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Rapid identification of newly emerging or circulating viruses is an important first step
toward managing the public health response to potential outbreaks. A portable virus
capture device, coupled with label-free Raman spectroscopy, holds the promise of fast
detection by rapidly obtaining the Raman signature of a virus followed by a machine
learning (ML) approach applied to recognize the virus based on its Raman spectrum,
which is used as a fingerprint. We present such an ML approach for analyzing Raman
spectra of human and avian viruses. A convolutional neural network (CNN) classifier
specifically designed for spectral data achieves very high accuracy for a variety of virus
type or subtype identification tasks. In particular, it achieves 99% accuracy for classify-
ing influenza virus type A versus type B, 96% accuracy for classifying four subtypes of
influenza A, 95% accuracy for differentiating enveloped and nonenveloped viruses, and
99% accuracy for differentiating avian coronavirus (infectious bronchitis virus [IBV])
from other avian viruses. Furthermore, interpretation of neural net responses in the
trained CNN model using a full-gradient algorithm highlights Raman spectral ranges
that are most important to virus identification. By correlating ML-selected salient
Raman ranges with the signature ranges of known biomolecules and chemical func-
tional groups—for example, amide, amino acid, and carboxylic acid—we verify that our
ML model effectively recognizes the Raman signatures of proteins, lipids, and other
vital functional groups present in different viruses and uses a weighted combination of
these signatures to identify viruses.

Raman spectroscopy j interpretable machine learning j virus identification

Viral outbreaks can spread very quickly through various populations and lead to epi-
demics and, in some cases, pandemics. Seasonal influenza (FLU) takes an estimated
389,000 lives globally each year (1), and the SARS-CoV-2 pandemic that began in late
2019 has caused more than 167 million infections and over 3.46 million reported
deaths globally (2). These infections also come at a tremendous cost to the global econ-
omy and threaten to overwhelm healthcare systems. Therefore, it is critically essential
to predict, monitor, and control virus infection outbreaks in a timely manner and by
accurately identifying emerging virus strains.
In the case of an outbreak, rapid identification and detection is often the first step

for an effective public health response (3). Once a pathogen has been identified, PCR
diagnostic testing is often the gold standard to detect viruses, as it provides high sensi-
tivity and high specificity. However, the turnaround time, often of several hours, and
the fact that it requires targeted detection makes it a limited approach for a rapid
response. Rapid tests based on antigen detection have a quick turnaround time of a few
minutes, but sensitivity is often low. The ideal setup for rapid diagnostics as well as
early detection of new circulating virus types, subtypes, or antigenic variants to inform
surveillance and vaccine development is a platform that employs little preprocessing of
the samples and has fast, unbiased, and sensitive detection capabilities.
A handheld device that could be taken into the field or clinics would be extremely

powerful and would quickly become the standard approach for virus surveillance. The
prototype of such a portable device, known as VIRRION (Virus capture with Rapid
Raman spectroscopy detection and Identification), was previously proposed (4). It is based
on a microfluidic platform containing carbon nanotube (CNT) arrays for label-free cap-
ture and enrichment of viruses from clinical samples coupled with an optical detection
technology using surface-enhanced Raman spectroscopy that is sensitive to surface pro-
teins and other components of viruses. The input to such a device can be virus cultures,
saliva, nasal washes, or even exhaled breath. The output of the device is the Raman spectra
of captured viruses. Combining the device with advanced machine learning (ML) models
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that can classify these spectra to identify the type, subtype, and
strain of captured viruses promises an innovative system that can
quickly detect, track, and monitor viral outbreaks in real time.
ML has been successfully applied to Raman spectroscopy

analysis in various application scenarios, such as cancer detec-
tion (5) and bacteria classification (6). One limitation of
current ML-based spectra analysis methods is the lack of trans-
parency in the decision-making process and lack of interpreta-
tion of the ML models. Although high accuracy is often
reported, the trained ML models, especially those based on
deep learning (1), are not transparent and do not provide
insight into why and how such accuracy is achieved. One
approach to enhance transparency is to develop ML models
that highlight salient features used for virus identification and
then correlate such ML-selected features (e.g., Raman wave-
number ranges) with the Raman signatures of biomolecules
known to exist in viruses such as proteins and lipids (7, 8). A
previous study has shown that FLU viruses can be identified by
Raman signals generated by surface proteins and lipids (9).
Another study on SARS-CoV-2 detected peaks corresponding
to the spike protein using Raman spectroscopy (10). However,
these existing studies lack quantitative analyses and peak-
matching to functional groups (11–13).
In this work, we aim to develop a highly accurate and inter-

pretable ML framework for virus identification based on
Raman spectra. We propose a one-dimensional (1D) convolu-
tional neural network (CNN) that is specifically designed to
extract multiscale features from 1D Raman spectra and perform
classification based on the extracted features. Compared to
existing ML models, our 1D CNN model is made more inter-
pretable for Raman spectra analysis by incorporating a full-
gradient algorithm that calculates a “feature importance map,”
which shows the relative importance of wavenumbers in recog-
nizing the corresponding virus types of input spectra. When
tested on our dataset of virus Raman spectra, the CNN model
achieves at least 95% accuracy for classifying different types of
FLU virus and different subtypes of influenza A (FLUA) virus,
differentiating enveloped from nonenveloped viruses, and dif-
ferentiating avian coronavirus (infectious bronchitis virus
[IBV]) from other avian viruses. The wavenumbers (or Raman
features) highlighted by the CNN-calculated feature impor-
tance map can also inform us on what virus features Raman
spectroscopy detects and ML employs for identification. To
better understand the molecular basis of Raman detection, we
gathered information from the literature on Raman signatures
of protein-related functional groups such as amide, amino acid,
carboxylic acid, lipids, and lipid-related functional groups such
as aliphatic chains (7, 8, 14) and collected data in our own set
of experiments using protein domains of interest. We find that
these known signature ranges correlate well with the key
Raman frequency ranges located by our CNN-based ML
model. We also designed a quantifiable metric to measure the
level of correlation between the ML-selected ranges and the sig-
nature ranges of specific biomolecules.

