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THE TROPICAL CAYLEY–MENGER VARIETY⇤

DANIEL I. BERNSTEIN† AND ROBERT KRONE‡

Abstract. The Cayley–Menger variety is the Zariski closure of the set of vectors specify-
ing the pairwise squared distances between n points in Rd. This variety is fundamental to algebraic
approaches in rigidity theory. We study the tropicalization of the Cayley–Menger variety. In particu-
lar, when d = 2, we show that it is the Minkowski sum of the set of ultrametrics on n leaves with itself,
and we describe its polyhedral structure. We then give a new, tropical, proof of Laman’s theorem.
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Tropicalization is a process that transforms a variety into a polyhedral complex
in a way that preserves many essential features. One of our main results is a combi-
natorial description of the tropicalization of the Pollaczek-Geiringer variety, i.e., the
Zariski closure of the set of vectors specifying the pairwise squared distances between
n points in R2. We show that this tropical variety has a simplicial complex structure
that we describe in terms of pairs of rooted trees. Another main result is a new
proof of Laman’s theorem from rigidity theory via our combinatorial description of
the tropicalization of the Pollaczek-Geiringer variety.

Laman’s theorem can be seen as a combinatorial description of the algebraic
matroid underlying the Pollaczek-Geiringer variety. Our proof of Laman’s theorem
takes this viewpoint and uses a lemma of Yu from [25], saying that tropicalization
preserves algebraic matroid structure. A similar strategy was adopted by Bernstein
in [4], wherein he characterized the algebraic matroids underlying the Grassmannian
Gr(2, n) of planes in a�ne n-space and the determinantal variety of m ⇥ n matrices
of rank at most two. A key ingredient was a result of Speyer and Sturmfels [23]
describing the tropicalization of Gr(2, n).

Loosely speaking, a graph is said to be generically rigid in Rd if when its vertices
are embedded in Rd at generic points and its edges are treated as rigid struts that
are free to move about the vertices, the resulting structure cannot be continuously
deformed. Laman’s theorem is an elegant characterization of the graphs that are
minimally generically rigid in R2, and such graphs are said to be Laman. In spite
of the name, Laman’s theorem was originally proved by Hilda Pollaczek-Geiringer in
1927 [20], though this was evidently forgotten when Laman rediscovered it in 1970
[14]. Pollaczek-Geiringer’s work on this topic seems only to have resurfaced recently,
so the terms “Laman’s theorem” and “Laman graphs” have become quite deeply
embedded in the rigidity theory literature, and we stick with them in this paper.
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1726 DANIEL I. BERNSTEIN AND ROBERT KRONE

Capco et al. recently used tropical geometry in [7] to compute upper bounds on the
number of realizations of a given Laman graph with generic prescribed edge lengths.
Perhaps the most important open problem in rigidity theory is to characterize the
graphs that are minimally generically rigid in R3, and no currently known technique
for proving Laman’s theorem seems likely to extend. Therefore, one motivation for
our tropical proof is hope that it may one day extend to the R3 case.

In addition to being an interesting mathematical subject, rigidity theory of graphs
has diverse applications. It can be used to discover the structure of molecules [16]
which is particularly useful when studying proteins [13, 21] and materials at the nano
scale [3, 18]. Macroscale applications include coordinating groups of autonomous
vehicles [1, 8, 9, 19] and sensor network localization [10, 26].

We give the necessary technical background on rigidity theory and tropical ge-
ometry in section 1. Among other things, we define the Cayley–Menger variety, a
generalization of the Pollaczek-Geiringer variety, which is the Zariski closure of the
set of vectors specifying the pairwise squared distances between n points in Rd. In
section 2, we show that the tropicalization of the Cayley–Menger variety in the case
d = 1 is the space of ultrametrics on n leaves. We also set some notation that will
be used in later sections. We begin section 3 by showing that the tropicalization of
the Pollaczek-Geiringer variety is the Minkowski sum of the set of ultrametrics with
itself. Then, we show that this tropical variety admits a particular simplicial complex
structure. In section 4, we use our previous results to give a new proof of Laman’s
theorem.

1. Preliminaries. Let K be R or C. Let S be a finite set, and let X ✓ KS be an
irreducible a�ne variety. Each E ✓ S defines a coordinate projection ⇡E : KS ! KE .
The algebraic matroid underlying X is the matroid on ground set S whose independent
sets are the E ✓ S such that dim⇡E(X) = |E|. To see that this construction yields
a matroid, see, e.g., [5, Proposition 1.2.9].

A bar and joint framework consists of a graph G = (V,E) along with an injection
p : V ! Rd. We denote such a framework by (V,E,p) and say that it is rigid

if there exists an " > 0 such that for any other injection q : V ! Rd satisfyingP
u2V

kp(u)�q(u)k2  " and kq(u)�q(v)k = kp(u)�p(v)k for all uv 2 E, then the
images of p and q are related by a Euclidean isometry of Rd. A graph G = (V,E)
is said to be generically rigid in Rd if every framework (V,E,p) is rigid when p is
generic. We will identify injections p : V ! Rd with point configurations in (Rd)|V |.

The Cayley–Menger variety of n points in Rd, denoted CMd

n
, is the a�ne variety

embedded in C(
[n]

2 ) given as the Zariski closure of the set of pairwise squared Euclidean
distances between n points in Rd. When d = 2, we will call the corresponding Cayley–
Menger variety CM2

n
the Pollaczek-Geiringer variety. The following lemma gives three

folklore results, the first of which is called Laman’s condition in [11]. They are well-
known, but we give proofs as they are not generally phrased in our algebraic-geometric
language.

Lemma 1.1. Let n � d and let E ✓
�[n]

d

�
. Then

1. if E is independent in the algebraic matroid of CMd

n
, then for all V ✓ [n]

with |V | � d, the induced subgraph of ([n], E) on vertex set V has at most

d|V |�
�
d+1
2

�
edges,

2. the dimension of the Cayley–Menger variety CMd

n
is dn�

�
d+1
2

�
, and

3. the graph ([n], E) is generically rigid if and only if E is spanning in the

algebraic matroid underlying CMd

n
.
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THE TROPICAL CAYLEY–MENGER VARIETY 1727

Proof. The first statement follows from the second by the observation that the
coordinate projection of CMd

n
onto the coordinates indexed by

�
V

2

�
is CMd

|V |.

