
ar
X

iv
:2

0
0
2
.0

6
2
7
3
v
3
  
[m

at
h
.A

P
] 

 1
5
 A

p
r 

2
0
2
1

COLLAPSING AND THE CONVEX HULL PROPERTY

IN A SOAP FILM CAPILLARITY MODEL

DARREN KING, FRANCESCO MAGGI, AND SALVATORE STUVARD

Abstract. Soap films hanging from a wire frame are studied in the framework of capil-
larity theory. Minimizers in the corresponding variational problem are known to consist
of positive volume regions with boundaries of constant mean curvature/pressure, possibly
connected by “collapsed” minimal surfaces. We prove here that collapsing only occurs if
the mean curvature/pressure of the bulky regions is negative, and that, when this last
property holds, the whole soap film lies in the convex hull of its boundary wire frame.

Keywords: convex hull property, minimal surfaces, constant mean curvature sur-
faces, Plateau’s problem.
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1. Introduction

We continue the analysis, started in [KMS20a], of the variational model for soap films
spanning a wire frame introduced in [MSS19]. In this soap film capillarity model,
soap films are described as three-dimensional regions of small volume, rather than as
two-dimensional surfaces with vanishing mean curvature, i.e. as minimal surfaces. In
[KMS20a] we have proved the existence of generalizedminimizers in the soap film capillarity
model. The term generalized indicates the possibility for minimizing sequences of three-
dimensional regions to locally collapse onto two-dimensional surfaces. Correspondingly, a
generalized minimizer consists: of a three-dimensional set enclosing the prescribed small
volume of liquid, with boundary of constant mean curvature λ – where the value of λ is
proportional to the pressure of the soap film; and, possibly, of a two-dimensional surface
with zero mean curvature, whose area has to be counted twice in computing the energy of
the minimizer; see Figure 1.1. When this second possibility occurs, we speak of collapsed
minimizers. When collapsing does not occur, generalized minimizers are just regular
minimizers, in the sense that they correspond to three-dimensional regions belonging to
the competition class. In this paper we prove two related results concerning important
geometric properties of generalized minimizers, that can be roughly stated as follows:

(i) if collapsing occurs, then the constant mean curvature/pressure λ must be non-
positive (Theorem 2.9);

(ii) if λ is non-positive, then the generalized minimizer is contained into the convex
hull of the boundary wire frame (Theorem 2.10); this convex hull property is of
course a basic property of minimal surfaces, therefore the interest of establishing
it in this setting.

Theorem 2.9 is proved by comparing (through a technically delicate argument) a collapsed
minimizer with competitors obtained by slightly de-collapsing its collapsed region (with
a net increase of volume), followed by slightly deflating the bulky part of the minimizer
(to restore the enclosed volume); see Figure 3.2 below. The proof of Theorem 2.10 is an
adaptation to our context of the classical argument used to prove the convex hull property
on stationary varifolds.
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Figure 1.1. Generalized minimizers in the soap film capillarity model in the

“planar case”, where the “boundary wire frame” reduces to finitely many small

disks (depicted in dark grey). We minimize the length of the boundary of two-

dimensional regions, depicted in light gray, enclosing a given (small) volume ε

and spanning the boundary disks. (a) When the boundary consists of two disks,

and ε is small enough, we have a non-collapsed minimizing region bounded by

two almost flat circular arcs of curvature λ = O(ε). (b) When the boundary

consists of three disks, and ε is small enough, we have a collapsed minimizer

given by a combination of a two-dimensional region bounded by circular arcs

of negative curvature λ = −O(1/
√
ε), and of three segments (depicted by thick

lines) whose length has to be counted with double multiplicity to compute the

minimizing energy. Collapsing corresponds with the situation, depicted in (c),

where minimizing sequences consist of two-dimensional regions with opposite parts

of their boundaries becoming increasingly closer to each other.

The paper is organized as follows. In section 2 we formally introduce the soap film
capillarity model and state our main results (together with some necessary background
results proved in [KMS20a]). Sections 3 and 4 contain, respectively, the proofs of Theorem
2.9 and Theorem 2.10.

Acknowledgments. This work was supported by the NSF grants DMS-1565354, DMS-
RTG-1840314, DMS-FRG-1854344, and DMS-2000034. S.S. acknowledges support from
the AMS and the Simons Foundation through an AMS-Simons Travel Grant 2020.

2. Statements

2.1. Notation. The ambient space we will be working in is Euclidean space R
n+1 with

n ≥ 2. For A ⊂ R
n+1, cl (A) is the topological closure of A in R

n+1, conv(A) is its convex
hull, and Iδ(A), Uδ(A) are its closed and open δ-tubular neighborhoods, respectively. Br(x)
is the open ball centered at x ∈ R

n+1 with radius r > 0. If A is (Borel) measurable, |A| and
Hs(A) denote its Lebesgue and s-dimensional Hausdorff measure, respectively. We will
adopt standard terminology in Geometric Measure Theory, for which we refer the reader to
[Sim83, AFP00, Mag12]. In particular, given an integer 0 ≤ k ≤ n+1, a Borel measurable
set M ⊂ R

n+1 is countably k-rectifiable if it can be covered, up to an Hk-negligible
set, by countably many Lipschitz images of R

k; it is (locally) Hk-rectifiable if it is
countably k-rectifiable and, in addition, the Hk measure of M is (locally) finite. A Borel
set E ⊂ R

n+1 is of locally finite perimeter if there exists an R
n+1-valued Radon measure

µE on R
n+1 such that 〈µE,X〉 =

´

E div (X) dx for all vector fields X ∈ C1
c (R

n+1;Rn+1),

and of finite perimeter if P (E) := |µE |(Rn+1) < ∞. More generally, one can consider,
for any Borel set F ⊂ R

n+1, the quantity |µE|(F ), which is called the relative perimeter
P (E;F ) of E in F . The reduced boundary of a set E of finite perimeter is the set ∂∗E

of points x ∈ spt |µE | such that (|µE |(Br(x)))
−1 µE(Br(x)) → νE(x) for some vector

νE(x) ∈ S
n as r → 0+. By De Giorgi’s structure theorem, if E has finite perimeter then
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∂∗E is Hn-rectifiable, and the Gauss-Green measure µE and its total variation |µE | satisfy
µE = νE Hn ∂∗E and |µE | = Hn ∂∗E, respectively.

