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L-INFINITY OPTIMIZATION TO BERGMAN FANS OF MATROIDS
WITH AN APPLICATION TO PHYLOGENETICS⇤
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Abstract. Given a dissimilarity map � on a finite set X, the set of ultrametrics (equidistant

tree metrics) which are l1-nearest to � is a tropical polytope. We give an internal description of this

tropical polytope which we use to derive a polynomial-time checkable test for the condition that all

ultrametrics l1-nearest to � have the same tree structure. It was shown by Ardila and Klivans [J.
Combin. Theory Ser. B, 96 (2006), pp. 38–49] that the set of all ultrametrics on a finite set of size n is

the Bergman fan associated with the matroid underlying the complete graph on n vertices. Therefore,

we derive our results in the more general context of Bergman fans of matroids. This added generality

allows our results to be used on dissimilarity maps where only subsets of the entries are known.
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1. Introduction. A fundamental problem in phylogenetics is to infer the evo-
lutionary history among a set of genes or species from data. One approach is to use
distance-based methods. The data required for such an approach are some measure
of distance between each pair of species. If these distances are computed using some
property that is expected to change in proportion to time elapsed, then one often
assumes that the pairwise distances approximate an ultrametric. Finding a best-fit
ultrametric to an arbitrary dissimilarity map is therefore an important computational
problem. For background, see [21, Chapter 7].

A major source of di�culty in this endeavor stems from the fact that two of
the most basic sets with which one would reason about distance-based phylogenetics,
namely, the set of tree metrics and the set of ultrametrics, do not interact with Euclid-
ean geometry in a clean way, thus making naive application of traditional statistical
methods problematic. Beginning with the work of Billera, Holmes, and Vogtman [6],
the past two decades have seen much research into developing and studying geomet-
ric theories that interact nicely with the sets of tree metrics and ultrametrics, with
the hope that reinterpreting traditional statistical theory and methods in these new
geometries will lead to something useful. Speyer and Sturmfels [22] and Ardila and
Klivans [4] showed that the sets of tree metrics and ultrametrics are tropical vari-
eties, thus giving the first indication that tropical geometry might o↵er useful tools
for phylogenetics.

Since then, researchers have been exploring tropical geometry’s potential as a
fundamental theory on which to develop statistical methods designed specifically for
phylogenetic applications. Tropical geometry is a geometric theory that one naturally
obtains when redefining arithmetic over R [ {�1} so that the sum of two numbers
is their maximum and the product is their sum (in the usual sense). The natural
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702 DANIEL IRVING BERNSTEIN

choice for a metric in tropical geometry is the l1-metric. A recent preprint of Lin,
Monod, and Yoshida [16] shows that the set of phylogenetic trees endowed with the
tropically projectivized l1-metric, which they call palm tree space, has many features
of Euclidean space that enable classical statistical theory to work. In particular, palm
tree space supports probability measures and a reasonable theory of linear algebra. In
[17], Lin et al. compare tropical convexity to the convexity theory of Billera, Holmes,
and Vogtman [6] with regard to their potential as theoretical frameworks for develop-
ing algorithms to reduce the complexity of a dataset consisting of several ultrametrics
on the same taxa. They show that in the convexity theory of [6], a triangle (i.e., the
convex hull of three points) can have arbitrarily high dimension, whereas triangles are
always two dimensional in the projective tropical setting [9]. In [23], Yoshida, Zhang,
and Zhang develop a theory of tropical principal component analysis.

A recurring frustration one encounters when tropicalizing a classical object is that
uniqueness guarantees may disappear. In order for tropical geometry to be considered
a reasonable mathematical foundation for phylogenetic analysis, failures of uniqueness
must be understood when they have potential to cause problems. Lin and Yoshida [18]
studied nonuniqueness of the tropical Fermat–Weber point, which is analogous to the
geometric mean from Euclidean geometry. They showed that the set of all tropical
Fermat–Weber points is a (classical) polytope, and gave a necessary condition for
uniqueness of the tropical Fermat–Weber point. In this paper, we provide analogous
results for nonuniqueness of the ultrametric that is nearest to a given dissimilarity map
in the l1-metric. Colby Long and this author began a study of this, and other related
phenomena, in [5]. The main mathematical results of [5] concern the nonuniqueness
of the point in a (nontropical) linear subspace of Rn that is l1-nearest to a given

x 2 Rn. In that paper, it is also shown that there exist dissimilarity maps in R(
n
2)

whose set of l1-nearest ultrametrics contains 1
3 · (2n� 3)!! di↵erent tree topologies.

This paper builds on some of these observations. In particular, Proposition 3.3
says that the set of ultrametrics l1 nearest to a given dissimilarity map is a tropi-
cal polytope, Theorem 3.6 provides an internal description, and Theorem 3.8 gives a
polynomial-time checkable condition, telling us exactly when all nearest ultrametrics
have the same tree structure. From a phylogenetics perspective, this is useful informa-
tion since the tree structure describes the evolutionary relationship among the species
being studied.

We derive our results in a more general context. Ardila and Klivans showed
that the set of ultrametrics on n species is the Bergman fan associated with the
matroid underlying the complete graph on n vertices [4]. Therefore we can view
the problem of finding the set of l1-nearest ultrametrics as a special case of the
problem of finding the set of l1-nearest points in the Bergman fan of a matroid. This
latter set is also a tropical polytope (Proposition 5.2) and Theorem 5.9 provides an
internal description. Feichtner and Sturmfels describe a refinement of the Bergman fan
underlying a matroid [11] which can be used to generalize the concept of tree topology.
In light of this, Theorem 5.9 is the straightforward generalization of Theorem 3.6.

The added generality of Bergman fans of matroids has a potential application in
phylogenetics. Namely, if one wishes to reconstruct a phylogeny from partial distance
data where observed distances correspond to the edges of some graph G, then one
can begin by optimizing to the Bergman fan of G’s matroid which will give a partial
ultrametric (see Proposition 5.12). This reconstruction problem is a special case of
the sandwich to ultrametric problem studied by Farach, Kannan, and Warnow in [10].
The added generality is also interesting from a pure tropical geometry perspective. In
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particular, given the Bergman fan B̃(M) of a matroid M, the question of describing
points in B̃(M) that are tropically nearest to a given x /2 B̃(M) is in some sense the
tropical analog of finding the point of a (classical) linear space L that is Euclidean-
nearest to a given x /2 L.

Just as with ordinary polytopes, tropical polytopes admit external descriptions
as the intersection of tropical half-spaces, as well as internal descriptions [15]. Theo-
rem 7.1 in [1] can be used to obtain an external description of the tropical polytopes
we are interested in. However, an internal description is more advantageous for our
purposes because it gives us a way to check whether all ultrametics l1-nearest to a
given dissimilarity map have the same tree topology (see Theorem 3.8 and Proposition
5.11).

This paper is organized as follows. Section 2 gives the necessary background on
tropical convexity. Section 3 contains Theorem 3.6, which is an internal description
of the tropical polytope consisting of the ultrametrics that are l1-nearest to a given
dissimilarity map. A proof is deferred until section 5. Section 3 also states and
proves Theorem 3.8, which provides a polynomial-time method for checking that all
ultrametrics l1-nearest to a given dissimilarity map have the same tree topology.
Section 4 uses results of Feichtner and Sturmfels [11] to generalize the tree structure
underlying an ultrametric to a similar combinatorial structure underlying an element
of the Bergman fan of an arbitrary matroid. This combinatorial structure is used in
section 5 to generalize Theorem 3.6 to get Theorem 5.9. Section 6 applies Theorem 3.6
to a biological dataset.

2. Preliminaries on tropical convexity. This section reviews the necessary
concepts from tropical convexity. There are at least two di↵erent sets of basic defini-
tions related to tropical convexity. One is used in [9], and the other in [2]. We adhere
to the conventions of the latter, as their definition of tropical polytope is more natural
in our context.

