and (3.51), we notice that by z € EM, *F C K, (3.29) and the divergence
theorem, we have

|Bro (@) \ (Voo UE)| = 0.

By the coarea formula, for a.e. r < rg we find

0= lim an(( T,0,r Ur;ar) \Ej)’

J]—00
and conclude as in the previous case by exploiting (3.41).

Remark: We make an important remark on the constructions of step five, which will be
needed in the proof of Theorem 1.6. We claim that, under the assumptions on x considered
in step five, for a.e. r < ro(o,x) we have

lim sup ’H"({y € cl(Sy,) NOF} : T,(9F}) = TK}) (@) wpr|  (3.53)
n—0+
<C(n)rr"+C(n,7)or" +0o(1), as j — 00.
Here x =out if z € *EU (KNEW), x =inifx € KNE®, and f(z) =1 if z € 9*E

and §(z) =2if x € KN (EO U E(1 ). Consider, for example, the case when x € 0*E. By
(3.33), 9Sr NOF™ C (98, \ APW) U N; with lim, o+ H"(N;) = 0: thus, by taking into
account that

T, (OF™) = T,(9Sx) H"-a.e. on IFP™ N IS,
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FIGURE 3.5. The boundary diffeomorphism f pushes out € into a larger open set
Q. Regions depicted with the same color are mapped one into the other. Notice
that the dark region on the left contains Q@ N U,(02) N B, /2(x), and is mapped
outside of €. The diffeomorphism f can be formally constructed by exploiting the
local graphicality of €2, and the simple details are omitted.

and that
{y € 0S;, : T,(0S:,) =T, K} = 05, \ 0B, (),
(recall that T, K = v(x)t), we have

H" ({y € el (Syp) NOFP™ : T, (AFP") = TIK}> g™

IN

1 ({y € 08, NOFP™ s T, (OF™) = TLK | ) = wor™| + H"(Sr, 0 OF™)

< ’H"({y € 08, \ A% : T, (dS,,) = TK}) "

+H(NG) + H (S, NOFY™)

= |H" (8577 \ (0B, (z) U A?,ujt)) "

+H"(N;) + H"(Sr, NOF™)
so that, by (3.34), (3.37), and H"(8S,., N OB, (x)) < C(n)Tr",

lim sup
n—0t

< ‘H”(&ST,T N E;) — wn r"‘ + C(n, TYH™ (0S5, \ (A2 U Ej)) + C(n) 717

1 ({y € el (Sr,) N O™ Ty (OFP™) = ToK ) = oy r”

By (3.37) and (3.38) we deduce (3.53) when z € 9* E. The case when 2z € KN(EQUE®)
is treated analogously and the details are omitted.

Step siz: We exclude area concentration near 0f2, by showing that

lim sup lim sup (2 N U, (02)) = 0. (3.54)

n—0t  j—oo

Exploiting the smoothness and boundedness of J€), we can find rg > 0 such that Lemma
2.4 holds, and such that for every x € 9 there exists an open set Q' with Q C € and a
homeomorphism f : ¢l (2) — cl () = f(cl(Q)) with f(9Q) = 0, {f #id} CC By, (z),
f(Bro(z)Ncl () = Byy(x) Nl (), which is a diffeomorphism f : © — €', and such that

H(QNU, 00 0B, @) c¥\Q, f—idlloig <Cni (355)

see Figure 3.5. Let Q* = f~1(Q) and let F; = f(E; N Q*) = f(E;) N Q. Clearly F; € &,
and f(0Q*) = 02 and Q* N O(E; NQY*) = Q* NOE; give

QNAF; = F(Q) N F(A(E; NQY)) = £(Q* NIE;),
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so that N OF} is C-spanning W by Lemma 2.4. Assuming without loss of generality that
ro < Tw, by (3.11), {f #id } CC By, (x) and f(By,(x) Ncl(Q)) = By, (z) Ncl (') we have

. 1
H"(QN By () NOE;) < H"(f(Bro(z)NQ man))+o*\|Fj|—|Ej||+3

1
< (L4 Cn) W (Bry (o) N N OES) + C. 1B - Bl] + 5
where
||Fj|—|Ej||s||Ejm*|—|Ej||+/E i1z e\ +Cen< O,
ﬂ*

J

so that
H'(20 By (@) NOE; \ @) < Cn {H" (2N OE;) +1} +s SCn{z/J(E)—FQ}—i—;.
Since QN U, (092) N By j2(x) C 2\ QF, by letting j — oo we conclude that

11(Byy jo(x) N U, (09)) < C, Vo € 00).
By a covering argument we find u (2N U, (02)) < Cn, and thus (3.54) follows.

Step seven: Let us now pick R > 0 such that WU K UFE cC Bg(0). If E; C Br41(0)
for infinitely many values of j, then |E| = ¢ and (2 \ Br1(0)) = 0, which combined
with (3.54) implies 11;(2) — p(Q2) = F(K, E) as j — oo, and thus ¢(e) = F(K, E) with
(K,E) € K and |E| = : thus (K, E) is a generalized minimizer of ¢(¢), as desired. We
now assume without loss of generality that |E; \ Bry1(0)| > 0 for every j. By (3.5),

limsup [E; N (Bry1(0) \ Br(0))| = limsup H"((Br+1(0) \ Br(0) N9E;) =0,

j—o0 j—o0
By the coarea formula, this implies that for a.e. s € (R, R+ 1),
lim sup 1" (E; N 9B,(0)) = limsup X"~ (9E; N 9B,(0)) = 0. (3.56)

j—o0 J—0o0
We fix a value of s such that (3.56) holds, and we let A; denote an H"-maximal connected
component of dBs(0) \ 9E;. It must be A; N E; = : for, otherwise, by the spherical
isoperimetric inequality, A; C E; would imply
C(n) H" 1 (9B,(0) NOE;)™ "V > H™0B,(0) \ Aj) > H"(9B,(0) \ E))
> c(n)R" —H"(E; N0Bs(0)),

a contradiction to (3.56). Since A; N E; = (), we can consider the exterior cup competitor
defined by E; and Aj.' More precisely, for every j there exists a decreasing sequence