Results

A schematic demonstration of the VIRRION platform (4) for
label-free capture and enrichment of viruses is shown in Fig. 1A.
We used the device to acquire a dataset consisting of Raman
spectra of three groups of RNA viruses, including human respira-
tory viruses (FLUA H1N1 and H3N2, influenza B [FLUB], rhi-
novirus, respiratory syncytial virus [RSV]), avian respiratory
viruses (FLUA H5N2 and H7N2, IBV, reovirus), and human

enteroviruses (coxsackievirus B type 1 and 3 [CVB1, CVB3],
enteroviruses EV70 and EV71). Details of the virus sample prep-
aration procedures can be found in the Virus samples preparation
subsection under the Materials and Methods section. ML experi-
ments were then conducted using this dataset of Raman spectra
of viruses. Fig. 1B shows the architecture of our proposed 1D
CNN (1D-CNN) for classification of virus spectra and illustrates
the idea that our ML framework can be applied to interpret
Raman wavenumber ranges important to ML classification with
respect to their correlation with Raman peak ranges of various
biomolecules existing in viruses.

Virus Raman Spectra Data Preprocessing and Augmentation.
Before feeding the Raman spectra into ML classifiers as input, it
is essential to employ a few preprocessing steps to reduce noise
in the spectra that could potentially undermine the classification
performance of trained ML models. One important preprocess-
ing step is baseline correction. We applied the asymmetric least
squares smoothing algorithm (15) for baseline correction on
each Raman spectrum for all types and subtypes of viruses. In
Fig. 2A, we show human FLUA and FLUB example spectra
before and after baseline correction. For illustration of the spec-
trum data distribution after baseline correction, we visualize the
FLUA and FLUB spectra using a t-distributed stochastic neigh-
bor embedding (t-SNE) (16) plot (Fig. 2B). In SI Appendix, Fig.
S1, we further compare the t-SNE plots before and after baseline
correction for all spectra of all virus types in our entire dataset.
From the comparison, we observe that applying baseline correc-
tion makes the spectra of different viruses more distinguishable,
which makes it easier to achieve high accuracy in virus classifica-
tion tasks. More details about the baseline correction algorithm
and parameters used for generating the t-SNE plots are explained
in the Virus Raman spectra preprocessing subsection under the
Materials and Methods section.

In Fig. 3, we show the number of Raman spectra for the
human respiratory viruses, avian viruses, and human enterovi-
ruses in our dataset. Considering that the number of spectra
varies among viruses (indicating the presence of data imbal-
ance), we adopted a data augmentation strategy by random
oversampling (17). For any classification task, the oversampling
augmentation is implemented for virus types with fewer spectra
in the training set by bootstrapping, a statistical technique that
samples data with replacement (18), so that after the augmenta-
tion, the number of spectra of every virus type matches that of
the virus type with the largest number of training spectra for
the task.

CNN for Classification of Virus Raman Spectra. To perform virus
identification from Raman spectra, we compared the performan-
ces of several different ML models including XGBoost (19) and
CNN. XGBoost is a popular ML method similar to the Random
Forest (20) method. Instead of an ensemble of multiple decision
trees in a random forest, XGBoost uses a boosting style ensemble
that iteratively builds more decision trees in the learning process.
CNN, in comparison, has stronger capability in learning feature
representations. However, widely used two-dimensional (2D)
convolutional kernels are not appropriate for sequence-like data
such as Raman spectra. To this end, we designed a 1D-CNN to
extract features from Raman spectra and perform accurate virus
identification. Fig. 1B demonstrates the architecture of our pro-
posed 1D-CNN for virus classification using spectra. Inputs to
both 1D-CNN and XGBoost are Raman spectra in the format of
1D vectors. Details about the architecture and training process of
our CNN classifier can be found in the CNN architecture and
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A

  Input vector
  Conv Block

      (with 1x1 kernel)
  Conv Block

       (with 3x3 kernel)
 Conv Block

     (with 3x3 kernel)
  Conv Block

     (with 3x3 kernel)
Notation: 
       Conv Block: 
         1D Conv layer + 
          BatchNorm layer + 
          ReLU layer 

① ②② ③ ④ ⑤

Raman Spectra

Class labels

Backpropagation

Upsampling

Feature maps

UpsamplingUpsampling

B

Fig. 1. (A) Schematics showing the nitrogen-doped multiwall CNTs device encapsulated in polydimethylsiloxane used to enrich viruses (Top Left). The viruses
are enriched between CNTs where the Au nanoparticles are predeposited. Raman spectra are then collected from the virus-enriched samples (Top Right).
A scanning electron microscope image (Bottom Left) of a sample shows CNTs, Au nanoparticles, and trapped viruses (purple colored). Raman spectra from
different virus samples are shown (Bottom Right) (FLUB in red, FLUA H1N1 in green, and FLUA H3N2 in blue). (B) The CNN architecture for virus identification
and the process of extracting Raman feature maps show important Raman signature ranges. The feature maps extracted are class specific, demonstrating
the significant Raman ranges for identifying different virus types (or subtypes, depending on the classification task) in different colors.
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training details subsection under the Materials and Methods sec-
tion. For experiments using XGBoost, we kept the built-in
default setting of XGBoost (19).
We measured classification performance using three metrics

(accuracy, sensitivity, and specificity). The mathematical defini-
tions for these metrics are provided in SI Appendix, Table S1.
Comparing CNN and XGBoost, our 1D-CNN model achieved
better performance in all classification tasks, including virus iden-
tification from all possible virus types, differentiating enveloped
from nonenveloped viruses, classifying different types of human
respiratory viruses, differentiating human FLUA from FLUB
viruses, identifying the subtype of FLUA viruses, and classifying
avian viruses; Fig. 4 summarizes the classification results. The

actual metric numbers for each virus group and all classification
experiments are included in SI Appendix, Figs. S2–S7. Among all
virus types and subtypes, the CNN classifier achieved the highest
identification accuracies for IBV coronavirus and FLUA virus,
around 98% and 97%, respectively (SI Appendix, Fig. S8).

