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Abstract

Culture media used in industrial bioprocessing and the emerging field of cellular

agriculture is difficult to optimize due to the lack of rigorous mathematical models of

cell growth and culture conditions, as well as the complexity of the design space.

Rapid growth assays are inaccurate yet convenient, while robust measures of cell

number can be time‐consuming to the point of limiting experimentation. In this

study, we optimized a cell culture media with 14 components using a multi‐

information source Bayesian optimization algorithm that locates optimal media

conditions based on an iterative refinement of an uncertainty‐weighted desirability

function. As a model system, we utilized murine C2C12 cells, using AlamarBlue, LIVE

stain, and trypan blue exclusion cell counting assays to determine cell number. Using

this experimental optimization algorithm, we were able to design media with 181%

more cells than a common commercial variant with a similar economic cost, while

doing so in 38% fewer experiments than an efficient design‐of‐experiments method.

The optimal medium generalized well to long‐term growth up to four passages of

C2C12 cells, indicating the multi‐information source assay improved measurement

robustness relative to rapid growth assays alone.
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1 | INTRODUCTION

Every bioprocess in which cells are the final product or used in the

production process requires suitable culture conditions for cell

growth and product quality. In the rapidly growing cellular agricul-

ture/cultivated meat industry, where cells are grown for consumption

to replace carbon‐intensive and often unethical animal agriculture,

cost‐effective media has been identified as the most critical aspect in

scale‐up and commercialization (O'Neill et al., 2021). Optimizing

these conditions is difficult due to a large number of media

components with nonlinear and interacting effects between cells,

medium, matrix material, and reactor environment (Brunner

et al., 2010). Typically, culture media used for processes in cellular

agriculture consist of a basal medium of glucose, amino acids,

vitamins, and salts (such as the common Dulbecco's Modified Eagle

Medium [DMEM]) supplemented with fetal bovine serum (FBS) for

improved cell survival. FBS is an undefined, animal‐derived serum

consisting of proteins, hormones, and other large molecular weight
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components, and contributes substantially to the cost of media (van

der Valk, 2018). Even when enriched with additional growth factors

or FBS, media is often far from optimal for all cell types and requires

adaptation and/or optimization (Kolkmann et al., 2020), which is

difficult for media mixtures with >30 components, as is common in

cell culture.

To manage this complexity, design‐of‐experiments (DOE) meth-

ods are often employed in which factors (concentrations or

environmental conditions) are set to a user‐specified value (usually

“high” or “low”) and outputs are measured (Singh et al., 2017; Zhang

& Mills, & Block, 2009). These DOE designs are arranged in such a

way that statistically meaningful correlations can be found in fewer

experiments than techniques like intuition, “one‐factor‐at‐a‐time”

sequences, or random designs. A more advanced form of this is to use

sequential, model‐based DOEs such as a radial basis function

(Cosenza & David, 2020; Zhang & Block, 2009; Zhang et al., 2007)

or Gaussian Process (GP) (Kotthoff et al., 2021), combined with an

optimizer/sampling policy, to automatically select sequences of

optimal designs. These approaches are often more efficient than

traditional DOE at optimizing systems using fewer experiments

(Cosenza et al., 2021) and allow for more natural incorporation of

process priors (Coleman & Block, 2006), measurement noise

(Ankenman et al., 2010; Tracey & Wolpert., 2018), probabilistic

output constraints and constraint learning (Letham et al., 2019),

multiobjective (Belakaria et al., 2019), multipoint (Wang et al., 2020),

and multi‐information source designs (Jian & Frazier, 2018; Shu

et al., 2021; Takeno et al., 2019).

Even with these methods available, limitations still exist. In

previous work, we applied a machine learning approach to

optimize complex media design spaces but had limited success

due to the difficulty in measuring cell number for multipassage

growth (Cosenza et al., 2021). Therefore, in this study, we utilized

a multi‐information source (IS) Bayesian model to fuse “cheap”

measures of cell biomass (rapid chemical assays which can be done

at scale) with more “expensive” but higher quality measurements

(cell numbers over time which represents a high‐quality metric of

growth media quality) to predict long‐term medium performance.

We refer to the simpler and cheap assays as “low‐fidelity” IS, and

more complex and expensive assays as “high‐fidelity” IS. While not

always predictive of long‐term growth, these lower fidelity assays

are at least correlated with cell health and can help in identifying

interesting regions of the design space for further study with the

high‐fidelity IS. We used this model, with Bayesian optimization

(BO) tools, to optimize a cell culture medium with 14 components

while minimizing the number of experiments, optimally allocating

laboratory resources, and building process knowledge to improve

our optimization scheme and model. In Section 2 we discuss the

computational and experimental components of this BO method.

In Section 3 we present the results of the BO method in

comparison to a traditional DOE method, followed by Section 4

where we demonstrate the importance of fusing multiple sources

of information to obtain relevant process knowledge and/or

optimization results.