{ni’}z‘;l with limy_, 777, = 0 such that, setting
Y; = 0B,(0) \ cl ((E; N0B,(0)) U A;), S;=0EjNncl(4;)\ (c1((E; N0Bs(0)) UYj)) ,
Ujs = 0B5(0) N {ds; <ml},  Zjw=Y;U Uk \ cl(E;NOBy(0))) ,
the sets
Fjr= (E;NB(0)) U M, (Zj k)
satisfy Fjj € £, with QN OF} ), C-spanning W, F}, C Bry1 and
limsupH"(QNOF; ) < H"(Q2N Bs(0)NOE;) +2H"(0Bs(0) \ A;) (3.57)

k—o0
< H™ (2N Bs(0) NIE;) + C(n) H" L (0B, (0) N aE;)™/ (1)
Since |Ej \ Br+1(0)| > 0 for every j, we can select k(j) sufficiently large so that

1
H™ QN IF; 1(5y) < H (N Bs(0) NIE;) + C(n) H"H(9B,(0) N 0E;)™ =1 + i (3.58)
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as well as |E; \ Bs(0)] > |Mnj (Zjk(j))l; then, after setting F; = Fj 1), define p; > 0 by
k()
the equation ’
|Bo, | = 1B5| = [Fj] = 1B \ Bo(O)] = [M,; (Zji))I -

a7

In particular, |B,,| < ¢, so that we can find z € Q such that cl(B,,(x)) Ncl (F;) = and
E;k = F] UBPJ(:I;) C BR+1+C(n)51/(n+l)(O) VJ

We notice that E7 € € with [E}| = e and QNOF; C QNIET, so that QNIET is C-spanning
W: in particular, ¢(e) < H"(Q2 N JE7). By the Euclidean isoperimetric inequality, and
since |B,;| < |E; \ Bs(0)| by definition of p;, we have

P(B,,) < P(E;\ By(0)) = H"(OE; \ B,(0)) + H"(E; N 0B,(0)),
so that by (3.56) and (3.58) we get
Y(e) < limsupH"(QNOIET) < limsup H" (2N OF)) + P(B,,)

j—00 Jj—o0
< limsupH"(QNOE;) +2C(n) limsupH" 1 (0B,(0) N 8Ej)”/(”_1) =1(e).
j—o0 j—o00

We have thus proved that {E7}; is a minimizing sequence for (), with £ C Bg-(0) for
some R* depending only on R, n and . By repeating the argument of the first six steps
with E7 in place of E; we see that Y — E* in LY(9) and p; =H"(QANOET) X where
p=2H"(K*\ 0*E*) + H".0*E*, and where (K*, E*) € K with |E*| = ¢ and with

lim sup lim sup 423 (2 N U, (092)) = 0.

n—0t  j—oo

Therefore i (S2) — p*(Q2) = F(K*, E*) and in conclusion
FUK® B = 10 () = lim (@) = 0(e)

so that, by |E*| = ¢, (K*, E*) is indeed a generalized minimizer of ¢(g). This concludes
the proof of the theorem. O

4. THE EULER-LAGRANGE EQUATION: PROOF OF THEOREM 1.6

Proof of Theorem 1.6. Let (K, E) be a generalized minimizer of ¢)(¢) and f: Q — Q be a
diffeomorphism such that |f(E)| = |E|. We want to prove that
F(K,E) < F(f(K), f(E)). (4.1)

Let K’ denote the set of points of approximate differentiability of K, so that H"(K\ K') =
0, and for z € K’ denote by T, = T, K = 1/:,:l the approximate tangent plane to K at x,
where v, € S" is chosen so that v, = vg(z) if z € 0"E. As in step five of the proof of
Theorem 1.4, for every o > 0 we introduce rg = ro(c, ) such that

KNB,(z) C 5%, = {y € B (z): |(y—z) - va| < 07’} Vr < ro(o, z) (4.2)

see (3.29). In fact, by Egoroff’s theorem, we can find a compact set K* C K’ with
H"(K \ K*) < o such that r.(c) = max{ro(co,z) : z € K*} — 0" as ¢ — 07, that is, such
that (4.2) holds uniformly on K*,

KN B.(xr)CS7, Ve e K*,Vr <ry(o). (4.3)

Similarly, if G,, denotes the family of the n-planes in R**! endowed with a distance d, by
Lusin’s theorem and up to further decreasing the size of K* while keeping H"(K\ K*) < o,
we can make sure that

sup d(Ty, Ty) + sup IVf(z) = V(Y] <wilr), (4.4)
zyeEK* Jz—y|<r zyeK* |ly—x|<r
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for a function w.(r) — 01 as r — 0. Finally, since
H"(By(x) NO"E) = o(r"),
H™(Br(z) N (K \O*E)) = wpr™ +o(r"), for H"-a.e. x € K\ O'FE
H"(By(x) NO*E) = wy, ™" +o(r"),
H™(By(z) N (K \ 0*E)) = o(r"), for H"-a.e. x € O*E

as r — 0T, by Egoroff’s theorem, up to decreasing K* and increasing w,, we can also
entail

sup  H"(B,(zx)NI*E) + "H" (Br(z) N (K \9*E)) —w,r™ (r)yr"™, (4.5)
zeK*\0*E

sup  |H"(Br(z)NO*E) —wyr" (Br(z) N (K \O*E)) < w.(r)r™, (4.6)
2eK*NO*E

while still keeping H™(K \ K*) < o and w,(r) = 0" as r — 0.