The tropical semiring, also known as the max-plus algebra, is the set R [ {�1}
together with the operations a � b := max{a, b} and a � b := a + b. We denote
this semiring by Rmax. The additive identity of Rmax is �1 and the multiplicative
identity is 0. The set Rn

max is an Rmax-semimodule, where for x, y 2 Rn
max and

↵ 2 Rmax, (x � y)i := xi � yi and (↵ � x)i := ↵ + xi. If A 2 Rm⇥n
max is a matrix and

x 2 Rn
max, then the product A�x is the usual matrix product, but with multiplication

and addition interpreted tropically. That is, if A has columns a1, . . . , an, then

A� x :=
nM

j=1

xj � aj .

Several notions from ordinary convexity theory have tropical analogs. We say that
P ✓ Rmax is a tropical cone if whenever x, y 2 P and �, µ 2 Rmax, �� x�µ� y 2 P .
If this only holds with the restriction that �� µ = 0, then we say that P is tropically
convex. A tropical polyhedron is a set of the form

{x 2 Rn
max : A� x� b � C � x� d},

where A,C 2 Rm⇥n
max and b, d 2 Rm

max. We denote this set P (A, b, C, d). It follows
from the discussion below that P (A, b, C, d) is tropically convex. When b = d =
(�1, . . . ,�1)T then P (A, b, C, d) is a tropical cone and we call it a tropical polyhedral
cone. Bounded tropical polyhedra are called tropical polytopes. Given V ✓ Rmax,
tconv(V ) is the tropical convex hull of V . That is,

tconv(V ) := {�� x+ µ� y : x, y 2 V,�� µ = 0}.
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704 DANIEL IRVING BERNSTEIN

We define the tropical conic hull tcone(V ) similarly. Gaubert and Katz showed in [14]
that any tropical polytope (cone) P can be expressed as the tropical convex (conic)
hull of a finite set V . Conversely, Gaubert showed that if V ✓ Rn is a finite set
and P = tcone(V ), then P is a tropical polyhedral cone [13, Corollary 1.2.5]. The
analogous result for P = tconv(V ) follows from results in [14]. There exists a minimal
such V (see [7, Theorem 18] or [14, Theorem 3.1]) called the tropical vertices (extreme
rays) of P . See also [15, Theorem 2].

3. Results for phylogenetics: l-infinity nearest ultrametrics. This sec-
tion presents the results of section 5 in the context of our main motivation. In par-
ticular, Theorem 3.6 gives a combinatorial description of a finite set of ultrametrics
whose tropical convex hull is the set of ultrametrics nearest in the l1-norm to a given
dissimilarity map. We also use Theorem 3.6 to derive Theorem 3.8, which gives a
polynomial-time checkable condition guaranteeing that all ultrametrics l1 nearest to a
given dissimilarity map have the same tree topology. We begin by reviewing the neces-
sary background from [21] about ultrametrics, which are a special type of tree metric.

Let X = {x1, . . . , xn} be a finite set. A dissimilarity map on X is a function
� : X ⇥X ! R such that �(x, x) = 0 and �(x, y) = �(y, x) for all x, y 2 X. Note that
we allow dissimilarity maps to take negative values. We can express a dissimilarity
map d as a matrix D, where Dij = �(xi, xj). Note that D is symmetric with zeros
along the diagonal. A rooted X-tree is a tree with leaf set X, where one interior (i.e.,
nonleaf) vertex has been designated the “root.” We use the notation root(T ) for the
root of a rooted X-tree T . A descendant of a vertex v in a rooted tree T is a node
u 6= v such that the unique path from u to root(T ) contains v. Note that all nonroot
vertices are descendants of root(T ). The set of descendants of a vertex v in a rooted
tree T is denoted DesT (v). We let T � denote the set of interior vertices of T .

Let T be a rooted X-tree and let ↵ : T � ! R be a weighting of the internal nodes
of T . We say that ↵ is compatible with T if ↵(u)  ↵(v) whenever u 2 DesT (v). The
pair (T,↵) gives rise to a dissimilarity map �T,↵ on X defined by �T,↵(xi, xj) := ↵(v),
where v 2 T � is the vertex nearest to root(T ) in the unique path from xi to xj .
Given a dissimilarity map � on X, if we can express � as �T,↵ for some X-tree T
and compatible internal node weighting ↵, then � is said to be an ultrametric. If we
require that ↵(u) < ↵(v) whenever u 2 DesT (v), then the rooted X-tree T is unique
and called the (tree) topology of �. Some readers from other areas of mathematics
take issue with this use of the word “topology,” but it is standard in the phylogenetics
literature [21]. Figure 1 shows an ultrametric along with an interior-vertex-weighted
tree displaying it.

Some readers may be familiar with a seemingly di↵erent definition of ultrametric
which says that � : X ⇥ X ! R is an ultrametric if and only if for every triple
x, y, z 2 X of distinct elements, the maximum of �(x, y), �(x, z), �(y, z) is attained
twice. This is equivalent to the definition given above. Sometimes the requirement
that x, y, z be distinct is relaxed. This gives the more restricted class of ultrametrics,
consisting only of ultrametrics representable as �T,↵ for nonnegative ↵ compatible
with T . See [21, Chapter 7] for details. We use the more inclusive definition of an
ultrametric because it simplifies connections with tropical geometry.

A polytomy of a rooted tree is either a nonroot internal node of degree at least
four, or the root node if it has degree at least three. We say that a rooted tree is
binary if it does not have any polytomy. A resolution of a tree T is a binary tree T 0

such that T can be obtained from T 0 via a (possibly empty) series of edge contractions
[21]. Note that if the topology underlying � is not binary, then there will be multiple
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C 7 7 0 9
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Figure 1. An ultrametric on {A,B,C,D} and its representation on a
rooted tree.

of root(T ). The set of descendants of a vertex v in a rooted tree T is denoted DesT (v).
We let T � denote the set of interior vertices of T .
Let T be a rooted X-tree and let ↵ : T � ! R be a weighting of the internal nodes of T .

We say that ↵ is compatible with T if ↵(u)  ↵(v) whenever u 2 DesT (v). The pair (T,↵)
gives rise to a dissimilarity map �T,↵ on X defined by �T,↵(xi, xj) := ↵(v) where v 2 T �

is the vertex nearest to root(T ) in the unique path from xi to xj. Given a dissimilarity
map � on X, if we can express � as �T,↵ for some X-tree T and compatible internal node
weighting ↵, then � is said to be an ultrametric. If we require that ↵(u) < ↵(v) whenever
u 2 DesT (v), then the rooted X-tree T is unique and called the (tree) topology of �. Some
readers from other areas of mathematics take issue with this use of the word “topology,”
but it is standard in the phylogenetics literature [21]. Figure 1 shows an ultrametric along
with an interior-vertex-weighted tree displaying it.
Some readers may be familiar with a seemingly di↵erent definition of ultrametric which

says that � : X ⇥ X ! R is an ultrametric if and only if for every triple x, y, z 2 X of
distinct elements, the maximum of �(x, y), �(x, z), �(y, z) is attained twice. This is equiv-
alent to the definition given above. Sometimes the requirement that x, y, z be distinct
is relaxed. This gives the more restricted class of ultrametrics, consisting only of ultra-
metrics representable as �T,↵ for nonnegative ↵ compatible with T . See [21, Chapter 7]
for details. We use the more inclusive definition of an ultrametric because it simplifies
connections with tropical geometry.
A polytomy of a rooted tree is either a non-root internal node of degree at least four,

or the root node if it has degree at least three. We say that a rooted tree is binary if it
does not have any polytomy. A resolution of a tree T is a binary tree T 0 such that T can
be obtained from T 0 via a (possibly empty) series of edge contractions [21]. Note that
if the topology underlying � is not binary, then there will be multiple resolutions of the
topology of �. Figure 2 illustrates these concepts by representing a single ultrametric in
three ways - on its topology and on two di↵erent resolutions.
Given two dissimilarity maps �1, �2 on X with associated matrices D1, D2, we define

the l1 distance between �1 and �2, denoted k�1 � �2k1, to be the greatest absolute value
among entries in D1�D2. An important question that comes up in phylogenetics is then:
given a dissimilarity map �, which ultrametrics are nearest to � in the l1 metric? Chepoi
and Fichet [8] give an algorithm for producing a single ultrametric l1-nearest to a given
dissimilarity map which we now describe. We denote the all-ones vector or dissimilarity
map by 1.