2.2. The soap film capillarity model. Next, we recall the precise formulation of the
variational problem introduced in [KMS20a], and we outline the theory developed in there.
We fix a compact set W ⊂ R

n+1 (the “wire frame”), and we denote the region accessible
by the soap film as

Ω := R
n+1 \W .

The model scenario we have in mind is the physical case when n+ 1 = 3, and W = Iδ(Γ)
is the closed δ-neighborhood of a closed Jordan curve Γ ⊂ R

3; nonetheless, admissible
choice of W will be more general than that. Following the Harrison-Pugh formulation
of Plateau’s problem [HP16, HP17] as extended in [DLGM17], we introduce a spanning
class C, that is, a non-empty family of smooth embeddings of S1 into Ω which is closed by
homotopy in Ω, in the sense that if γ ∈ C and γ̃ is smooth and homotopically equivalent to
γ in Ω 1 then γ̃ ∈ C. A set S is C-spanning W if S∩γ 6= ∅ for all γ ∈ C. The (homotopic)
Plateau’s problem defined by (W, C) is then

ℓ := inf {Hn(S) : S ∈ S} , (2.1)

where
S := {S ⊂ Ω : S is relatively closed in Ω and S is C-spanning W} . (2.2)

The capillarity approximation (2.3) of the Plateau’s problem (2.1) has been studied in
[KMS20a] under the following set of assumptions on W and C:
Assumption 2.1. The compact setW and the spanning class C are such that the following
holds:

(A1) Plateau’s problem ℓ defined in (2.1) satisfies ℓ < ∞; in particular, by [HP16,
DLGM17], there exists a relatively compact, Hn-rectifiable set S ⊂ Ω such that
Hn(S) = ℓ 2;

(A2) ∂W = ∂Ω is a C2-regular hypersurface in R
n+1;

(A3) there exists τ0 > 0 such that, for every τ < τ0, R
n+1 \ Iτ (W ) is connected;

(A4) there exist η0 > 0 and a minimizer S in ℓ such that γ \ Iη0(S) 6= ∅ for every γ ∈ C.
The conditions in Assumption 2.1 seem very reasonable towards the development of a

theory of soap films, and are definitely valid in a reasonably large class of initial conditions.
In fact, as a by-product of a technical result contained in the present paper, see Lemma
3.2 below, one can see that all the results from [KMS20a] (and thus all the results of the
present paper) still hold without the need of assuming (A4). This point is explained in
detail in Section 5 below.

Next, we can define the capillarity problem ψ(ε) at volume ε > 0 as

ψ(ε) := inf {Hn(Ω ∩ ∂E) : E ∈ E , |E| = ε, Ω ∩ ∂E is C-spanning W} , (2.3)

where the competition class E is given by

E := {E ⊂ Ω : E is an open set and ∂E is Hn-rectifiable} . (2.4)

We explicitly observe that each E ∈ E is an open set of finite perimeter, and that P (E; Ω) =
Hn(Ω ∩ ∂∗E) ≤ Hn(Ω ∩ ∂E). We also define the class

K :=
{

(K,E) :E ⊂ Ω is open with Ω ∩ cl (∂∗E) = Ω ∩ ∂E ⊂ K ,

K ∈ S and K is Hn-rectifiable
}

.
(2.5)

1This means that there exists a continuous map f : [0, 1]×S
1
→ Ω such that f(0, ·) = γ and f(1, ·) = γ̃.

2In addition, when n = 2, every such minimizer S is an Almgren-minimizer in Ω, and therefore satisfies
Plateau’s laws away from W thanks to [Alm76, Tay76]. This result will not be needed in the sequel, but
it is important because it establishes the physical relevance of the model.
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For (K,E) ∈ K, its relaxed energy is given by

F(K,E) := Hn(Ω ∩ ∂∗E) + 2Hn(K \ ∂∗E) . (2.6)

We are now in the position to recall the main results from [KMS20a], which lay the
groundwork for the present analysis.

Theorem 2.2 (Existence of generalized minimizers, see [KMS20a, Theorem 1.4]). Let W
and C satisfy Assumption 2.1, and let ε > 0. If {Ej}∞j=1 is a minimizing sequence for

ψ(ε), then there exists a pair (K,E) ∈ K with |E| = ε such that, up to possibly extracting
subsequences, and up to possible modifications of each Ej outside a large ball containing
W (with both operations resulting in defining a new minimizing sequence for ψ(ε), still
denoted by {Ej}j), we have that

Ej → E in L1(Ω) ,

Hn (Ω ∩ ∂Ej)
∗
⇀ θHn K as Radon measures in Ω

(2.7)

as j → ∞, for an upper semicontinuous multiplicity function θ : K → R satisfying

θ = 2 Hn-a.e. on K \ ∂∗E, θ = 1 on Ω ∩ ∂∗E . (2.8)

Moreover, ψ(ε) = F(K,E) and, for a suitable constant C, ψ(ε) ≤ 2 ℓ+ C εn/(n+1).

Definition 2.3. A pair (K,E) ∈ K with |E| = ε is a generalized minimizer for the
capillarity problem ψ(ε) if:

(a) there exists a minimizing sequence {Ej}∞j=1 of sets Ej ∈ E such that (2.7) holds

for an upper semicontinuous function θ as in (2.8);
(b) F(K,E) = ψ(ε).