Let {E;}; be a minimizing sequence for 1 (¢) converging to (K, E) as in (1.13), and
consider a point x € K*. Given 7 € (0,1) and ¢ € (0,7), for a.e. 7 < ry (o) such that
By, (x) CC Q, we have that 0S¥, NOE; is H" '-rectifiable for every j (with the exceptional
set depending on ). For such values of r and for every n € (0,7/2), we can set

{F;ut, if 1 € *EU(K*nEW),

Fr=3"
PP if e € K*NEWO

J
with F;’ut and F]i-n defined as in step five of the proof of Theorem 1.4. In particular,
Fy e & QNOFY is C-spanning W, Fi¥ \ cl(S7,) = Ej \ c1(S7,) and, as proved in (3.53),
for a.e. r < ry(o) we have

H”({yécl(Sf,T)rW@Ff' L(OFT) = }) W " (4.7)

lim sup
n—0t

<C(n)rr"+C(n,7)or" 4+ o(1) as j — oo,
where 0(z) = 1if z € 9*E and 0(z) =2 if z € K N (E©® U EW), as well as
lim sup limsup H" (57, N OF) < C(n,7)or™, (4.8)

j—)OO 77—>O+

see (3.34), (3.37), (3.48), and (3.51). By Besicovitch-Vitali’s covering theorem and by Fed-
erer’s theorem (2.1), we can find a finite disjoint family of closed balls {B; = cl(By,(z;))}i
such that B; CC Q and

H" (K* \ UB,«Z(ZEZ)) <o, x; € K*N (E(O) uEM U I*E), ri <re(o). (4.9)

We let n < min;{r;/2}, define Ffi accordingly, and set

SZZS;I_}Z cC By, Ti:Tria F;:Ffi.
Correspondingly, we define a sequence {Fj}; C £ with QN JF; C-spanning W by setting
F\{JBi=E;\|JBi, FnBi=F/nB. (4.10)
Since FJZ \ cl(S;) = E; \ cl(S;) we find that
F\ el (5 = B\ el (), (4.11)
and, setting,
0, =1 ifa; €c0*F, 6;,=2 ifaz; € EOUED (4.12)
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we deduce from (4.7) and (4.8) that, for each i,

limsup |H" ({y € 1 (S;) NOF; : T,(0F;) =T;}) — 6wy 1} (4.13)
n—0+
<C(n)rr+C(n,7)or; +o(1)
limsup H"(S; N OF;) < C(n,7)ory +o(1) (4.14)

n—07+

as j — oo. Now let C, and e, the volume-fixing variation constants defined by f(E). By
the monotonicity formula (3.27), which can be applied to B, (z;) as z; € K, we have

e A0 0w, 1 < e AT 0w P < (B (7)) = pulSs) (4.15)

where in the last identity we have used (4.3), and where A depends on E. By (4.15),
0; > 1, and p=0H" K with § <2

Y < C(n,E) Y HYKNB;) <Cn,E)H"(K)=C(n E,K), (4.16)

so that, by (4.11), |S;| < C(n) 77" and r; < r.(0) < 1, we find
|FAE;| <) S| <C(n, B, K)7.

2

Therefore,
F(F)AS(B)| < C(n, B, Lip(f), H"(K)) {7+ |[E;AB|} < e,

provided j is large enough and 7 is small enough depending on e,. By the volume-
fixing variations construction, for each j large enough there exists a smooth map ®; :
(—&x,€4) x R?1 — R guch that, for every |v] < e, ®;(v,-) is a diffeomorphism with
Q;(v, ) =Q and

(v, f(E)| = v+ f(EDl,  H(2i(v,2)) < H (D) + O | H' (D),
for every H™-rectifiable set X C 2. In particular, if we set
Gj=®(v;, f(F})), v =I[f(E)| = [f(Fy)| = E| = [f(F))],
then we find that G; € £, |G| = |E| = € and
HM QN OG,) < (1 +C(n, B, Lip(f), H"(K)) {T + |EjAE|}) H QN Of(F)) .
Since 2N OF} is C-spanning W, so is 2N IG; thanks to Lemma 2.3, so that the minimizing
sequence property of E; implies

H QN IE;) < (1 +C {T + |EjAE|}) WY QN Of(F))) + % , (4.17)

where, here and for the rest of the proof, C' is a generic constant depending on K, F, f
and n. We now claim that

lim sup lim sup limsup H"(Q N Of(F;)) < F(f(K), f(E)) +Cr. (4.18)

o—0t  j—oo p—=0Tt

Notice that by combining (4.17) and (4.18), and by finally letting 7 — 0%, we complete
the proof of (4.1).

To prove (4.18), we notice that f(Q) = Q, QN If(F;) = f(2NOF}), and (4.11) yield

H QN Of(F))) g’H”(f(Qﬁan\Ucl(Si))) +Z/d(s')map JOFs £ apr
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where

lim sup limsupH"(f(Qﬁ8Ej \Ja (Si))) < C’H”(K\USZ) <Co

j—)OO 17—)O+

by (4.3), (4.9), and H"(K \ K*) < 0. Hence, as

WO OF (F <Z/ T f A" + o +of1), (4.19)
i)NOF;
where o(1) — 07 if we let first n — 0" and then j — co.

If we set
Zi={y € 0S;NOF; : T,(0F;) =T;} ,
then by (4.13) and (4.14) we find
H™((c1(S;) N 8F-)AZ4) Cn)rry+C(n,m)ory +o(1),
|H"(Z;) = Ojwy ]| < C(n) 7o + Cn,7)or +o(1),

where o(1) — 0T if we let first n — 0" and then j — co. Also, it follows from (4.15), the
characterization of u, and (4.6) that

e A7) g, W, rit < 0; H"(S; N K) + wi(r)ri. (4.20)
By (4.4), (4.20), and r; < r(0), we thus find
/ JOFf < / JTf 1 (Lip /" {C(n) 7 + C(n, 7)o} 7 + o(1)
1(S:)NOF

i

IN

Hiwnr?{JTi () +C(n)w T‘Z}—FC{T—I-OHTU}T’ +o(1)
{77 f @)+ C (w.(r(o) +7+Cn,7) o) }
X (0;H™(Si N K) + wi(r(0)) 1) €270 £ 0(1)

IN

= JTif(a) (0 H(S: N K*) + a; + wi(ri(0)) 1) b ) (4.21)
+C {w*(r*(a))—l—T—l—C(n,T) } (H™(S; N K) + wi(r.(0)) r") et
+o(1),

where we have set
a; = 0; H"(S;N (K \ K*)) sothat » a;<20. (4.22)

i
Now, again by (4.4) we see that

0; JTi f(z) HM(S;N K*) < 6 JEfdH™ + C(n) we(rs) H(S; N K*)
S;NK*

By combining this last relation with (4.16), (4.19), (4.21) and r; < r«(0), we find that

HUQNIf(F) < A=) Ze H™(f(S; N K*)) (4.23)