Fig. 1. An ultrametric on {A,B,C,D} and its representation on a rooted tree.

A B C D E

1
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A B C D E

1 2

1
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A BC D E

1

1

2

2

Fig. 2. An ultrametric whose topology has two polytomies. Above, we see it represented on its
topology and on two di↵erent resolutions.

resolutions of the topology of �. Figure 2 illustrates these concepts by representing a
single ultrametric in three ways—on its topology and on two di↵erent resolutions.

Given two dissimilarity maps �1, �2 on X with associated matrices D1, D2, we
define the l1 distance between �1 and �2, denoted k�1 � �2k1, to be the greatest
absolute value among entries in D1 � D2. An important question that comes up in
phylogenetics is then, given a dissimilarity map �, which ultrametrics are nearest to
� in the l1 metric? Chepoi and Fichet [8] give an algorithm for producing a single
ultrametric l1-nearest to a given dissimilarity map which we now describe. We denote
the all-ones vector or dissimilarity map by 1.

Theorem 3.1 (see [8, Corollary 1 and discussion on p. 607]). Let � be a dissim-
ilarity map on a finite set X. Then the following algorithm produces an ultrametric
on X that is nearest to � in the l1 norm.

1. Draw the complete graph on vertex set X.
2. Label the edge between x and y by �(x, y).
3. Define �u : X ⇥X ! R so that for each x, y 2 X ⇥X,

�u(x, y) := min
P

✓
max

edges (i,j) of P
�(i, j)

◆
,

where the minimum is taken over all paths P from x to y.
4. Define d := k�u � �k1. Then �u + d

21 is an ultrametric that is l1-nearest to
�.

Although the algorithm given by Theorem 3.1 produces only one ultrametric,
there can be multiple ultrametrics that are l1-nearest to a given dissimilarity map.
Figure 3 shows a dissimilarity map alongside two l1-nearest ultrametrics with di↵er-
ing topologies.

Definition 3.2. We call the ultrametric given by Theorem 3.1 the maximal clos-
est ultrametric to � and denote it symbolically as �m.

That �m issue coordinatewise-maximal among ultrametrics nearest to � is shown
in [8], and also follows from Lemma 5.1.3.
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A B C D E

1

2

A B C D E

1 2
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Figure 2. An ultrametric whose topology has two polytomies. Above, we
see it represented on its topology and on two di↵erent resolutions.

0

BB@
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B 2 0 8 10
C 4 8 0 12
D 6 10 12 0
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Figure 3. A dissimilarity map and two l1-nearest ultrametrics with dif-
ferent topologies.

Theorem 3.1 ([8, Corollary 1. See also discussion on p. 607]). Let � be a dissimilarity
map on a finite set X. Then the following algorithm produces an ultrametric on X that
is nearest to � in the l1 norm.

(1) Draw the complete graph on vertex set X.
(2) Label the edge between x and y by �(x, y).
(3) Define �u : X ⇥X ! R so that for each x, y 2 X ⇥X,

�u(x, y) := min
P

✓
max

edges (i,j) of P
�(i, j)

◆

where the minimum is taken over all paths P from x to y.
(4) Define d := k�u � �k1. Then �u +

d
2
1 is an ultrametric that is l1-nearest to �.

Although the algorithm given by Theorem 3.1 produces only one ultrametric, there can
be multiple ultrametrics that are l1-nearest to a given dissimilarity map. Figure 3 shows
a dissimilarity map alongside two l1-nearest ultrametrics with di↵ering topologies.

Definition 3.2. We call the ultrametric given by Theorem 3.1 the maximal closest ultra-
metric to � and denote it symbolically as �m.

That �m issue coordinatewise-maximal among ultrametrics nearest to � is shown in [8],
and also follows from Lemma 5.4(3).

Proposition 3.3. Let � be a dissimilarity map on a finite set X. The set of ultrametrics
that are nearest to � in the l1-norm is a tropical polytope.

We will prove Proposition 3.3 in a more general setting later (see Proposition 5.2). Given
a dissimilarity map � : X ⇥ X ! R, Theorem 3.6 describes a finite set of ultrametrics

Fig. 3. A dissimilarity map and two l1-nearest ultrametrics with di↵erent topologies.

Proposition 3.3. Let � be a dissimilarity map on a finite set X. The set of
ultrametrics that are nearest to � in the l1-norm is a tropical polytope.

We will prove Proposition 3.3 in a more general setting later (see Proposition
5.2). Given a dissimilarity map � : X ⇥ X ! R, Theorem 3.6 describes a finite set
of ultrametrics whose tropical convex hull is the set of ultrametrics l1-nearest to �.
The statement of Theorem 3.6 requires the following definition.

Definition 3.4. Let � : X ⇥ X ! R be a dissimilarity map and let u be an
ultrametric that is closest to � in the l1-norm. Let T be a resolution of the topology
of u and let ↵ : T � ! R be a compatible weighting of T ’s internal nodes such that
�T,↵ = u. An internal node v of T is said to be mobile if there exists an ultrametric
û 6= u, expressible as û = �T,↵̂ for ↵̂ : T � ! R such that

1. û is also nearest to � in the l1-norm,
2. ↵̂(x) = ↵(x) for all internal nodes x 6= v, and
3. ↵̂(v) < ↵(v).

In this case, we say that û is obtained from u by sliding v down. If moreover v is
no longer mobile in �T,↵̂, i.e., if ↵̂(v) = max{↵(y) : y 2 DesT (v)}, or ↵̂(v) is the
minimum value such that �T,↵̂ is nearest to � in the l1-norm, then we say that û is
obtained from u by sliding v all the way down.

Example 3.5. Let � be the dissimilarity map shown on the left in Figure 3 and
consider the l1-nearest ultrametrics u1, u2, and u3 shown in Figure 4. Note that u2

is obtained from u1 by sliding the node with weight 7 all the way down, and u3 is
obtained from u1 by sliding the node with weight 5 all the way down.

Theorem 3.6. Let � : X ⇥X ! R be a dissimilarity map. Let S0 = {�m}, and
for each i � 1 define Si to be the set of ultrametrics obtained from some u 2 Si�1 by
sliding a mobile internal node of a resolution of the topology of u all the way down.
Then

1.
S

i Si is a finite set, and
2. the tropical convex hull of

S
i Si is the set of ultrametrics l1-nearest to �, and

3. every vertex of this tropical polytope has at most one mobile internal node.

Theorem 3.6 is a special case of Theorem 5.9, which will be proven later. We now
illustrate Theorem 3.6 on an example.

Example 3.7. Let � be the dissimilarity map given in Figure 3 on the left. We
will make reference to ultrametrics u1, . . . , u5 which are shown in Figure 4. Using
Theorem 3.1, we can see that �m = u1. Let v1 be the internal node of u1’s topology
with weight 5. Then v1 is mobile and sliding it all the way down yields u3. Let v2
be the internal node of u1’s topology with weight 7. Then v2 is mobile and sliding
it all the way down yields u2. The topology of u4 is a resolution of the topology of
u2. Letting v3 be the internal node of u4’s topology with weight 1, we can see that
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u1 =

A B C D

5

7

9

u2 =

A B C D

5

9

u3 =

A B C D

�1

7

9

u4 =

A C B D

1

5

9

u5 =

A B C D

�1

5

9

Fig. 4. By Theorem 3.6, the tropical convex hull of the ultrametrics above is the set of ultra-
metrics l1-nearest to the dissimilarity map given on the left side of Figure 3.

Fig. 5. The tropical polytope consisting of ultrametrics that are l1-nearest to �. The large
points are the tropical vertices.

u4 is obtained from u2 by sliding v3 all the way down. The topology of u5 is also
a resolution of the topology of u2. Letting v4 be the internal node of u5’s topology
with weight �1, we can see that u5 is obtained from u2 by sliding v4 all the way
down. Beyond v3 and v4, no internal nodes of any resolution of the topology of u2

are mobile. The only mobile node of u3 is the node labeled 7; denote this v5. Then
sliding v5 all the way down gives us u5 once again.