Theorem 2.4 (Euler-Lagrange equation for generalized minimizers, see [KMS20a, Theo-
rem 1.6]). If (K,E) is a generalized minimizer of ψ(ε) and f : Ω → Ω is a diffeomorphism
such that |f(E)| = |E|, then

F(K,E) ≤ F(f(K), f(E)) . (2.9)

In particular:

(i) there exists λ ∈ R such that

λ

ˆ

∂∗E
X · νE dHn =

ˆ

∂∗E
divK X dHn + 2

ˆ

K\∂∗E
divK X dHn (2.10)

for every X ∈ C1
c (R

n+1;Rn+1) with X · νΩ = 0 on ∂Ω, where divK denotes the
tangential divergence operator along K;

(ii) there exists Σ ⊂ K, closed and with empty interior in K, such that K \ Σ is a
smooth hypersurface, K \ (Σ ∪ ∂E) is a smooth embedded minimal hypersurface,
Hn(Σ \ ∂E) = 0, Ω ∩ (∂E \ ∂∗E) ⊂ Σ has empty interior in K, and Ω ∩ ∂∗E is a
smooth embedded hypersurface with constant scalar (w.r.t. νE) mean curvature λ.

Remark 2.5. The conclusions about the regularity properties of the set K achieved in
Theorem 2.4(ii) are a straightforward consequence of the Euler-Lagrange equation (2.10)
and of Allard’s regularity theorem for varifolds with bounded generalized mean curvature.
A more refined analysis, which crucially relies on the structure of the variational problem
ψ(ε), was carried out in [KMS20b]. A fundamental outcome is that, if one still denotes Σ
the singular set appearing in Theorem 2.4(ii), the set Σ \ cl(E) is empty in all dimensions
n ≤ 6 (thus, in particular, in the physical dimension n = 2), so that K \ cl(E) is a smooth
(in fact, analytic) stable minimal hypersurface of Ω \ cl(E) in such cases; see [KMS20b,
Theorem 1.5].
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2.3. Main results. We start making precise the notion of collapsing.

Definition 2.6. A generalized minimizer (K,E) ∈ K of ψ(ε) is collapsed if K \ ∂E 6= ∅.
It is exteriorly collapsed if K \ cl (E) 6= ∅.
Theorem 2.7 (Convex hull property). If (K,E) ∈ K is an exteriorly collapsed generalized
minimizer of ψ(ε), then K ⊂ conv(W ).

Remark 2.8. Theorem 2.7 can be regarded as an extension to the capillarity model of
the classical convex hull property valid in the context of (generalized) minimal surfaces.
It is worth noticing that the assumption of exterior collapsing is necessary in this setting.
It is easy to construct examples of non-collapsed minimizers of ψ(ε) for which the convex
hull property fails: for instance, in the situation of Figure 1.1(a), as soon as the volume
parameter ε is slightly increased, it is clear that part of the corresponding minimizer lies
outside of the convex hull of the boundary data.

Theorem 2.7 will be proved in two steps, which are of independent interest, and for this
reason we record them in two separate statements. First, we show that exterior collapsing
enforces a sign condition on the multiplier λ appearing in the Euler–Lagrange equation
(2.10). Then, we establish the validity of the convex hull property for a solution to (2.10)
in the regime λ ≤ 0.

Theorem 2.9. Let (K,E) ∈ K be an exteriorly collapsed generalized minimizer of ψ(ε).
Then, the Lagrange multiplier λ in the Euler-Lagrange equation (2.10) satisfies λ ≤ 0.

Theorem 2.10. Suppose that a pair (K,E) ∈ K satisfies the identity (2.10) with λ ≤ 0.
Then, K is contained in the convex hull conv(W ). Moreover, if λ < 0, then K ⊂ conv(W ∩
cl (K)).

Theorem 2.7 is then an immediate corollary of Theorems 2.9 and 2.10. Observe that
the validity of the strict inequality λ < 0 produces a stronger version of the convex hull
property compared to the classical result for minimal surfaces. The proof of Theorem
2.10 is obtained by adapting the argument typically used to establish the convex hull
property for stationary varifolds (roughly, the case λ = 0 of Theorem 2.10), see [Sim83,
Theorem 19.2]. Proving Theorem 2.9 is more challenging, and is based on the following
geometric idea. Given an exteriorly collapsed generalized minimizer (K,E), we define a
one-parameter family of competitors {(Kt, Et)}t>0 with (Kt, Et) ∈ K and |Et| = ε by first
adding some positive volume t near a point in the collapsed region K \ cl (E), and then
restoring the volume constraint by “locally pushing inwards” E at a point in ∂∗E; see
Figure 3.2 below. Since K \cl (E) and ∂∗E have, respectively, 0 and λ mean curvature, we
find F(Kt, Et) = F(K,E) − λ t+O(t2), so that λ ≤ 0 follows by letting t→ 0+, provided
we can show that F(K,E) ≤ F(Kt, Et). This inequality requires a dedicated argument.
Indeed, we only know that (K,E) minimizes the relaxed energy F with respect to its
diffeomorphic images, and in fact Kt cannot be represented as the image of K through a
map, let alone through a diffeomorphism. To prove F(K,E) ≤ F(Kt, Et), we will instead
approximate (Kt, Et) by a sequence of open sets Fj in E having volumes |Fj | converging
to ε as j → ∞. Since F(K,E) = ψ(ε), and ψ(·) is lower semicontinuous on (0,∞),
we will obtain the desired inequality if we are able to enforce that the Hn measure of the
boundaries ∂Fj in Ω is not larger than F(Kt, Et) for large j. This construction is the main
technical difficulty of this note, and it exploits in a crucial way the regularity properties
of K as described in Theorem 2.4. The details are discussed in Lemma 3.2.

3. Proof of Theorem 2.9

We start with a simple lemma on orientability, which allows to strengthen conclusion
(ii) in Theorem 2.4 from “there exists Σ ⊂ K, closed and with empty interior in K, such
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that K \ Σ is a smooth hypersurface” into “there exists Σ ⊂ K, closed and with empty
interior in K, such that K \ Σ is a smooth orientable hypersurface”. We do not claim
that the set Σ resulting from this change still satisfies Hn(Σ \ ∂E) = 0.