We now prove the second statement. Let � : (Rd)n ! R(
[n]

2 ) be the map sending
a configuration of n points in Rd to the set of pairwise squared distances among them.
Then CMd

n
is the Zariski closure of the image of �. The map � is algebraic, so

dim
⇣
CMd

n

⌘
= dim

⇣�
Rd

�n⌘� dim
�
�
�1(�(p))

�
,

where p is a generic point configuration in (Rd)n.
Let E(d) denote the group of Euclidean isometries of Rd. Fiber �

�1(�(p)) is
equal to the E(d)-orbit of p. Since p was chosen generically, the points a�nely
span Rd if n > d, and so the only element of E(d) that stabilizes p is the identity
transformation. If n = d, then the points in p a�nely span a hyperplane H ✓ Rd,
and the only two elements of E(d) that stabilize p are the identity and the reflection
across H. It follows from [15, Theorem 9.24] that dim(��1(�(p))) = dim(E(d)). To
see that dim(E(d)) =

�
d+1
2

�
, note that each translation is specified by d independent

parameters, and each rotation or reflection is specified by
�
d

2

�
independent parameters.

We now prove the third statement. Note that E is spanning in CMd

n
if and

only if dim(⇡E(CM
d

n
)) = dim(CMd

n
). Equivalently, for a generic point configura-

tion p 2 (Rd)n, the set ⇡
�1
E

(⇡E(�(p))) is zero-dimensional, i.e., a finite set. Thus
�
�1(⇡�1

E
(⇡E(�(p)))) consists of finitely many orbits of E(d)’s diagonal action on

(Rd)n. Taking " to be half the minimum distance between any two such orbits,
we see that the framework ([n], E,p) is rigid.

For d = 1 and d = 2, the necessary condition from Lemma 1.1 for independence
is known to be su�cient. The d = 1 case is trivial and the d = 2 case is known as
Laman’s theorem.

What follows is a very brief introduction to tropical geometry. The theory of
tropical geometry can be developed using either the max convention or the min con-

vention. Both give exactly the same theorems, modulo some sign changes and the
substitution of “maximum” with “minimum” or vice versa. One often chooses the
convention that minimizes the number of negative signs that appear. In this paper,
that happens to be the max convention, so that is what we choose. See [17] for a
more detailed introduction to tropical geometry (but note that it is written in the
min convention).

A valuation on a field K is a function val : K ! R [ {�1} satisfying
1. val(a) = �1 if and only if a = 0,
2. val(ab) = val(a) + val(b),
3. val(a+ b)  max{val(a), val(b)} with equality if val(a) 6= val(b).

One should think of val(a) as a measure of the magnitude of a 2 K that behaves
roughly like a logarithm, as reflected by rules 1 and 2. If a 2 K has smaller valuation
than b 2 K, then a should be considered insignificant compared to b so val(a + b) =
val(b). On the other hand, if a and b have the same valuation, adding them may
cancel the largest magnitude components of each, so val(a+ b)  val(b), as described
by rule 3. The pair (K, val) is called a valuated field.

For our purposes, we require a valuated field K that extends C, is algebraically
closed, and has valuation that maps densely into R [ {�1}. Therefore we will take
K = C{{t}}, the field of complex Puiseux series. The elements of C{{t}} are formal
series in indeterminant t of the form
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1728 DANIEL I. BERNSTEIN AND ROBERT KRONE

a =
1X

i=m

cit
i/k

for some integer m and some positive integer k, with each ci in C and cm 6= 0. The
valuation is defined by val(a) = �m/k, the negative of the smallest exponent of t.

For Y an algebraic variety in K
S , the tropicalization, trop(Y ), of Y is the closure

in the Euclidean topology of the image of Y under the map val,

trop(Y ) := {val(x) : x 2 Y } \ RS
.

Note that we discard the points with coordinates �1.
To tropicalize an algebraic variety X ✓ CS with defining ideal I ✓ C[xi : i 2 S],

we extend scalars from C to the valuated field K to get a variety in K
S . Let X 0 ✓ K

S

denote the vanishing set of ideal IK[xi : i 2 S]. We then define trop(X) to be equal
to trop(X 0).

In this case, trop(X) is a pure polyhedral fan of the same dimension as X [6]. By
studying trop(X), we can apply tools from polyhedral geometry and combinatorics
to questions about X. Of particular interest for this paper, the following lemma tells
us that tropicalization preserves the algebraic matroid structure.

Lemma 1.2 (see [25, Lemma 2]). Let X ✓ CS
be an irreducible variety and let

E ✓ S. Then the projection of X to CE
has the same dimension as the projection of

trop(X) to RE
.

We now review the results from the literature that we will need to obtain our
combinatorial description of trop(CM2

n
). Recall that a monomial map ↵ : Cn ! Cd

is an algebraic map with the property that each coordinate of the image is given by
a monomial in the coordinates of Cn. Such a map can be represented by a matrix A

where the ith column of A is the exponent vector of the ith coordinate of ↵.

Theorem 1.3 (see [24, Theorem 1.1]). Let A 2 Zn⇥d
be an integer matrix

representing a monomial map ↵ : Cn ! Cd
and let X 2 Cn

be a variety. Then

trop(↵(X)) = A trop(X).

We denote the coordinates of points � 2 R(
[n]

2 ) by �uv where u < v. We say that

� 2 R(
[n]

2 ) is an ultrametric if �uv  max{�uw, �vw} for all triples u, v, w of distinct
elements of [n]. Note that we do not require nonnegativity of any coordinates.

We now recall the well-known way that ultrametrics can be represented on rooted
trees (see, e.g., [22, Chapter 7]). Given a rooted tree T with leaves labeled by [n], the
most recent common ancestor of a pair of leaves u, v 2 [n] is the unique internal node
in the unique path in T from u to v that is closest to the root in the graph-theoretic
distance. Given an ultrametric � on [n], there exists a unique tree T , whose internal
nodes are assigned real-valued weights that increase along any path toward the root,
such that �(u, v) is the weight assigned to the most recent common ancestor of u

and v. Given an ultrametric �, the associated tree T (disregarding the weights on the
internal vertices) is called the topology of �. See Figure 1 for an example displaying the
ultrametric (�12, �13, �14, �23, �24, �34) = (�2, 1, 4, 1, 4, 4) on its topology. We denote

the set of all ultrametrics in R(
[n]

2 ) by Un.