Using the notation of Theorem 3.6, we have S0 = {u1}, S1 = {u2, u3}, and
S2 = {u4, u5}. Note that no internal nodes of u4 and u5 are mobile. Hence Si is
empty for all i � 3. Since u1 and u2 each have two mobile internal nodes, Theorem
3.6 implies that the set of ultrametrics l1-nearest to � is the tropical convex hull
of {u3, u4, u5}. This tropical polytope is contained in the three-dimensional a�ne

subspace {�̃ 2 R(
[4]

2 ) : �̃(1, 4) = �̃(2, 4) = �̃(3, 4) = 9} ⇢ R(
[4]

2 ). Therefore, we can
visualize it as in Figure 5.

Theorem 3.6 implies that the elements of
S

i Si that have at most one mobile
internal vertex are a superset of the vertex set of the tropical polytope consisting of
the ultrametrics l1-nearest to a given dissimilarity map. A recent preprint of Yu
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708 DANIEL IRVING BERNSTEIN

shows that this containment can be strict for dissimilarity maps with at least four
elements [24]. A complete characterization of the vertices of this tropical polytope is
still open.

We now describe a polynomial-time checkable condition that is equivalent to the
condition that all ultrametrics l1-nearest to a given dissimilarity map have the same
topology.

Theorem 3.8. All ultrametrics l1-nearest to a given dissimilarity map � on n
elements have the same topology if and only if the ultrametrics in S0[S1 from Theorem
3.6 all have the same topology. This condition can be checked in O(n2) time.

Proof. The second claim follows from the fact that Chepoi and Fichet’s algorithm
in Theorem 3.1 runs in O(n2) time (cf. [8]), and that �m has at most n � 1 internal
vertices.

If we were to replace S0 [ S1 with
S

i Si in the statement of the theorem, then
it would immediately follow from Proposition 5.11. So it su�ces to show that if all
trees in S0 [ S1 have the same topology, then all trees in

S
i Si do as well.

Assume that all ultrametrics in S0 [ S1 have the same topology T . For the sake
of contradiction, let i � 2 be minimal such that there exists u 2 Si such that the
topology of u is not T . This means that there exists some u0 2 Si�1 with topology
T such that an internal node v of T is mobile in u0 and sliding v all the way down
in u0 yields u. Let ↵m,↵,↵0 : T � ! R be internal edge weightings of T expressing
�m, u, and u0, respectively (i.e., �m = �T,↵m , u = �T,↵, and u0 = �T,↵0). Since u
is obtained from u0 by sliding v all the way down, ↵(y) = ↵0(y) unless y = v, in
which case ↵(v) = max{↵0(y) : y 2 DesT (v)}. Since max{↵m(y) : y 2 DesT (v)} �
max{↵0(y) : y 2 DesT (v)}, �m and u0 both have topology T , and all internal nodes of
T that are mobile for u0 are also mobile for �m, we can slide v all the way down in
�m to get an element of S1 with the topology of u, contradicting that all elements of
S1 have topology T .

4. Bergman fans and nested sets. The goal of this section is to generalize
the notion of tree topology for ultrametrics to elements of Bergman fans of arbitrary
matroids. Nested sets of matroids, as described in [11], will play the role of rooted
trees in this more general context. Familiarity with matroid connectivity is assumed;
for this we refer the reader to [19, Chapter 4]. We begin by defining the Bergman fan
of a matroid. Equivalent cryptomorphic definitions exist. The one we provide is due
to Ardila (see [3, Proposition 2]).

Definition 4.1. Let M be a matroid on ground set E. A vector w 2 RE is said
to be an M-ultrametric if for each circuit C of M, the cardinality of {x 2 C : wx =
maxy2C wy} is at least two. The set of M-ultrametrics, denoted B̃(M), is called the
Bergman fan of M.

As the name suggests, M-ultrametrics generalize the ultrametrics discussed in
section 3. In particular, letting Kn denote the complete graph on n vertices and
M(G) denote the matroid underlying a graph G, the following theorem of Ardila and
Klivans tells us that ultrametrics are M(Kn)-ultrametrics.

Theorem 4.2 (see [4, Theorem 3]). A dissimilarity map on the set {1, . . . , n} is
an ultrametric if and only if it is an M(Kn)-ultrametric.

We would like to generalize Theorem 3.6, i.e., describe a generating set of the
tropical polytope consisting of the M-ultrametrics that are l1-nearest to a given
x 2 RE . To do this, we need to generalize the notion of tree topology for arbitrary M-
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ultrametrics. Definition 4.3 below provides the desired generalization. It is essentially
the special case of Definition 3.2 in [11] where the required lattice is the lattice of flats
of a connected matroid M and the required building set is the set of connected flats
of M.

Definition 4.3. Given a connected matroid M on ground set E, a nested set
of M is a set S of connected nonempty flats of M such that E 2 S and whenever
F1, . . . , Fk 2 S are pairwise incomparable with respect to the containment order, the
closure of F1 [ · · · [ Fk is disconnected. If M is disconnected with connected compo-
nents M1, . . . ,Mk, then a nested set of M is the union of nested sets S1, . . . ,Sk of
M1, . . . ,Mk.

Example 4.4. LetM be the uniform matroid of rank three on ground set {a, b, c, d}.
The nested sets of M are the sets of any of the following forms:

{{a, b, c, d}} {{x}, {a, b, c, d}} {{x}, {y}, {a, b, c, d}},

where x, y 2 {a, b, c, d}. If N is the uniform matroid of rank two on ground set
{e, f, g}, then the nested sets of the direct sum M�N are sets of the form

S [ {{e, f, g}}, S [ {{x}, {e, f, g}},

where S is a nested set of M and x 2 {e, f, g}.

We remind the reader that 1 denotes the all-ones vector.

Definition 4.5. Let M be a connected matroid on ground set E and let S be a
nested set of M. For each F 2 S, let vF 2 RE denote �1 times the characteristic
vector of F . Define KS to be the cone spanned by the vF and ±1. The nested set fan
of M, denoted Ñ(M), is the polyhedral fan consisting of all the polyhedral cones KS
as S ranges over all nested sets of M. When M is disconnected, we define its nested
set fan to be the Cartesian product of the nested set fans of its connected components.

Note that Ñ(M) is indeed a polyhedral fan sinceKS is simplicial, andKS\KS0 =
KS\S0 . Also note that the lineality space of Ñ(M) is spanned by the characteristic
vectors of the connected components of M.

Definition 4.3 is slightly more restrictive than Definition 3.2 of [11]. Namely, a
nested set in the sense of [11] does not require that each connected component of a
matroid be present, nor that the entire ground set of a disconnected matroid not be
present. For example, using M and N as in Example 4.4, Definition 3.2 of [11] would
allow us to remove {a, b, c, d} from any nested set of M, or add {a, b, c, d, e, f, g} to
any nested set of M � N . However, this is not an issue because these di↵erences
in definitions do not a↵ect the nested set fan. Under the less restrictive definition,
if E 2 S for some nested set S, then KS = KS\{E}. We use this more restrictive

definition to avoid this ambiguity when indexing cones of Ñ(M).

Proposition 4.6. The nested set fan Ñ(M) is a refinement of the Bergman fan
B̃(M).

Proof. When M is connected, this follows from Theorem 4.1 in [11]. The rest of
the proposition follows by noting that the Bergman fan of a disconnected matroid is
the Cartesian product of the Bergman fans of its connected components.

In light of Proposition 4.6, we can make the following definition.
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710 DANIEL IRVING BERNSTEIN

Definition 4.7. Let w be an M-ultrametric. Let T (w) denote the unique nested
set of M such that w lies in the relative interior of KT (w). We call T (w) the topology
of w.

Definition 4.7 might be unsettling to some readers since it appears to have nothing
to do with topology in the usual sense. We use it because, as Proposition 4.8 below
shows, it generalizes the notion of tree topology of an ultrametric in the phylogenetics
sense.

