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A finite unit norm tight frame is a collection of r vectors in Rn that generalizes the 
notion of orthonormal bases. The affine finite unit norm tight frame variety is the 
Zariski closure of the set of finite unit norm tight frames. Determining the fiber of 
a projection of this variety onto a set of coordinates is called the algebraic finite 
unit norm tight frame completion problem. Our techniques involve the algebraic 
matroid of an algebraic variety, which encodes the dimensions of fibers of coordinate 
projections. This work characterizes the bases of the algebraic matroid underlying 
the variety of finite unit norm tight frames in R3. Partial results towards similar 
characterizations for finite unit norm tight frames in Rn with n ≥ 4 are also 
given. We provide a method to bound the degree of the projections based off of 
combinatorial data.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

A set of unit vectors {w1, . . . , wr} in Rn is said to be a finite unit norm tight frame (or funtf ) if the 
matrix W := [ w1 w2 ... wr ] satisfies nrWWT = Idn, where Idn is the n × n identity matrix. This generalizes 
the notion of orthonormal bases for Rn. The Zariski closure (over C) of the set of n × r matrices that are 
finite unit norm tight frames forms an algebraic variety in Cn×r, which we denote by Xn,r. The variety 
Xn,r can be expressed as an algebraic set (see [12, p. 4] and [35, Equation 4]) as follows:

Xn,r = {W ∈ Cn×r : WWT = r

n
Idn, diag(WTW ) = diag(Idr)}, (1.1)
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where diag(M) denotes the diagonal entries of a matrix M . In this paper, we characterize the algebraic 
matroid underlying X3,r and provide additional partial results for Xn,r.

The remainder of this section describes the applied motivation for our work here and gives a literature 
review of the area. In Section 2, we provide the minimum necessary background on algebraic matroids. 
In Section 3 we set up our notation and collect previous results we will need about Xn,r. In particular, 
we discuss how matroids arise in connection with algebraic frame completion problems. In Section 4, we 
provide our main results on the algebraic matroid underlying Xn,r (Theorem 4.2). Section 5 gives a recursive 
formula for computing the degree of a finite-to-one coordinate projection of Xn,r (Theorem 5.2) which we 
then use to completely characterize the degrees of projection onto a basis of X3,r.

1.1. Algebraic frame theory

Frames generalize the notion of a basis of a vector space and have found use in numerous fields of science 
and engineering. Given a Hilbert space H, a frame is a set of elements {fk}k∈I ⊂ H such that there exist 
real numbers A, B such that 0 < A ≤ B < ∞ and for every h ∈ H

A‖h‖2 ≤
∑

k∈I

|〈h, fk〉|2 ≤ B‖h‖2.

These frame conditions are given by Duffin and Schaeffer in [16, Equation (4)]. If A = B, then the frame is 
called tight. If H is n-dimensional, then any frame has at least n elements. A frame where each element has 
norm one is said to be a unit norm frame. In the literature unit norm frames are also known as normalized 
frames, uniform frames, and spherical frames. Throughout this text, we identify the sequence of vectors in 
a frame with the matrix whose columns are the vectors in the frame. The frames we are interested in are 
frames of the Hilbert space Rn; however, it is important to keep in mind that we are making a relaxation 
to a question regarding an algebraic variety in Cn×r.

A finite frame which is both tight and unit norm is also called a finite unit norm tight frame and is 
commonly abbreviated in the literature as funtf. Such frames are the focus of much research because they 
minimize various measures of error in signal reconstruction [15,22,24,27]. Algebraic frame theory uses the 
powerful tools of computational algebraic geometry to solve problems involving finite frame varieties. Such 
approaches have found success in [11,17,35,40].

Given an n × r matrix where only a subset of the entries is observed, the finite unit norm tight frame 
completion problem asks for values of the missing entries such that the resulting completed matrix is a funtf. 
The jumping off point for this work is the relaxation of this problem that allows for the missing entries 
to take on complex values. We call this relaxation the algebraic finite unit norm tight frame completion 
problem.

Complex frames are also studied where a Hermitian inner product is used, but that is not the focus of this 
article. Studying the variety Xn,r in place of the set of finite unit norm tight frames gives one access to tools 
from algebraic geometry, and results about Xn,r can lead to insight about the set of finite unit norm tight 
frames—see for example [12]. Many works have studied the properties of various sets of frames considered 
as varieties. For example, dimensions of (µ, S)-frame varieties, which are spaces of matrices W = [w1 · · ·wr], 
real or complex, satisfying WW ∗ = S for some Hermitian (symmetric) positive definite matrix S such that 
‖wk‖ = µk, were considered in [39]. Finite unit norm tight frames are a special case of these (µ, S)-frames 
where µi = 1 and S is a scalar multiple of the identity matrix. Along with the fundamental groups, the 
dimensions of finite unit norm tight frame varieties were derived in [17].