Now, let
q
CM1

n
✓ R(

[n]

2 ) denote the linear space parameterized by �uv = xu�xv.

Our results all rest on the following theorem of Ardila and Klivans.
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THE TROPICAL CAYLEY–MENGER VARIETY 1729

Theorem 1.4 (see [2, Theorem 3]). The tropicalization of the linear space

q
CM1

n

is the set of ultrametrics on [n]. That is, trop(
q

CM1
n
) = Un.

1 2 3 4

�2

1

4
0

BBBBBB@

12 123 1234

12 1 0 0
13 0 1 0
14 0 0 1
23 0 1 0
24 0 0 1
34 0 0 1

1

CCCCCCA

Fig. 1. On the left is a rooted tree displaying the ultrametric (�2, 1, 4, 1, 4, 4). Letting T denote

the topology of this tree, the corresponding matrix MT is displayed on the right. Its columns span

the linear hull of the set of ultrametrics whose topology is T .

2. The tropical Cayley–Menger variety in dimension 1.

Proposition 2.1. The tropicalization of the Cayley–Menger variety of n points

in R1
is the set of ultrametrics on [n]. That is, trop(CM1

n
) = Un.

Proof. Let ↵ : C(
[n]

2 ) ! C(
[n]

2 ) denote the monomial map that squares each co-
ordinate. The matrix A representing ↵ is twice the identity matrix. Since CM1

n
=

↵(
q

CM1
n
), Theorem 1.3 implies that trop(CM1

n
) = A trop(

q
CM1

n
). Theorem 1.4

says that trop(
q
CM1

n
) = Un and it is easy to see that AUn = Un.

For any ultrametric � 2 Un, the point �0 = � + a(1, . . . , 1)T is also an ultrametric
for any real number a since �uv + a  max{�uw + a, �vw + a} for all triples u, v, w 2
[n]. Therefore trop(CM1

n
) can be considered as a subset of tropical projective space

TP(
[n]

2 )�1 defined as the quotient R(
[n]

2 )/R(1, . . . , 1)T .
Ultrametrics on [n] can be classified by their topology T . Let T be a rooted tree

with leaves labeled by [n]. A clade of T is the set of leaves below a given internal
vertex. A descendant of an internal vertex v of T is a vertex u in T such that the
unique path from u to the root of T contains v. The trivial clade is [n], the set of
all leaves. Let clade(T ) denote the set of clades of T and clade�(T ) the set of clades
excluding the trivial clade. Each rooted tree T is completely determined by clade�(T )
(one can build a tree given its clades by first adding an internal node above all the
leaves in each minimal clade, then treating each minimal clade as a single leaf and
proceeding inductively). As shorthand for a nonempty subset {i1, . . . , ir} ✓ [n], we
will also write i1 · · · ir.

Example 2.2. Let T1 and T2 be the trees shown in Figure 2 in section 3. Then
clade�(T1) = {12, 123} and clade�(T2) = {13, 24}.

Let KT denote the closed cone consisting of all ultrametrics with topology T .
Like Un, it has lineality space spanned by (1, . . . , 1)T , so it can be considered as a
subset of tropical projective space.

Theorem 2.3 (see [2, Proposition 3]). The tropical Cayley–Menger variety of

points in R1
, trop(CMn

1 ) = Un ✓ TP(
[n]

2 )�1
, admits a simplicial fan structure with
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1730 DANIEL I. BERNSTEIN AND ROBERT KRONE

cones KT for each rooted tree T on leaves [n], where KT1
is a face of KT2

if and only

if clade(T1) ✓ clade(T2).

We now introduce some notation for giving two di↵erent bases of the linear hull
of KT .

Definition 2.4. For each C 2 clade(T ), we define two vectors, vC and m
c

T
, in

R(
[n]

2 ) as follows. Let vC 2 R(
[n]

2 ) be the characteristic vector of
�
C

2

�
. Let m

C

T
2 R(

[n]

2 )

be the characteristic vector of the set of pairs ij in [n] such that C is the smallest

clade containing ij. Let MT be the matrix with columns m
C

T
. See Figure 1 for an

example.

A given ultrametric � with topology T can be expressed as

� =
X

C2clade(T )

�Cm
C

T
,

where �C is the label assigned to clade C. Thus, the columns of MT are a basis of
the linear hull of KT . Within its linear span, the cone KT is cut out by the set of
inequalities {�C  �C0 |C 0 2 clade(T ), C ✓ C

0}. The following lemma implies that
another basis for the linear hull of KT is the set {vC}C2clade(T ).

Lemma 2.5. The cone KT of Un ✓ TP(
[n]

2 )�1
containing all ultrametrics with a

given topology T is generated by {�vC}C2clade�(T ) (modulo lineality space).

Proof. Let � be an ultrametric with topology T and let m = max(�). Let �
0

be the ultrametric obtained by labeling all internal vertices of T by m. So �
0 =

m(1, . . . , 1)T = mv[n]. The ultrametric �
0 can be turned into � by iteratively decreas-

ing the labels on each internal vertex and all its descendants. This corresponds to
subtracting vectors of the form vC . Concretely,

� = mv[n] +
X

C2clade�(T )

�tCvC ,

where tC = �C0 � �C for all C 2 clade�(T ), where C
0 is the parent of C. The

condition �C  �C0 gives tC � 0, so KT consists of all nonnegative combinations of
{�vC}C2clade�(T ).

3. The tropical Pollaczek-Geiringer variety.

Theorem 3.1. The tropicalization of the Pollaczek-Geiringer variety is the Min-

kowski sum of two copies of the set of ultrametrics on [n]. That is, trop(CM2
n
) =

Un + Un.

Proof. As noted in [7], the usual parameterization of CM2
n
given by �uv = (xu �

xv)2+(yu�yv)2 becomes �uv = (xu�xv)(yu�yv) after applying the following change
of variables:

xu 7! xu + iyu yu 7! xu � iyu.