2 | METHODS

2.1 | Cells and media components

The system under consideration was the proliferation of C2C12

(ATCC) cells. These cells are immortalized muscle cells with similar

metabolism and growth characteristics as other adherent cell lines

useful in the cellular agriculture industry. Cells were stored in 70%

DMEM (Gibco), 20% FBS (BioWest), 10% dimethyl sulfoxide

(Thermo Fischer) freeze medium at −196°C until thawed. Vials

were thawed to 25°C and the freezing medium was removed by

centrifugation at 1500 g for 5 min. The centrifuged cell pellet was

resuspended in 17 ml of DMEM with 10% FBS and placed on

15 cm sterile plastic tissue culture dishes (at about 106 cells/plate)

(Cellstar, Greiner Bio‐One). Cells were incubated in a 37°C and 5%

CO2 environment. After 24 h the medium was removed, the

culture dish‐washed with Phosphate Buffer Solution (PBS) (Gibco),

and fresh DMEM with 10% FBS was introduced. After an

additional 24 h, cells were harvested using tripLE solution (Gibco),

diluted in PBS, and counted using Countess II with trypan blue

exclusion and disposable slides (Invitrogen). The process of

removing cells from a plate, counting, and re‐plating them with

fresh medium is called subculturing or passaging. How well the

C2C12 cells survive and grow after passaging is indicative of their

long‐term potential in a large cellular agriculture process.

The design space was comprised of the components and

minimum/maximum concentrations listed in Table 1. These compo-

nents were chosen because they are often used to supplement

standard DMEM to improve cell growth; this represents a reasonable

test case for the industrial application of these multi‐IS BO methods

to the cellular agricultural industry. The composition of standard

DMEM (such as the medium used above), is shown in Table 3, and

should not be confused with the base DMEM “supplement” (Gibco),

which contains only amino acids, trace metals, salts, and vitamins and

none of the other 14 components. pH and osmolarity are not

controlled in this study, so act as latent variables.

2.2 | Cell growth experiments and assays

For the high‐fidelity IS, 750µl of cell suspension containing 60,000 cells

were placed in a six well plate (three replicates) with 2.25ml of the test

medium. For low‐fidelity IS, 25µl of cell suspension containing 2000 cells

were placed in 96 well plates (four replicates and two control wells

without cells) with 75µl of the test medium. All experiments thus had

6250 cells/cm2 and 312.5ml/cm2 of media. After 72h, all wells were

measured using the IS methods shown in Table 2.

The AlamarBlue assay required staining wells with 10% v/v

(10 µl) AlamarBlue stock solution (Invitrogen), 4 h of incubation in a

37°C and 5% CO2 incubator, and measurement of 570 λ570 nm and

600 nm λ600 absorbance wavelengths (Molecular Devices, ImageX-

press Pico) as well as the control wells λ c570, and λ c600, (no cells) to

get AlamarBlue reduction metric AB% .
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λ λ

λ λ
% =

117216 × − 80586 ×

155677 × − 14652 ×
.

c c

570 600

600, 570,

The LIVE assay required that the test wells be washed with PBS,

and 100 µl of 1 µM LIVE stain Calcein AM (Biotium) be introduced

into the test wells and incubated for 1.5 h at 37°C and 5% CO2. The

biomass/cell number correlates was then measured using a fluorom-

eter (Molecular Devices, ImageXpress Pico) at Ex/Em 494/530

fluorescein filters and calculated using the emission F530 . Both LIVE

and AB% metrics are correlated with cell number and thus were the

low‐fidelity IS metric of cell number.

LIVE F= .530

We also measured the cell number using an automatic cell

counter (Countess II) with trypan blue exclusion. This required

trypsinization outlined in the previous section. Because we wished to

measure long‐term cell viability, after the first cell count (Passage 1),

we re‐seeded the cells under the same conditions and measured the

cell count after an additional 72 h (Passage 2). The Passage 2 metric

incorporated long‐term viability and the effect of trypsinization, and

thus was the most robust measurement of cell number. All

measurements/correlates of cell number ( AB% , LIVE , cell number)

TABLE 1 Media components.