Interpretation of Salient Raman Ranges Selected by ML. While
CNN achieves promising classification results, NNs including
CNNs are known to be “black boxes” and often do not provide
sufficient explanation for the learned feature representations
(21). Recent advances in interpretability of NN models have
alleviated this concern by offering numerous ways of visualizing
the weights and features within the NN layers (22–27). Here,

A B

Wavenumber (cm^-1)

Wavenumber (cm^-1)

Fig. 2. (A) Sample Raman spectra before and after baseline correction. (B) T-SNE plot of FLUA subtypes (H1N1, H3N2, H5N2, H7N2) and FLUB after baseline
correction.

Enterovirus
Avian 
virus 

Human
Respiratory 

virus

Fig. 3. Number of spectra in our dataset for human respiratory viruses, avian viruses, and human enteroviruses. H1N1, H3N2, H5N2, and H7N2 are sub-
types of the FLUA virus; FLUB, influenza B virus; Rhino, rhinovirus; RSV, respiratory syncytial virus; IBV, infectious bronchitis virus; Reo, reovirus; CVB1 and
CVB3, coxsackievirus B type 1 and 3; EV70 and EV71, enteroviruses. Numbers above each column indicate the number of spectra collected for each virus.
These spectra all have ground truth labels, which are the virus type/subtype. Note that for classification tasks, we apply data augmentation to add more
samples to virus classes that have fewer spectra samples so that for each classification task, every virus type has an equal number of spectra samples in
the training set.
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we propose a method of interpreting our 1D-CNN decision-
making process by calculating a “feature importance map,”
which shows the relative importance of wavenumbers in recog-
nizing the corresponding virus types of input spectra. The
wavenumbers (or features) with the highest importance values
can tell us what virus features Raman spectroscopy detects that
ML uses to identify the viruses. The calculation of the feature
importance map is based on a full-gradients algorithm (28), as
illustrated in the overview diagram Fig. 1B and detailed in the
Calculation of Raman feature importance maps using CNN
responses subsection under the Materials and Methods section.
The feature importance map allows us to identify Raman

signature ranges deemed most important by the CNN classi-
fier for virus identification. We can then correlate these ML-
selected salient Raman ranges with the signature peak ranges of
known biomolecules and chemical functional groups such as
lipids, proteins, nucleic acids, amino acids, and amide to seek
insights into what differences in biomolecular composition
among viruses are captured in the Raman spectra and then
used by ML to recognize viruses.
To measure the level of correlation between the ML-selected

important wavenumber ranges and Raman peak wavenumber
ranges of a known biomolecule, we propose a quantifiable met-
ric termed “matching score.” It is a ratio with the numerator as
the range of overlapped wavenumbers between ML-determined
important ranges and Raman peak ranges of the biomolecule
and the denominator as the total Raman peak ranges of that

biomolecule (Fig. 5). The higher the matching score, the more
likely the signatures of the biomolecule contribute substantially
to distinguish viruses. Using this quantifiable metric, we can
make some educated guesses about the relative importance of
biomolecules in virus identification tasks. Details of this algo-
rithm for measuring correlation can be found in the Interpret-
able Raman signatures subsection under the Materials and
Methods section.

In Figs. 6–8, we show example feature importance maps
from CNN and their correlation with Raman peak ranges of
biomolecules known to exist in viruses. In choosing which bio-
molecules and functional groups to evaluate, we used prior
knowledge about the composition of the RNA viruses in our
study. Some viruses are enveloped (FLUA and FLUB, IBV
coronavirus, RSV), and some are not (reovirus, enterovirus
CVB1/CVB3/EV70/EV71/PV2, rhino); thus, we included
lipid as one type of biomolecule to evaluate since the envelope
is formed by the cell-surface lipid bilayers. We also included
surface protein-related functional groups and individual amino
acids, such as amide, phenylalanine, and tyrosine. Phenylala-
nine and tyrosine are chosen because of reports that they are
present and important in respiratory viruses (29–33). RNA is
also included because all viruses tested here have RNA
genomes. Details about how we obtained the Raman peak
ranges for the biomolecules and functional groups under con-
sideration are available in the Interpretable Raman signatures
subsection under the Materials and Methods section. Next, we

All 
viruses

Enveloped 
viruses vs. 

Non 
Enveloped

Human 
Respiratory 

viruses

Human 
fluA vs. 
Human 

fluB 
viruses

Influenza 
A

Subtype 
viruses

Avian 
viruses

A B

Fig. 4. (A) The classification performance of our CNN model and the XGBoost model on six experiments: 1) all viruses (classification of all virus types):
avian, enteroviruses, human respiratory viruses; 2) enveloped viruses versus nonenveloped: FLUA and FLUB, IBV coronavirus, and RSV are enveloped, and
reovirus, enterovirus CVB1/CVB3/EV70/EV71/PV2, and rhino are nonenveloped; 3) human respiratory viruses; 4) human FLUA versus human FLUB viruses; 5)
FLUA subtypes; and 6) avian viruses. Three metrics (accuracy, sensitivity, and specificity) are measured for both classification models. Results for all metrics
are obtained by running a 5-fold cross-validation five times for fair comparison (each error bar represents the SD of the corresponding metric score for
each experiment across 5-fold cross-validation in five tests). (B) Accuracy score for every virus type in the all-viruses classification task (each error bar repre-
sents the SD of the corresponding accuracy score for each virus type across 5-fold cross-validation in five tests).