Lemma 3.1. If M is a smooth hypersurface in R
n+1, then there exists a meager closed

set J ⊂M such that a smooth unit normal vector field to M can be defined on M \ J .

Proof. Let U denote the family of the open sets A ⊂ M such that a smooth unit normal
vector field to M can be defined on A. Let U∗ be a non-empty subset of U which is totally
ordered by set inclusion, and set

A∗ :=
⋃

{A : A ∈ U∗} .

Let {Aj}j∈N ⊂ U∗ be such that

A∗ =
⋃

j∈N

Aj .

Since U∗ is totally ordered by set inclusion, we can assume without loss of generality that
Aj ⊂ Aj+1. By exploiting this monotonicity property we easily prove that A∗ ∈ U , and
therefore that U∗ admits an upper bound in the ordering of U . By Zorn’s lemma, U admits
a maximal element A with respect to set inclusion. The set J = M \ A is closed in M .
Should J have non-empty interior, we could find r > 0 and p ∈ J such that Br(p)∩M ⊂ J .
Up to decrease r, we can entail Br(p)∩M ∈ U , and then that A∪(Br(p)∩M) ∈ U , against
the maximality of A in U . �

Next we show that any (K,E) ∈ K such that K is a smooth orientable hypersurface
outside of a meager closed set can be approximated in energy by sets F ∈ E .

Lemma 3.2. Let (K,E) ∈ K, that is, let K be Hn-rectifiable, relatively closed in Ω, and
C-spanning W , and let E ⊂ Ω be open with Ω ∩ cl (∂∗E) = Ω ∩ ∂E ⊂ K. Let Σ ⊂ K be
a closed set with empty interior relatively to K such that K \ Σ is a smooth hypersurface
in Ω and such that there exists ν ∈ C∞(K \ Σ;Sn) with ν(x)⊥ = Tx(K \ Σ) for every
x ∈ K \Σ. Let

M0 := (K \ Σ) \ cl (E) , M1 := (K \ Σ) ∩ E , M :=M0 ∪M1 = K \ (Σ ∪ ∂E) .

For every x ∈ M , let ρ(x) > 0 be such that {x + t ρ(x) ν(x) : x ∈ M and |t| < 1} is a
tubular neighborhood of M in R

n+1 (see e.g. [Lee03, Theorem 6.24]). Also, let ‖AM‖(x)
be the maximal principal curvature (in absolute value) of M at x. Define then a positive
function u :M → (0, η] by setting

u(x) := min
{

η,
dist(x,Σ ∪ ∂E ∪W )

2
, δ ρ(x) ,

δ

‖AM‖(x)
}

, η , δ ∈ (0, 1) ,

where η, δ ∈ (0, 1), and let

A0 :=
{

x+ t u(x) ν(x) : x ∈M0 , 0 < t < 1
}

,

A1 :=
{

x+ t u(x) ν(x) : x ∈M1 , 0 < t < 1
}

,

F := A0 ∪
(

E \ cl (A1)
)

;

see Figure 3.1. Then F ⊂ Ω is open, ∂F is Hn-rectifiable, K ⊂ Ω ∩ ∂F (in particular,
Ω ∩ ∂F is C-spanning W ), and

lim sup
δ→0+

lim sup
η→0+

Hn(Ω ∩ ∂F ) ≤ F(K,E) . (3.1)
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A0A0

WW E

F

Figure 3.1. The construction in Lemma 3.2. The part of K outside ∂∗E is

denoted by a bold line to recall that in computing F(K,E) it is counted with

multiplicity 2. Notice that, in principle, K \ ∂∗E could intersect E.

Proof. Step one: In this step we prove that

F is open with F ⊂ Ω , (3.2)

K ∪
{

x+ u(x) ν(x) : x ∈M
}

= Ω ∩ ∂F . (3.3)

Since M0 and M1 are relatively open in M and u is positive on M , it is easily seen that
A0 and A1 are open, and thus that F is open. Let us define a map Φ :M ×R → R

n+1 by
setting Φ(x, t) = x+ t u(x) ν(x), so that

Ak = Φ(Mk × (0, 1)) , Φ(Mk × {0, 1}) ⊂ ∂Ak , k = 0, 1 . (3.4)

Since M ⊂ Ω and u(x) < dist(x,W ) for every x ∈M , we deduce that

Φ(M × [0, 1]) ⊂ Ω . (3.5)

In particular, F ⊂ Ω and (3.2) is proved. Next we prove that

Ω ∩ ∂F ⊂ K ∪
{

x+ u(x) ν(x) : x ∈M
}

. (3.6)

Since the boundary of the union and of the intersection of two sets is contained in the
union of the boundaries, and since the boundary of a set coincides with the boundary of
its complement, the inclusion ∂cl (A1) ⊂ ∂A1 gives

Ω ∩ ∂F ⊂ Ω ∩
(

∂A0 ∪ ∂[E \ cl (A1)]
)

⊂ Ω ∩
(

∂A0 ∪ ∂E ∪ ∂[Rn+1 \ cl (A1)]
)

= Ω ∩
(

∂A0 ∪ ∂E ∪ ∂cl (A1)
)

⊂ Ω ∩
(

∂E ∪ ∂A0 ∪ ∂A1

)

.

Hence (3.6) follows from Ω ∩ ∂E ⊂ K, and the fact that, for k = 0, 1,

Ω ∩ ∂Ak ⊂ K ∪ Φ(Mk × {0, 1})
⊂ K ∪

{

x+ u(x) ν(x) : x ∈Mk

}

.