Abrev. Component
Conc. min
(mg/ml) Conc. Max (mg/ml) Cost Use in cell culture

T Transferrin 0 0.026 6.53E−03 Iron transport, homeostasis

I Insulin 0 0.035 1.43E−02 GF for glucose and amino acid utilization

SS Sodium selenite 0 1.75E−05 6.4E−09 Chemical pathways

AA Ascorbic acid 0 8.75E−03 9.8E−06 Antioxidant

Glu Glucose 0 15.75 0.2 Carbon source

Gluta Glutamine (GlutaMAX) 0 1.519 2.09E−02 Carbon source

Albu Albumin (AlbuMAX) 0 1.4 4.94 Stabilization of small molecules

FBS FBS (% v/v) 0 17.5 14.00 Shear protection, cytokines, other

H Hydrocortisone 0 1.75E−05 1.1E−05 Proliferation, differentiation, inhibition

D Dexamethasone 0 7.00E−04 7.2E−03 Short‐term proliferation, muscle breakdown

P Progesterone 0 1.75E−05 4.0E−07 Proliferation

Esd Estradiol 0 8.75E−06 1.6E−06 Proliferation

Ethan Ethanolamine 0 6.65E−03 6.1E−06 Phospholipid synthesis

Glutath Glutathione 0 3.50E−03 6.0E−04 Antioxidant, thiol chemical pathways

– DMEM supplement (% v/v) – ***54.3 2.1E−02 Amino acids, vitamins, salts, buffer

Note: All components are shown were stored as per manufacturers (PreproTech unless specified) instructions in stock solutions. The concentration
(mg/ml) of all media was between the minimum and maximum listed. The cost shown is a unitless scalarization of the relative economic cost of each
component.

Abbreviations: DMEM, Dulbecco's modified Eagle's medium; FBS, fetal bovine serum.

***All media have a 54.3% v/v (volume percent) base of DMEM supplement (liquid form, no glucose, glutamine, or FBS). Remaining volume (minus
component volumes) was made up in water.

TABLE 2 Information sources for cell number measurement.

Information source Time required Format Mechanism of action

Passage 2 (high‐fidelity) 6 Days 6 Wells Trypsinization/trypan blue exclusion

Passage 1*** 3 Days 6 Wells Trypsinization/trypan blue exclusion

AlamarBlue (low‐fidelity) 3 Days 96 Wells Mitochondria activity/colorimetric

LIVE Stain (low‐fidelity) 3 Days 96 Wells Nuclear/fluorometric

Note: These sources of information (IS) were used to approximate and model C2C12 cell number. In this study, Passage 2 cell numbers were considered

the highest‐fidelity IS, while AlamarBlue and the LIVE stains were the lowest.

***Passage 1 cell number measurements were necessary to get Passage 2, so were included as a separate IS. Every high‐fidelity IS measurement of a
medium was also made in parallel with a low‐fidelity measurement. Their inter‐IS correlations are shown in Figure 8c.
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were reported as ratios, normalized to the DMEM control (whose

concentration is shown in Table 3).

2.3 | DOE method

To compare our BO method to a typical method used in the

optimization of fermentation/bioprocess systems (Singh et al., 2017;

Zhang & Mills, & Block, 2009), we used a DOE. We first screened all

14 components using a folded Plackett‐Burman (PB) design (which is

a normal PB combined with an additional PB design with “high”

factors set to “low” and vice versa) using the AlamarBlue IS. A linear

model D x β x β( ) = + ∑i
p

i i0 =1 let us quantify the desirability of each

component using the slope βi (desirability D x( ) will be talked about in

Section 2.4.2). The lower bound of the PB was set to x = 0 (0 mg/ml)

and the upper bound x = 0.28 (28% of maximum concentration

shown in Table 1, for example, glucose would be set to

0.28 × 15.75mg/ml = 4.41mg/ml) so that component quality could

first be judged at modest concentration where nonlinear effects

would be minimal. We then set unimportant or harmful (β ≤ 0i )

components to x = 0 for the rest of the DOE study, then ran a Box‐

Behnken (BB) design over the remaining useful components using

AlamarBlue IS. The BB was used to estimate an interaction‐

polynomial model D x β x β x β x x β( ) = + ∑ + ∑ + ∑i
p

i i j
p

j j i j i j i j0 =1 =1
2

1< < , and

a multistart Newton's Method was used to find the D x( ) ‐optimal

concentrations inside the design space. If the optimal concentrations

were found to be on any edge of the current BB, then the bounds of

the design were shifted xΔ = 0.145 dimensionless units in that

direction (steepest accent) and another BB was run using these new

bounds. This was done because the optimal boundary of the design

space is uncertain and needed to be found. The sequential BB was

run until the optimal bounds were found or resources exhausted. The

best medium was then reported as the optimal point found using

multistart Newton's Method within the final optimal bounds.

2.4 | BO method

2.4.1 | Bayesian model

In standard BO, a function g is modeled using a Gaussian Process

(GP) (Poloczek et al., 2017), characterized by a prior mean μ0 and

covariance Σ, with the property that for any X finite collection of N

points with dimensionality p, the prior distribution of the output g X( )

is normal g X N μ X X( ) ~ ( , Σ( , ))0 . The prior determines the directional-

ity and “wigglyness” of the function through the covariance kernel

function Σ, which models the relationship between any two points x

and x′. We chose the squared exponential function for the kernel to

encode the belief that (i) similar experiments are more alike than

dissimilar experiments governed by hyperparameters σf
2 and λ p1…

2 and

(ii) that the overall biological processes underlying the response

surface are smooth with (iii) each component response governed by

λk
2 , allowing each component k to have different degrees of

“wigglyness.”