Now let ↵ : C(
[n]

2 ) ⇥ C(
[n]

2 ) ! C(
[n]

2 ) be the monomial map sending (�1
uv
, �

2
wx

)uv,wx to

(�1
uv
�
2
uv
)uv. Under this new parameterization, it is clear that CM2

n
= ↵(

q
CM1

n
⇥

q
CM1

n
). The rows of the integer matrix A representing ↵ are {euv + fuv}uv, where

{euv}uv, {fuv}uv are the canonical bases of each copy of C(
[n]

2 ). Theorems 1.3 and 1.4
then imply the proposition.
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Remark 3.2. Proposition 2.1 and Thoerem 3.1 describe trop(CMd

n
) for d = 1 and

2 and suggest a pattern that perhaps trop(CMd

n
) might be equal to the sum of d copies

of Un for general d. However, we were not able to make such a generalization for d � 3.
The key observation in the d = 2 case is the factorization of the Euclidean distance
�uv = (xu � xv)2 + (yu � yv)2 into a product of a term involving only x-distance and
a term involving only y-distance. We could not find an analogous factorization for
�uv = (xu � xv)2 + (yu � yv)2 + (zu � zv)2, the Euclidean distance in R3.

Our goal for the rest of this section is to prove Theorem 3.4, which describes a
polyhedral fan structure on trop(CMn

2 ).

Definition 3.3. The tree pair complex on n leaves, denoted tp(n), is the abstract
simplicial complex on ground set 2[n] whose faces are all subsets of the form clade(T1)[
clade(T2) where T1 and T2 are rooted trees on leaf set [n].

Note that any subset of clade(T ) can be realized as clade(T 0), where T 0 is obtained
from T by contracting internal edges. Thus the tree pair complex is indeed an abstract
simplicial complex. Definition 3.3 allows T1 = T2, so tp(n) contains the simplicial
complex implicit in Theorem 2.3 as a subcomplex. We now state, but do not yet
prove, our main theorem.

Theorem 3.4. The tropical Pollaczek-Geiringer variety trop(CMn

2 ) admits a sim-

plicial fan structure isomorphic to tp(n).

Definition 3.5. Let T1, T2 be rooted trees on leaf set [n]. The clade graph of T1

and T2 is the bipartite graph GT1,T2
= (V1, V2, E) whose partite vertex set Vi is the set

of clades of Ti and whose edge set E = {eij : 1  i < j  n} has eij connecting the

minimal clades of T1 and T2 that contain both leaves i and j.

Proposition 3.7 uses clade graphs to derive the dimension of the cone KT1
+KT2

from the combinatorics of T1 and T2. Subgraphs of clade graphs will play a crucial
role in our tropical proof of Laman’s theorem in the next section.

Example 3.6. Figure 2 shows two rooted trees on vertex set {1, 2, 3, 4} alongside
their clade graph. In both trees, the trivial clade 1234 is the minimal clade containing
the leaf pairs 14 and 34 and so there is a double edge between both copies of the
trivial clade.

1 2 3 4 1 3 2 4 12

123

1234

24

13

1234

Fig. 2. Two rooted trees and their clade graph.

We now note that our tropical proof of Laman’s theorem does not require any of
the remaining results in this section. Hence, the reader who is interested only in our
tropical proof of Laman’s theorem could skip to section 4 now.

Proposition 3.7. For rooted trees T1, T2, the following values are equal:

1. the dimension of KT1
+KT2

,

2. the rank of the graphic matroid of GT1,T2
(the number of vertices minus the

number of connected components),

3. the cardinality of clade(T1) [ clade(T2).
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1732 DANIEL I. BERNSTEIN AND ROBERT KRONE

Proof. Recall that the rank of the vertex-edge incidence matrix of a bipartite
graph is equal to the rank of its graphic matroid. Equivalence of 1 and 2 then follows
from the fact that

�
MT1

MT2

�
(see Definition 2.4) is the vertex-edge incidence matrix

of GT1,T2
and that its column span is the linear hull of KT1

+KT2
.

Now we show that 1 and 2 are equivalent to 3. The linear hull of KT1
+KT2

is
also spanned by {vC}C2clade(T1) [ {vC}C2clade(T2), so

dim(KT1
+KT2

)  | clade(T1) [ clade(T2)|.

We proceed by showing that | clade(T1) [ clade(T2)|  rank(GT1,T2
). Note that the

number of vertices of GT1,T2
is | clade(T1)| + | clade(T2)| so we must prove that the

number of connected components of GT1,T2
is at most | clade(T1) \ clade(T2)|.

We first show that that each clade C of T1 (without loss of generality) connects
to the smallest clade of T2 containing C. Let D be the set of clades in T2 that are
adjacent to C in GT1,T2

. Suppose E1, E2 2 D are disjoint and let eij and ekl be
the edges connecting them to C, respectively. Among the set {i, j, k, l} there are at
least two other pairs besides {i, j} and {k, l} for which C is the smallest clade in T1

containing both. Without loss of generality suppose {i, k} is such a pair. Then eik

connects C to clade E3 2 D that contains both E1 and E2. It follows that D has a
unique maximal element by inclusion, D. For any i 2 C, there exists j 2 C such that
eij is incident to C. Therefore i 2 D, so then C ✓ D. So D must be the smallest
clade of T2 containing C.

If C 2 clade(T1) \ clade(T2), then the two vertices in GT1,T2
corresponding to C

are adjacent. If C 2 clade(T1) \ clade(T2), then its vertex is adjacent to the vertex of
a clade D that strictly contains C. Therefore there is a path from vertex C through
an ascending chain of clades that eventually reaches a shared clade. Every vertex is
connected to the vertex pair of a shared clade, so the number of connected components
of GT1,T2

is bounded by | clade(T1) \ clade(T2)|.
Corollary 3.8. The pairs of trees T1, T2 for which KT1

+ KT2
has maximal

dimension are those such that T1 and T2 are binary and have no nontrivial common

clade.

Corollary 3.9. For any pair of trees T1, T2, the cone KT1
+KT2

✓ TP(
[n]

2 )�1
is

a simplicial cone generated by {�vC}C2clade�(T1)[clade�(T2).

Proof. By Lemma 2.5, KTi has lineality space (1, . . . , 1)T and is generated by

{�vC}C2clade�(Ti) in TP(
[n]

2 )�1. Therefore KT1
+ KT2

has (1, . . . , 1)T in its lineality

space and is generated by {�vC}C2clade�(T1)[clade�(T2) in TP(
[n]

2 )�1. By Proposition
3.7,

dim(KT1
+KT2

) = | clade(T1) [ clade(T2)| = | clade�(T1) [ clade�(T2)|+ 1.

