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1 | INTRODUCTION

Every bioprocess in which cells are the final product or used in the
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Abstract

Culture media used in industrial bioprocessing and the emerging field of cellular
agriculture is difficult to optimize due to the lack of rigorous mathematical models of
cell growth and culture conditions, as well as the complexity of the design space.
Rapid growth assays are inaccurate yet convenient, while robust measures of cell
number can be time-consuming to the point of limiting experimentation. In this
study, we optimized a cell culture media with 14 components using a multi-
information source Bayesian optimization algorithm that locates optimal media
conditions based on an iterative refinement of an uncertainty-weighted desirability
function. As a model system, we utilized murine C2C12 cells, using AlamarBlue, LIVE
stain, and trypan blue exclusion cell counting assays to determine cell number. Using
this experimental optimization algorithm, we were able to design media with 181%
more cells than a common commercial variant with a similar economic cost, while
doing so in 38% fewer experiments than an efficient design-of-experiments method.
The optimal medium generalized well to long-term growth up to four passages of
C2C12 cells, indicating the multi-information source assay improved measurement

robustness relative to rapid growth assays alone.

KEYWORDS
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these conditions is difficult due to a large number of media
components with nonlinear and interacting effects between cells,

medium, matrix material, and reactor environment (Brunner

production process requires suitable culture conditions for cell
growth and product quality. In the rapidly growing cellular agricul-
ture/cultivated meat industry, where cells are grown for consumption
to replace carbon-intensive and often unethical animal agriculture,
cost-effective media has been identified as the most critical aspect in

scale-up and commercialization (O'Neill et al., 2021). Optimizing

et al., 2010). Typically, culture media used for processes in cellular
agriculture consist of a basal medium of glucose, amino acids,
vitamins, and salts (such as the common Dulbecco's Modified Eagle
Medium [DMEM]) supplemented with fetal bovine serum (FBS) for
improved cell survival. FBS is an undefined, animal-derived serum

consisting of proteins, hormones, and other large molecular weight
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components, and contributes substantially to the cost of media (van
der Valk, 2018). Even when enriched with additional growth factors
or FBS, media is often far from optimal for all cell types and requires
adaptation and/or optimization (Kolkmann et al., 2020), which is
difficult for media mixtures with >30 components, as is common in
cell culture.

To manage this complexity, design-of-experiments (DOE) meth-
ods are often employed in which factors (concentrations or
environmental conditions) are set to a user-specified value (usually
“high” or “low”) and outputs are measured (Singh et al., 2017; Zhang
& Mills, & Block, 2009). These DOE designs are arranged in such a
way that statistically meaningful correlations can be found in fewer
experiments than techniques like intuition, “one-factor-at-a-time”
sequences, or random designs. A more advanced form of this is to use
sequential, model-based DOEs such as a radial basis function
(Cosenza & David, 2020; Zhang & Block, 2009; Zhang et al., 2007)
or Gaussian Process (GP) (Kotthoff et al., 2021), combined with an
optimizer/sampling policy, to automatically select sequences of
optimal designs. These approaches are often more efficient than
traditional DOE at optimizing systems using fewer experiments
(Cosenza et al., 2021) and allow for more natural incorporation of
process priors (Coleman & Block, 2006), measurement noise
(Ankenman et al., 2010; Tracey & Wolpert., 2018), probabilistic
output constraints and constraint learning (Letham et al., 2019),
multiobjective (Belakaria et al., 2019), multipoint (Wang et al., 2020),
and multi-information source designs (Jian & Frazier, 2018; Shu
et al,, 2021; Takeno et al., 2019).

Even with these methods available, limitations still exist. In
previous work, we applied a machine learning approach to
optimize complex media design spaces but had limited success
due to the difficulty in measuring cell number for multipassage
growth (Cosenza et al., 2021). Therefore, in this study, we utilized
a multi-information source (IS) Bayesian model to fuse “cheap”
measures of cell biomass (rapid chemical assays which can be done
at scale) with more “expensive” but higher quality measurements
(cell numbers over time which represents a high-quality metric of
growth media quality) to predict long-term medium performance.
We refer to the simpler and cheap assays as “low-fidelity” IS, and
more complex and expensive assays as “high-fidelity” IS. While not
always predictive of long-term growth, these lower fidelity assays
are at least correlated with cell health and can help in identifying
interesting regions of the design space for further study with the
high-fidelity IS. We used this model, with Bayesian optimization
(BO) tools, to optimize a cell culture medium with 14 components
while minimizing the number of experiments, optimally allocating
laboratory resources, and building process knowledge to improve
our optimization scheme and model. In Section 2 we discuss the
computational and experimental components of this BO method.
In Section 3 we present the results of the BO method in
comparison to a traditional DOE method, followed by Section 4
where we demonstrate the importance of fusing multiple sources
of information to obtain relevant process knowledge and/or

optimization results.