∑x x σ exp x x λ .Σ( , ′) = * −1/2 ( − ′ ) /f

k

p

k k k
2

=1

2 2
(1)

If we collect N observations of inputs X x x= [ … ]N N1 and outputs

Y y y= [ … ]N N1 from the generative process y x g x( ) = ( ) + ϵ we can get

the posterior distribution g x X Y N μ X X( ) | , ~ ( ( ), Σ(X , ))N N N NN where

the mean and variance of g x( ) are given by Equations (2) and (3)

respectively for homoscedastic noise σ IΣ = *ϵ ϵ
2 with process noise

variance σϵ
2 .

μ x μ X x X X Y μ( ) = + Σ( , )(Σ( , ) + Σ ) ( − ),N N N N0 ϵ
−1

0 (2)

σ x x x X x X X X x( ) = Σ( , ) − Σ( , )(Σ( , ) + Σ ) Σ( , ) .N N N N
T2

ϵ
−1 (3)

A more detailed discussion of GP models can be found in (Schulz

et al., 2018). With a predictive model of the mean μ x( ) and variance

TABLE 3 Optimal media.

Abrev.
Component conc.
(mg/ml) BO DOE

DMEM
(control)

T Transferrin 2.16E−02 0 0

I Insulin 2.27E−02 0 0

SS Sodium selenite 6.34E−06 0 0

AA Ascorbic acid 0 0 0

Glu Glucose 8.97 6.75 4.50

Gluta Glutamine (GlutaMAX) 1.32 0.65 0.43

Albu Albumin (AlbuMAX) 0 0 0

FBS FBS (% v/v) 10.1 7.5 10.0

H Hydrocortisone 0 0 0

D Dexamethasone 0 0 0

P Progesterone 1.75E−05 0 0

Esd Estradiol 8.75E−06 0 0

Ethan Ethanolamine 3.64E−03 0 0

Glutath Glutathione 2.49E−03 0 0

– DMEM supplement (%
v/v)

54.3 54.3 54.3

Outputs (dimensionless)

Num. experiments 81 133 –

D(x) Desirability 0.94 0.40 0.44

y(x) Proliferation metric 2.82 0.86 1.00

c(x) Cost metric 8.22 6.12 8.09

Note: Concentrations (mg/ml) of best BO‐designed medium alongside that
found by DOE and the DMEM control used throughout this study. The

resulting objective function D x( ) , cell number y x( ) , and cost c x( ) of each
medium are shown with the required number of experiments to get the
optimal result.

Abbreviations: BO, Bayesian optimization; DMEM, Dulbecco's modified
Eagle's medium; DOE, design‐of‐experiments; FBS, fetal bovine serum.
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σ x( )2 of cell number, we can use past experimental data inputs XN

and outputs YN to inform future process optimization.

The key objective of this study was to maximize C2C12 cell

growth/accumulation while minimizing media costs. To do this,

measuring cell growth was critical but experimentally expensive. Less

expensive assays can approximate cell growth, yet with reduced

accuracy. Therefore, it was beneficial to use combinations of cell

growth assays to facilitate experimentation while decreasing the

overall experimental burden. This provides a balance between quality

of information and experimental cost. To this end we adopted the

multi‐information source GP model introduced by (Poloczek et al.

(2017), which utilizes auxiliary information sources to model an

underlying “true” function. We chose this model over the more

typical multi‐task GP to encode the prior belief that the generative

model includes an underlying “true” function and several biased/

variable but correlated auxiliary functions, and to provide the

flexibility of allowing different length‐scale hyperparameters λk for

each IS to be learned from the data.

Let us assume a generative model y g x δ x m= ( ) + ( , ) + ϵ for a

given medium combination x at an IS indexed by m. We, therefore,

have one independent GP for the underlying function g x( ) and one

for each auxiliary IS deviation function δ x m( , ) for the m th auxiliary IS

(where m = 0 references the underlying IS). To implement this,

Equation (1) is modified by adding an additional kernel (squared

exponential) to the original kernel anytime an auxiliary datapoint

m ≠ 0 is referenced and x and x′ have the same IS index using an

indicator function 1 1m m l≠0 = .

x x x xΣ( , ′) = Σ + 1 1 Σ ( , ′).m l x x m m l m0( , ′) ≠0 = (4)

Further details about the noise model of the GP, training, and

using prior information can be found in Appendix 1. In addition to

information on cell numbers, however, we wish to incorporate

information about the process cost of x . Therefore, we formulate

a cost function c x c c x( ) = + ∑min j
p

j j=1 where cj is a scaled marginal

cost of each media component whose coefficients can be found in

Table 1.