PNAS 2022 Vol. 119 No. 23 e2118836119 https://doi.org/10.1073/pnas.2118836119 5 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

PE
N

N
 S

TA
TE

 U
N

IV
 o

n 
Se

pt
em

be
r 1

6,
 2

02
2 

fr
om

 IP
 a

dd
re

ss
 1

04
.3

9.
7.

21
0.



calculated the matching scores between ML-selected important
Raman ranges and biomolecule peak ranges for various virus
classification tasks.
Enveloped versus nonenveloped virus classification. We did an
experiment to train an ML model to classify enveloped versus
nonenveloped viruses and achieved very high accuracy (94.8%
accuracy; SI Appendix, Fig. S6). This ML model could be used
for fast screening to identify whether a new virus is enveloped
or nonenveloped. In Fig. 6, we show the Raman feature impor-
tance map calculated by this ML model as well as matching
scores between ML-selected important ranges and biomolecular
peak ranges. From the matching score table, one can see that
for this task, lipid is shown to be much more important
(matching score of 51.98%) than protein-related functional
groups (matching scores of 25% and 7.98% for amide I and
amide III, respectively). This is consistent with the difference
between enveloped and nonenveloped viruses, which is that
enveloped viruses have an enclosing phospholipid bilayer,
whereas nonenveloped viruses do not have the phospholipid
bilayer. It is highly likely that the ML model is picking up the
signature ranges of lipid to differentiate enveloped from nonen-
veloped viruses.
Comparison of classification tasks that differentiate various flu
types and subtypes. We trained several ML models to differenti-
ate FLU viruses such as avian FLUA from human FLUA and
human FLUA from human FLUB (Fig. 7 and SI Appendix, Fig.
S5). From the matching score table, we noted that the amide III
range is not important for classifying avian FLUA versus human
FLUA (matching score of 13.16%) but more important when
differentiating human FLUA from human FLUB (matching
score of 73.68%). Lipid is more important when differentiating
avian FLUA from human FLUA but less important when differ-
entiating human FLUA from human FLUB, likely indicating
that the ML model trained for classifying avian FLUA versus
human FLUA is capturing their differences in the envelopes since
the phospholipid bilayer of the human viruses comes from differ-
ent cells than the avian viruses that were isolated in eggs. Also,

the RNA matching score stands out to be higher (60%) when
differentiating human FLUA from human FLUB, compared to
classifying avian FLUA versus human FLUA (40%). In another
experiment, we trained an ML model to differentiate four sub-
types of FLUA, human H1N1 and H3N2, and avian H5N2 and
H7N2 (SI Appendix, Fig. S4). Again, we observe that lipid is
important, whereas amide III is not important when differentiat-
ing the FLUA subtypes.
Classification of avian viruses including IBV coronavirus. We
trained an ML model to differentiate three types of avian
viruses and achieved very high accuracy (99.8%) in identifying
the IBV coronavirus (Fig. 8, and SI Appendix, Fig. S2). This
shows that the Raman spectra of coronavirus have specific sig-
natures that make them easily identifiable when compared to
avian FLU. The proposed technique combining Raman spec-
troscopy and ML could potentially be used for highly reliable
detection and identification of coronaviruses. From the match-
ing score table shown in Fig. 8, one can see that both lipid and
protein peak ranges have high correlation with ML-selected
important Raman ranges for distinguishing IBV coronavirus
from other avian viruses, likely indicating that Raman spectros-
copy and ML are picking up signatures of the spike protein
and receptor binding domains of coronaviruses.
Additional observations about correlation between ML-selected
important Raman ranges and biomolecule peak ranges. When
comparing the matching scores for the experiment classifying
different human respiratory viruses (SI Appendix, Fig. S7) and
the experiment classifying different subtypes of FLUA (SI
Appendix, Fig. S4), we observe that 1) the relative importance of
lipids is higher in the FLUA subtype identification task, and 2)
there is a significant difference in the relative importance of the
amide III range. While amide III is very important in respiratory
virus classification, it is minimally important in FLUA subtype
identification, which could indicate that the spectra of all
subtypes of FLUA are very similar in the amide III range.
Amide III is a signature Raman band in proteins but can be
sensitive to secondary structures, and such a difference of its

Fig. 5. Illustration of the quantifiable matching score calculation leveraging biomolecule peak ranges and important ranges extracted from ML-calculated
feature maps of each virus type (or subtype, depending on the classification task). A threshold of 40th percentile is applied to the ML-calculated feature
importance map so that Raman bands with importance scores below the threshold are discarded, and the remaining wavenumbers above the threshold
are considered as important Raman ranges for identifying the virus based on ML and can then be correlated with biomolecule peak ranges.
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matching scores indicates that the viruses have different surface
proteins (34, 35)—which is, indeed, the case when comparing
different families of viruses—and that the subtypes have slight
differences in their surface proteins—which, again, is the case
since FLUA viruses have hemagglutinin and neuraminidase on
their surfaces. This is consistent with our preliminary findings
about the viruses under study. We also observe that 3) the two
chosen amino acids (phenylalanine and tyrosine) are consistently
important in respiratory virus type or subtype classification, and,
finally, 4) the RNA genome is also generally important for
detecting virus differences by Raman.

