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Abstract — This paper presents a novel 145-185 GHz
transceiver (TRX) with 4 frequency-shift keying (4FSK)
modulation. The proposed non-coherent 4FSK design removes the
need for separate modulator and demodulator blocks reducing
the power consumption and complexity. The proposed TX
generates four different RF frequencies based on the two parallel
streams of binary input data, and the RX employs a slot power
divider to divide the 4FSK RF signal into two paths, where
the 4FSK RF signal is demodulated and data is recovered by
enveloped detectors and digital buffers. Both the transmitter and
receiver are fabricated in a 65 nm CMOS technology with a total
core area of 0.6 mm2. The TRX architecture achieves 17 Gb/s
over 18 cm link distance while consuming only 182 mW power.

Keywords — 4FSK modulation, transceiver, CMOS, millimeter
wave, data rate

I. INTRODUCTION

Recently, there has been great interest in using

millimeter-wave (mm-wave) and Sub-Terahertz (THz)

frequency bands for high data rate low power communication

systems [1], [2]. Various mm-wave transceivers have utilized

digital modulation techniques especially phase-shift keying

(PSK), On-Off keying (OOK), and quadrature amplitude

modulation (QAM) [3], [4], [5]. A 210-GHz OOK CMOS

transceiver that achieves 10 Gb/s at a 3.5 cm distance is

presented in [6]. The communication system in [7] achieves

10 Gb/s at a 30 cm distance using QPSK modulation at 60

GHz, while the transceiver in [8] uses 64 QAM modulation

to achieve 21.12 Gb/s data rate at 10 cm distance at 60

GHz. Although the reported QAM and PSK TRXs [9] can

achieve a multi Gb/s data rate occupying low bandwidth, they

suffer from design complexity and high power consumption,

because they require coherent architectures. In addition,

separate power hungry modulator/demodulator (modem)

including data converters are needed in these systems which

adds to the power consumption. On the other hand, the OOK

[10] systems have simpler structures but can only provide one

bit per symbol, limiting the data rate.

Theoretically, the 4FSK modulation scheme is more

energy-efficient than OOK and QAM modulations, as it

requires less signal-to-noise ratio (SNR) at a fixed bit

error rate (BER). In addition, 4FSK modulation scheme

can be implemented non-coherently and does not require

a separate modem. As a result, the complexity and the

power consumption of the system is significantly reduced.

Compared to traditional OOK, 4FSK includes two bits per

symbol enabling higher data rate systems. Similar to OOK,

4FSK modulation is less bandwidth efficient than PSK/QAM
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Fig. 1. 4FSK transceiver architecture (a) Transmitter (b) Receiver

for a specific data rate. Nevertheless, large bandwidths are

available at mm-wave frequencies, enabling trade off between

bandwidth and power efficiencies.

This work presents a 4FSK TRX at 150 to 180 GHz

achieving 17 Gb/s at an 18 cm distance consuming 182 mW

in a 65 nm CMOS process. To the best of our knowledge,

the proposed design is the first multi Gb/s transceiver based

on 4FSK modulation scheme, and achieves the highest energy

efficiency for reported TRX systems supporting 17 Gb/s or

higher.

II. 4FSK TRANSCEIVER ARCHITECTURE

Fig. 1 presents the conceptual 4FSK TRX architecture. The

transmitter consists of only one voltage controlled oscillator

(VCO). Two parallel streams of binary data are applied to

the input of the transmitter. The VCO generates four different

frequencies of f1, f2, f3, and f4 for the input data pairs of

(0,0), (0,1), (1,0) and (1,1), respectively. Thus, the transmitter

modulates and upconverts the data at the same time resulting in

significantly lower power consumption and circuit complexity

compared to QAM and PSK transmitters.

Conventional non-coherent 4FSK receivers divide the

received signals into four paths for frequency detection.

However, four-way power dividers at high frequencies

(>100GHz) can be very lossy, increasing the noise figure of

the receiver. In addition, four-path receivers are high power

consuming. In this design, the 4FSK signal at the RX input

is divided into two paths. The LNA in the first path is tuned
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Fig. 2. 4FSK transmitter blocks

as a band-pass filter (BPFA) at f2 and f3 frequencies and the

LNA in the second path is tuned as a band-pass filter (BPFB)

at f3 and f4 frequencies. The following detector can detect the

power of the signal at the output of the LNA and generate

data bits accordingly. For example, if the frequency of the

signal at the input of the receiver is f1, the signal is filtered

by both paths, and the (0,0) bits are generated at the output

of the detector. Similarly, If the input frequency is f2, f3 and

f4, the detectors generate (0,1), (1,1) and (1,0), respectively.