2.4.2 | BO acquisition function

To maximize media utility, we wish to maximize y x( ) while minimizing

cost c x( ) for the highest‐fidelity IS. Therefore, we posed this multi‐

objective optimization problem as a single‐objective in the form of a

desirability function D x( ) (Akteke‐Ozturk et al., 2018) where cell

number and cost are scaled as y x̅ ( ) =
y x y

y y

( ) −

−
L

H L
and c x̅ ( ) =

c x c

c c

( ) −

−
H

L H

respectively.

D x ϕ x y x c x( ) = ( ) ¯ ( )*¯ ( ) , (5)

where ϕ x y x y( ) = 1*{ ( ) ≥ }L is a feasibility indicator function that is

non‐zero when the predicted y x( ) is greater than or equal to some

minimum cell number metric yL . We set y = 0.5L and y = 2.0H to

exclude media that fail to be 50% as proliferative as the control media

to preferentially select high‐performance media. We scale c x( ) as a

“smaller‐the‐better” metric where c c=L min and c c c= + ∑H min j
p

j=1 so

that we may solve our new cost‐aware objective function as a single‐

objective problem x argmax D x* = ( ) .

With a predictive multi‐IS GP modeling μ x y x( ) ≈ ( ) and

computing D x( ) from Equation (5), we can use it to suggest

optimal media conditions x*. However, because we would like to

solve for some optimal group of q > 1 experiments X* rather than

a single q = 1 experiment x* (it is much more efficient to run

multiple experiments at a time), we pose the optimization

problem as a p q* ‐dimensional multi‐point optimization problem

X argmax D X* = ( ) for multiple optimal media conditions at once.

This formulation (i) does not consider uncertainty when quanti-

fying the value of a particular set of media components and (ii)

does not have an analytical form. We solved both problems by

using the multi‐point expected improvement function α X( ) (Wang

et al., 2020).

α X E D X D X( ) = {(max{ ( )} − *( )) },N
+

where D X*( )N is the D x( ) ‐optimal desirability of the N points collected

and D Xmax{ ( )} is the D x( ) ‐optimal desirability of the q points X

evaluated by α X( ) . If D X D Xmax{ ( )} − *( ) ≤ 0N (no improvement from

evaluating X ) then the “+” operator sets the improvement of the

design to α X( ) = 0. Thus, with α X( ) we can quantify the value of

multiple points X rather than just a single point x . Evaluating α for

any group of experiments X requires further mathematical treatment,

which can be found in Appendix 2.

2.4.3 | BO algorithm

The BO algorithm that designs optimal experiments is shown in

Figure 1. After collecting some initial data, the multi‐IS GP is

trained and X* found using multistart L‐BFGS‐B for some q

maximum allowable number of experiments (based on laboratory

constraints). The L‐BFGS‐B optimizer was chosen because it

performs well on high dimensional problems, can be ran with

multiple restarts thus improving its global optimization capabili-

ties, and has access to gradients and Hessian approximations thus

reducing computational time. Because we want to optimize the

high‐fidelity IS (long‐term growth as Passage 2) all calculations in

the BO algorithm are done using the high‐fidelity IS prediction.

With X* in hand, we now must find the optimal IS to sample. We

start by defining the number of high‐fidelity samples we are

willing to measure q q<0 , with the remaining q q− 0 being low‐

fidelity IS (Figure 2).

We can pose the IS‐allocation problem as “which q0 designs in X*

has the highest α x( ) in combination”? This requires calculating α x( )

for all combinations


 


q

q0
in X*, and allocating the highest‐fidelity

budget to the dominant combination. The remaining q q− 0 experi-

ments can be allocated to low‐fidelity IS. New experiments are
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collected using the IS and component concentrations found, and the

procedure looped until the process was optimized to satisfaction or

resources are exhausted.

We started our BO method by initialization with 10 experi-

ments according to Latin Hypercube design similar to (Poloczek

et al., 2017) (10 experiments being the approximate capacity of our

laboratory at any given time). The algorithm allocates q = 10

experiments with q = 30 high‐fidelity IS and q q− = 70 low‐fidelity

IS using the combinatorial heuristic described above for the

optimal group X*. This was repeated seven times, with iterative

training and optimization stages to improve our model while

simultaneously find optimal media. After 80 experiments (we

stopped after exhausting our cell bank) a final high‐fidelity IS

experiment was performed at the theoretical optima argmax D x( ) ,

for 81 experiments total.

2.5 | Computational environment and packages

Hardware used: Dell Precision 5820 Tower, Intel Xeon W‐2145

DDR4‐2666 Processor (3.7 GHz), 32 GB Memory. Software

used: python 3.9.7 (for all programming), gpytorch 1.3.0, pytorch

1.8.1, and botorch 0.4.0 (for modeling and Bayesian optimiza-

tion), pydoe 0.3.8 (for initialization using Latin Hypercube

experiments).