Modulo (1, . . . , 1)T , the dimension of the cone is equal to the number of generators,
so it must be simplicial.

Corollary 3.9 describes the coneKT1
+KT2

in terms of its rays, i.e., a v-description.
This descirption implies that the cone depends only on clade(T1) [ clade(T2) and
not any other properties of the trees. For S ✓ 2[n], let S� denote S \ {[n]} and

let KS ✓ TP(
[n]

2 )�1 denote the cone generated by {�vC}C2S� (with lineality space
(1, . . . , 1)T ). Therefore KT1

+KT2
= KS for S = clade�(T1) [ clade�(T2).

In addition to a v-description of cone KS , we would like an h-description: a
system of linear equations and inequalties that cut out the cone. This result is given
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THE TROPICAL CAYLEY–MENGER VARIETY 1733

in Proposition 3.12. From the h-description we can say how the cones in trop(CMn

2 )
intersect, which will complete the proof of Theorm 3.4.

Suppose S 2 tp(n), so that S = clade(T1) [ clade(T2) for a pair of trees T1, T2,
and KS = KT1

+KT2
. The clade intersection poset of S, denoted cip(S), will consist

of S and all intersections of elements of S containing two or more elements and be
partially ordered by inclusion. In the h-description of KS , there will be one equation
or inequality for each element of cip(S)� plus some additional equations coming from
pairs of leaves within the same elements of cip(S), as we show below. This construction
guarantees that for any pair ij ✓ [n], there is a unique smallest set C 2 cip(S) that
contains ij. Denote this set ij. Given C 2 cip(S), the parents of C are the elements
of cip(S) that cover C, and the children of C are the elements of cip(S) that C covers
(recall that a is said to cover b in a poset if a is greater than b, and there is no element
strictly between a and b). We claim that cip(S) is a join-semilattice. Otherwise, if the
join of A and B does not exist, then there exist mutually incomparable C1, C2 2 cip(S)
that are both minimal elements of cip(S) containing A[B. But this is a contradiction
since then C1 \C2 2 cip(S) also contains A[B. The join of A and B will be denoted
A _B.

Lemma 3.10. For S 2 tp(n), and C ✓ [n] with |C| � 2, let D be the minimal

element of cip(S) that contains C. Then there exists a pair i, j 2 C such that ij = D.

Proof. Suppose no such pair ij exists, so every pair in C appears in some child
of D. We claim that there exist three children E1, E2, E3 of D that have nontrivial
pairwise intersection. Let E1 be a child of D that has maximal intersection with C

among the children of D and let a 2 E1 \ C. Since E1 does not contain C, there is
some b 2 C \ E1. Let E2 be a child of D that contains the pair ab. By how E1 was
chosen, E2 does not contain E1 \C, so there is c 2 (E1 \C) \E2 and E1 contains ac.
Finally take E3 to be a child of D that contains bc.

We note that for any three sets in S, at least two of the sets must be clades
in the same tree, implying that either one contains the other, or they are disjoint.
Therefore there cannot be three sets in S with nontrivial pairwise intersection and
none containing another. This implies that any element of cip(S)\S is the intersection
of exactly two elements of S.

Now, for each k = 1, 2, 3, if Ek /2 S, then it is the intersection of D and one other
set E0

k
2 S. If Ek 2 S, then let E0

k
= Ek. The sets E

0
1, E

0
2, E

0
3 are all in S and have

nontrivial pairwise intersection. If E0
1 contains E

0
2, then E2 is a descendant of both

E
0
1 and D. This implies E2 ✓ E

0
1 \D = E1, which is a contradiction since E1 and E2

are both children of D. Therefore the sets E0
1, E

0
2, E

0
3 do not satisfy any containment

relations with each other and no two are disjoint. But we have already seen that this
cannot happen.

Modulo lineality space, any point � 2 KS can be written uniquely as

� =
X

C2S�

�tCvC

with each tC 2 R�0. Therefore the ij coordinate has the form

�ij =
X

C2S�

C◆ij

�tC .
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1734 DANIEL I. BERNSTEIN AND ROBERT KRONE

It follows that if ij = kl, then

�ij = �kl.(3.1)

With this in mind, we will write �C to denote some �ij with C = ij. By Lemma 3.10,
for every C 2 cip(S) there is some ij with ij = C, so �C is well-defined.

We can also express each tC in terms of d. For C 2 cip(S)�, let D1, . . . , Dr be the
parents of C. For I ✓ [r], let DI =

W
i2I

Di for I 6= ; and D; = C. Inclusion-exclusion
gives

�
X

I✓[r]

(�1)|I|�DI =
X

I✓[r]

(�1)|I|
X

E2S�

E◆DI

tE =

(
tC if C 2 S�

,

0 otherwise.
(3.2)

For C 2 S�, rewriting the known inequality tC � 0 in terms of � gives

X

I✓[r]

(�1)|I|�DI  0.(3.3)

Statement (3.2) also gives an equation on � for each C 2 cip(S) \ S with parents
D1, . . . , Dr,

X

I✓[r]

(�1)|I|�DI = 0.(3.4)

Let FS denote the system of inequalties and equations on � from lines (3.1),(3.3),(3.4).
We will prove in Proposition 3.12 that FS is su�cient to cut out KS , but first we give
an example.

Example 3.11. We will construct the system FS when S = clade(T1) [ clade(T2)
where T1 and T2 are the rooted trees shown below (i.e., S = {12, 123, 56, 456, 14, 134,
26, 256, 123456}):

1 2 3 4 5 6 1 4 3 5 2 6 .

Then cip(S) = S [ {13} since 13 = 123 \ 134 and no other nonsingleton nonempty
sets arise as intersections of elements in S. The Hasse diagram of cip(S) is as follows:

12 13 14 56 26

123 134 456 256

123456

.

Considering C 2 S with |C| > 2, we have
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THE TROPICAL CAYLEY–MENGER VARIETY 1735

�123456 := �15 = �16 = �24 = �35 = �36, �456 := �45 = �46,

�123 := �23, �134 := �34, �256 := �25.

One more equality comes from 13 2 cip(S) \ S, namely

�13 � �123 � �134 + �123456 = 0.