Viral Dose Detection Limit. To determine what the viral dose
detection limit of our method was, we conducted a series of dilu-
tion experiments using a flu virus dataset consisting of Raman
spectra of 11 FLU virus strains. Information about this dataset is
given in SI Appendix, Table S2. Around 10,000 spectra were col-
lected for each virus sample at the original undiluted con-
centration. For two strains–A/Indiana/08/2018(H3N2) and
A/Nebraska/14/2019(H1N1)—we collected spectra at different
virus concentrations. The original undiluted viruses were for Indi-
ana/08 at a TCID50 (median tissue culture infectious dose) of
1.45e+07 viruses/mL and an RNA copy number of 1.42e+09/
mL, while Nebraska/14 was at a TCID50 of 2.29e+07/mL and
an RNA copy number of 2.27e+09/mL Increments of 10-fold
dilutions were performed down to 10�6 dilution, which corre-
sponded to fewer than one replicating virus and ∼14 RNA copies

per 10 μL solution for Indiana/08 and fewer than one replicating
virus and ∼23 RNA copies per 10 μL solution for Nebraska/14.
SI Appendix, Table S3, displays the expected number of viruses
and RNA copies in each 10 μL sample solution used to collect
spectra. At each level of dilution, 400 Raman spectra were col-
lected for the corresponding 10 μL solution.

On this dataset, we conducted ML experiments using our
proposed CNN model, as shown in Fig. 1B, in a blind-testing
setting for flu type and subtype classification. Since the two
strains being used for testing the viral dose detection limit,
Indiana/08 and Nebraska/14, are among the 11 strains in the
dataset, we trained our ML model using 9 strains of H1N1,
H3N2, and FluB in SI Appendix, Table S2, excluding these
two testing strains. Then, the spectra of the two testing strains
at different dilution levels were classified using the trained ML
model as previously unseen strains (i.e., not contained in the
training set). The goal was to examine the ML classification
performance for spectra collected at different dilutions and,
thus, infer the detection limit of our approach. The ML classifi-
cation results are shown in SI Appendix, Table S4. We can
observe from the results that our ML model, which was trained
on nine strains (not including the two testing strains) using
spectra collected at the undiluted concentration only, was able
to reliably predict the subtype of the two testing strains using
spectra collected at the undiluted and 10�1, 10�2, 10�3, 10�4,
10�5 dilutions. At 10�6 dilution, however, we start to see
unpredictability; in the case of Indiana/08, the percentage of

Fig. 6. Biomolecule peak ranges, ML-calculated feature importance map, and important Raman ranges (above 40th percentile threshold) for classification
experiments: 1) within enveloped virus types (avian FLUA, IBV coronavirus, human FLUA, human FLUB, RSV); 2) within nonenveloped virus types (enterovirus
[CVB1, CVB3, EV70, EV71, PV2], rhino, reovirus); and 3) between enveloped and nonenveloped viruses. Feature importance maps are extracted from interme-
diate layers of the CNN as described in Fig. 1B. The matching score for each classification experiment is calculated by correlating ML-selected important
ranges with each biomolecule’s known Raman peak ranges. (SI Appendix, Fig. S6 includes matching scores with more functional groups).
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blank spectra among the 400 collected spectra spiked to
90.25%, which means that we had to filter out around 90% of
the spectra in order to correctly classify the case; and for
Nebraska/14, our model mistakenly classified it to FLUB using
spectra collected at 10�6 dilution. Therefore, based on this set
of experiments, the detection limit of our technique in the pre-
sent setup is 10�5 dilution, which corresponds to roughly one
replicating virus and 142 RNA copies per 10 μL for Indiana/08
and roughly two replicating viruses and 227 RNA copies per
10 μL for Nebraska/14 (SI Appendix, Table S3).

Discussion

Detecting and classifying virus using the technique presented
here is very fast, making it feasible as a real-time, label-free virus
screening and detection tool. Once the ML model is trained, it
takes ∼1e�05 s on an NVIDIA Quadro RTX 6000 GPU with
24 GB RAM. If we are performing case-based experiments (i.e.,
classifying hundreds of spectra collected for a virus sample to
determine the virus label), the run time is still less than a sec-
ond. The more challenging aspect is whether the detection can
extend to viruses not contained in the training set. The blind-
testing experiments conducted for determining the viral dose
detection limit (SI Appendix, Table S4) demonstrate that while
the ML model can recognize the type and subtype of a virus
not contained in the training set, it may not be able to recog-
nize the specific strain (often determined by the year and region
the virus was isolated). The model can still predict the broader
category (type, subtype) of a strain in the training set that is
recognized as closest to the unseen strain because of the model’s

ability to output a probability score and correlate the Raman
signature of the testing strain with those of known strains.
Being able to detect an unknown strain and interpret its Raman
signature is one of our main future research directions. We are
investigating zero-shot ML techniques that can be integrated
into our ML framework so that our model will be able to either
detect a virus strain that is already contained in the training set
or predict that the testing virus is of a previously unknown
strain and, in such case, interpret its Raman signature in terms
of its correlation with the Raman signatures of known viruses,
biomolecules, and/or chemical functional groups present in
viruses. The expected outcome of such an improved model is
that the model will first provide a binary decision regarding
whether the testing strain is one of the strains in the training
set (i.e., same strain, but different samples). If the strain is rec-
ognized as one of those seen ones, its label will be predicted. If
the strain is detected as a new strain that is not contained in
the training set, the feature importance map output by our
model will allow us to examine where (i.e., based on which bio-
molecules or chemical functional groups) the new strain is dif-
ferent from previously seen strains. The implication is that the
model could then predict which existing strains are the closest
to the new strain.