While the data bits at the transmitter input are binary code,

the output of the receiver is gray code. A simple digital logic

circuit can be used at the output of the receiver (Fig. 1) to

recover the exact bits sent by the transmitter.

The minimum Nyquist bandwidth for a given data rate is

fb/2 and the minimum Null to Null bandwidth for zero BER

for non-coherent 4FSK modulation is 2.5fb, where fb is the

data rate. Thus, for a 20 Gb/s data rate 4FSK modulation,

the minimum Nyquist bandwidth is 10 GHz and the Null to

Null bandwidth is 50 GHz. In this design f1, f2, f3 and f4

frequencies are 150, 160, 170, and 180 GHz, respectively. That

corresponds to 10 GHz spacing between frequencies and 40

GHz of bandwidth. Each stream of binary data is 10 Gb/s

which makes the total data rate 20 Gb/s.

III. CIRCUIT IMPLEMENTATION

A. 4FSK Transmitter

Fig. 2 shows the circuit details of the 4FSK transmitter.

The VCO is a cross-coupled oscillator which includes two

sets of varactors. The voltage across the varactors is controlled

by the BIT1 and BIT2 data streams. Therefore, the varactors

can provide four distinct capacitances to the cross-coupled

VCO. The NMOS varactors are sized such that the VCO’s

four frequencies are 75, 80, 85, and 90 GHz. The VCO tank

inductor contains L1 and L3 transmission lines which are in

parallel in the tank. L1 and L2 are coupled and therefore the

impedance looking into L1 is a function of the impedance of

L2 in series with the switch, SW. The switch can perform fine

frequency tuning if the four frequencies are not exactly the

required values. A frequency doubler is designed to increase

the frequency of the signal at the output of the VCO, and
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Fig. 3. 4FSK receiver blocks (a) LNA schematic (b) Envelop detector
schematic (c) Digital buffer schematic

the following amplifier is used to increase its output power.

The frequency doubler and amplifier schematic is shown in

Fig. 2. The output matching of the amplifier is designed to

cover 150-180 GHz bandwidth and to make sure the output

power of the signal at all four frequencies is the same. The

simulated conversion gain of the frequency doubler followed

by the amplifier is -7 dB at 165 GHz.

B. 4FSK Receiver

Fig. 3 shows the circuit blocks of proposed 4FSK

direct-demodulation receiver. A slot power divider similar to

[11] is used at the receiver input to split the input signal equally

between the two paths. To support the 4FSK signal in this

design, the receiver should cover the frequencies from 145

GHz to 185 GHz. The slot power divider covers the same

bandwidth with a simulated insertion loss of 1.8 dB at 165

GHz. To ensure proper operation of the power divider the input

matching of the LNA’s first stage is also designed to have

the same bandwidth (145-185 GHz). However, subsequent

LNA stages cover specific frequency bands: 155-175 GHz

for the first path and 165-185 GHz for the second path.

Neutralization technique is used at each LNA stage (Fig. 3(a))

to boost the gain of each stage and to better isolate the power

divider from the rest of the LNA stages. A transmission line

is added to the source of the transistors to provide better

stability. The power supply voltage of the LNA is 0.75 V.

While larger bandwidth for each path can support higher data

speed, it also increases the integrated noise and the leakage

of the undesired frequencies, reducing the SNR. Therefore,

the optimum bandwidth of the LNA is designed to be around

15 GHz. To compensate for the frequency shifts due to the

process variation, NMOS varactors are added at the gate of

the transistors in each LNA stage. The maximum simulated

NF of the RX path is 15 dB.

The NMOS transistors of the differential envelope detector

(Fig. 3(b)) are class AB biased for better sensitivity [12]. The

bandwidth of the R1-CF lowpass network at the output of

the detector is designed to be 25 GHz and to create a balance
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Fig. 5. Measured performance of the 4FSK transceiver for different link distances (a) 18 cm (b) 28 cm (c) 40 cm
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between data recovery and SNR. Higher bandwidth helps with

the data recovery, but at the same time increases the noise, thus

decreasing the SNR. The following digital buffers block in Fig.