Finally, we have the inequalities

�12  �123, �14  �134, �56 � �456 � �256 + �123456  0, �26  �256,

�123  �123456, �134  �123456, �456  �123456, �256  �123456.

Proposition 3.12. For S 2 tp(n), the polyhedral cone defined by the system FS
is KS .

Proof. It has already been observed that � 2 KS satisfies the system FS . The
inequalities in FS are facet-defining, and define all facets of KS , because for each
given C 2 S�, (3.3) achieves equality at all extreme rays of KS aside from vC .

It remains to show that the linear space defined by the equations of FS is the linear
hull of KS . For each pair ij, �ij = �C for some C 2 cip(S). If C /2 S, then �C can be
rewritten as a sum and di↵erence of {�D}D)C using the equality in FS associated to
C. Since the maximal element of cip(S) is [n] 2 S, by induction �C can be written in
terms of {�D}D2S, D◆C . Therefore the linear space defined by FS is parameterized
by {�C}C2S so it has dimension at most |S| including the lineality space. We know
this linear space contains KS , which also has dimension |S| by Proposition 3.7, so it
must be equal to the linear hull of KS .

Proposition 3.13. For S,S 0 2 tp(n),

KS \KS0 = KS\S0 .

Proof. The generators of KS\S0 in TP(
[n]

2 )�1 are the intersection of the generators
of KS and K

0
S . This implies that KS\S0 ✓ KS \KS0 .

To show that KS \ KS0 ✓ KS\S0 , we work by induction on m = |S \ S 0|. For
m = 0, S ✓ S 0 and KS ✓ KS0 , so the result follows. For m > 0 assume the statement
is true for all smaller values of m and then choose C 2 S \ S 0. Let D be the smallest
element of cip(S 0) such that C ✓ D.

First suppose that C ( D. By Lemma 3.10 there exists a pair ij ✓ C such that
D is the smallest element of cip(S 0) containing ij. Fix k 2 D \ C. If � 2 KS with
� =

P
E2S� �tEvE such that tC > 0, then �ik > �C � �ij . However if � 2 KS0 , then

�ik  �D = �ij . Therefore � 2 KS \KS0 has tC = 0, so KS \KS0 is contained in a
facet of KS .

If D = C, then D 2 cip(S 0) \ S 0. Let E1, . . . , Er be the parents of D in cip(S0).
For a point � 2 KS0 , �D = �E; satisfies

X

I✓[r]

(�1)|I|�EI = 0.
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1736 DANIEL I. BERNSTEIN AND ROBERT KRONE

Each EI = iIjI in cip(S 0) for some pair iI , jI . Note that for I 6= ;, the pair iIjI
is not contained in C. For � 2 KS , �i;j; depends on the value of parameter tC since
i;j; is contained in C, while every other �iIjI does not. Therefore if � 2 KS is generic,
the equation

�ij = �
X

I✓[r]
I 6=;

(�1)|I|�iIjI

is not satisfied. Therefore KS \KS0 has strictly lower dimension than KS , so it must
be contained in a facet of KS .

In either case let KS00 be the facet of KS containing KS \KS0 so that S \ S 0 ✓
S 00 ( S. Since |S 00 \ S 0| < m, by the induction hypothesis,

KS \KS0 = KS00 \KS0 ✓ KS00\S0 = KS\S0 .

Theorem 3.4 follows from Proposition 3.13 and Corollary 3.9 by sending S 2 tp(n)
to KS .

4. A tropical proof of Laman’s theorem. We now give our tropical proof of
Laman’s theorem. Lemma 1.2 allows us to determine the algebraic matroid underlying
CM2

n
via projections of the tropicalization of CM2

n
. Theorem 3.1 allows us to translate

geometric properties of this tropical variety into combinatorial statements about pairs
of rooted trees.

Given a graph H, let V (H) and E(H) denote the vertex and edge sets of H. Each

graph H on vertex set [n] describes a coordinate projection ⇡H : R(
[n]

2 ) ! RE(H).
Moreover, Lemma 1.1.3 and Lemma 1.2 imply that H is generically rigid in Rd if
and only if ⇡H(trop(CMd

n
)) has the maximal dimension, dn �

�
d+1
2

�
. For a tree T ,

define the matrix M
H

T
to be the submatrix of MT obtained by taking only the rows

corresponding to E(H). The cone ⇡H(KT ) ✓ ⇡H(Un) has linear hull equal to the
span of MH

T
. Define the restricted clade graph of T1 and T2 to be the subgraph G

H

T1,T2

of GT1,T2
on the same vertex set whose edge set E = {eij : {i, j} 2 E(H)} has eij

connecting the minimal clades of T1 and T2 that contain ij. For S ✓ [n], let cTi(S)
denote the smallest clade of Ti containing S. For each edge ij 2 E(H), note that eij
connects cT1

(ij) to cT2
(ij). Now we give the analogue of Proposition 3.7 for coordinate

projections.

Proposition 4.1. A graph H is minimally generically rigid in R2
if and only if

there is a pair of rooted binary trees T1, T2 such that G
H

T1,T2
is a tree.

Proof. By Lemma 1.2, it su�ces to show that |E(H)| = 2n�3 and ⇡H(trop(CM2
n
))

has dimension 2n�3 if and only if there are rooted binary trees T1, T2 such that GH

T1,T2

is a tree. A rooted binary tree has exactly n� 1 clades, so G
H

T1,T2
has 2n� 2 vertices.

It is a tree if and only if it is connected and has 2n� 3 edges.
The edge sets of H and G

H

T1,T2
are in bijection, so one has size 2n � 3 if and

only if the other does. The dimension of ⇡H(trop(CM2
n
) will be 2n� 3 if and only if

there exists a cone KT1
+KT2

of trop(CM2
n
) such that ⇡H(KT1

+KT2
) has dimension

2n� 3. The linear hull of ⇡H(KT1
+KT2

) is the column span of the adjacency matrix
of GH

T1,T2
and so the dimension ⇡H(KT1

+KT2
) is the rank of this adjacency matrix.