+C {w*(r*(a)) +74+C(n,T) O‘} A 4o(1),

with o(1) — 0 as first n — 07 and then j — oo. If z; € K*\ *E, then 6; = 2 and by
(4.5) we have

O M (f(SinEK*) < 2H"(f(SiN(K*\0*E))) + 2Lip(f)" w(ri) r}
< 2H"(f(SiN (K \ 0*E))) 4 Cw.(ru(o))r};
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if, instead, z; € 0*F, then 6; = 1 and (4.6) give
0, H"(f(SiNK™)) < ’H”(f(Si NK*N 8*E)) + Lip(f)" wa(ri)rl
< H'(f(SiNO*E)) + Cwi(ri(o))r]";

combining these last two estimates with (4.16), we find
DUOHNSNKD) < D 2H"(f(Sin(K\O"E))) +H"(f(S:n 9"E))
Z —I—ZCw*(r*(a)) Z r
< F(r)£@:UFS)) + Cwnlralo)).

where f(0*FE) = 0*f(E) by Lemma A.1. Combining this last estimate with (4.23) we find
H(QNOF(F) < A {F(F(K), F(E)) + C {w(r(0) + 7+ Cln,7) o} } +0(1),

where o(1) — 0 as first n — 0" and then j — oo; in particular, (4.18) holds.

We conclude the proof. As explained, (4.18) implies (4.1). By a classical first variation
argument, see Appendix C, we deduce the existence of A € R such that

A X-uEd”H”:/ divKXd’H"+2/ div® X dH™, (4.24)
O*E O*E K\0*E

for every X € CH{R"*1;R™") with X - vg = 0 on 95. Let us now consider the integer
rectifiable varifold V' supported on K, with density 2 on K\ 0*F and 1 on 0*E. By (4.24),
we can compute the first variation of V' as

(W(X):/FI-XdHVH VX € CHQ; R

where H = 0 on K\ 9*E and H = Avg on 9*E. In particular, H € L>®(|V|)), and by
Allard’s regularity theorem [Sim83, Chapter 5], we have K = ¥ U Reg, where ¥ C K is
closed and has empty interior in K, and where for every z € Reg there exists a C1*-
function v defined on R” such that

B, 2(x) N K = B, /5(x) NReg = B, jo(x) N graph(u). (4.25)
By the divergence theorem, if € Reg N JF, then, by (4.25) and by QNIJE C K,

E = epigraph(u) inside B,, »(z), (4.26)
K = JF = graph(u) inside B,, 2(z), (4.27)

which imply Reg N 0F C QN O*E. Viceversa, if x € QN O*E, then H"(B,(x) N (K \
O*E)) = o(r™) and H"(B,(z)NO*E) = w, r™+o(r™) as r — 07, so that Allard’s regularity
theorem implies Q N 0*E C Reg N OFE. Thus Reg NOE = Q2 N J*E, and, in particular,
QN(OE\0*E) C X, so that QN (OF \ 0*E) has empty interior in K. Moreover, by (4.26),
(4.24) implies that the graph of u has constant mean curvature in B, />(r), and thus that
O*E is a smooth hypersurface, see e.g. [GMO05, Section 8.2]. Finally, (4.24) implies that
K \ OF is the support of a multiplicity one stationary varifold in the open set Q \ 9E, so
that K\ (XUJFE) is a smooth hypersurface with zero mean curvature, and H"(X\9F) = 0.
The proof of Theorem 1.6 is complete. U
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5. CONVERGENCE TO PLATEAU’S PROBLEM: PROOF OF THEOREM 1.9

This section is devoted to showing that 1(s) — 2¢ as ¢ — 07 and that a sequence
{(Kp, Ep)}i, of generalized minimizers for ¢(gj,) with e, — 0T as h — oo has to converge
to a minimizer S for Plateau’s problem ¢ counted with multiplicity 2 in the sense of
Radon measures. If one could prove the latter assertion directly, then the former would
follow at once by lower semicontinuity of weak-star converging Radon measures and by
the upper bound ¥(e) < 24 + C e ("t proved in (3.2). A possible direct approach
to the convergence of (K}, Ep) to a minimizer of Plateau’s problem may be tried using
White’s compactness theorem [Whi09]. That would require proving an L!-bound on the
first variations of the varifolds V}, supported on K} with density 1 on 2N 0*E} and with
density 2 on Kj \ 0* Ej. The validity of such bound is supported by the analysis of simple
examples like Example 1.1 and Example 1.2. However, Example 1.2 also indicates that
when singularities are present in the limit Plateau minimizers S, then an L'-bound for the
mean curvatures of the varifolds V3, would result from a quantitative balance between the
rate of divergence towards —oo of the constant mean curvatures of the reduced boundaries
0*E}, and the rate of vanishing of the areas H"(2 N 0*E}). Validating a quantitative
analysis of this kind in some generality would be of course very interesting per se as a way
to describe the behavior of generalized minimizers; nonetheless, completing this analysis
has so far eluded our attempts. Coming back to the proof of Theorem 1.9, we adopt
a different approach. We prove directly that 1 (g) — 2£ as ¢ — 07 by exploiting the
same “compactness-by-comparison” strategy adopted in the proof of Theorem 1.4. An
interesting point here is that because |E}| = ¢, — 07, we do not have a limit set that
we can use to uniformly adjust volumes among local competitors of the elements of the
minimizing sequence, and have to use a sort of “absolute minimality at vanishing volumes”
of any sequence {(K}, Ep)}p of generalized minimizers such that limp_,o F(Kp, Ep) is
equal to liminf,_ g+ 1(g).