Proposition 4.8 (see [11, Remark 5.4]). Let w, u be M(Kn)-ultrametrics. Then
the tree topologies of w, u are equal if and only if T (w) = T (u).

The following proposition tells us that the topology of M-ultrametrics is well-
behaved with respect to tropical convexity.

Proposition 4.9. The set of M-ultrametrics that have a particular topology S
is tropically convex.

Proof. The lineality space of Ñ(M) contains 1 so the topology of anM-ultrametric
is preserved under tropical scalar multiplication. We now show that topology is pre-
served under tropical sums. To this end, let u,w be M-ultrametrics that lie in
the relative interior of the same cone KS . Modulo the lineality space of Ñ(M),
u =

P
F2S �u

F vF and w =
P

F2S �w
F vF , where the sums are taken over the flats in S

that are not connected components of M, and �u
F ,�

w
F are all strictly positive. Then

(u � w) =
P

F (max{�u
F ,�

w
F })vF . So (u � w) also lies in the relative interior of KS

and so T (u� w) = S.
Lemma 4.1 below implies that the Hasse diagram of the containment partial

ordering on a nested set of a matroid M is a forest with a tree for each connected
component of M. Proposition 4.11 implies that each M-ultrametric can be displayed
on this forest in the same way that an ultrametric can be displayed on its tree topology.

Lemma 4.1. Let S be a nested set of a matroid M. Then for any pair F,G 2 S,
F ✓ G or G ✓ F or G \ F = ;.

Proof. Assume F and G are connected flats of M and that F \ G 6= ;. We will
show that the closure K of F [G is connected. It will then follow from the definition
of a nested set that either F ✓ G or G ✓ F . Let ⇠ be the relation on K where a ⇠ b
if and only if there exists a circuit C ✓ K containing both a and b. It su�ces to show
that there is only one equivalence class of K under ⇠ [19, Chapter 4.1]. Both F and
G are connected, so each must lie entirely within one equivalence class. Moreover,
their intersection is nontrivial so F [ G lies in a single equivalence class. Since K is
the closure of F [G, each e 2 K \ (F [G) must also lie in this equivalence class.

Note that Lemma 4.1 implies that if S is a nested set of a matroid M, then for
each e in the ground set of M, there is a unique minimal flat in S that contains e.

Definition 4.10. Let M be a matroid on ground set E and let S be a nested
set of M. A function ↵ : S ! R is said to be compatible with S if F ✓ G implies
↵(F )  ↵(G) for all F,G 2 S. For ↵ compatible with S, define wS,↵ 2 RE by
wS,↵

e = ↵(F ), where F is the minimal flat in S that contains e. If w = wS,↵, then we
call the pair (S,↵) a nested set representation of w on S.

Proposition 4.11. Let M and S be as in Definition 4.10 and let ↵ : S ! R be
compatible with S. Then wS,↵ is an M-ultrametric. Every M-ultrametric w has a
unique nested set representation w = wT (w),↵ on its topology.
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a

b

c

d

e

f

g

1

3

2

3

2
3

2

3

3

1

3 {ab, ac, ad, bd, cd}

2 {ab, ad, bd}

1 {ab}

3 {de, df, ef, eg, fg}

2 {df} 1 {fg}

Figure 6. An M(G)-ultrametric w, displayed as an edge-weighting of G
and using the ↵ : T (w) ! R as described in Proposition 4.12.

Proposition 4.12. Let M and S be as in Definition 4.11 and let ↵ : S ! R be compatible
with S. Then wS,↵ is an M-ultrametric. Every M-ultrametric w has a unique nested set
representation w = wT (w),↵ on its topology.

Proof. It is su�cient to prove the proposition in the case where M is connected, so
assume M is connected. We first show that wS,↵ is indeed an M-ultrametric. Define
�E := �↵(E) and for each F 2 S \E, define �F := �↵(F )+↵(G) where G is the minimal
element of S strictly containing F (Lemma 4.10 implies that a unique such G exists).
For each F 2 S, let vF be as in Definition 4.5. Then wS,↵ =

P
F2S �FvF . Since ↵ is

compatible with S, F 6= E implies that �F is nonnegative. This shows that wS,↵ is in the
nested set fan. Proposition 4.6 then implies that wS,↵ is a M-ultrametric.
Now let w be an arbitrary M-ultrametric. By Proposition 4.6 and Definition 4.7,

w =
P

F2T (w)
�FvF for some choice of coe�cients �F satisfying �F > 0 when F 6= E. Set

↵(E) := ��E, and for each F 2 T (w)\{E} inductively set ↵(F ) := ��F +↵(G) where G
is the minimal element of T (w) containing F . Note that ↵(F ) < ↵(F 0) whenever F ( F 0

and that w = wT (w),↵. Uniqueness of ↵ follows from the fact that this map from the �F ’s
to the ↵(F )’s is invertible and that {vF : F 2 T (w)} is a linearly independent set. ⇤
Proposition 4.12 gives us a way to display an M-ultrametric that generalizes the way

we can display an ultrametric on its tree topology. Namely, if w is an M-ultrametric and
↵ : T (w) ! R is such that w = wT (w),↵, we can specify w by drawing the Hasse diagram
for T (w) (which is a forest by Lemma 4.10) and labeling each F 2 T (w) with ↵(F ). We
now show this in an example.

Example 4.13. The left side of Figure 6 displays a M(G)-ultrametric w as an edge
weighting of the graph G. On its right is T (w) where each flat F 2 T (w) is labeled by
↵(F ) where ↵ : T (w) ! R satisfies w = wT (w),↵. Since the graph G is not biconnected,
the matroid M(G) is disconnected and so T (w) is disconnected.

We now generalize the concepts of polytomy and resolution from rooted trees repre-
senting ultrametrics to nested sets representing M-ultrametrics.

Definition 4.14. Let M be a matroid on ground set E and let S be a nested set of M.
A polytomy of S is an element F 2 S such that rank(F/

S
G G) > 1 where the union is

taken over all G 2 S such that G ( F . A resolution of S is another nested set S 0 without
polytomies such that S ✓ S 0.

Fig. 6. An M(G)-ultrametric w, displayed as an edge weighting of G and using the ↵ : T (w) !
R as described in Proposition 4.11.

Proof. It is su�cient to prove the proposition in the case where M is connected,
so assume M is connected. We first show that wS,↵ is indeed an M-ultrametric.
Define �E := �↵(E) and for each F 2 S \E, define �F := �↵(F )+↵(G), where G is
the minimal element of S strictly containing F (Lemma 4.1 implies that a unique such
G exists). For each F 2 S, let vF be as in Definition 4.5. Then wS,↵ =

P
F2S �F vF .

Since ↵ is compatible with S, F 6= E implies that �F is nonnegative. This shows
that wS,↵ is in the nested set fan. Proposition 4.6 then implies that wS,↵ is an
M-ultrametric.

Now let w be an arbitrary M-ultrametric. By Proposition 4.6 and Definition 4.7,
w =

P
F2T (w) �F vF for some choice of coe�cients �F satisfying �F > 0 when F 6= E.

Set ↵(E) := ��E , and for each F 2 T (w) \ {E} inductively set ↵(F ) := ��F +↵(G),
where G is the minimal element of T (w) containing F . Note that ↵(F ) < ↵(F 0)
whenever F ( F 0 and that w = wT (w),↵. Uniqueness of ↵ follows from the fact that
this map from the �F ’s to the ↵(F )’s is invertible and that {vF : F 2 T (w)} is a
linearly independent set.

Proposition 4.11 gives us a way to display an M-ultrametric that generalizes
the way we can display an ultrametric on its tree topology. Namely, if w is an M-
ultrametric and ↵ : T (w) ! R is such that w = wT (w),↵, we can specify w by drawing
the Hasse diagram for T (w) (which is a forest by Lemma 4.1) and labeling each
F 2 T (w) with ↵(F ). We now show this in an example.

Example 4.12. The left side of Figure 6 displays an M(G)-ultrametric w as an
edge weighting of the graph G. On its right is T (w) where each flat F 2 T (w) is
labeled by ↵(F ), where ↵ : T (w) ! R satisfies w = wT (w),↵. Since the graph G is
not biconnected, the matroid M(G) is disconnected and so T (w) is disconnected.