This proves (3.6), so that the proof of (3.3) is completed by showing that

M ∪
{

x+ u(x) ν(x) : x ∈M
}

⊂ Ω ∩ ∂F , (3.7)

Σ \ ∂E ⊂ Ω ∩ ∂F , (3.8)

Ω ∩ ∂E ⊂ Ω ∩ ∂F . (3.9)

Proof of (3.7): Since M0 ∩ cl (E) = ∅, M1 ⊂ E, and u(x) < dist(x, ∂E) for every x ∈ M ,
by (3.4) we find

Φ
(

M0 × [0, 1]
)

∩ cl (E) = ∅ , Φ
(

M1 × [0, 1]
)

⊂ E . (3.10)

7



By (3.4) and (3.10) we find A0 ∩ cl (E) = ∅ and A1 ⊂ E, so that
(

(

∂A0

)

\ cl (E)
)

∪
(

E ∩ ∂A1

)

⊂ ∂F .

Again by (3.4) and (3.10) we have

Φ(M0 × {0, 1}) ⊂ ∂A0 \ cl (E) , Φ(M1 × {0, 1}) ⊂ E ∩ ∂A1 , (3.11)

and (3.7) follows by (3.5) and (3.11). Proof of (3.8): Since M1 = (K \ Σ) ∩ E and Σ has
empty interior in K, we find that cl (M1) ∩ E = K ∩ E. At the same time, M ⊂ Ω ∩ ∂F
gives M1 ∩ E ⊂ E ∩ ∂F and thus cl (M1) ∩E ⊂ E ∩ ∂F : hence,

Σ ∩ E ⊂ K ∩ E = cl (M1) ∩ E ⊂ Ω ∩ ∂F ;

similarly, M0 = (K \ Σ) \ cl (E) implies cl (M0) \ cl (E) = K \ cl (E), while M ⊂ Ω ∩ ∂F
gives cl (M0) \ cl (E) ⊂ (∂F ) \ cl (E), hence

Σ \ cl (E) ⊂ K \ cl (E) ⊂ (∂F ) \ cl (E) ,

which combined with Σ ⊂ K ⊂ Ω gives Σ \ cl (E) ⊂ Ω ∩ ∂F . Proof of (3.9): since F and
E coincide in the complement of cl (A0) ∪ cl (A1), we have

Ω ∩ ∂E \
(

cl (A0) ∪ cl (A1)
)

= Ω ∩ ∂F \
(

cl (A0) ∪ cl (A1)
)

⊂ Ω ∩ ∂F .
Let y ∈ Ω∩∂E∩cl (A1): by (3.10), y 6∈ Φ(M1×[0, 1]) while A1 = Φ(M1×(0, 1)), so that y is
in the closure ofM1, and thus ofM , relatively to K. In particular, y ∈ Ω∩cl (M) ⊂ Ω∩∂F
thanks to M ⊂ Ω ∩ ∂F . Similarly, we can show that Ω ∩ ∂E ∩ cl (A0) ⊂ Ω ∩ ∂F and thus
prove (3.9).

Step two: By (3.2) and (3.3) we immediately deduce all the conclusions except (3.1). To
prove (3.1) we first notice that thanks to (3.3)

Hn(Ω ∩ ∂F ) ≤ Hn(K) +Hn
(

{

x+ u(x) ν(x) : x ∈M
}

)

. (3.12)

Since dist(x,Σ ∪ ∂E ∪W ) > 0, ρ(x) > 0, and ‖AM‖(x) < ∞ for every x ∈ M , we find
that the sets

Mη =
{

x ∈M : u(x) = η
}

=
{

x ∈M : dist(x,Σ∪∂E∪W ) ≥ 2η , ρ(x) ≥ η

δ
, ‖AM‖(x) ≤ δ

η

}

are increasingly converging to M as η → 0+. Moreover, x 7→ x+ u(x) ν(x) = x+ η ν(x) is
smooth on Mη, so that the area formula gives

Hn
(

{

x+ u(x) ν(x) : x ∈Mη

}

)

=

ˆ

Mη

n
∏

i=1

|1 + η κi|

≤ (1 + δ)n Hn(Mη) ≤ (1 + δ)n Hn(M) ,

(3.13)

where κi are the principal curvatures of M with respect to ν. In the limit as η → 0+, the
sets Φ(Mη×{1}) = {x+u(x) ν(x) : x ∈Mη} are increasingly converging to Φ(M ×{1}) =
{x+ u(x) ν(x) : x ∈M}, so that (3.12) and (3.13) yield

lim sup
η→0+

Hn(Ω ∩ ∂F ) ≤ Hn(K) + (1 + δ)n Hn(M) . (3.14)

Finally, (3.1) follows from (3.14) once we observe that M = K \ (Σ ∪ ∂E) ⊂ K \ ∂∗E, so
that

Hn(K) +Hn(M) = Hn(Ω ∩ ∂∗E) +Hn(K \ ∂∗E) +Hn(M)

≤ Hn(Ω ∩ ∂∗E) + 2Hn(K \ ∂∗E) = F(K,E) ,

as required. �
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Proof of Theorem 2.9. Let (K,E) ∈ K be a generalized minimizer of ψ(ε) satisfying the
exterior collapsing condition K \ cl (E) 6= ∅. The goal is to show that the Lagrange
multiplier λ appearing in (2.10) must be negative. We introduce the notation

Qν
r (x) :=

{

y ∈ R
n+1 : |(x− y) · ν| < r ,

∣

∣

∣
(x− y)− [(x− y) · ν] ν

∣

∣

∣
< r

}

, (3.15)

Dν
r (x) :=

{

y ∈ R
n+1 : |(x− y) · ν| = 0 , |x− y| < r

}

, (3.16)

for the cylinder Qν
r (x) with axis along ν ∈ S

n, center at x, radius r and height 2 r, and for
its midsection Dν

r (x).