The robustness of a virus screening and detection system
using our technique can be improved through more robust
spectra collection and by refining preprocessing steps to ensure
the quality of the spectra used in the ML experiments. A practi-
cal system will consist of virus capture and enrichment, spectra
collection, and a sequence of preprocessing steps to prune out
outlier spectra and remove blank spectra. The remaining Raman

Fig. 7. ML-calculated feature importance map and important Raman ranges for classification experiments: 1) avian FLUA versus human FLUA; 2) avian
FLUA, human FLUA, and human FLUB; and 3) human FLUA and human FLUB. (SI Appendix, Fig. S5 includes matching scores with more functional groups).
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spectra-encoding virus signatures are then classified by the
trained ML model to recognize the virus label. One encouraging
observation is that adding a preprocessing step to remove blank
spectra has been extremely helpful in improving classification
performance (SI Appendix, Table S4). Note that the blank spec-
tra were identified by a blank-spectra classifier, which was
trained using a small dataset of blank spectra collected from
only background and no virus. With preprocessing steps such as
discarding blank spectra and possibly other outlier spectra with
signal from a more “real-life” background media, our technique
will be more robust because it can then filter out spectra that do
not encode virus signal. The potential of using preprocessing to
remove noisy and irrelevant spectra could also explain one phe-
nomenon that we observe from SI Appendix, Table S4, which is
that the accuracies at more diluted levels from 10�1 to 10�5 do
not decrease and can still be high, maybe because contaminants
and background are also being removed at higher dilution.
Thus, the remaining spectra being classified by the ML model
are “cleaner” virus spectra. This may not be the case in clinical
samples with a low concentration of virus, as background mole-
cules, in this case, would not be diluted. However, host contam-
ination (background molecules) would, in principle, get filtered
out when run through the CNTs (see ref. 4). Furthermore, pre-
processing and filtering steps can be applied to remove spectra
resulting from background and leave only spectra with virus sig-
nal to be classified by the ML model. While determining how
the system reacts with real biological fluids and tissues (e.g.,
saliva) is of very high interest to us, this represents the next step
and goes beyond the scope of our current study.

While the methods we present here are for rapid detection,
they are not meant to replace PCR, which is a highly specific
and sensitive method for the detection of known viruses (36).
Our goal was to develop an ML approach to better mine the
spectra from Raman spectroscopy for rapid and label-free detec-
tion of viruses. In the process, we also present important find-
ings about Raman signatures of virus-related biomolecules that
are utilized by the interpretable ML model for recognizing
viruses. Testing the system using saliva and other clinical speci-
mens will require an extensive study to determine how to con-
trol for background in various tissues. We will validate the
method and the microfluidics device further in our future
work.

Conclusions. In summary, we applied ML to identify viruses
imaged by Raman spectroscopy. Our ML system, based on a
CNN implementation, shows high accuracy in classifying dif-
ferent types of human and avian viruses. It can also differentiate
subtypes of FLUA viruses. The interpretation of the NN
responses also provides valuable information about Raman
wavenumber ranges that correlate well with the signature ranges
of known biomolecules and chemical functional groups present
in viruses. The major contributions of our work are as follows:

(1) We developed a 1D-CNN classifier that achieved high accu-
racy for multiple virus identification and classification tasks,
including differentiating enveloped from nonenveloped
viruses, identifying types of human respiratory viruses,
differentiating human FLUA from human FLUB viruses,

Fig. 8. ML-calculated feature importance map and important Raman ranges for classifying three types of avian viruses: IBV coronavirus, avian FLUA virus, and
reovirus. Feature important maps and matching scores are given for each avian virus type. The matching score for RBD protein only applies when correlating
with IBV coronavirus because RBD protein is an exclusive biomolecule in IBV. (SI Appendix, Fig. S2 includes matching scores with more functional groups.)
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classifying subtypes of FLUA viruses, and differentiating
among types of avian viruses.

(2) We further investigated the association between classifier-
selected important Raman ranges and peak ranges of lipids,
proteins, and relevant chemical functional groups and observed
correlations that are consistent with existing knowledge.

(3) We delivered promising virus classification results that indi-
cate Raman spectra of different virus types and subtypes
contain recognizable Raman signatures that can be identi-
fied by ML models, which unravels the potential of using
interpretable ML in a real-time virus surveillance system.

In our future work, we will collect more Raman spectra of
different virus samples (human and animal, including DNA
viruses) to build a large virus spectra database for training
robust and highly accurate ML models. We will study virus
evolution using temporal ML models trained on Raman spectra
of virus strains of different types from different years and loca-
tions. And we will further improve the Raman enhancement
with better signal intensities and lower noise levels, considering
the feedback from ML classification and feature importance
identification.

Materials and Methods

Virus Samples Preparation. Avian influenza virus (AIV) was propagated in
specific-pathogen-free embryonating chicken eggs (ECEs) via allantoic cavity
route inoculation at 9 to 11 d of age. The inoculated ECEs were incubated in a
37 °C egg incubator for 3 d (or 72 h) and then were removed/chilled at 4 °C for
a minimum of 4 h or overnight. Allantoic fluid (AF) containing the virus was har-
vested from each egg using a sterile technique (a 3-mL sterile syringe with a
25G × 5/8” needle). The harvested AF was clarified by centrifugation at 8,000 to
1,000 rpm for 10 min. Virus titer was determined in embryo infectious doses
50% (EID50) titers by the Reed-Muench method (37). Briefly, the EID50 test was
conducted in ECEs. The propagated fresh stock H5N2 AIV was prepared in
10-fold serial dilutions from 10�1 through 10�9. Each dilution was inoculated
into five eggs, 0.1 mL per egg. The inoculated eggs were incubated at 37 °C for
72 h. The eggs were candled daily to remove dead eggs to chill them at 4 °C
refrigerator. After 72 h of incubation, AF was harvested from each egg (38).