Proof of Theorem 1.9. Step one: We start proving that ¢ is lower semicontinuous on
(0,00). Given g9 > 0, let £; = g9 > 0 as j — oo be such that

Jim () = liminf (),

and let E; € £ be such that |E;| = ¢; and H"(QNOE;) < 9(ej) +1/5. By (3.2), 9(gj)
is bounded in j, and thus by the compactness criteria for sets of finite perimeter and for
Radon measures we have that, up to extracting subsequences, pu; = H".(Q2 N IE;) N
as Radon measures in 2 and E; — F in L{ (), where p is a Radon measure in €,
and where E C 2 is a set of finite perimeter. We now repeat the proof of Theorem
1.4, with the only difference that while |E;| was constant in that proof, we know have
that |Ej| = €; — e¢ for some ¢y > 0. The modifications are minimal. In step two
(nucleation of the sequence Ej;), we repeat verbatim the argument, using the facts that
|Ej| > e9/2 and that H"(Q2 N OE;) < 24 + ng/(n_l) + 1 in place of |E;| = ¢ and
HM' Q2N OE;) < 4(e) + 1. Based on step two, in step three we construct volume-fixing
variations with uniform constant e, and C,, and then repeat the rest of the argument
without modifications. As a consequence, we can show that y =60 H" K and (K, E) € K
is a generalized minimizer of ¥ (g¢), with
¥(eo) = p(Q2) = lim p;(Q) < lim (g;) = lim inf ¢ (e),
j—o0 j—00 e—€o0

as claimed. The key information here is of course that |E;| > ¢¢/2 where 9 > 0. If g = 0,
then the nucleation lemma is inconsequential, and the argument cannot be used.

Step two: Thanks to (3.2), to prove 1(e) — 2/ as € — 0" we just need to show that
liminf(e) > 2¢. (5.1)
e—0t

45



To this end, we pick a sequence g, — 07 such that
liminfe(e) = lim (ep).
e—=0t+ h—ro0
Notice that, in this way, given an arbitrary sequence oj, — 07, we have

limsup [¢(en) — ¥(op)] 0. (5.2)

h—o00

Let {E}, ;}; be a minimizing sequence in 1) (g ). By Theorem 1.4, there exists a generalized
minimizer (K}, Ey) in ¢(ep) such that, up to extracting subsequences,

Eynj — Ey in L'(Q) as j — oo,

pr; = H'(QNOEY ;) A Lh as Radon measures in 2 as j — oo,
1

|Eh,j‘ = ¢p, and Hn(Q N 8Eh7j) < ¢(Eh) + ; s Vi eN,

where, by (3.2) and up to extracting a further subsequence,
pn = 2H"(Kp \O*Ep) + H'L(QNO*Ep) > 1 as Radon measures in ) (5.3)
for some Radon measure p in Q. Given z € Q Nspt p, we set d(z) = dist(z, 02), and let
Hy,={heN:|E,\ B,(z) >0}, I, = {r €(0,d(z)) : Hy, is infinite} .~ (5.4)

We now look at local variations Fj, ; of Ej, ; such that |F}, ;| has a positive limit volume
op as j — oo, which in turn satisfies o, — 0" as h — oo. The idea is that, by (5.2), we
will be able to use such variations to gather information on p.

Claim: for every r € Iy, if {F}, j}nem,.,, jen C € is such that QN JF}, ; is C-spanning W
and Fy, jAFE), ;j C cl(By(x)) for every h € H,, and every j € N, and if

Jop = lim |Fy ;| >0, and lim op =20, (5.5)
Jaresy he€Hy,p Jh—s00

then
w(Br(z)) < liminf liminf H"(cl (B, (z)) N OFy ) . (5.6)

heHqy r ,h—o0 j—o00
To prove this claim, we first notice that, for every h € H,,,
op = hm |Fh,j| > |Eh\B7«($)| >0. (57)
J]—00
In particular, for j large enough, |F}, ;| > 0, ¥(|F} ;|) is well-defined, and F}, ; is a com-
petitor for ¢(|F};|), so that
G(IFhyl) < HMQNOF,;) = H'(cl(By(x) NOFhy) + K" (OB, N Q\ el (B ()

< H™(cl(Br(z)) NOF} ;) + ¥(en) + % — H"(OE} ; N By(x))
which can be recombined into
ping (B () < (G (B, (2)) NOFhg) + (en) = (| + 5
Letting j — oo, by i j N |F} ;| = on > 0, and the lower semicontinuity of 1 on
(0,00), we find that
pr(By(z)) < liminf H"™(cl (B, (z)) N OFy, ;) + ¥ (en) — v(on).

j—o0

Since oy, — 0% as h — oo with h € H, ., by pp — p and (5.2) we deduce (5.6), and thus
prove the claim.
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Step three: We now fix x € spty, set f(r) = u(Byr(z)), and prove that, for a.e. r € I,
c(n

either n—l
{th fi(r) = em)r=, (5:8)

or (f1)(r) 2 c(n),
Jr) < (). (5.9)

By using the coarea formula together with |Ej| — 0 as h — oo and Ej, j; — Ej, as j — o0,
we find that for a.e. r < d(x),

OEy, j N OB, (x) is H" -rectifiable, (5.10)

lim H"(Ey; N 0B (x)) = H"(E, N OB (x)), (5.11)
j—0o0

lim lim H"(Ep; N 0B, (z)) =0, (5.12)

h—o00 j—00
for every h,j € N. Moreover, if we set
frg(r) = pni(Br(2)),  fulr) = pn(Br(2)).
then, again by the coarea formula and by Fatou’s lemma, for a.e. r < d(x) we find

H* N (OEn; NOB(x)) < fh,(r),

gn(r) = lim inf Fj(r) < fr(r), (5.13)
o) =, Jmint_fi(r) < £,

for every h,j € N. We first prove (5.8). Let r € I, be such that (5.10), (5.11), (5.12) and
(5.13) hold, and let Aj_; denote an H"-maximal connected component of dB,.(z) \ OE}, ;.
If Ay j C Ej, j, then, by spherical isoperimetry, by (5.13), and since the relative boundary
to Ay j in 0B, (x) is contained in 0B, (x) N 0E}, ;, we find

Fhj(r) = e(n) HMOBy () \ Any)" 0",

where the lower bound converges to c(n)r" ! if we let first j — oo and then h — oo
thanks to (5.12); hence, if Ay ; C E}, ;, the first alternative in (5.8) holds. We now assume
that A, ; N Ep; = 0, and consider the corresponding cup competitor Fj, ; as defined in

Lemma 2.5 starting from Ej, j, Ay j. More precisely, if {nﬁ’j }72 | denotes the corresponding
sequence as in (2.49), we choose k(h, j) so that, setting