First recall from [KMS20a, Formula (3.24)] that the measure Hn K satisfies a uniform
lower density estimate, in the sense that there is a constant c0(n) > 0 such that if x ∈ K
then Hn(K ∩Br(x)) ≥ c0 r

n for every Br(x) ⊂⊂ Ω. The above estimate applied with x ∈
K\cl (E) and 0 < r < min{dist(x, ∂Ω),dist(x, cl (E))} implies that Hn(K\cl (E)) > 0. By
Theorem 2.4-(ii), there exists B2 r1(x1) ⊂⊂ Ω \ cl (E) with x1 ∈ K such that K ∩B2 r1(x1)
is a smooth embedded minimal surface. Let us set

Q1 = Qν1
r1(x1) , D1 = Dν1

r1 (x1) ,

where ν1 is a unit normal to K at x1, and observe that Q1 ⊂ B2 r1(x1). Upon further
decreasing the value of r1, there exists a smooth solution to the minimal surfaces equation
u1 : cl (D1) → R such that

K ∩ cl (Q1) =
{

z + u1(z) ν1 : z ∈ cl (D1)
}

, max
cl (D1)

|u1| ≤
r1
2
. (3.17)

Next we pick a smooth function v1 : cl (D1) → R with

v1 = 0 on ∂D1 , v1 > 0 on D1 ,

ˆ

D1

v1 = 1 , (3.18)

and for t > 0 we define an open set Gt
1 by

Gt
1 =

{

z + h ν1 : z ∈ D1 , u1(z) < h < u1(z) + t v1(z)
}

. (3.19)

For t sufficiently small (depending only on r1 and on the choice of v1) we have that G
t
1 ⊂ Q1

with

∂Gt
1 ∩ ∂Q1 = K ∩ ∂Q1 =

{

z + u1(z) ν1 : z ∈ ∂D1

}

, (3.20)

and

K ∩ cl (Q1) ⊂ ∂Gt
1 . (3.21)

Moreover we easily see that

|Gt
1| = t , Hn(∂Gt

1) = Hn(Q1 ∩ ∂Gt
1) = 2Hn(K ∩Q1) + O(t2) as t→ 0+ , (3.22)

where we have used
´

D1
v1 = 1, v1 = 0 on ∂D1, and the fact that u1 solves the minimal

surfaces equation. Next, we perform an analogous construction at a point x2 ∈ Ω ∩ ∂∗E,
taking once again advantage of Theorem 2.4(ii). More precisely, if we let ν2 denote the
exterior unit normal vector to ∂∗E at x2, we find a cylinder Q2 = Qν2

r2 (x2) with mid-section
D2 = Dν2

r2 (x2) and with dist(Q1, Q2) > 0, and a smooth function u2 : cl (D2) → R with

E ∩ cl (Q2) =
{

z + h ν2 : z ∈ cl (D2) ,−r2 ≤ h < u2(z)
}

, (3.23)

K ∩ cl (Q2) = ∂E ∩ cl (Q2) =
{

z + u2(z) ν2 : z ∈ cl (D2)
}

, (3.24)

and

−div
( ∇u2
√

1 + |∇u2|2
)

= λ on D2 , max
cl (D2)

|u2| ≤
r2
2
. (3.25)
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Gt

1

(Kt, Et)

(K,E)

Gt

2

Figure 3.2. The competitors (Kt, Et) used in proving that if exterior collapsing

occurs for (K,E), then the Lagrange multplier λ is non-positive. Multiplicity two

regions are depicted in bold, the sets E and Et in gray. The competitor (Kt, Et)

is obtained by adding a volume t near a point of K \ cl (E) by bulging one of the

two available sheets, at an area cost of O(t2) (as K \ cl (E) is minimal); and by

restoring the total volume by pushing inwards E at a point in ∂∗E, at an area

cost of −λ t+O(t2).

We choose a smooth function v2 : cl (D2) → R with

v2 = 0 on ∂D2 , v2 > 0 on D2 ,

ˆ

D2

v2 = 1 , (3.26)

and then define an open set Gt
2 by setting

Gt
2 =

{

z + h ν2 : z ∈ D2 , u2(z)− t v2(z) < h < u2(z)
}

. (3.27)

For t small enough (depending only on r2 and on the choice of v2) we have that G
t
2 ⊂ E∩Q2,

with
∂Gt

2 ∩ ∂Q2 = K ∩ ∂Q2 =
{

z + u2(z) ν2 : z ∈ ∂D2

}

. (3.28)

Furthermore, if we let Y denote the closed set

Y = {z + (u2(z) − tv2(z)) ν2 : z ∈ cl (D2)} , (3.29)

it is easily seen that for t < t0

|Gt
2| = t , Hn(Y ) = Hn(Y ∩Q2) = Hn(∂E ∩Q2)− λ t+O(t2) , (3.30)

where we have used
´

D2
v2 = 1, v2 = 0 on ∂D2, and (3.25).

Now set

Kt :=
(

K \
(

Q1 ∪Q2

)

)

∪ ∂Gt
1 ∪ Y , (3.31)

Et :=
(

E \ cl (Gt
2)
)

∪Gt
1 ; (3.32)

see Figure 3.2. We claim that the following holds:

Kt \Q2 ⊃ K \Q2 , (3.33)

∂Et ∩Ω \ (cl (Q1) ∪ cl (Q2)) = ∂E ∩ Ω \ (cl (Q1) ∪ cl (Q2)) , (3.34)

∂Et = ∂
[

E \ cl (Gt
2)
]

∪ ∂Gt
1 , (3.35)

∂Et ∩ cl (Q1) = ∂Gt
1 , (3.36)

∂Et ∩ cl (Q2) = Y (3.37)
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The inclusion in (3.33) follows fromK\Q2 ⊂ K\(Q1∪Q2)∪∂Gt
1; (3.34) is a consequence

of Et \ (cl (Q1) ∪ cl (Q2)) = E \ (cl (Q1) ∪ cl (Q2)) together with the observation that Ω \
(cl (Q1)∪cl (Q2)) is an open set; to prove (3.35), it suffices to observe that ∂

[

E \ cl (Gt
2)
]

⊂
cl (E) whereas ∂Gt

1 ⊂ cl (Q1) ⊂ B2 r1(x1) ⊂⊂ Ω \ cl (E); (3.36) then follows immediately
from (3.35). To prove ∂Et ∩ cl (Q2) ⊂ Y (the other inclusion being trivial), we proceed
as follows. First, we deduce from (3.35) that ∂Et ∩ cl (Q2) = ∂

[

E \ cl (Gt
2)
]

∩ cl (Q2).