We now generalize the concepts of polytomy and resolution from rooted trees
representing ultrametrics to nested sets representing M-ultrametrics.

Definition 4.13. Let M be a matroid on ground set E and let S be a nested set
of M. A polytomy of S is an element F 2 S such that rank(F/

S
G G) > 1, where the

union is taken over all G 2 S such that G ( F . A resolution of S is another nested
set S 0 without polytomies such that S ✓ S 0.

If T (w) has a polytomy, then the nested set representation of w is not unique. In
particular, w can be represented on any nested set S that is a resolution of T (w).

Example 4.14. On the left side of Figure 7, we see a nested set S1 of the matroid
M(K4) underlying the complete graph on vertex set {a, b, c, d}. Since M(K4)/{ab}
is a matroid of rank 2, the set {ab, ac, ad, bc, bd, cd} is a polytomy of S1. To its right
are the two possible resolutions S2 and S3. Each Si is shown with a compatible
↵i : Si ! R, thus giving us the M(K4)-ultrametrics wSi,↵i . Note that wS1,↵1 =
wS2,↵2 = wS3,↵3 and that the topology of this M(K4)-ultrametric is S1.

D
ow

nl
oa

de
d 

09
/1

6/
22

 to
 1

29
.8

1.
17

1.
19

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

712 DANIEL IRVING BERNSTEIN
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If T (w) has a polytomy, then the nested set representation of w is not unique. In
particular, w can be represented on any nested set S that is a resolution of T (w).

Example 4.15. On the left side of Figure 7, we see a nested set S1 of the matroid M(K4)
underlying the complete graph on vertex set {a, b, c, d}. Since M(K4)/{ab} is a matroid
of rank 2, the set {ab, ac, ad, bc, bd, cd} is a polytomy of S1. To its right are the two
possible resolutions S2 and S3. Each Si is shown with a compatible ↵i : Si ! R, thus
giving us the M(K4)-ultrametrics wSi,↵i . Note that wS1,↵1 = wS2,↵2 = wS3,↵3 and that
the topology of this M(K4)-ultrametric is S1.

2 {ab, ac, ad, bc, bd, cd}

1 {ab}

S1

2 {ab, ac, ad, bc, bd, cd}

2 {cd}1 {ab}

S2

2 {ab, ac, ad, bc, bd, cd}

2 {ab, ac, bc}

1 {ab}

S3

Figure 7. A nested set S1 of the complete graph on vertex set {a, b, c, d}
with a polytomy and its two resolutions S2 and S3. The weightings on each
nested set all give rise to the same M(K4)-ultrametric.

5. L-infinity optimization to Bergman fans of matroids

The first important result of this section is Proposition 5.2, which says that the subset
of a Bergman fan B̃(M) ✓ RE consisting of all points l1-nearest to a given x 2 RE is
a tropical polytope. The main result of this section is Theorem 5.10, which describes
a generating set of this tropical polytope. In light of Proposition 5.13, Theorem 5.10
is applicable for ultrametric reconstruction in cases where the data consists only of a
subset of all pairwise distances. We begin by recalling a result of Ardila, establishing a
connection between ultrametric reconstruction and tropical convexity.

Proposition 5.1 ([3], Proposition 4.1). The Bergman fan B̃(M) is a tropical polyhedral
cone.

We introduce some notation. Given points x, y 2 RE and a set S ✓ RE, we denote the
l1-distance between x and y by d(x, y) and infy2S d(x, y) by d(x, S). Given some x 2 RE,
we define the subset of B̃(M) consisting of the M-ultrametrics that are l1-nearest to x
by C(x, B̃(M)). That is, C(x, B̃(M)) = {w 2 B̃(M) : d(x, w) = d(x, B̃(M))}. The next
proposition says that this set is a tropical polytope.

Proposition 5.2. If M is a matroid on ground set E and x 2 RE, then the subset of the
Bergman fan of M consisting of elements l1-nearest to x is a tropical polytope.

Proof. Let C denote the cube of side-length d(x, B̃(M)) centered at x. Therefore we
can express C(x, B̃(M)) = B̃(M) \ C. Proposition 5.1 tells us that B̃(M) is a tropical

Fig. 7. A nested set S1 of the complete graph on vertex set {a, b, c, d} with a polytomy and its
two resolutions S2 and S3. The weightings on each nested set all give rise to the same M(K4)-
ultrametric.

5. L-infinity optimization to Bergman fans of matroids. The first impor-
tant result of this section is Proposition 5.2, which says that the subset of a Bergman
fan B̃(M) ✓ RE consisting of all points l1-nearest to a given x 2 RE is a tropical
polytope. The main result of this section is Theorem 5.9, which describes a generating
set of this tropical polytope. In light of Proposition 5.12, Theorem 5.9 is applicable
to ultrametric reconstruction in cases where the data consist only of a subset of all
pairwise distances. We begin by recalling a result of Ardila, establishing a connection
between ultrametric reconstruction and tropical convexity.

Proposition 5.1 (see [3, Proposition 4.1]). The Bergman fan B̃(M) is a tropical
polyhedral cone.

We introduce some notation. Given points x, y 2 RE and a set S ✓ RE , we de-
note the l1-distance between x and y by d(x, y) and infy2S d(x, y) by d(x, S). Given
some x 2 RE , we define the subset of B̃(M) consisting of the M-ultrametrics that
are l1-nearest to x by C(x, B̃(M)). That is, C(x, B̃(M)) = {w 2 B̃(M) : d(x,w) =
d(x, B̃(M))}. The next proposition says that this set is a tropical polytope.

Proposition 5.2. If M is a matroid on ground set E and x 2 RE, then the
subset of the Bergman fan of M consisting of elements l1-nearest to x is a tropical
polytope.

Proof. Let C denote the cube of side length d(x, B̃(M)) centered at x. Therefore
we can express C(x, B̃(M)) = B̃(M) \ C. Proposition 5.1 tells us that B̃(M) is a
tropical polyhedron and C is clearly a tropical polytope. Their intersection is again
a tropical polyhedron. Since it is bounded it is by definition a tropical polytope.

Much of the remainder of this section is devoted to describing the set of tropical
vertices of C(x, B̃(M)). Now we recall the concept of a subdominant M-ultrametric,
the existence of which was proven by Ardila in [3].

Definition 5.3 (see [3]). Let M be a matroid on ground set E and let x 2
RE. Let xM denote the unique coordinatewise maximum M-ultrametric which is
coordinatewise at most x. We call xM the subdominant M-ultrametric of x.

Given some x 2 RE , Ardila shows how the first three steps of the algorithm from
Theorem 3.1 can be extended to compute the subdominant M-ultrametric of x. Then
the subdominant ultrametric can be shifted to obtain an l1-nearest ultrametric that
is coordinatewise maximal among all l1-nearest ultrametrics.

Lemma 5.1. Let M be a matroid on ground set E, x 2 RE, and � = 1
2d(x, x

M).
Then

1. The l1-distance from x to B̃(M) is �,
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x : a

b

d

c

2

4

5

106

xM : a

b

d

c

2

4

4

66

xm : a

b

d

c

4

6

6

88

Fig. 8. An element x 2 RE alongside its subdominant M(G)-ultrametric xM and the l1-
nearest M-ultrametric xm.

2. xM + � · 1 is an M-ultrametric, l1-nearest to x,
3. xM + � · 1 is maximal among M-ultrametrics l1-nearest to x.

Proof. The existence of xM + � · 1 shows that d(x, B̃(M))  �. Suppose there
exists w 2 B̃(M) such that d(x,w) < �. Then w � d(x,w) · 1 is coordinatewise at
most x. There exists e 2 E such that xe�xM

e = 2� and so xM
e < we�d(x,w). Thus,

w � d(x,w) · 1 is an ultrametric coordinatewise at most x but not coordinatewise at
most xM, contradicting that xM is the subdominant M-ultrametric. So (1) is proven
and (2) immediately follows.