The rank of the adjacency matrix of a bipartite graph is the number of vertices minus
the number of connected components. Therefore the adjacency matrix of GH

T1,T2
has

rank 2n� 3 if and only if GH

T1,T2
is connected.
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To reprove Laman’s theorem, it remains to show that the graphs H satisfying the
condition of Proposition 4.1 are precisely the Laman graphs. We will do this via the
Henneberg moves, which were shown by Henneberg in 1911 [12] to generate precisely
the graphs which are minimally generically rigid in the plane. We now define two
conditions a graph can satisfy, then use our combinatorial description of trop(CM2

n
)

to show they are both equivalent to the property of being generically minimally rigid
in the plane.

Definition 4.2. Let H be a graph with vertex set [n] and edge set E. We say

that H is

• Laman if H has 2n� 3 edges and every subgraph of H with v vertices has at

most 2v � 3 edges,

• Henneberg if H is the complete graph K2, or H can be obtained from a smaller

Henneberg graph by either of the two Henneberg moves, which are

1. adding a new vertex adjacent to two existing vertices, and

2. removing an edge ij and adding a new vertex that is adjacent to i and j

and some other vertex.

Lemma 4.3. If H is Laman, then H is Henneberg.

Proof. This is well-known (see, e.g., [11]) but we provide a proof anyway to keep
our proof of Laman’s theorem self-contained. So let H be a Laman graph. We work
by induction on n. If n = 2, then H = K2, which is Henneberg, so assume H has at
least three vertices. It is easy to check that since H is Laman, each vertex has degree
at least 2. Assume H has a vertex v of degree exactly 2. Then H \ {v} is Laman and
therefore Henneberg by the induction hypothesis. H can be obtained from H \ {v}
by attaching v via the first Henneberg move.

Now assume the minimum degree of H is at least 3. Since H has 2n � 3 edges,
some vertex v must have degree 3. Denote the neighbors of v by 1, 2, 3. If 123v is a
clique, then H is not Laman, so there must be at least one edge missing which we
take to be 12. Let H

0 be the graph obtained from H \ {v} by adding the edge 12.
If H 0 it not Laman, it has a strict subgraph H

00 with k vertices and 2k � 2 edges
that includes the edge 12. But then H would violate the Laman condition as well,
since the graph obtained from H

00 by removing the edge 12 and connecting v to 1, 2, 3
would be a subgraph of H containing k + 1 vertices and 2(k + 1) � 2 edges. So by
the induction hypothesis, H 0 is Henneberg and H can be obtained from H

0 via the
second Henneberg move.

Given a rooted tree T on leaf set [n], the restriction of T to S ✓ [n] is the rooted
tree T

0 obtained from the induced subtree of T with leaves S and their ancestors,
contracting away degree 2 vertices. If d is an ultrametric with tree topology T , then
the restriction of T to S is the topology of the restriction of d to the coordinates

�
S

2

�
.

Now let H be a graph on vertex set [n], let T1, T2 be rooted trees on leaf set [n],
and let H 0 be a subgraph of H. If T 0

1, T
0
2 are the restrictions of T1, T2 to V (H 0), the

natural inclusion map ⌘ : H 0 ! H induces an injective graph homomorphism

⌘̃ : GH
0

T
0
1
,T

0
2

! G
H

T1,T2

by sending clade C of T 0
i
to cTi(C). To see that ⌘̃ maps edges to edges, note that

for each jk 2 E(H 0), ⌘̃(cT 0
i
(jk)) = cTi(jk), so the edge ejk of GH

0

T
0
1
,T

0
2

goes to ejk of

G
H

T1,T2
.
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Example 4.4. Let H be the graph on vertex set {1, 2, 3, 4} pictured below and let
T1 and T2 be as in Example 3.6. Let H

0 be the subgraph of H induced on vertex
set {2, 3, 4}. Then ⌘ is the inclusion of H 0 in H, and ⌘̃ maps each vertex labeled 234
in G

H
0

T
0
1
,T

0
2

to the vertex on the corresponding side labeled 1234 in G
H

T1,T2
, maps the

vertex labeled 23 in G
H

0

T
0
1
,T

0
2

to the vertex labeled 123 in G
H

T1,T2
, and maps the vertex

labeled 24 in G
H

0

T
0
1
,T

0
2

to the vertex with the same label in G
H

T1,T2
. Note that ⌘̃ is a

graph homomorphism.

H =

1 4

23

H
0 =

4

23

T
0
1 =

2 3 4

T
0
2 =

3 2 4

G
H

0

T
0
1
,T

0
2

=

23

234

24

234

G
H

T1,T2
=

12

123

1234

24

13

1234

Lemma 4.5. If H is not a Laman graph, then G
H

T1,T2
is not a tree for any choice

of pair of rooted trees T1, T2.

Proof. If H has n vertices but does not have 2n� 3 edges, then H is not Laman
and G

H

T1,T2
has the wrong number of edges to be a tree. Suppose then that H has

2n � 3 edges but is not Laman. Then H has a subgraph H
0 with n

0 vertices such
that H

0 has more than 2n0 � 3 edges. For any choice of trees T1, T2, let T
0
1, T

0
2 be

the respective restrictions to V (H 0). Since G
H

0

T
0
1
,T

0
2

has 2n0 � 2 vertices and more than

2n0�3 edges, it must contain a cycle. The graph homomorphism ⌘̃ : GH
0

T
0
1
,T

0
2

! G
H

T1,T2

shows that GH

T1,T2
must also contain a cycle.

Lemma 4.6. If H is Henneberg, then there exists a pair of rooted binary trees

T1, T2 such that G
H

T1,T2
is a tree.

Proof. If H is Hennberg with n vertices, then it has 2n� 3 edges, and so G
H

T1,T2

also has 2n� 3 edges. Then to prove that GH

T1,T2
is tree, we show that it has 2n� 2

vertices and is connected.
We work by induction on n. In the base case n = 2, the only Henneberg graph

is H = K2. Let T1 = T2 be the unique rooted binary tree on two leaves. Then G
H

T1,T2

has two vertices, one for the clade 12 in each tree, connected by edge e12. For n > 2,
H can be obtained (after relabeling) from a Henneberg graph H

0 on [n � 1] by one
of the Henneberg moves. By the induction hypothesis, there are rooted binary trees
T

0
1, T

0
2 such that GH

0

T
0
1
,T

0
2

is connected.