Then, we notice that ∂
[

E \ cl (Gt
2)
]

∩ ∂Q2 ⊂ K ∩ ∂Q2 ⊂ Y . Finally, suppose that x ∈
∂
[

E \ cl (Gt
2)
]

∩Q2, so that there exists a sequence {xj}∞j=1 such that xj ∈ E \cl (Gt
2)∩Q2

and xj → x. In particular, we have xj = zj + hj ν2, where zj ∈ D2 and −r2 < hj <
u2(zj) − tv2(zj). By compactness, and using the continuity of the functions u2 and v2,
we have that, possibly along a (not relabeled) subsequence, zj → z∞ ∈ cl (D2), and
hj → h∞ ∈ [−r2, u2(z∞)− tv2(z∞)], so that x = z∞ + h∞ ν2. But then it has to be
h∞ = u2(z∞) − t v2(z∞), otherwise x ∈ E \ cl (Gt

2) ⊂ Et. This shows that x ∈ Y , thus
completing the proof of (3.37).

Next, we claim that (Kt, Et) ∈ K, and that

|Et| = |E| = ε , F(Kt, Et) = F(K,E) − λ t+O(t2) . (3.38)

First, it is clear that Et ⊂ Ω is open, and that Kt ⊂ Ω is a relatively closed and Hn-
rectifiable set in Ω. Moreover, Kt is C-spanning W . To see this, first observe that by
(3.33) any curve γ ∈ C with γ ∩ (K \ Q2) 6= ∅ must intersect Kt. If, on the other hand,
γ∩(K \Q2) = ∅, then necessarily γ∩K∩Q2 6= ∅ because K is C-spanningW . In turn, this
implies that γ ∩ ∂E ∩ cl (Q2) 6= ∅, and thus also γ ∩ Y 6= ∅ as a consequence of [KMS20a,
Lemma 2.3] since Y is a diffeomorphic image of ∂E∩cl (Q2). Finally, Ω∩∂Et ⊂ Kt follows
immediately from (3.34), (3.36), and (3.37). The volume identity in (3.38) is deduced from
the volume identities in (3.22) and (3.30) given that Gt

1 and E are disjoint. We can then
proceed with the proof of the second equation in (3.38). Using the analogous of (3.34)
for the reduced boundary together with (3.36) and (3.37), and then applying (3.22) and
(3.30) we obtain

Hn(Ω ∩ ∂∗Et) = Hn(Ω ∩ ∂∗E \ (cl (Q1) ∪ cl (Q2))) +Hn(∂Gt
1) +Hn(Y )

= Hn(Ω ∩ ∂∗E) + 2Hn((K \ ∂∗E) ∩Q1)− λ t+O(t2) ,
(3.39)

whereas

2Hn(Kt \ ∂∗Et) = 2Hn((K \ ∂∗E) \Q1) . (3.40)

The second part of (3.38) is then obtained by summing (3.39) and (3.40).

Finally, we claim that there exists a closed set Σt ⊂ Kt with empty interior relatively
to Kt and such that Kt \ Σt is a smooth orientable hypersurface in Ω. Indeed, in the
construction of Kt from K, we may have increased Σ, at most, by adding to it the closed
sets {z + uk(z) νk : z ∈ ∂Dk}, which have definitely empty interiors relatively to Kt.

Therefore we can apply Lemma 3.2 to (Kt, Et) to find a sequence {Fj}j ⊂ E such that
Ω ∩ ∂Fj is C-spanning W , with

Fj → Et in L1(Rn+1) , lim sup
j→∞

Hn(Ω ∩ ∂Fj) ≤ F(Kt, Et) . (3.41)

Since |Fj | → |Et| = ε as j → ∞ and ψ is lower semicontinuous on (0,∞) (see [KMS20a,
Theorem 1.9]), we conclude that

F(K,E) = ψ(ε) ≤ lim inf
j→∞

ψ
(

|Fj |
)

≤ lim sup
j→∞

Hn(Ω ∩ ∂Fj)

≤ F(Kt, Et) = F(K,E) − λ t+O(t2) ,

thanks to (3.38). By letting t → 0+ we find that it must be λ ≤ 0, thus completing the
proof. �
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4. Proof of Theorem 2.10

Proof of Theorem 2.10. Let (K,E) ∈ K be such that

λ

ˆ

∂∗E
X · νE dHn =

ˆ

∂∗E
divK X dHn + 2

ˆ

K\∂∗E
divK X dHn , (4.1)

with λ ≤ 0 for every X ∈ C1
c (R

n+1;Rn+1) with X · νΩ = 0 on ∂Ω. We then prove that
K ⊂ conv(W ) if λ = 0, and K ⊂ conv(W ∩ cl (K)) if λ < 0. The first claim is classical:
indeed, if (4.1) holds with λ = 0 then the varifold V supported on K with multiplicity
θ = 1 on Ω∩∂∗E and θ = 2 on K \∂∗E is stationary in Ω = R

n+1\W . The result is then a
straightforward consequence of [Sim83, Theorem 19.2]. We are left with the case λ < 0. In
order to ease the notation, we set Z := conv(W ∩cl (K)), and, denoting u(x) := dist(x,Z),
we consider the test field

X(x) := χ(x) γ(u(x))∇u(x) , (4.2)

where γ is a non-negative smooth function on [0,∞) with γ = 0 on an interval [0, 2η) and
γ′ ≥ 0 everywhere, and χ is a smooth cut-off function with 0 ≤ χ ≤ 1 and

χ(x) =

{

1 on Iσ(K \ Uη(Z))

0 on Iσ(W ) ∪ (Rn+1 \BR(0)) .