2 | METHODS

2.1 | Cells and media components

The system under consideration was the proliferation of C2C12
(ATCC) cells. These cells are immortalized muscle cells with similar
metabolism and growth characteristics as other adherent cell lines
useful in the cellular agriculture industry. Cells were stored in 70%
DMEM (Gibco), 20% FBS (BioWest), 10% dimethyl sulfoxide
(Thermo Fischer) freeze medium at -196°C until thawed. Vials
were thawed to 25°C and the freezing medium was removed by
centrifugation at 1500 g for 5 min. The centrifuged cell pellet was
resuspended in 17 ml of DMEM with 10% FBS and placed on
15 cm sterile plastic tissue culture dishes (at about 10° cells/plate)
(Cellstar, Greiner Bio-One). Cells were incubated in a 37°C and 5%
CO, environment. After 24h the medium was removed, the
culture dish-washed with Phosphate Buffer Solution (PBS) (Gibco),
and fresh DMEM with 10% FBS was introduced. After an
additional 24 h, cells were harvested using tripLE solution (Gibco),
diluted in PBS, and counted using Countess Il with trypan blue
exclusion and disposable slides (Invitrogen). The process of
removing cells from a plate, counting, and re-plating them with
fresh medium is called subculturing or passaging. How well the
C2C12 cells survive and grow after passaging is indicative of their
long-term potential in a large cellular agriculture process.

The design space was comprised of the components and
minimum/maximum concentrations listed in Table 1. These compo-
nents were chosen because they are often used to supplement
standard DMEM to improve cell growth; this represents a reasonable
test case for the industrial application of these multi-IS BO methods
to the cellular agricultural industry. The composition of standard
DMEM (such as the medium used above), is shown in Table 3, and
should not be confused with the base DMEM “supplement” (Gibco),
which contains only amino acids, trace metals, salts, and vitamins and
none of the other 14 components. pH and osmolarity are not
controlled in this study, so act as latent variables.

2.2 | Cell growth experiments and assays

For the high-fidelity IS, 750 pl of cell suspension containing 60,000 cells
were placed in a six well plate (three replicates) with 2.25 ml of the test
medium. For low-fidelity IS, 25 ul of cell suspension containing 2000 cells
were placed in 96 well plates (four replicates and two control wells
without cells) with 75 ul of the test medium. All experiments thus had
6250 cells/cm? and 312.5 ml/cm? of media. After 72h, all wells were
measured using the IS methods shown in Table 2.

The AlamarBlue assay required staining wells with 10% v/v
(10 pl) AlamarBlue stock solution (Invitrogen), 4 h of incubation in a
37°C and 5% CO, incubator, and measurement of 570 As7;o nm and
600 nm Aggo absorbance wavelengths (Molecular Devices, ImageX-
press Pico) as well as the control wells As7o. and Agoo, (no cells) to

get AlamarBlue reduction metric %AB.
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TABLE 1 Media components.
Conc. min
Abrev. Component (mg/ml) Conc. Max (mg/ml) Cost Use in cell culture
T Transferrin 0 0.026 6.53E-03 Iron transport, homeostasis
| Insulin 0 0.035 1.43E-02 GF for glucose and amino acid utilization
SS Sodium selenite 0 1.75E-05 6.4E-09 Chemical pathways
AA Ascorbic acid 0 8.75E-03 9.8E-06 Antioxidant
Glu Glucose 0 15.75 0.2 Carbon source
Gluta Glutamine (GlutaMAX) 0 1.519 2.09E-02 Carbon source
Albu Albumin (AlbuMAX) 0 1.4 4.94 Stabilization of small molecules
FBS FBS (% v/v) 0 17.5 14.00 Shear protection, cytokines, other
H Hydrocortisone 0 1.75E-05 1.1E-05 Proliferation, differentiation, inhibition
D Dexamethasone 0 7.00E-04 7.2E-03 Short-term proliferation, muscle breakdown
P Progesterone 0 1.75E-05 4.0E-07 Proliferation
Esd Estradiol 0 8.75E-06 1.6E-06 Proliferation
Ethan Ethanolamine 0 6.65E-03 6.1E-06 Phospholipid synthesis
Glutath Glutathione 0 3.50E-03 6.0E-04 Antioxidant, thiol chemical pathways
- DMEM supplement (% v/v) - ***54.3 2.1E-02 Amino acids, vitamins, salts, buffer

Note: All components are shown were stored as per manufacturers (PreproTech unless specified) instructions in stock solutions. The concentration
(mg/ml) of all media was between the minimum and maximum listed. The cost shown is a unitless scalarization of the relative economic cost of each

component.