H1N1, H3N2, FLUB, rhinovirus, and RSV were prepared in Madin-Darby
canine kidney-London (MDCK-London) cell culture. MDCK-London cells were cul-
tured in Dulbecco’s modified Eagle’s medium (Invitrogen, Carlsbad, CA), contain-
ing 10% fetal bovine serum and 1% penicillin-streptomycin, and incubated at
37 °C in a humidified CO2 incubator.

Enteroviruses (CVB1, CVB3, EV70, EV71, or PV2) were propagated using HEK
293 cell lines. Infection of cells with enterovirus inoculum, harvesting of cells
and media, and additional virus sample preparation steps are documented in
the Virus Propagation and Purification subsection in Shingler et al. (39).

Virus Raman Spectra Data Acquisition. The VIRRION platform (4), con-
structed with nitrogen-doped CNT arrays and gold (Au) nanoparticles, was used
as Surface enhanced Raman spectroscopy (SERS) substrate for collecting Raman
spectra from virus samples. A 100 μL sample of each virus was directly dropped
(drop-cast) onto the VIRRION Au-CNT substrate and air-dried at room tempera-
ture for 10 h prior to Raman measurements. Raman data acquisition was
recorded using a Horiba-LabRAM HR Evolution system with a 785-nm diode
laser line. The laser power on the sample was approximatley 3.6 mW, focused
through a 100× objective. The 600 gr/mm grating was used with a spectral
range from 500 to 2000 cm�1. The typical acquisition time was 30 s.

Virus Raman Spectra Preprocessing Algorithm Details. First, we apply
baseline correction with asymmetric least squares smoothing (15) to reduce
background noise in spectra. This method estimates a polynomial baseline to
correct baseline shift in Raman measurements. Then, we adjust the intensities
that vary across the spectra of different virus types to a universal scale by normal-
ization. In this step, we apply L2 normalization that converts the input vectors to

unit vectors. The normalization makes intensities comparable across spectra and
facilitates convergence during ML model training.

For generating the t-SNE plots of spectra data (Fig. 2 and SI Appendix,
Fig. S1), we use the scikit-learn (40) ML package to perform the t-SNE dimen-
sionality reduction and map high-dimensional data points to a 2D space. We
use the default parameters of the package except for the perplexity value, which
we set to 50, and we set the learning rate to 200. Under this setting of parame-
ters, the data points in the 2D map for FLUA and FLUB spectra fall into clearly
distinct clusters, which indicates that a deep learning network capable of nonlin-
ear functional mapping should be able to achieve highly accurate classification
on the dataset.

CNN Architecture and Training Details. As shown in Fig. 1B, the CNN for
our task is built with four convolutional blocks. Considering the dimension of
our training set is N × 1 × Dw, where N refers to the number of Raman spectra
samples in the training set, and Dw is the dimension of Raman wavenumber
range, a reasonable option for the convolutional blocks is to adopt 1D-CNN layer.
Followed by the convolutional layer is a 1D batch normalization layer and an acti-
vation layer; in this case, we choose Rectified Linear Unit (ReLU). The kernel size
and stride of the 1D-CNN layer of the first convolutional block are both set as 1,
with the width fixed while increasing the depth from the input dimension 1 to
the dimension of the hidden state, which will be specified later along with other
hyperparameters. Next, for the other three convolutional blocks, kernel size is
increased to 3, and stride is set as 2 for reducing the dimension of feature maps
by half each time. Followed by the activation layer of the second and the third
convolutional blocks, two dropout layers with rates 0.5 and 0.25 are applied,
respectively, for alleviating overfitting to the training set. After all convolutional
blocks, the last layer for obtaining the final classification results is a fully con-
nected layer with output dimension as N × 1 × Dc, where Dc is denoted as the
number of virus types or subtypes, depending on the classification task and spe-
cific dataset used for that task.

During training, we apply a 5-fold cross-validation and stratified sampling for
each fold based on the virus types (or subtypes) to ensure that after splitting the
dataset into training and testing sets, every type (or subtype) gets equal repre-
sentation in both sets, regardless of how unbalanced the data distribution is. For
fair comparison, we run the cross-validation five times and obtain the average
score for all metrics across the five test runs. The corresponding performances
reported in Fig. 4 are averaged results among the five hold-out test sets from
cross-validation with error bars. Learning curves of the 5-fold cross-validation for
the classification task on FLUA subtypes (H1N1/H3N2/H5N2/H7N2) are shown in
SI Appendix, Fig. S10. The process of setting the hyperparameters was per-
formed by manually fine-tuning and choosing the hyperparameters that gave
good results for our 1D-CNN model. All hyperparameters are fixed for each run,
and the learning rate is set as 0.001 and trained for 1,000 epochs with hidden
dimension set to 128 for the first convolution block and then decreases by half
for every subsequent convolutional block. The Adam optimizer is used, and drop-
out rate is set as 0.2. Although systematic grid search for optimal hyperpara-
meters was not needed in this work because the accuracy levels are relatively
high already with the manually set hyperparameters, we expect that grid search
optimization may be needed when we extend our dataset to include more
viruses and larger sets of Raman spectra.

Calculation of Raman Feature Importance Map Using CNN Responses.