F IGURE 1 BO algorithm. This loop describes
the Bayesian Optimization algorithm to maximize
some acquisition function α x( ) for a process
Y f X= ( ) given q0 high‐fidelity IS and q q− 0

low‐fidelity IS samples per batch of experiments.
After each batch, the process is repeated until
process is optimized or resources are exhausted.
BO, Bayesian optimization

(a) (b)

F IGURE 2 Simulation results. (a) Number of cumulative high‐fidelity simulations used plotted against average (with standard deviation for
five runs of the entire optimization loop) optimal output from f across five sequential iterations of the optimization framework. The multi‐IS GP
(solid) had access to q = 15 total simulations with q = 20 high‐fidelity and q q− = 130 low fidelity simulations per iteration (multi‐IS GP has
stopped one iteration early to reduce computational burden). The regular GP (dotted) only had access to the q = 20 high‐fidelity simulations per
iteration. Each test function f f f f{ , , , }1 2 3 4 had two biased low‐fidelity versions whose correlations are described by plots (b). Squares and triangles
represent a given fbias1 and fbias2 respectively. The solid line represents the underlying high fidelity IS f . Hyperparameter and acquisition function
optimization was done using multistart L‐BFGS‐B implemented in botorch/scipy.
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3 | RESULTS

3.1 | Computational validation of BO method

Before optimizing our experimental system, we tested the BO algorithm

on various multi‐information source mathematical test functions

f f f f{ , , , }1 2 3 4 (Appendix 3) solving argmax f x( ) using the nosey expected

multi‐point improvement acquisition function on a 10‐dimensional

problem. Each f had two low‐fidelity test functions (fbias1 and fbias2 )

which differed substantially from the true test function. Given an

extremely limited high‐fidelity budget (10 simulations at two per iteration

of the optimization loop), the multi‐IS GP saw better average performance

(higher outputs) compared to a regular GP with otherwise the same

model architecture (hyperparameters, training method, priors, etc.). The

major limitation of this experiment is that these test functions do not

represent the true biological process. However, as the test functions were

created to mimic noisy biological processes, we should be able to

differentiate the performance of optimization methods using these

results.

3.2 | Experimental validation of BO method

We then applied our BO method to C2C12 media optimization

design problem. The BO method achieved a maximum desirability of

D x( ) = 0.94 in 81 total experiments while the DOE only achieved a

maximum at D x( ) = 0.40 requiring 132 experiments. This represented

a 132% improvement over the DOE and a 113% improvement over

the control DMEM with 38% fewer experiments. The optimal BO

medium corresponds to y x( ) = 2.82 cell number with cost c x( ) = 8.22,

or a 227% improvement in cell number over DOE at a 34% increase

in cost, and a 181% improvement in cell number over the DMEM

control at a mere 1.6% increase in cost. As seen in Figure 3a the BO

method also found a suboptimal medium, with higher D x( ) than DOE

and the DMEM control, within 30 experiments, or a 77% reduction in

experimental effort.

Table 3 shows the media concentrations resulting from the BO and

DOE methods along with the DMEM control used throughout this study.

The BO method found that transferrin, glutamine, progesterone, and

estradiol should be at a high relative concentration. Ascorbic acid,

hydrocortisone, and dexamethasone should be at a low/zero concentra-

tion. The remaining components should be somewhere in between the

two extremes. The DOE method, using only AlamarBlue, used a PB

screening design (32 experiments) to reduce the problem size from 14

components to four, finding that glucose, glutamine, albumin, and FBS

had the highest positive effect on D x( ) . Next, four sequential BB designs

(25 experiments each), with bounds shifting in the direction of D x( ) ‐

steepest accent after each BB, used 100 experiments to find the optimal

bounds of the four‐dimensional factor space. Optimal factors were

predicted to be nearly identical to the DMEM control, resulting in nearly

F IGURE 3 Learning curve and trade‐off curve of BO method. (a) Learning curve of D x( ) shows BO and DOE method designing experiments
over the course of the optimization study. The line and dots represent the high‐fidelity IS optima and designs, the dashed and dotted lines
represent the DMEM control and DOE optima values for D x( ) respectively. Each IS experiment is shown in (b) the trade‐off curve indicating a
clear tradeoff between cost c x( ) and cell number y x( ) , where the dots, triangles, squares, and “x's” represent Passage 2, Passage 1, AlamarBlue,
and Live Stain respectively. (c) Simulated trade‐off curve also shown for high‐fidelity IS also showing a predicted parabolic relationship between
competing objectives y x( ) and c x( ) . BO, Bayesian optimization; DMEM, Dulbecco's modified Eagle's medium; DOE, design‐of‐experiments
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identical desirability (D x( ) = 0.40 vs 0.44 for DOE and DMEM control,

respectively).

As expected, there was a trade‐off between a number of cells y x( )

and medium‐cost c x( ) captured in Figure 3b,c. More nutrients, especially

FBS, improved cell number at the expense of higher cost; this trend then

breaks down as more FBS and Albumin have a deleterious effect on

growth.