First suppose that H is obtained from H
0 by a Henneberg move of type 1 by

adding vertex n and connecting it to vertices 1 and 2 (without loss of general-
ity). Let T1 be the tree obtained from T

0
1 attaching n so that 1n becomes a clade.D
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Let T2 be obtained from T
0
2 by attaching n so that 2n becomes a clade. Since H

0 is a
subgraph of H and T

0
i
is the restriction of Ti to [n�1], there is graph homomorphism

⌘̃ : GH
0

T
0
1
,T

0
2

! G
H

T1,T2
defined as above. Therefore ⌘̃(GH

0

T
0
1
,T

0
2

) is connected. G
H

T1,T2
has

exactly two new clades not in the image of ⌘̃, which are 1n in T1 and 2n in T2. It also
has two new edges, e1n connecting 1n to cT2

(1n) = ⌘̃(cT 0
2
(12)) and e2n connecting 2n

to cT1
(2n) = ⌘̃(cT 0

1
(12)). Therefore the two new vertices are connected to ⌘̃(GH

0

T
0
1
,T

0
2

),

so G
H

T1,T2
is connected.

Now suppose that H is obtained from H
0 by a Henneberg move of type 2 by

removing edge 12, adding vertex n, and adding edges 1n, 2n, 3n (without loss of gen-
erality). We will construct Ti from T

0
i
by adding leaf n and a new clade Ci [ {n}

for some chosen clade or singleton set Ci of T 0
i
. Let H

00 be H
0 minus the edge 12,

so it is a subgraph of H, and there is graph homomorphism ⌘̃ : GH
00

T
0
1
,T

0
2

! G
H

T1,T2
.

The graph G
H

00

T
0
1
,T

0
2

has two connected components with cT 0
1
(12) and cT 0

2
(12) in dif-

ferent ones. Therefore ⌘̃(GH
00

T
0
1
,T

0
2

) also has two connected components. Thus we

must choose C1 and C2 so that the edges e1n, e2n, e3n connect the two connected
components of ⌘̃(GH

00

T
0
1
,T

0
2

) and the two new clades C1 [ {n} and C2 [ {n}. The

way C1 and C2 are chosen will depend on the relative positions of 1, 2, 3 in T
0
1

and T
0
2. We divide the situations into three cases, listed below and pictured in

Figure 3.
Case 1. Suppose 1 and 2 are closer to each other than to 3 in both T

0
1 and T

0
2

and that cT 0
1
(123) and cT 0

2
(123) are in di↵erent connected components of GH

00

T
0
1
,T

0
2

. Let

C1 = {1} and C2 = cT 0
2
(12).

• e1n connects C1 [ {n} to C2 [ {n}.
• e2n connects ⌘̃(cT 0

1
(12)) to C2 [ {n}.

• e3n connects ⌘̃(cT 0
1
(123)) to ⌘̃(cT 0

2
(123)).

Therefore G
H

T1,T2
is connected.

Case 2. Suppose 1 and 2 are closer to each other than to 3 in both T
0
1 and T

0
2

and that cT 0
1
(123) and cT 0

2
(123) are in the same component of GH

00

T
0
1
,T

0
2

. Either cT 0
1
(12)

or cT 0
2
(12) are in the opposite component, so without loss of generality take it to be

cT 0
1
(12). Let C1 = {1} and C2 = {3}.

• e1n connects C1 [ {n} to ⌘̃(cT 0
2
(123)).

• e2n connects ⌘̃(cT 0
1
(12)) to ⌘̃(cT 0

2
(123)).

• e3n connects ⌘̃(cT 0
1
(123)) to C2 [ {n}.

Therefore G
H

T1,T2
is connected.

Case 3. Suppose 3 is closer to 1 or 2 than to the other in one of T 0
1 or T 0

2. Without
loss of generality, take 3 and 1 closer to each other than to 2 in T

0
2. Let C1 = {1} and

C2 = cT 0
2
(13).

• e1n connects C1 [ {n} to C2 [ {n}.
• e2n connects ⌘̃(cT 0

1
(12)) to ⌘̃(cT 0

2
(12)).

• e3n connects ⌘̃(cT 0
1
(13)) to C2 [ {n}.

Therefore G
H

T1,T2
is connected.
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1 n 2 3

T1

1 2 n 3

T2

n

12

123

n

12

123

(a) Case 1: 1 and 2 are closest in both T 0
1 and T 0

2, and the vertices labeled 123 are in opposite
components. The components detached by deleting e12 are reconnected by e3n. The pairing
of the top and middle vertices into components could also be reversed from what is pictured.

1 n 2 3

T1

1 2 n 3

T2

n

12

123

n

12

123

(b) Case 2: 1 and 2 are closest in both T 0
1 and T 0

2, and the vertices labeled 123 are in the
same components. The components detached by deleting e12 are reconnected by e2n.

1 n 2 3

T1

1 3 n 2

T2

n

12

13

n

13

12

1 n 3 2

T1

1 3 n 2

T2

n

13

12

n

13

12

1 n 2 3

T1

1 3 n 2

T2

n

23

12

n

13

12

(c) Case 3: 1 and 3 are closest in T 0
2. There are three subcases depending on T 0

1. The pair
of vertices detached by e12 are reconnected by e2n. Thus the precise grouping of the two
components of GH

00

T
0
1
,T

0
2

doesn’t matter.

Fig. 3. For T1 and T2 trees as in the proof of Lemma 4.6, on the left are the restrictions of

T1 and T2 to the leaf set 123n and on the right is the restricted clade graph GH

T1,T2
. Each label on

GH

T1,T2
indicates the clade that is the smallest containing those elements in T1 and T2 on the left

and right, respectively. Solid outlines represent connected components of GH
00

T
0
1
,T

0
2

. The leaf n in each

tree T1, T2 is placed such that the new edges e1n, e2n, e3n reconnect the graph, including the two new

vertices, labeled n.
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Theorem 4.7 (Laman’s theorem). Given a graph H, the following are equivalent:

1. H is Laman,

2. H is Henneberg,

3. there exist rooted binary trees T1 and T2 such that G
H

T1,T2
is a tree, and

4. H is generically minimally rigid in the plane.

Proof. Proposition 4.1 tells us that 3 and 4 are equivalent. The implications 1
=) 2, 2 =) 3, and 3 =) 1 are Lemmas 4.3, 4.6, and 4.5, respectively.
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