Abbreviations: DMEM, Dulbecco's modified Eagle's medium; FBS, fetal bovine serum.

***All media have a 54.3% v/v (volume percent) base of DMEM supplement (liquid form, no glucose, glutamine, or FBS). Remaining volume (minus

component volumes) was made up in water.

TABLE 2 Information sources for cell number measurement.
Information source Time required Format Mechanism of action
Passage 2 (high-fidelity) 6 Days 6 Wells Trypsinization/trypan blue exclusion
Passage 1*** 3 Days 6 Wells Trypsinization/trypan blue exclusion
AlamarBlue (low-fidelity) 3 Days 96 Wells Mitochondria activity/colorimetric
LIVE Stain (low-fidelity) 3 Days 96 Wells Nuclear/fluorometric

Note: These sources of information (IS) were used to approximate and model C2C12 cell number. In this study, Passage 2 cell numbers were considered
the highest-fidelity IS, while AlamarBlue and the LIVE stains were the lowest.

***Passage 1 cell number measurements were necessary to get Passage 2, so were included as a separate IS. Every high-fidelity IS measurement of a

medium was also made in parallel with a low-fidelity measurement. Their inter-IS correlations are shown in Figure 8c.

117216 x As79 — 80586 x Ago0

9 =
#AB 155677 x )\600,c - 14652 x A570,C ’

The LIVE assay required that the test wells be washed with PBS,
and 100 pl of 1 uM LIVE stain Calcein AM (Biotium) be introduced
into the test wells and incubated for 1.5 h at 37°C and 5% CO,. The
biomass/cell number correlates was then measured using a fluorom-
eter (Molecular Devices, ImageXpress Pico) at Ex/Em 494/530
fluorescein filters and calculated using the emission Fs3g. Both LIVE
and %AB metrics are correlated with cell number and thus were the
low-fidelity IS metric of cell number.

LIVE = F53o.

We also measured the cell number using an automatic cell
counter (Countess Il) with trypan blue exclusion. This required
trypsinization outlined in the previous section. Because we wished to
measure long-term cell viability, after the first cell count (Passage 1),
we re-seeded the cells under the same conditions and measured the
cell count after an additional 72 h (Passage 2). The Passage 2 metric
incorporated long-term viability and the effect of trypsinization, and
thus was the most robust measurement of cell number. All
measurements/correlates of cell number (%AB, LIVE, cell number)
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TABLE 3 Optimal media.

Component conc. DMEM
Abrev. (mg/ml) BO DOE (control)
T Transferrin 2.16E-02 0 0
| Insulin 2.27E-02 0 0
SS Sodium selenite 6.34E-06 0 0
AA Ascorbic acid 0 0 0
Glu Glucose 8.97 6.75 4.50
Gluta  Glutamine (GlutaMAX)  1.32 0.65 0.43
Albu Albumin (AlbuMAX) 0 0 0
FBS FBS (% v/v) 10.1 7.5 10.0
H Hydrocortisone 0 0 0
D Dexamethasone 0 0 0
P Progesterone 1.75E-05 0 0
Esd Estradiol 8.75E-06 0 0
Ethan  Ethanolamine 3.64E-03 0 0
Glutath  Glutathione 2.49E-03 0 0
- DMEM supplement (%  54.3 543 543

v/V)

Outputs (dimensionless)

Num. experiments 81 133 -
D(x) Desirability 0.94 040 044
y(x) Proliferation metric 2.82 0.86 1.00
c(x) Cost metric 8.22 6.12 8.09

Note: Concentrations (mg/ml) of best BO-designed medium alongside that
found by DOE and the DMEM control used throughout this study. The

resulting objective function D(x), cell number y (x), and cost c(x) of each
medium are shown with the required number of experiments to get the
optimal result.

Abbreviations: BO, Bayesian optimization; DMEM, Dulbecco's modified
Eagle's medium; DOE, design-of-experiments; FBS, fetal bovine serum.

were reported as ratios, normalized to the DMEM control (whose

concentration is shown in Table 3).