Yh,j = aBr(x) \ Cl ((EhJ' M 8B7«(ZL‘)) @] Ah,j) 5
Shg = O0EpjNcl(Ap; )\ (cl((Ep; NOB(2)) UYhy)) ,

we have that n; = 172(% i) satisfies n; < r/2j, with

1
H"(0B(z) N{ds, , <n;}) < 7 (5.14)
. 1
nj H 1(8B7“($) n {dSh,j = }) ; : (515)
Then, with the usual notation
UhJ' = 8B7«(ZL‘) N {dsh’j < 77]'} , Zh,j = Yh,j @] (Uh,j \Cl (Eh,j N aBr(ﬂj‘))) ,

we define

Fhj = (Bnj \ cl(Br(2))) UNy, (Zn;) -
By Lemma 2.5, Fj, ; € £, QN OFy, j is C-spanning W and Ej jAF), ; C cl(By(x)). Since
n; — 0 as j — oo, we find

op = lim |Fy ;| = lim |Ep; \ By(x)| = [En \ Br(z)],
j—o0 j—o0
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so that oy > 0if h € H,,, and o5 — 07 if we let h — oo. Thus Fj ; satisfies (5.5), and
we can apply (5.6) to Fj, ;. To estimate the upper bound in (5.6), we look back at (2.40),
(2.43), (2.44), and (2.47), and find that

H™ (L (Br(x)) N OFp;) < (24 C(n) n;) H" (0B (2) \ An;j)
+ 2+ Cn)ny) H* (9B, (x) N {ds,, ; <1;})
+C(n)n; ("1 (0B, (x) N OE;) + H" (0B, (x) N{ds, , = 1;})) -
(5.16)
By (5.6), (5.14), (5.15), and (5.16) we deduce that
f(r)=pu(Br(z)) < liminf liminf H"(cl(B,(z)) N OF} ;)

h€Hg,r ;h—00 j—00

< liminf liminf 2H"(0B,(x) \ An ;) (5.17)

= h€Hgy,,h—00 j—00

< C(n) liminf liminf f}’lj(r)"/("_l) < C(n) f'(ry™=1
heHz r ,h—00 j—00 ’

We have thus proved that the second alternative in (5.8) holds, as claimed. We now prove

(5.9): let us now denote by F}, ; the set defined by Lemma 2.9 as approximation of the cone

competitor corresponding to Ej, ; in B,(x) with n = n; = r/2j. We have that F} ; € £

and that QN JF}, ; is C-spanning W; furthermore, by (2.72) and (5.11) we find

. T
op = lm [F ;| > |Ep \ Br(z)| + H"(Ep N 0By (x))
j—00 1

n +

(in particular, o, > 0 if h € H,,) and, by (5.12), o, — 07 as h — oo. Thus (5.5) holds,
and we can deduce from (5.6) and (2.71) that

.. . T o
f(r) = p(Br(z)) < he}lﬁ}mm,rl,]lleioo h]m_)lorgf - H""H(OE}; N OBy (x)) < - 1),

that is (5.9).
Step four: We now define a function g : © — (0,00) U {—o00} by letting
g(x) = sup{s >0:(0,s) C Iz}
= sup {t > 0:if s < t, then |Ey \ Bs(x)| > 0 for infinitely many h} .

We notice that

g is lower semicontinuous on €2, (5.18)
{g = —o0} contains at most one point . (5.19)
(Notice that {g = —oo} may indeed contain one point: this is the case of the singular point

of a triple junction, see Figure 1.3-(b)). To prove (5.18): if g(z) # —oo, then g(z) > 0, and
for every s € (0,g(x)), |Ex\ Bs(x)| > 0 for infinitely many h. Thus, if n € (0, g(z)) and m,,
is such that |z — x,,| < n for every m > m,, then, for every m > m, and s € (0, g(z) —n),

|En \ Bs(xm)| > |Ep \ Bsgy(z)| >0, for intinitely many h,

that is g(x) —n < g(z) for every m > my); this proves (5.18). Next, if g(z1) = g(x2) =
—00, then for every s > 0 there exists h(s) such that

[Bw\ Bo(a1)| = |En \ By(e2)| =0 Vh > h(s).

If x1 # x5 we can take s = |z1 — x2|/2 and deduce |Ej| = 0; thus (5.19) holds. Let us now
consider the open set {g > s} C ©, s > 0, and set

Z(s) =sptun{g > s}, Z =sptun{g>0}.
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We claim that if z € Z(s), then
f(r) > co(n)r™ Vr € (0,s), r~™ f(r) is increasing over r € (0, s) . (5.20)
The second assertion is immediate from (5.9). To prove the first one, set
Ly ={re0,s): f'(r) > e(n)r" '}, Ly =(0,8)\ Ly,
with ¢(n) as in (5.8). If x € Z(s) is such that H'(L1) > s/2, then for every r € (0, s)
flr) > / > c(n)/ t" L dt > ¢(n) /mln{r,8/2} Lt > e(n) r';
L1n(0,r) Lin(0,r) 0 n2n
if instead H'(Ly) > s/2, then for every r € (0, s),

fr) = /

(fY™) > e(n) H (Ly N (0,7)) > ¢(n) min {r, %} > o) r,
L2n(0,r)

2

where we have used the fact that, by (5.8), we have (f1/)" > ¢(n) on L. Thanks to (5.20)
we are in the position of using [Mat95, Theorem 6.9] and Preiss’ theorem (as done in step
four of the proof of Theorem 1.4) on each Z(s), to find that Z is H"-rectifiable with

wZ =0H" 7, (5.21)
where the density

exists in [co(n), 00) for every x € Z.