While the CNN classifiers trained for virus identification tasks achieve high
performance, we are interested in learning what Raman features are utilized by
these classifiers to differentiate among viruses. To this end, we propose an
algorithm for the CNN to infer the feature importance value for each specific
wavenumber for further investigation of interpretability. With regard to the inter-
pretation of feature extraction and selection by NNs, a saliency map has been
widely considered as an intuitive and well-established method to visualize the
importance value for each unit within the input data (22–27). However, in our
case, the contributions each wavenumber have to the final virus type (or sub-
type) classification are highly unlikely to be independent from each other.
A more reasonable assumption is that the distinguishable features from Raman
spectra of a specific virus type (or subtype) are composed of a set of Raman sig-
nature ranges, besides individual wavenumbers of Raman spectra. Hence, a
desirable design of saliency map representation for interpretation is expected to
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include both attributions to ensure the completeness of the feature map. By
leveraging features from input vector and neurons from intermediate layers
simultaneously, the full-gradient algorithm (28) is proven to be a sensible repre-
sentation of CNN interpretability in terms of the capability to capture both local
and global attributions from each Raman spectra wavenumber and signature
ranges. As the full-gradient representation for NN visualization (28) was origi-
nally designed and applied on natural images, we adapt and modify the full-
gradient algorithm to accommodate the 1D vector inputs, as the format of
Raman spectra is in our case. As shown in Fig. 1B, the process for extracting fea-
ture importance for each virus type or subtype is demonstrated below the archi-
tecture of CNN. The full-gradient feature importance map extracted is defined as

Sf xð Þ ¼ ψ ∇xf xð Þ ⊙ xð Þ þ∑
l∈L

∑
c∈cl

ψ ∇bf x,bð Þc ⊙ b
� �

:

Here, the saliency map of the full-gradient representation consists of two parts:
input gradient that is specific to each wavenumber of Raman spectra in the train-
ing set and bias-gradient from each convolutional block. The components of
each convolutional block are illustrated in Fig. 1B. The approximate networkwide
representation of the feature map is considered comprehensive for capturing
what the model learned throughout the process of the classification task from
both lower and higher levels of abstraction. c refers to the virus type or subtype,
depending on the target for a particular classification task. Gradients specific for
each c are extracted separately in order to get insights of Raman frequency sig-
nificance for different types or subtypes of viruses. This process is implemented
by activating the virus type (or subtype) of interest during backpropagation
through the entire set of convolutional blocks while obtaining the cross-entropy
loss for each c. ψ �ð Þ refers to the postprocessing steps that can be denoted as
ψ �ð Þ ¼ bilinearUpsampleðnormalizeðabsð�ÞÞ. First, the operation that is appli-
cable for both input and bias gradients is the step of obtaining the absolute
value of either positive or negative importance to visualize the significance while
neglecting the sign. Next, the absolute values of gradients are normalized to the
range of ½0, 1� to optimize the visualization by creating proper viewing contrast.
Then, for the gradients extracted from convolutional blocks with dimension
downsized to different scales of hidden states, we facilitate the aggregation of
the blockwise feature maps by upsampling each to the same dimension as the
input vector with bilinear interpolation. The feature map extracted for each virus
type or subtype is shown in the format of the area chart in Fig. 1B.

Interpretable Raman Signatures. Considering that one of our goals is to
make an educated guess as to which biomolecules are more likely to have a sig-
nificant contribution in differentiating virus types or subtypes, we analyze the
correlation between the important Raman ranges from CNN feature importance
map and the Raman peak ranges of biomolecules existing in viruses. First,
the Raman peaks of biomolecules including lipids, proteins, nucleic acids,
and protein-related chemical functional groups are gathered from the literature
(7, 8, 14) (SI Appendix, Fig. S9 for detailed peak ranges). We note that for a
specific functional group, the specific Raman range can vary when measured in
different environments. Here, we included all the possible Raman ranges for the
generality of our analysis. For receptor-binding domain (RBD) proteins and
amino acids (tyrosine, phenylalanine), we measured their Raman spectra in our
own experiments and then located the peaks of the Raman spectra by adopting
the python package (41). A shift of five wavenumbers is granted to each peak to

construct the peak ranges for each biomolecule (i.e., as a range for each peak).
Second, given a Raman feature (i.e., wavenumber) importance map calculated
using the full-gradient algorithm for CNN, we extract important Raman ranges
by applying a threshold on the calculated feature importance values. We apply
a Savitzky-Golay filter (42) on the relatively noisy importance values, with
the length of the filter window set as 17. Then, a 40-percentile threshold is
applied to extract ranges in the feature map that consist of wavenumbers with
corresponding importance values above the threshold. Finally, the quantifiable
metric—the matching score as demonstrated in Fig. 5—is used to measure the
level of correlation between Raman peak ranges of biomolecules and important
Raman ranges identified by ML. The matching score metric is developed in the
format of a ratio, where the numerator of the ratio is the amount of overlap (i.e.,
number of overlapped wavenumbers) between the ML-calculated important
Raman ranges for identifying a particular virus type and the Raman peak ranges
of a certain biomolecule, and the denominator is the total number of wavenum-
bers in the biomolecule’s peak ranges. Thus, the matching scores are in the
range of [0,1]: a matching score of 1.0 means that the biomolecule’s entire peak
ranges are considered important by the CNN classifier for identifying the virus; a
matching score of 0 indicates no wavenumber within the biomolecule’s peak
ranges is considered important by the classifier; and when the matching score
value is between 0 and 1, the higher the score, the more likely that the biomole-
cule is important for identifying that particular type of virus. We report the
matching scores for all our ML classification tasks in SI Appendix, Figs. S2–S7
and show the Raman peak ranges for biomolecules in SI Appendix, Fig. S9.

Data Availability. Raman spectra of various viruses from the dataset used in this
paper are deposited in Figshare (43) and the source code for the 1D-CNN ML model
for virus identification using Raman spectra is available on GitHub (44). More data are
available upon request, for research purposes only. Please email mtterrones@gmail.
com (M.T.) with a short description about the purpose of usage along with your
request for more data.
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