We also note from Figure 4 that the BO algorithm found the optimal

concentration of some components faster than others, as indicated by

heavier clustering of datapoints. This is a function of how confident the

multi‐IS GP was in certain regions of the design space, with denser

sampling being indicative of higher confidence in improvement.

3.3 | Experimental validation of long‐term cell
number objective function

The robustness of the multi‐IS GP model was evaluated by re‐

sampling the optimal BO medium which had a cell number metric of

y* = 2.8 ± 0.29. When measured again the cell number metric was

y* = 2.7 ± 0.93, indicating measurement and overall system repro-

ducibility. Next, all four optimal media were cultured for 288 total

hours (to Passage 4 with 72 h/passage), to determine how well our

high‐fidelity IS generalized to longer‐term growth. The optimal

medium designed by the BO method outperformed the DOE and

F IGURE 4 Learned optimal concentration. The conditions of each experiment (concentration ranges in Table 1) are shown plotted as a
function of the cumulative number of experiments in the BO (circle) and DOE (box) study. The moving average (solid and dashed line for BO and
DOE respectively) shows how each method searches for optimal concentrations. The horizontal line represents the final BO optimal
concentration. BO, Bayesian optimization; DOE, design‐of‐experiments

F IGURE 5 Long‐term validation of optima media. The optimal
BO‐designed (dots), DOE (triangles), and DMEM control (squares)
media performance up to Passage 4 Each passage was 72 h of
growth at 37°C and 5% CO2. Trypsinization took place after each
72 h period to count cells and replate them to allow for further
growth (standard deviations indicated). The BO method designed
an optimal media with substantially improved long‐term growth
capacity than the DOE or DMEM control. BO, Bayesian
optimization; DMEM, Dulbecco's modified Eagle's medium; DOE,
design‐of‐experiments
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DMEM control substantially in a number of cells grown at Passage 4,

with results summarized in Figure 5.

3.4 | Sensitivity analysis

We then examined the first and second‐order effects of each

component as predicted by the multi‐IS GP (training on all N = 81

datapoints). Most components show a parabolic effect in both y x( )

and D x( ) (Figure 6), where the optimal medium is in the middle of the

factor space, often in sample dense regions.

To quantify the magnitude of the predicted global effect of

each component, we employ the VARS method (Razavi &

Gupta, 2016a, 2016b) of sensitivity analysis because standard

methods of sensitivity analysis cannot capture the “importance”

of a given factor in the presence of nonlinear effects. In VARS we

defined N h| ( )| as the number of pairs in a set such that all possible

pairs of points xA and xB are separated by a normalized factor

distance h. We then integrated the variance r y x y x= ( ( ) − ( ))A B 2 of

all pairs separated by h to get the variogram

∈γ h N h r( ) = 1/2| ( )|∑i i j N h i j( , ) ( ) , . If we set h = 0.1 (10% of total normal-

ized factor space for a given component) we are estimating a

F IGURE 6 Predicted first and second‐order effects. First‐order predicted effects of each component of the high‐fidelity IS are shown on
diagonal plots (y‐axis is not to scale) with solid and dashed lines representing predicted cell number y x( ) and desirability D x( ) respectively. The
“above” diagonal plots are second‐order plots for cell number y x( ) and “below” are those for desirability D x( ) . The range of all components as
described in Table 1. Labels are left off for clarity; to find the axis labels read the x‐axis labels horizontal from the diagonal label and read the
y‐axis labels vertical from the label.
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“local” variability in the output y whereas h = 0.9 would be an

estimate of the “long‐range” effect. Figure 7 shows these

variograms γi for each component integrated to their “local,”

“medium,” and “global” ranges, showing albumin, FBS, dexameth-

asone, and glutamine have the largest effect on D x( ) , with FBS

being by far the most critical component.

It was also useful to examine the correlations between

different IS. The model predicts all IS to have very linear

correlations (Figure 8c), while Passage 1, having the most

experimental noise, had the weakest inter‐IS correlations. Biases

are predicted at the upper end of the output range as indicated by

the deviation from the 45° line in Figure 8c. This fact is also

evident in the predicted kernel matrix in Figure 8b, where the

more error‐prone Passage 1 data displays high off‐diagonal intra‐

IS correlation, and the other IS show nearly identical inter and

intra‐IS correlations.

F IGURE 7 Variogram sensitivity analysis. The local (horizontal hatching), global (diagonal hatching), and mid‐range sensitivity of each
component on D x( ) is indicated by the height of the bars. Albumin, FBS, dexamethasone, and glutamine have the largest effect on D x( ) , with FBS
being by far the most critical component with respect to global sensitivity. Predicted variogram γi for each component was formed from R = 300

random samples from domain [0,1] . FBS, fetal bovine serum.