If (3) were false and there existed some M-ultrametric y 2 C(x, B̃(M)) such that
y � xM + � · 1 with inequality somewhere, then y� � · 1 would not be coordinatewise
at most xM. However, it would be coordinatewise at most x, thus contradicting that
xM is the subdominant M-ultrametric.

Definition 5.4. Given x 2 RE, we denote by xm the l1-nearest ultrametric
xM + d(x, B̃(M)) · 1 and call it the maximal closest M-ultrametric to x.

Example 5.5. Let G be the graph displayed in Figure 8 and denote its edge set by
E. Let x 2 RE be as on the left of Figure 8. Then the subdominantM(G)-ultrametric
xM and its translation giving the l1-nearest M(G)-ultrametric xm are shown to the
right.

Definition 5.6 below introduces a way to decrease certain coordinates of an M-
ultrametric w that is l1-nearest to a given x 2 RE to produce another M-ultrametric
l1-nearest to x. The coordinates of w that can be decreased are determined by
what we will call mobile flats. We call the process of decreasing these coordinates
sliding mobile flats (all the way) down. Theorem 5.9 uses these concepts to describe
a generating set of C(x, B̃(M)).

Definition 5.6. Let M be a matroid on ground set E. Let x 2 RE and let
w 2 B̃(M) be l1-nearest to x. Let S be a resolution of T (w) and ↵ : S ! R be
compatible with S satisfying w = wS,↵. We say that F 2 S is mobile if there exists
an M-ultrametric ŵ 6= w expressible as ŵ = wS,↵̂ with ↵̂ compatible with S such that

1. ŵ is also nearest to x in the l1-norm,
2. ↵̂(G) = ↵(G) for all G 6= F , and
3. ↵̂(F ) < ↵(F ).

In this case, we say that ŵ is obtained from w by sliding F down. If moreover F is
no longer mobile in wS,↵̂, i.e., if ↵̂(F ) = max{↵(G) : G 2 S and G ( F} or ↵̂(F ) is
the minimum value such that wS,↵̂ is l1-nearest to x, then we say that ŵ is obtained
from w by sliding F all the way down.

D
ow

nl
oa

de
d 

09
/1

6/
22

 to
 1

29
.8

1.
17

1.
19

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

714 DANIEL IRVING BERNSTEIN

Remark 5.7. Given some x 2 RE and some wS,↵ that is l1-nearest to x, one can
determine that a given F 2 S is mobile by decreasing ↵(F ) by some small " > 0 and
seeing that the resulting M-ultrametric is still l1-nearest to x.

Remark 5.8. If S is a resolution of T (w) and F 2 S \ T (w) is mobile, then F is
contained in a polytomy of T (w) and all elements of S covered by F are also in T (w).

Theorem 5.9. Let M be a matroid on ground set E and let x 2 RE. Define
S0 := {xm} and for each i � 1, define Si to be the set of M-ultrametrics obtained
from some w 2 Si�1 by sliding a mobile flat in a resolution of T (w) all the way down.
Then

1.
S

i Si is a finite set,
2. the tropical convex hull of

S
i Si is C(x, B̃(M)), and

3. each tropical vertex v of C(x, B̃(M)) has at most one mobile flat across all
resolutions of T (v).

Proof. We first prove that
S

i Si is a finite set. Let w 2 Si for some i � 0. Then
each coordinate we is either xm

f or xm
f � d(x, B̃(M)) for some f 2 E, not necessarily

equal to e. So as w ranges over
S

i Si, there are only finitely many values that each
we can take and so

S
i Si is a finite set.

We now prove that each tropical vertex has at most one mobile flat. Let v 2
C(x, B̃(M)). Let ↵ be such that v = wT (v),↵ (recall Definition 4.10). If S1 and S2

are resolutions of T (v) and Fi 2 Si is mobile, then there exist ↵i : Si ! R compatible
with Si such that wSi,↵i 2 C(x, B̃(M)), and wSi,↵i

e = ve � " for a fixed small " > 0
whenever e 2 Fi \

S
F F where the union is taken over all F 2 Si such that F ( Fi,

and wSi,↵i
e = ve for all other e 2 E. We claim that wS1,↵1

e 6= ve implies wS2,↵2

e = ve.
When F1 and F2 are disjoint, the claim is obvious. When F1 and F2 are not disjoint,
they must be subsets of the same polytomy F 2 T (v). Let U be the union of all the
flats covered by F in T (v). Then U ✓ F1 \ F2. Moreover, U = F1 \ F2 because if
e 2 F1 \ F2 \ U , then rank(F1/U) > rank((F1 \ F2)/U) � rank((U [ {e})/U) = 1).
In light of Remark 5.8, this is a contradiction because then F1 would be a polytomy
in S1. The claim then follows because wSi,↵i

e 6= ve if and only if e 2 Fi \ U . Now we
have v = wS1,↵1 � wS2,↵2 and so v is not a tropical vertex of C(x, B̃(M)).

Now we prove that the tropical convex hull of
S

i Si is C(x, B̃(M)) by showing
that each vertex of C(x, B̃(M)) is a member of some Si. So let v be a tropical vertex
of C(x, B̃(M)). We construct a sequence xm = w0 � w1 � · · · � v such that wi 2 Si

and wi 6= wi+1. Since
S

i Si is finite, this sequence must eventually terminate and so
the final wi is equal to v. Assuming wi has been constructed and satisfies wi � v and
wi 6= v, we show how to construct wi+1 satisfying wi � wi+1 � v and wi+1 6= wi.

First assume T (wi) ✓ T (v). Let S be a resolution of T (v). Then S is also a
resolution of T (wi). Let ↵wi ,↵v be such that wi = wS,↵wi and v = wS,↵v . Let F 2 S
be a minimal element such that ↵v(F ) < ↵wi(F ). We can choose such an F to be non-
mobile in v. Otherwise, the unique mobile flat in S of wi would be F , which would also
be the unique mobile flat of S in v and so for allG 2 S\{F}, ↵wi(G) = ↵v(G). Since F
is mobile in v, there exists some ↵ : S ! R compatible with S such that ↵(G) = ↵v(G)
for G 6= F but ↵(F ) < ↵v(F ) and wS,↵ 2 C(x, B̃(M)). This contradicts v being a
vertex of C(x, B̃(M)) because v = (↵v(F )� ↵wi(F ))� wi � wS,↵. So we can choose
F to be mobile in wi and not in v. Define ↵wi+1 : S ! R by ↵wi+1(G) = ↵wi(G)
when G 6= F and ↵wi+1(F ) = ↵v(F ). Define wi+1 := wS,↵wi+1 . Then wi � wi+1 � v
and wi+1 is obtained from wi by sliding F down. Since F was chosen to be minimal
such that ↵v(F ) < ↵wi(F ) and ↵wi+1(G) = ↵wi(G) when G 6= F , nonmobility of F
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in v implies nonmobility of F in wi+1. Hence wi+1 is obtained from wi by sliding F
all the way down and so wi+1 2 Si+1.

Now assume T (wi) * T (v). Denote vt := (t � wi) � v. Since C(x, B̃(M)) is
tropically convex, vt 2 C(x, B̃(M)) whenever t < 0. Let t0 < 0 maximum such that
T (wi) \ T (vt0) is nonempty and let G 2 T (wi) \ T (vt0) be maximal. Note that for
small " > 0, T (wi) ✓ T (vt0+") and the minimal H 2 T (vt0+") that strictly contains
G is also a member of T (vt0). Let S be a resolution of T (vt0+") and therefore also a
resolution of T (wi). Choose K 2 S such that G ( K ✓ H and let wi+1 be the result
of sliding K all the way down in wi. Then wi+1 2 Si+1 and wi � wi+1 � vt � v.

As with Theorem 3.6, the set of M-ultrametrics specified by Theorem 5.9.3 is, in
general, a strict superset of the set of tropical vertices; see [24].