2.3 | DOE method

To compare our BO method to a typical method used in the
optimization of fermentation/bioprocess systems (Singh et al., 2017;
Zhang & Mills, & Block, 2009), we used a DOE. We first screened all
14 components using a folded Plackett-Burman (PB) design (which is
a normal PB combined with an additional PB design with “high”
factors set to “low” and vice versa) using the AlamarBlue IS. A linear
model D(x) = Bo + Y4xB; let us quantify the desirability of each
component using the slope B; (desirability D (x) will be talked about in
Section 2.4.2). The lower bound of the PB was set to x = 0 (0 mg/ml)
and the upper bound x = 0.28 (28% of maximum concentration
shown in Table 1, for example, glucose would be set to

0.28 x 15.75 mg/ml = 4.41 mg/ml) so that component quality could
first be judged at modest concentration where nonlinear effects
would be minimal. We then set unimportant or harmful (8; < 0)
components to x = O for the rest of the DOE study, then ran a Box-
Behnken (BB) design over the remaining useful components using
AlamarBlue IS. The BB was used to estimate an interaction-
polynomial model D(x) = Bo + X2 4x;B; + 2?:1)(]‘23]‘ + 21<i<iXiXBij and
a multistart Newton's Method was used to find the D(x)-optimal
concentrations inside the design space. If the optimal concentrations
were found to be on any edge of the current BB, then the bounds of
the design were shifted Ax = 0.145 dimensionless units in that
direction (steepest accent) and another BB was run using these new
bounds. This was done because the optimal boundary of the design
space is uncertain and needed to be found. The sequential BB was
run until the optimal bounds were found or resources exhausted. The
best medium was then reported as the optimal point found using
multistart Newton's Method within the final optimal bounds.

24 | BO method

241 | Bayesian model

In standard BO, a function g is modeled using a Gaussian Process
(GP) (Poloczek et al., 2017), characterized by a prior mean o and
covariance X, with the property that for any X finite collection of N
points with dimensionality p, the prior distribution of the output g (X)
is normal g(X) ~ N(uo, Z(X, X)). The prior determines the directional-
ity and “wigglyness” of the function through the covariance kernel
function X, which models the relationship between any two points x
and x'. We chose the squared exponential function for the kernel to
encode the belief that (i) similar experiments are more alike than
dissimilar experiments governed by hyperparameters sz and )\fmp and
(i) that the overall biological processes underlying the response
surface are smooth with (iii) each component response governed by
A?, allowing each component k to have different degrees of

“wigglyness.”
p
T(x, x) = o*exp|-1/2 (xk — xi)2/AZ|. )
k=1

If we collect N observations of inputs Xy = [x1...xy] and outputs
Yy = [ya...yn] from the generative process y(x) = g(x) + € we can get
the posterior distribution g(x) | Xn, Y ~ N((Xn), Z(Xn, Xn)) wWhere
the mean and variance of g(x) are given by Equations (2) and (3)
respectively for homoscedastic noise X, = of*l with process noise

variance 2.

p(x) = to + Z(Xn, x)EXn, Xn) + Ze) 1Yy = Lo), (2
02(x) = Z(x, x) = Z(Xn, X)(ZXn, Xn) + ZJ 1 (X, X' (3)

A more detailed discussion of GP models can be found in (Schulz

et al., 2018). With a predictive model of the mean u(x) and variance
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02(x) of cell number, we can use past experimental data inputs Xy
and outputs Yy to inform future process optimization.

The key objective of this study was to maximize C2C12 cell
growth/accumulation while minimizing media costs. To do this,
measuring cell growth was critical but experimentally expensive. Less
expensive assays can approximate cell growth, yet with reduced
accuracy. Therefore, it was beneficial to use combinations of cell
growth assays to facilitate experimentation while decreasing the
overall experimental burden. This provides a balance between quality
of information and experimental cost. To this end we adopted the
multi-information source GP model introduced by (Poloczek et al.
(2017), which utilizes auxiliary information sources to model an
underlying “true” function. We chose this model over the more
typical multi-task GP to encode the prior belief that the generative
model includes an underlying “true” function and several biased/
variable but correlated auxiliary functions, and to provide the
flexibility of allowing different length-scale hyperparameters A, for
each IS to be learned from the data.

Let us assume a generative model y = g(x) + 6(x,m) + € for a
given medium combination x at an IS indexed by m. We, therefore,
have one independent GP for the underlying function g(x) and one
for each auxiliary IS deviation function &(x, m) for the m th auxiliary IS
(where m = 0 references the underlying 1S). To implement this,
Equation (1) is modified by adding an additional kernel (squared
exponential) to the original kernel anytime an auxiliary datapoint
m # 0 is referenced and x and x’ have the same IS index using an

indicator function 1p:01m-.
Z(me Xll) = z0()(,)(’) + 1m¢01m:lzm(x‘ x'). (4)

Further details about the noise model of the GP, training, and
using prior information can be found in Appendix 1. In addition to
information on cell numbers, however, we wish to incorporate
information about the process cost of x. Therefore, we formulate
a cost function c(x) = cmin + 2j-1¢X where ¢ is a scaled marginal
cost of each media component whose coefficients can be found in
Table 1.