(a) (b) (c)

F IGURE 8 Kernel plots and IS distributions. (a) and (b) Show the output of the kernel x xΣ( , ′ )m m′
for all data collected X Y{ , }N N and a simulated

data set where only xFBS is varied from [0,1] , respectively. Darker regions indicate large values of Σ, and thus a correlation. Also (c) the various IS
cell number/correlate distributions (diagonal histograms) are shown. Above the diagonal (squares) are the actual inter‐IS correlations for each IS
with their respective R2 values, and below the diagonal (circles) are the predicted inter‐IS correlations for a random data set.
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4 | DISCUSSION AND CONCLUSION

Production scale cellular agricultural processes will require >10

passages of cell growth (O'Neill et al., 2021) so optimizing growth

based on single‐passage information is not adequate (Cosenza

et al., 2021). However, multipassage growth assays are difficult/

expensive to measure, and even more difficult to optimize when

given many components. We managed this complexity by coupling

long‐term (i.e., >1 passages) cell number measurements with simpler

but less valuable rapid growth chemical assays (single passage) in

murine C2C12 cultures as a model system for cellular agricultural

applications, capturing a more wholistic model of the process. We

combined this with an optimization algorithm that efficiently

allocates laboratory resources toward solving argmax D x( ) for

desirability function D x( ) , a function that incorporates both cell

growth and medium cost. This resulted in a 38% reduction in

experimental effort, relative to a comparable DOE method, to find a

media 227% more proliferative than the DMEM control at nearly the

same cost. As the longer‐term passaging study suggests, our Passage

2 objective function and IS were well‐calibrated to mimicking the

complex industrial process of growing large batches of cells over

many passages, with Passage 4 cell numbers well‐predicted by this

objective function.

The reasons for the success of the BO are myriad. The BO

method iteratively refines a single process model to improve

certainty in D x( ) ‐optimal regions, whereas the DOE relies on a series

of BB designs where the older data sets are ignored because they

were outside of the optimal factor space. The BO also used a variety

of IS, whereas the DOE only used a single low‐fidelity AlamarBlue

metric (as is common in analysis of growth media). Looking at

Figure 8c, the AlamarBlue and LIVE tended to cluster around the

point y = 1, making it difficult to distinguish between high‐quality and

low‐quality media. This may be due to the deviation of linearity of the

AB% and F530 metric at high biomass. The BO method also refined its

multi‐IS model over the entire feasible design space, allowing it to

take advantage of optimal combinations and concentrations of all

14 components over the entire domain, whereas the DOE needed to

reduce the design and factor spaces to reduce the number of

experiments needed, and may have identified the wrong optimal

boundary locations resulting in suboptimal experimental designs. The

BO method was also able to leverage information about process

uncertainty to improve the model is poorly understood regions of the

design space, whereas the steepest accent method used by the DOE

chased after improved D x( ) with little regard for overall noise or

experimental errors. This was worsened by the sensitivity of the

polynomial model to random inter‐batch fluctuations in AB% , which

may have driven the DOE to suboptimal media. Note that the success

of our BO method should not be taken as generic superiority over all

potential instantiations of DOE or commercial media used for C2C12

growth.

While the BO method worked well at solving the experimental

optimization problem, the multi‐IS GP accuracy was limited to highly

sampled regions of the design space, thus limiting the efficacy of

sensitivity analysis. This was a conscious decision made to trade off

postfacto analysis for sampling media with high desirability D x( ) .

Accuracy was also limited by the low amount of data N available

relative to the large dimensionality p, which is inherently the case in

complex biological experiments where each batch of q experiments

takes >1 week to evaluate. Finally, the hyperparameters θ* used in

the multi‐IS squared exponential kernel were deliberately regularized

with prior distributions to smooth the posterior of the prediction

μ x( ) . Regularization may have diminished the quality of the inter‐IS

correlations; the model hyperparameters ignored features where IS

differed in favor of a simpler correlative structure to explain the data.

This is seen in Figure 8b,c, where the kernel evaluations show nearly

equal inter‐IS correlative strength for most IS used. This may have

“squished”/ignored features that could have provided additional

information, but at the cost of sampling the design space too widely,

again a deliberate choice of model skepticism towards outliers.

Even with these limitations, the BO method clearly performs well

on media optimization systems relevant to cellular agriculture, that is,

those with multiple and potentially conflicting information sources

with varying levels of difficulty in measuring. The media resulting

from the BO algorithm supported significantly more C2C12 cell

growth with only a small increase in cost. This algorithm performs

better than traditional DOE in this case, especially in incorporating

critical data from growth after the multiple passages in an affordable

manner. With these results, it should be possible to implement this

type of experimental optimization algorithm in other systems of

importance to cellular agriculture and cell culture production

processes with difficult‐to‐measure output spaces, including for

optimization of serum‐free media for cell growth and for

differentiation.
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