3(c) is used to amplify the demodulated signal and convert it

into digital signals. The first stage of the buffer as a voltage

level shifter can be used to tune the threshold of the inverter,

calibrating the receiver for different input power levels. The

last inverter stage is implemented to drive a 50 Ohm load.

IV. FABRICATION AND MEASUREMENT RESULTS

The circuit was fabricated in a 65 nm CMOS process. Fig.

4(a) and Fig. 4(b) present the chip micrograph of the receiver

and transmitter, respectively. The TRX BER measurement was

carried out by utilizing the setup shown in Fig. 4(c) and Fig.

4(d). WR5 probes, waveguides, and also 23 dBi horn antennas

are used to link the TX and RX chips. The distance between

TX and RX antennas can be controlled by changing the length

of the straight waveguides. The total loss of the WR5 probe

and waveguides is 6 dB for 18 cm distance. Two streams

of data bits are generated by a Keysight M8195A arbitrary

waveform generator (AWG). The transmitter modulates this

data and radiates the signal to the RX chip where the data

is demodulated and sent to a Keysight UXR0334A real-time

scope for BER measurement.

Fig. 5 presents the measured performance of the 4FSK

TRX for different link distances. Data rates of 17, 16, and

10 Gb/s were achieved at 18, 28, and 40 cm link distances,

respectively. The BER of the transceiver is calculated based

on the measured eye diagram of the demodulated signals.

Fig. 6(a) presents the BER versus data rate for different link

distances. It can be seen that the BER is 1E-12 at 17 Gb/s,

1E-9 at 16 Gb/s, and 1E-10 at 10 Gb/s for 18, 28, and 40

cm link distances, respectively. Fig. 6(b) depicts the simulated

and measured output power of TX for different frequencies

which is downconverted by an even harmonic WR5 mixer

and measured by an Anritsu MS2830A spectrum analyzer

and a VDI Erickson PM4 power meter. To characterize the

frequency response of the RX paths, the DC voltage VProb,dc

(Fig. 3(c)), at the output of the inverter-based amplifiers was
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Table 1. Performance comparison with State-of-The-Art transceivers
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TX: 670
RX: 431 10.5 100 1E-3 105 NA 28 nm

CMOS
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1 Modulator and Demodulator are not integrated                                   2 Requires external oversampling clock                                    3 Demodulator is MATLAB Simulink                 4 Antenna in-package with lens                            
5 Gain of the antenna minus measurement setup loss                                   * Estimated                                    ** Simulation

QPSK

TX, RX, LO 1 

TX, RX,  
Digital IO,

Mod, Demod
Horn
17 dBi

TX: 62
  RX: 120
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40
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18

1E-10
1E-9
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11.37
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CMOS 0.6
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                     [10]                130                 OOK                   Package
26 dBi 4

TX: 59
RX: 38 12.5 500 1E-6 7.76 0.4 55 nm

BiCMOS

measured while continuous wave signals with equal power

(-17 dBm) but different frequencies are applied to the RX

input. Fig. 6(c) shows the normalized gain of the RX paths.

The 3 dB bandwidth of both paths is around 20 GHz. In

addition, a N5247A PNA-X network analyzer with WR-05.1

VDI frequency extender module are used to measure the return

loss of the slot power divider at the RX input, which is shown

in Fig. 6(d). The measured return loss at the input port is lower

than -10 dB from 140 GHz to 194 GHz.

The performance of the proposed 4FSK TRX is

summarized and compared to the state-of-the-art transceivers

in Table 1. To the best of authors knowledge, this

work presents the first multi-Gb/s TRX system with FSK

modulation. The proposed TRX system achieves one of

the best energy efficiencies compared to full bit-in-bit-out

transceiver works with 17 Gb/s data rate or higher. This work

also achieves a higher data rate compared to OOK TRXs.

V. CONCLUSION

A 4FSK TRX in 65 nm CMOS is presented. The proposed

non-coherent design achieves 17 Gb/s at an 18 cm link distance

with a 10.7 pJ/Bit efficiency. The design employs a novel

2-path RX and a simple TX architectures and is considered

the first multi-Gb/s TRX system with FSK modulation.
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