2.4.2 | BO acquisition function

To maximize media utility, we wish to maximize y (x) while minimizing
cost c(x) for the highest-fidelity IS. Therefore, we posed this multi-
objective optimization problem as a single-objective in the form of a

desirability function D(x) (Akteke-Ozturk et al., 2018) where cell
y() -y clx)-cH
YH-VYL CL=CH

number and cost are scaled as y(x) = and C(x) =

respectively.

D(x) = d(x) ¥y (X)Th), (5)

where ¢(x) = 1*{y(x) 2 y;} is a feasibility indicator function that is
non-zero when the predicted y (x) is greater than or equal to some
minimum cell number metric y;. We set y, = 0.5 and yy = 2.0 to

DIOENGINEERIN

exclude media that fail to be 50% as proliferative as the control media
to preferentially select high-performance media. We scale c(x) as a
“smaller-the-better” metric where ¢, = ¢in and ¢y = Cpin + Zﬁ;lcj so
that we may solve our new cost-aware objective function as a single-
objective problem x* = argmax D(x).

With a predictive multi-IS GP modeling u(x) = y(x) and
computing D(x) from Equation (5), we can use it to suggest
optimal media conditions x*. However, because we would like to
solve for some optimal group of g > 1 experiments X* rather than
a single g = 1 experiment x* (it is much more efficient to run
multiple experiments at a time), we pose the optimization
problem as a p*q-dimensional multi-point optimization problem
X* = argmax D(X) for multiple optimal media conditions at once.
This formulation (i) does not consider uncertainty when quanti-
fying the value of a particular set of media components and (ii)
does not have an analytical form. We solved both problems by
using the multi-point expected improvement function a(X) (Wang
et al., 2020).

a(X) = E{(max{D(X)} - D*(Xn))'},

where D*(Xy) is the D (x) -optimal desirability of the N points collected
and max{D(X)} is the D(x)-optimal desirability of the g points X
evaluated by a(X). If max{D(X)} - D*(Xy) < O (no improvement from
evaluating X) then the “+” operator sets the improvement of the
design to a(X) = 0. Thus, with a(X) we can quantify the value of
multiple points X rather than just a single point x. Evaluating a for
any group of experiments X requires further mathematical treatment,

which can be found in Appendix 2.

243 | BO algorithm
The BO algorithm that designs optimal experiments is shown in
Figure 1. After collecting some initial data, the multi-IS GP is
trained and X* found using multistart L-BFGS-B for some g
maximum allowable number of experiments (based on laboratory
constraints). The L-BFGS-B optimizer was chosen because it
performs well on high dimensional problems, can be ran with
multiple restarts thus improving its global optimization capabili-
ties, and has access to gradients and Hessian approximations thus
reducing computational time. Because we want to optimize the
high-fidelity IS (long-term growth as Passage 2) all calculations in
the BO algorithm are done using the high-fidelity IS prediction.
With X* in hand, we now must find the optimal IS to sample. We
start by defining the number of high-fidelity samples we are
willing to measure qgo < q, with the remaining g - qo being low-
fidelity IS (Figure 2).

We can pose the IS-allocation problem as “which qg designs in X*

has the highest a(x) in combination”? This requires calculating a(x)
for all combinations (30) in X*, and allocating the highest-fidelity

budget to the dominant combination. The remaining g - qo experi-

ments can be allocated to low-fidelity IS. New experiments are
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1. Train Hyperparameters

6" = argmax logL(X,Y|6
Collect Initial Data g gL 19)

FIGURE 1 BO algorithm. This loop describes
the Bayesian Optimization algorithm to maximize
some acquisition function a(x) for a process
Y = f(X) given go high-fidelity IS and q - qo
low-fidelity IS samples per batch of experiments.

After each batch, the process is repeated until
process is optimized or resources are exhausted.

BO, Bayesian optimization

{Xo, Yo} 2. Find Optimal Conditions
X* = argmax a(X|0")
3. Allocate Optimal IS to X*
a. Calculate a(x) for (‘?0) combinations of X*
b. High Fidelity: best gy combination
Collect New Data X* c. Low Fidelity: remaining ¢ — qo combination
YT =fX)
a
(a) f f,