Moreover, by (5.19),
HO>sptp\ Z) < 1. (5.22)
By combining (5.21) and (5.22) we find that K = sptp is H"-rectifiable and such that
p = 0H" K. Since K}, = sptpy, is C-spanning W and pj, — p, by Lemma 2.1 we find
that K is C-spanning W, and thus admissible in ¢, so that
liminf ¢ (e) = lim pp(Q) > w(Q2) = / OdH"™ > min 6 H"(K) > ¢ min 6. (5.23)
e—0+ h—o0 K K K
Thus, to complete the proof of (5.1) we just need to show that
0>2H"ae on K. (5.24)
Since pp; = H"(Q N OE) ;) Xy as § — oo, with g, — OH"K as h — oo, we can
extract a diagonal subsequence j = j(h) so that, denoting E} = Ej, ), {Ejtn C &,
QN OE; C-spanning W, and
wh=H'(QNOE;) > 0H" K , as h — 00.
Moreover, u(By(x)) > c(n) r™ for every r € (0,s) if x € KN{g > s} and, thanks to (5.16),
lif{n inf H"(B,(z) NOE}) < C(n) li}{n inf H"(0B,(z)\ AY,),
—00 —00 ’
where A?,h denotes an ‘H"-maximal connected component of 0B, (x) \ OF}, this time for

every x € K and B,(x) cC Q. We can thus apply Lemma 2.11 with the open set
V' = {g > s} to deduce that

0 >2H"ae. on{g>stNK)\IFE*

where E* = () is the L'-limit of the sets E}. Since 0*E* = (), taking the union over s > 0
and recalling (5.22), we conclude that (5.24) holds.

Step five: Now that 1(g) — 2£ as € — 07 has been proved, let (K}, Ej,) be a sequence
of generalized minimizers of 1(gj,) for an arbitrary sequence g, — 07. Since the limit
of ¥(e) as ¢ — 0T exists, e, automatically satisfies (5.2), and the arguments of step two
to four can be repeated verbatim. Correspondingly, up to extracting subsequences, (5.3)
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holds with u = OH" LK, 8 > 2 H™a.e. on K, and K a relatively compact subset of €2,
H"-rectifiable, and C-spanning W. By plugging 1(g) — 2¢ as ¢ — 07 in (5.23), we find
that § = 2 H™-a.e. on K, 2H"(K) = 2/, so that K is a minimizer of ¢, and thus, looking
back at (5.3), we conclude that (1.18) holds. O

APPENDIX A. A TECHNICAL FACT ON SETS OF FINITE PERIMETER
Lemma A.1. IfQ is an open set in R"TY, E is a set of finite perimeter in Q, and f :  —
Q is a diffeomorphism, then f(E) is a set of finite perimeter in Q with 0* f(E) = f(0*E)

and
(Vy(f (@) ve(z)
[(Vg(f (@) ve(z)|

where g = f~ L.

Proof. In [Magl2, Proposition 17.1, Remark 17.2] it is shown that f(F) is a set of finite
perimeter with

wice) = (75 (Vo) ne).

and that mapping by f preserves essential boundaries (thus just the H™-equivalence of
O*f(E) and f(0*E) is deduced there). In order to prove 0* f(E) = f(0*E), we pick a ball
B, (f(z)) cC €, and look at
tye) (Br(f(2))) _ JoB.(r@pnos I I Vy(f) vedH"
s Br(f @) o, (r@pnor s I f IVIF) el dHr
f(a*E_z)/r lup (2) ve(x+rz)|dH?

where we have set

F, = 9B, () =« , ur(2) = 1p,(2) Jf(x +72) Vg(f(z +r2)".

r
If we set F' = L(B1(0)) for the linear map L = Vg(f(x)), then for every £ > 0 we have
L(B1-<(0)) C F. C L(B1+<(0)) provided r is small enough,
and thus, as r — 07T,
lp, = 1p uniformly on R* ™1\ X, |
where we have set
Xe = L(B14£(0) \ B1—<(0)) .

Since F,., F' C Bripg(0), and since for every R > 0

Jf(x+7r2)Ve(f(x+r2)T = Jf(x) Vg(f(x)T uniformly on |z| < R,
as r — 07, we conclude that

up(2) = u(z) := 1p(2) Jf(x) Vg(f(2))T uniformly on R" 1\ X, . (A.3)
We now decompose the integrals over (0*E — z)/r appearing in (A.2) through X.. By

(A.3),
‘ / ur(2)vp(x +rz)dH) — / u(z)vp(x +rz)dH?
[(0*E—z)/r]\Xe [(0* E—x)/r]\ X<
< () M (Buipg(0) 0 [(0°E — 2)/r]\ X.)
< w(r) P(E; Briipg(z)) — 0
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as r — 0T, while z € 9*F gives

lim u(z)vp(x +rz)dH. = / u(z)ve(x) dH? .
r=0F J((0* B—a)/r\X- To(0* E)\X-

At the same time, since |u,| < C for a constant C' independent of r, we have

(/ ur(2)vp( + 1 2) dHD MJ) — CH"(X. N T,(9"E))
N[(8*E—x) /7] r

<cu(x.n
as 7 — 07. Combining the above estimates with |u| < C we finally find

/ (2@ + 1 2) dHD — / w(=)vi (z) dH
(0*E—x)/r T:(0*E)

lim sup
r—0+t

< CHY(X.NTL(0*E)),  Ve>0.
Letting ¢ — 0%, we find H"(X. NT,(0*FE)) — H™"(X N T,(0*E)) where
X = L(0B1(0)).

Since L is invertible, L(0B;(0)) intersects transversally any plane through the origin, and
in particular T, (9*E). Therefore H"(X NT,(0*E)) = 0 and we have proved

lim ur(2)vp(z+r2)dH] = / u(z)ve(x)dH?
=0t J(9*E—x)/r Tz (0*E)

= Jf(z) LT vg(z) H*(F NT,(0*E)).
An analogous argument shows
lim lup (2)vE(z + 7 2) | dH? = Jf(z) |LT vg(z)| H(F N T,(0*E)),
r—=0t J(o*E—x)/r
and finally we conclude that if x € 0*F, then
(B @) LT )
r=0t |y [(Br(f(2)))  [LT ve(2)]
In particular, f(z) € 0% f(E) and (A.1) holds. O

csS”.

APPENDIX B. BOUNDARY DENSITY ESTIMATES FOR THE HARRISON—PUGH MINIMIZERS

In this appendix we prove that when OW is smooth and ¢ < oo, then every minimizer
S of ¢ satisfies uniform lower density estimates up to the boundary of €.

Theorem B.1. If ¢ < co, OW is smooth, and S is a minimizer of £, then
H"(Br(z)NS) > c(n)r™, Vo e cl(S),r € (0,r), (B.1)
for a value of ro depending on W.