Example 5.10. Let G be the graph from Figure 8 and let x be the edge-weighting
displayed. We now describe how to use Theorem 5.9 to obtain a generating set of the
tropical polytope consisting of theM(G)-ultrametrics that are l1-nearest to x. Figure
9 shows the M(G)-ultrametrics in each nonempty Si, displayed on their topologies.
The mobile flats of the unique element xm of S0 are {ab, ac, bc} and {ab}. Sliding {ab}
all the way down yields the element of S1 shown on the left, and sliding {ab, ac, bc}
all the way down yields the element of S1 shown on the right. The only mobile flat
of the element of S1 shown on the left is {ab, ac, bc}. Sliding this all the way down
yields the leftmost element displayed in S2. The element of S1 shown on the right has
{ab, ac, bc} as a polytomy. There are three possible resolutions, the first obtained by
adding the flat {ab}, the second by adding {ac}, and the third by adding {bc}. Each
such flat is mobile, and the elements of S2 obtained by sliding each all the way down
are shown second, third, and fourth from the left in S2. Continuing in this way yields
the elements shown in S3 and S4. Note that there are no mobile flats in any element
of S4 so Si is empty for i � 5. The leftmost element of S2 also appears in S3 and
S4. A subset of

S
i Si whose tropical convex hull is C(x, B̃(M(G))) is shown in red.

Note that we’ve omitted elements with two or more mobile flats, as well as repeated
elements.

The following proposition tells us that if all the M-ultrametrics in the generating
set of C(x, B̃(M)) indicated by Theorem 5.9 have the same topology, then all elements
of C(x, B̃(M)) have the same topology.

Proposition 5.11. Let M be a matroid on ground set E and let x 2 RE. Then
the set of all M-ultrametrics that are l1-nearest to x have the same topology if and
only if all tropical vertices of C(x, B̃(M)) have the same topology.

Proof. This follows immediately from Proposition 4.9.

When M := M(G) is the matroid underlying some graph G, then Theorem 5.9
has potential use for phylogenetics even when G is not the complete graph. In par-
ticular, it sometimes happens that only a subset of the pairwise distances between n
species can be computed within a reasonable budget. Then one may ask the question
of which partial ultrametrics are l1-nearest to the observed distances. Assuming that
the observed distances correspond to the edge set E of a graph G, the following propo-
sition tells us that the above question is equivalent to, given some partial dissimilarity
map x 2 RE , which M(G)-ultrametrics are l1-nearest to x?

Proposition 5.12. Let E (
�[n]

2

�
, let G be the graph with vertex set [n] and edge

set E, and let x 2 RE. Then we may extend x to some ultrametric x0 2 B̃(M(Kn))
if and only if x is an M(G)-ultrametric.
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S0

8 {ab, ac, ad, bd, cd}

6 {ab, ac, bc}

4 {ab}

S1

8 {ab, ac, ad, bd, cd}

6 {ab, ac, bc}

0 {ab}

8 {ab, ac, ad, bd, cd}

4 {ab, ac, bc}

S2

8 E

3 {ab, ac, bc}

0 {ab}

8 E

4 {ab, ac, bc}

0 {ab}

8 E

4 {ab, ac, bc}

2 {ac}

8 E

4 {ab, ac, bc}

3 {bc}

S3

8 {ab, ac, ad, bd, cd}

3 {ab, ac, bc}

0 {ab}

8 {ab, ac, ad, bd, cd}

3 {ab, ac, bc}

2 {ac}

8 {ab, ac, ad, bd, cd}

3 {ab, ac, bc}

S4

8 {ab, ac, ad, bd, cd}

3 {ab, ac, bc}

2 {ac}

8 {ab, ac, ad, bd, cd}

3 {ab, ac, bc}

0 {ab}

Fig. 9. The nonempty Si’s from Theorem 5.9 for the edge weighting of the graph G in Figure 8.

Proof. First let x be an M(G)-ultrametric. Let e 2
�[n]

2

�
\ E. Let G0 be the

graph obtained by adding e to G. We can extend x to an M(G0)-ultrametric x0 by
setting x0

e to be the maximum of all the minimum edge weights appearing in some
cocircuit of M(G0). That this is indeed an M(G0)-ultrametric follows from Ardila’s
characterization of M-ultrametrics in terms of M’s cocircuits [3]. By induction it
follows that x may be completed to an M(Kn)-ultrametric.

Now let x 2 RE and assume that there exists some x0 2 B̃(M(Kn)) such that
xe = x0

e for each e 2 E. Since x0 is anM(Kn)-ultrametric, each e 2 E appears in some
x0-minimal basis of M(Kn). As x0

e = xe for each e 2 E, it follows that each e 2 E
appears in some x-minimal basis of M(G). Therefore x is an M(G)-ultrametric.
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Table 1
Pairwise immunological distances between eight species.

Dog Bear Raccoon Weasel Seal Sea Lion Cat Monkey

Dog 0 32 48 51 50 48 98 148

Bear 32 0 26 34 29 33 84 136

Raccoon 48 26 0 42 44 44 92 152

Weasel 51 34 42 0 44 38 86 142

Seal 50 29 44 44 0 24 89 142

Sea lion 48 33 44 38 24 0 90 142

Cat 98 84 92 86 89 90 0 148

Monkey 148 136 152 142 142 142 148 0

M C D W B R S SL

26 24
37.5

39.5
45.8

89.8
144.3

Fig. 10. Ultrametric returned by the UPGMA algorithm.

6. Example on a biological dataset. Now that we understand how uniqueness
of the l1-nearest ultrametric can fail to be unique, one might wonder if this is likely
to happen for a dissimilarity map not explicitly constructed to break uniqueness. To
this end, we now apply Theorem 3.6 to the dataset displayed in Table 1. It consists
of pairwise immunological distances between the species dog, bear, raccoon, weasel,
seal, sea lion, cat, and monkey that were obtained by Sarich in [20]. It is used in the
textbook [12] to illustrate the UPGMA and neighbor joining algorithms, which are
two other distance-based methods for phylogenetic reconstruction.

Theorem 5.9 suggests an algorithm for computing a generating set of the set
of ultrametrics l1-nearest to a given dissimilarity map. This consists of computing
all nonempty Si’s and removing all ultrametrics that have more than one mobile
internal node. Applying this to the dataset in Table 1 gives us the twenty ultrametrics
displayed in Figure 11. Four di↵erent tree topologies appear; for example, note that
the topologies of the first, second, eighth, and fourteenth ultrametrics in the row-major
order of Figure 11 are distinct.

The UPGMA algorithm always returns an ultrametric. Figure 10 shows the
ultrametric computed by the UPGMA algorithm when applied to the dataset given in
Table 1 (see [12, pp. 162–166]). No ultrametric sharing the topology of the ultrametric
shown in Figure 10 will be l1-nearest to the data. To see this, note that among the
ultrametrics displayed in Figure 11, the distance between weasel and seal is 42 or 43,
and that the distance between dog and seal is always 41. Since the set of l1-nearest
ultrametrics is tropically convex, any ultrametric l1-nearest to the data will have the
distance between weasel and seal strictly greater than the distance between dog and
seal. However, the opposite relation will be true in any ultrametric whose topology is
the tree displayed in Figure 10.D
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M C W D B R S SL

17 15
35

41
42

89
143

M C W D B R S SL

15
35

41
42

89
143

M C W D B R S SL

17 33
35

41
42

89
143

M C W D B R S SL

17 15
38

41
42

89
143

M C W D B R S SL

17 15
35

41
43

89
143

M C W D B R S SL

17 15
35

41
42

93
143

M C W D B R S SL

17 15
35

41
42

93
145

M C W D BR S SL

15
24

35
41

42
89

143

M C W D BR S SL

15
33

35
41

42
89

143

M C W D BR S SL

15
24

38
41

42
89

143

Fig. 11. A set of ultrametrics whose tropical convex hull is the set of ultrametrics l1-nearest
to the dataset in Table 1. Continued on next page.
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M C W D BR S SL

15
24

35
41

43
89

143

M C W D BR S SL

15
24

35
41

42
93

143

M C W D BR S SL

15
24

35
41

42
89

145

M C W D SLR B S

20
24

35
41

42
89

143

M C W D SLR B S

20
33

35
41

42
89

143

M C W D SLR B S

20
24

38
41

42
89

143

M C W D SLR B S

20
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