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5

Best Output Found max(Y)
ot
=

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

Number of High-Fidelity Simulations Used
---- Regular GP
—— Multi-IS GP

(b) fi f

Low-Fidelity Output Y

High-Fidelity Output Y

Low Fidelity IS 1
Low Fidelity IS 2
—— High Fidelity IS

FIGURE 2 Simulation results. (a) Number of cumulative high-fidelity simulations used plotted against average (with standard deviation for
five runs of the entire optimization loop) optimal output from f across five sequential iterations of the optimization framework. The multi-IS GP
(solid) had access to g = 15 total simulations with qg = 2 high-fidelity and g - qo = 13 low fidelity simulations per iteration (multi-IS GP has
stopped one iteration early to reduce computational burden). The regular GP (dotted) only had access to the qo = 2 high-fidelity simulations per
iteration. Each test function {fi, f,, f3, f4} had two biased low-fidelity versions whose correlations are described by plots (b). Squares and triangles
represent a given fyiss1 and fyigso respectively. The solid line represents the underlying high fidelity IS f. Hyperparameter and acquisition function
optimization was done using multistart L-BFGS-B implemented in botorch/scipy.

collected using the IS and component concentrations found, and the
procedure looped until the process was optimized to satisfaction or

resources are exhausted.

We started our BO method by initialization with 10 experi-
ments according to Latin Hypercube design similar to (Poloczek
et al., 2017) (10 experiments being the approximate capacity of our
laboratory at any given time). The algorithm allocates g = 10
experiments with go = 3 high-fidelity IS and g - qo = 7 low-fidelity
IS using the combinatorial heuristic described above for the
optimal group X*. This was repeated seven times, with iterative
training and optimization stages to improve our model while

simultaneously find optimal media. After 80 experiments (we

stopped after exhausting our cell bank) a final high-fidelity IS
experiment was performed at the theoretical optima argmax D(x),

for 81 experiments total.

2.5 | Computational environment and packages
Hardware used: Dell Precision 5820 Tower, Intel Xeon W-2145
DDR4-2666 Processor (3.7 GHz), 32 GB Memory. Software
used: python 3.9.7 (for all programming), gpytorch 1.3.0, pytorch
1.8.1, and botorch 0.4.0 (for modeling and Bayesian optimiza-
tion), pydoe 0.3.8 (for initialization using Latin Hypercube
experiments).



COSENZA ET AL

BIOTECHNOLOGY| WILEY 2453
BIOENGINEERIN

3 | RESULTS D(x) = 0.94 in 81 total experiments while the DOE only achieved a
maximum at D (x) = 0.40 requiring 132 experiments. This represented
3.1 | Computational validation of BO method a 132% improvement over the DOE and a 113% improvement over

Before optimizing our experimental system, we tested the BO algorithm
on various multi-information source mathematical test functions
{f1, f, f3, fa} (Appendix 3) solving argmax f (x) using the nosey expected
multi-point improvement acquisition function on a 10-dimensional
problem. Each f had two low-fidelity test functions (fyies1 and fpigs2)
which differed substantially from the true test function. Given an
extremely limited high-fidelity budget (10 simulations at two per iteration
of the optimization loop), the multi-IS GP saw better average performance
(higher outputs) compared to a regular GP with otherwise the same
model architecture (hyperparameters, training method, priors, etc.). The
major limitation of this experiment is that these test functions do not
represent the true biological process. However, as the test functions were
created to mimic noisy biological processes, we should be able to

differentiate the performance of optimization methods using these

the control DMEM with 38% fewer experiments. The optimal BO
medium corresponds to y (x) = 2.82 cell number with cost c(x) = 8.22,
or a 227% improvement in cell number over DOE at a 34% increase
in cost, and a 181% improvement in cell number over the DMEM
control at a mere 1.6% increase in cost. As seen in Figure 3a the BO
method also found a suboptimal medium, with higher D (x) than DOE
and the DMEM control, within 30 experiments, or a 77% reduction in
experimental effort.

Table 3 shows the media concentrations resulting from the BO and
DOE methods along with the DMEM control used throughout this study.
The BO method found that transferrin, glutamine, progesterone, and
estradiol should be at a high relative concentration. Ascorbic acid,
hydrocortisone, and dexamethasone should be at a low/zero concentra-
tion. The remaining components should be somewhere in between the
two extremes. The DOE method, using only AlamarBlue, used a PB

results. screening design (32 experiments) to reduce the problem size from 14
components to four, finding that glucose, glutamine, albumin, and FBS
had the highest positive effect on D (x). Next, four sequential BB designs

3.2 | Experimental validation of BO method (25 experiments each), with bounds shifting in the direction of D(x)-

We then applied our BO method to C2C12 media optimization

design problem. The BO method achieved a maximum desirability of

(a) (b)

steepest accent after each BB, used 100 experiments to find the optimal
bounds of the four-dimensional factor space. Optimal factors were

predicted to be nearly identical to the DMEM control, resulting in nearly
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FIGURE 3 Learning curve and trade-off curve of BO method. (a) Learning curve of D(x) shows BO and DOE method designing experiments
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Learned optimal concentration. The conditions of each experiment (concentration ranges in Table 1) are shown plotted as a
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DOE respectively) shows how each method searches for optimal concentrations. The horizontal line represents the final BO optimal
concentration. BO, Bayesian optimization; DOE, design-of-experiments

identical desirability (D(x) = 0.40 vs 0.44 for DOE and DMEM control,
respectively).