Proof. By Lemma 2.4, and since S minimizes H" with respect to every relatively closed
subset of € which is C-spanning W, recall (1.8), we have

H(S) < H"(f(9)) (B.2)

whenever f:cl(Q) — cl(2) is a homeomorphism with f(0Q) = 09, {f #id} CC B,,(z)
for x € 9, and f(By,(x)Ncl () = By, (z)Ncl () for ry depending on W. We immediately
deduce from (B.2), that

/ div X dH" =0 (B.3)
S

for every X € C}(B,,(z); R""1) with X - v = 0 on 99Q. Since S is an Almgren minimizer
in Q, (B.3) also holds for every X € C}(Q;R*"!). Finally, we deduce the validity of (B.3)
for every X € C}(R"*1; R"*!) with X - v = 0 on 99 by a standard covering argument.
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The validity of (B.3) for every X € CH(R"1; R""1) with X -vq = 0 on 99 is a distribu-
tional formulation of Young’s law, which has been extensively studied in the classical work
of Griiter and Jost [GJ86], and has been recently extended to arbitrary contact angles by
Kagaya and Tonegawa [KT17]. The main consequence of (B.3) we shall need here is an
adapted monotonicity formula which takes care of the local geometry of OW. We now
introduce this tool and then complete the proof.

Let ¢ be sufficiently small, so that I,,,(0W) admits a well-defined nearest point projec-
tion map II: I,,(OW) — OW of class C'. By [KT17, Theorem 3.2], there exists a constant
C = C(n, 7o) such that for any x € I, s(OW) N cl(©2) the map

H™(S N B.(x)) + H*(SN B.(z)) o

r € (0,r9/6) — e’ (B.4)

Wy T
is increasing, where
Bi(z)={yeR": geB(2)},  §:=1y)+ Iy —y) (B.5)
denotes a sort of nonlinear reflection of B,.(z) across OW. In particular, the limit

(o) — tin S0 B@) + H(S 0 By(x))

r—0+ Wy ™

(B.6)

exists for every x € I, 6(OW) Ncl(Q) , and the map = + o(z) is upper semicontinuous in
there; see [KT17, Corollary 5.1].

Next, we recall from [KT17, Lemma 4.2] a simple geometric fact: if z € I,,(0W), and
p > 0 is such that dist(z,0W) < p and B,(x) C I,,(0W), then

By(z) C Bsp()- (B.7)

We are now in the position to prove (B.1). First of all we recall that, since S defines a
multiplicity one stationary varifold in §2, we have

H" (SN By (z)) > wyr™, Ve e S,B,(z) CC . (B.8)

In particular, (B.1) holds with ¢ = w, for all x € S\ I,,/6(OW) as soon as r < ro/6.
Therefore we can assume that

z€d(S)N 1, 6(0W). (B.9)

We first notice that we have o(x) > 1: by upper semicontinuity of o on cl () N L /5(OW)
we just need to show this when, in addition to (B.9), we have x € S, and indeed in this
case,
"SNB
o) > lim S0 Bp(@)
p—0t Wp, P"

>1

thanks to (B.8); this proves o(x) > 1. Now we fix » < 57/6 and distinguish two cases
depending on the validity of

dist(xz,OW) > —. (B.10)

ol 3

If (B.10) holds, then by (B.8)

(S (1 By (@) 2 H'(S N Byys(@) 2w (£)

thus proving (B.1). If dist(z, 0W) < r/5, then, thanks to the obvious inclusion B, (z) C
L,(0W), we can apply (B.7) with p = r/5 to find B,/5(x) C By(z). In this way, by
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exploiting o(z) > 1 and (B.4), we get
r\n
o(x)wy (g>
< (H(S 01 Byys(@) + HU(S N Byys(a)) ) 770
< 2H™(SN By(x)) el ™ < 4AH"(SN B,(z))

up to further decreasing ryg. ]

3
IN

cn)r

APPENDIX C. A CLASSICAL VARIATIONAL ARGUMENT

Let (K, E) be a generalized minimizer of 1(¢). In Theorem 1.6, we have proved that if
f:Q — Qis a diffcomorphism such that |f(F)| = |E|, then

F(K, E) < F(f(K), [(E)). (C.1)
Here we show how to deduce from (C.1) the existence of A € R such that
A X-VEd’H”:/ divKXd’}-l”+2/ divE X dH™, (C.2)
E ;*E K\O*E

for every X € CL(R"1;R" 1) with X - v = 0 on 0. This is proved following a classical
argument, see e.g. [Magl2, Theorem 17.20]. We first treat the case when we also have

X vgdH"=0. (C.3)
o*E
In this case, let Y € C}(Q;R"™1) be such that
Y - VEp dH" =1 s
o*E
and set
frs(x) =+t X(x)+sY(z), xef.
Given that X - vg = 0 on 092 and that 0f2 is smooth, it is easily seen that for t and s
sufficiently small, f; s is a diffeomorphism from 2 to €. In particular, the map
gO(t,S) = |ft,8(E)‘

is such that ¢(0,0) = |E|, (9¢/0t)(0,0) = 0 by (C.3) and (9p/ds)(0,0) = 1 by the
assumption on Y, so that, by the implicit function theorem we have ¢(¢,s(t)) = |E| for
every t sufficiently small and for s(t) = O(¢?). Setting g; = ft.sr)> by (C.1), we find that

m(t) = 2H"(g:(K) \ 0" g:(E)) + H" (2N 0" g:(E))
has a minimum at ¢t = 0. By Lemma A.1, we can write
m(t) = 2H"(g:(K\ 0"E)) + H"(g(QNI"E)) .

By the area formula, and since s(t) = O(t?) gives (9g;/0t)|i=0 = X, we deduce the validity
of (C.2) when (C.3) holds. Let us now consider two fields X; € C}(R" LR ) k= 1,2,
with X}, - vo = 0 on 0f) and set

fa*E Xl VE dH"
fé)*E‘X2 VR d’Hn
In this way X satisfies (C.3), and thus (C.2); as a consequence the quantity
Joop v E X dH™ +2 [ 5o p divF X dH"
fa*EXk VR d’Hn

X=X - 2.

has the same value for k£ =1, 2.
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