Here 0 < σ ≪ η, and BR(0) is a large ball containing K ∪W . Observe that the function
χ is well-defined. Indeed, the definition of Z implies that the set K \ Uη(Z) is closed in
R
n+1, so that dist(K \ Uη(Z),W ) ≥ 3σ > 0, and thus the closed sets Iσ(K \ Uη(Z)) and

Iσ(W ) are disjoint. Since X = 0 both in a neighborhood of W and outside of BR(0), X is
admissible in (4.1). Furthermore,

X(x) = γ(u(x))∇u(x) in a neighborhood of K . (4.3)

Hence, by |∇u| = 1 we compute

∇X = γ′(u)∇u⊗∇u+ γ(u)∇2u in a neighborhood of K ,

divX = γ′(u) + γ(u)∆u in a neighborhood of K ,

divKX = γ′(u) (1 − (∇u · ν)2) + γ(u)
(

∆u−∇2u[ν, ν]
)

Hn-a.e. on K ,

where ν(x) is a unit normal vector to K at x, for every x ∈ K such that the approximate
tangent plane TxK exists. Since u is convex (distance from a convex set) we have ∆u ≥ 0,
∆u−∇2u[ν, ν] ≥ 0, and thus divKX ≥ 0 Hn-a.e. on K. By [Mag12, Chapter 16], for a.e.
η > 0, E \ Iη(Z) is a set of finite perimeter with

∂∗(E \ Iη(Z)) =
(

(∂∗E) \ Iη(Z)
)

∪
(

E ∩ ∂∗Iη(Z)
)

modulo Hn ,

and

νE\Iη(Z) = νE , Hn-a.e. on (∂∗E) \ Iη(Z) ,
νE\Iη(Z) = −∇u , Hn-a.e. on E ∩ ∂∗Iη(Z) .

By (4.1), divKX ≥ 0, and by applying the divergence theorem on E \ Iη(Z) we find that

0 ≤ λ

ˆ

∂∗E
X · νE = λ

ˆ

(∂∗E)\Iη(Z)
(γ(u)∇u) · νE

= λ
{

ˆ

E\Iη(Z)
div (γ(u)∇u) −

ˆ

E∩∂∗ Iη(Z)
(γ(u)∇u) · (−∇u)

}

= λ
{

ˆ

E\Iη(Z)
γ′(u) + γ(u)∆u+

ˆ

E∩∂∗ Iη(Z)
γ(u)

}
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Now we use the condition λ < 0. We have
ˆ

E\Iη(Z)
γ′(u) + γ(u)∆u+

ˆ

E∩∂∗Iη(Z)
γ(u) = 0 ,

which implies |E\Iη(Z)| = 0 by the arbitrariness of γ, and thus E ⊂ Z by the arbitrariness
of η. Applying again (4.1) we now find

0 =

ˆ

∂∗E
divKX + 2

ˆ

K\∂∗E
divKX = 2

ˆ

K\∂∗E
divKX

which now gives Hn(K \ Iη(Z)) = 0 for every η > 0. Thus K ⊂ Z, as claimed. �

5. Removing assumption (A4)

In this final section we show that all the results in [KMS20a] and in the present paper
hold without the need of assuming (A4) from Assumption 2.1. We notice that (A4)
corresponds to (1.12) in [KMS20a].

Theorem 5.1. Theorem 1.4, Theorem 1.6 and Theorem 1.9 from [KMS20a] and Theorem
2.6, Theorem 2.8 and Theorem 2.9 from this paper hold under the sole assumption that W
and C satisfy the conditions (A1), (A2) and (A3) stated in Assumption 2.1.

Proof. As noticed in the introductory remarks to the proof of Theorem 1.4 from [KMS20a],
see section 3 of that paper, assumption (A4) (equivalently, [KMS20a, (1.12)]) is only used
in step one of [KMS20a, Proof of Theorem 1.4] to show that

ψ(ε) ≤ 2 ℓ+C εn/(n+1) . (5.1)

Indeed, (5.1) is proved in [KMS20a] by considering a minimizer S of ℓ, and then by using
as competitors in ψ(ε) the open sets, corresponding to a sequence ηj → 0+, obtained
by first taking open ηj-neighborhoods Fj of S in Ω (contributing in the limit j → ∞ to
the factor 2 ℓ in (5.1)), and then by adding to these neighborhoods some disjoint balls of

volume ε − |Fj | (whose energy contributions are controlled by C εn/(n+1)). The role of
assumption (A4) is ensuring that the boundaries Ω∩∂Fj are C-spanningW , and thus that
these open set are admissible competitors for ψ(ε).

We can avoid this difficulty if, rather than working with η-neighborhoods of S, we
exploit Lemma 3.2 to work with “unilateral” open neighborhoods of S, which still contain
S in their boundary, and thus are automatically C-spanning. More precisely, let us recall
that if S is a minimizer of ℓ, then there exists an Hn-negligible and closed subset Σ∗ of
S such that S \ Σ∗ is a smooth hypersurface (indeed, S is an Almgren minimizer, and
therefore it is Hn-a.e. everywhere smooth by the main result in [Alm76]). By Lemma 3.1,
we can find a closed meager subset Σ of S (with Σ∗ ⊂ Σ) with the property that S \ Σ is
a smooth orientable hypersurface. Therefore we can apply Lemma 3.2 with

K = S , E = ∅ ,
to find, for every η, δ ∈ (0, 1), an open subset F of Ω such that ∂F is Hn-rectifiable,
S ⊂ Ω ∩ ∂F , and

lim sup
δ→0+

lim sup
η→0+

Hn
(

Ω ∩ ∂F
)

≤ F(S, ∅) = 2 ℓ .

Let {Fj} correspond to δj → 0+ and ηj → 0+ so that lim supj Hn(Ω ∩ ∂Fj) ≤ 2 ℓ, and

notice that, by construction, |Fj | → 0+. We can thus define Ej = Fj ∪ Brj(p) where
rj is such that |Brj (p)| = ε − |Fj | and where p is such that cl [Brj (p)] is disjoint from
W ∪ cl (Fj): the resulting sets are competitors for ψ(ε), and their existence implies the
validity of (5.1). �
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