As expected, there was a trade-off between a number of cells y (x)
and medium-cost ¢ (x) captured in Figure 3b,c. More nutrients, especially
FBS, improved cell number at the expense of higher cost; this trend then
breaks down as more FBS and Albumin have a deleterious effect on
growth.

We also note from Figure 4 that the BO algorithm found the optimal
concentration of some components faster than others, as indicated by
heavier clustering of datapoints. This is a function of how confident the
multi-IS GP was in certain regions of the design space, with denser

sampling being indicative of higher confidence in improvement.

3.3 | Experimental validation of long-term cell
number objective function

The robustness of the multi-IS GP model was evaluated by re-
sampling the optimal BO medium which had a cell number metric of
y* = 2.8 + 0.29. When measured again the cell number metric was
y* = 2.7 + 0.93, indicating measurement and overall system repro-
ducibility. Next, all four optimal media were cultured for 288 total
hours (to Passage 4 with 72 h/passage), to determine how well our
high-fidelity 1S generalized to longer-term growth. The optimal
medium designed by the BO method outperformed the DOE and
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FIGURE 5 Long-term validation of optima media. The optimal
BO-designed (dots), DOE (triangles), and DMEM control (squares)
media performance up to Passage 4 Each passage was 72 h of
growth at 37°C and 5% CO,. Trypsinization took place after each
72 h period to count cells and replate them to allow for further
growth (standard deviations indicated). The BO method designed
an optimal media with substantially improved long-term growth
capacity than the DOE or DMEM control. BO, Bayesian
optimization; DMEM, Dulbecco's modified Eagle's medium; DOE,
design-of-experiments
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DMEM control substantially in a number of cells grown at Passage 4,

with results summarized in Figure 5.

3.4 | Sensitivity analysis

We then examined the first and second-order effects of each
component as predicted by the multi-IS GP (training on all N = 81
datapoints). Most components show a parabolic effect in both y (x)
and D (x) (Figure 6), where the optimal medium is in the middle of the
factor space, often in sample dense regions.
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To quantify the magnitude of the predicted global effect of
each component, we employ the VARS method (Razavi &
Gupta, 2016a, 2016b) of sensitivity analysis because standard
methods of sensitivity analysis cannot capture the “importance”
of a given factor in the presence of nonlinear effects. In VARS we
defined [N (h)

pairs of points x* and xB are separated by a normalized factor

| as the number of pairs in a set such that all possible

distance h. We then integrated the variance r = (y (x) - y (xB))2 of
all  pairs separated by h to get the
Yith) = 1/2|N(h)|Zj)enmhij- If we set h = 0.1 (10% of total normal-
ized factor space for a given component) we are estimating a

variogram
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FIGURE 6 Predicted first and second-order effects. First-order predicted effects of each component of the high-fidelity IS are shown on
diagonal plots (y-axis is not to scale) with solid and dashed lines representing predicted cell number y (x) and desirability D(x) respectively. The
“above” diagonal plots are second-order plots for cell number y(x) and “below” are those for desirability D(x). The range of all components as
described in Table 1. Labels are left off for clarity; to find the axis labels read the x-axis labels horizontal from the diagonal label and read the
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“local” variability in the output y whereas h = 0.9 would be an
estimate of the “long-range” effect. Figure 7 shows these
variograms y; for each component integrated to their “local,”
“medium,” and “global” ranges, showing albumin, FBS, dexameth-
asone, and glutamine have the largest effect on D(x), with FBS
being by far the most critical component.

It was also useful to examine the correlations between
different IS. The model predicts all IS to have very linear

correlations (Figure 8c), while Passage 1, having the most
experimental noise, had the weakest inter-IS correlations. Biases
are predicted at the upper end of the output range as indicated by
the deviation from the 45° line in Figure 8c. This fact is also
evident in the predicted kernel matrix in Figure 8b, where the
more error-prone Passage 1 data displays high off-diagonal intra-
IS correlation, and the other IS show nearly identical inter and

intra-IS correlations.
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FIGURE 7 Variogram sensitivity analysis. The local (horizontal hatching), global (diagonal hatching), and mid-range sensitivity of each
component on D(x) is indicated by the height of the bars. Albumin, FBS, dexamethasone, and glutamine have the largest effect on D(x), with FBS
being by far the most critical component with respect to global sensitivity. Predicted variogram y; for each component was formed from R = 300

random samples from domain [0,1]. FBS, fetal bovine serum.
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FIGURE 8 Kernel plots and IS distributions. (a) and (b) Show the output of the kernel X (xy, x; ;) for all data collected {Xy, Yy} and a simulated
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cell number/correlate distributions (diagonal histograms) are shown. Above the diagonal (squares) are the actual inter-IS correlations for each IS
with their respective R? values, and below the diagonal (circles) are the predicted inter-IS correlations for a random data set.
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4 | DISCUSSION AND CONCLUSION

Production scale cellular agricultural processes will require >10
passages of cell growth (O'Neill et al., 2021) so optimizing growth
based on single-passage information is not adequate (Cosenza
et al., 2021). However, multipassage growth assays are difficult/
expensive to measure, and even more difficult to optimize when
given many components. We managed this complexity by coupling
long-term (i.e., >1 passages) cell number measurements with simpler
but less valuable rapid growth chemical assays (single passage) in
murine C2C12 cultures as a model system for cellular agricultural
applications, capturing a more wholistic model of the process. We
combined this with an optimization algorithm that efficiently
allocates laboratory resources toward solving argmax D(x) for
desirability function D(x), a function that incorporates both cell
growth and medium cost. This resulted in a 38% reduction in
experimental effort, relative to a comparable DOE method, to find a
media 227% more proliferative than the DMEM control at nearly the
same cost. As the longer-term passaging study suggests, our Passage
2 objective function and IS were well-calibrated to mimicking the
complex industrial process of growing large batches of cells over
many passages, with Passage 4 cell numbers well-predicted by this
objective function.

The reasons for the success of the BO are myriad. The BO
method iteratively refines a single process model to improve
certainty in D (x)-optimal regions, whereas the DOE relies on a series
of BB designs where the older data sets are ignored because they
were outside of the optimal factor space. The BO also used a variety
of IS, whereas the DOE only used a single low-fidelity AlamarBlue
metric (as is common in analysis of growth media). Looking at
Figure 8c, the AlamarBlue and LIVE tended to cluster around the
pointy = 1, making it difficult to distinguish between high-quality and
low-quality media. This may be due to the deviation of linearity of the
%AB and Fs39 metric at high biomass. The BO method also refined its
multi-IS model over the entire feasible design space, allowing it to
take advantage of optimal combinations and concentrations of all
14 components over the entire domain, whereas the DOE needed to
reduce the design and factor spaces to reduce the number of
experiments needed, and may have identified the wrong optimal
boundary locations resulting in suboptimal experimental designs. The
BO method was also able to leverage information about process
uncertainty to improve the model is poorly understood regions of the
design space, whereas the steepest accent method used by the DOE
chased after improved D(x) with little regard for overall noise or
experimental errors. This was worsened by the sensitivity of the
polynomial model to random inter-batch fluctuations in %AB, which
may have driven the DOE to suboptimal media. Note that the success
of our BO method should not be taken as generic superiority over all
potential instantiations of DOE or commercial media used for C2C12
growth.

While the BO method worked well at solving the experimental
optimization problem, the multi-IS GP accuracy was limited to highly
sampled regions of the design space, thus limiting the efficacy of

DIOENGINEERIN
sensitivity analysis. This was a conscious decision made to trade off
postfacto analysis for sampling media with high desirability D(x).
Accuracy was also limited by the low amount of data N available
relative to the large dimensionality p, which is inherently the case in
complex biological experiments where each batch of g experiments
takes >1 week to evaluate. Finally, the hyperparameters 6* used in
the multi-IS squared exponential kernel were deliberately regularized
with prior distributions to smooth the posterior of the prediction
u(x). Regularization may have diminished the quality of the inter-IS
correlations; the model hyperparameters ignored features where IS
differed in favor of a simpler correlative structure to explain the data.
This is seen in Figure 8b,c, where the kernel evaluations show nearly
equal inter-IS correlative strength for most IS used. This may have
“squished”/ignored features that could have provided additional
information, but at the cost of sampling the design space too widely,
again a deliberate choice of model skepticism towards outliers.
Even with these limitations, the BO method clearly performs well
on media optimization systems relevant to cellular agriculture, that is,
those with multiple and potentially conflicting information sources
with varying levels of difficulty in measuring. The media resulting
from the BO algorithm supported significantly more C2C12 cell
growth with only a small increase in cost. This algorithm performs
better than traditional DOE in this case, especially in incorporating
critical data from growth after the multiple passages in an affordable
manner. With these results, it should be possible to implement this
type of experimental optimization algorithm in other systems of
importance to cellular agriculture and cell culture production
processes with difficult-to-measure output spaces, including for
optimization of serum-free media for cell growth and for
differentiation.
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