In [40], nonsingular points of (µ, S)-frames are characterized along with the tangent spaces at these 
nonsingular points on these varieties. The connectivity of the finite unit norm tight frame variety along 
with its irreducibility are studied in [11]. In [26], the polytope of eigensteps of finite equal norm tight frames 
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is studied. These eigensteps are sequences of interlacing spectra used by [10] to construct finite frames of 
prescribed norms and the dimension of finite unit norm tight frame varieties is noted to be related to the 
dimension of these polytopes.

1.2. Algebraic finite unit norm tight frame completion

Due to their robustness to erasures and additive noise, unit norm tight frames play an important role 
in signal processing. Explicit constructions for unit norm tight frames are quite recent despite theoretical 
work regarding existence being quite classical. The Schur-Horn Theorem [28,38] characterizes the pairs 
(λ, µ) such that there exists a frame whose frame operator has spectrum λ and lengths µ. However, explicit 
constructions for these frames have remained scarce. In [23] the authors give a constructive characterization 
for all unit norm tight frames in R2 and provide a construction technique known as harmonic frames for 
unit norm tight frames in Rn. An alternative constructive technique called spectral tetris is given in [14]. 
An explicit construction of every unit norm tight frame was finally given by [10,21].

The previous paragraph covers results on explicitly constructing frames with prescribed spectrum and 
whose vectors’ lengths are prescribed. However, what if you have specific vectors you want included in your 
frame? How do you complete this partial set of vectors into a tight frame? The work [19] answers how 
many vectors must be added to complete your set of vectors into a tight frame, and in the case when all 
vectors are unit norm, they also provide a lower bound (which is not sharp) for the number of vectors 
required to complete the set of vectors into a tight frame. The minimum number of vectors needed to add 
to your set of vectors to complete it to a frame when their norms are prescribed is provided by [33]. In both 
papers, it is assumed that you start with a set of vectors. See also [20], in which the authors characterize 
the spectra of all frame operators of frames completed from the addition of extra vectors to another frame 
and discuss completion in such a way as to produce a frame minimizing the condition number, the mean 
squared reconstruction error, and the frame potential.

In this paper, we take a different approach than Feng, Wang, and Wang, Massey and Ruiz, or Fickus, 
Marks, and Poteet. Instead of starting with a set of vectors and asking how many more vectors are needed 
to have a tight frame, we have the following generalization of the problem.

Problem 1.1. Given a partially observed n × r matrix, determine if the missing entries can be completed 
such that the columns form a finite unit norm tight frame.

A generalization of Problem 1.1 is to ask how many completions there are.

Problem 1.2. Given some known entries of an n ×r matrix, find the cardinality of the number of completions 
such that the columns form a finite unit norm tight frame.

When studying the algebraic geometry of low-rank matrix completion, one often studies the analogue of 
Problems 1.1 and 1.2, where instead of completing to a finite unit norm tight frame, one completes to a 
matrix of a particular specified low rank [31,7,3,5,6].

Problem 1.2 can be studied using algebraic geometry by considering the known entries as a set of defining 
equations of an affine linear space L in Cn×r and then studying the degree of Xn,r ∩L. When Xn,r ∩L is a 
finite set of points, the degree of Xn,r∩L is the number of points, counted with multiplicity, and is an upper 
bound for the number of completions. The degree of Xn,r∩L need not coincide with the degree of Xn,r, but 
when the linear space L is generic such that Xn,r ∩ L *= ∅, the degree of Xn,r ∩ L and Xn,r are the same. 
For n = r, the variety Xn,r is the orthogonal group and the degree of this variety was determined in [9]
using representation theory. An analogous question from rigidity theory asks for the number of realizations 
of a rigid graph. This same algebraic approach for getting an upper bound works in this context, this time 
by computing or bounding the degree of (coordinate projections of) the Cayley-Menger variety [30,18,13,8].
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After solving Problem 1.1, the most natural next problem is to actually compute such a completion, if 
it exists. One can attempt to do this using Gröbner bases algorithms, but this is likely to be prohibitively 
slow. A faster way to do this would be using numerical algebraic geometry using e.g. Bertini [2], PHCPack
[41], or Macaulay2 [32,25]. Knowing the degree of coordinate projections of Xn,r could be helpful in this 
approach. One could also try using the combinatorics of the set of known entries to derive polynomials in 
the missing entries that could be solved to complete the finite unit norm tight frame. In the language of 
algebraic matroids, this is the problem of finding combinatorial descriptions of the circuit polynomials of 
Xn,r. This would be an interesting future direction.

2. The basics of algebraic matroids

We now take a detour to introduce the minimum necessary background on algebraic matroids. Since the 
only matroids considered in this paper will be algebraic, we will not discuss or define abstract matroids. 
Moreover, our study will be limited to those that are algebraic over R or C. The reader who is interested 
in learning about more general (algebraic) matroids is advised to consult the textbook [36].

Let K be a field. Given a finite set E, we let KE denote the vector space whose coordinates are indexed by 
the elements of E. Each subset S ⊆ E of coordinates is associated with the linear projection πS : KE → KS

that sends each point (xe)e∈E to (xe)e∈S . The ring of polynomials with coefficients in K and indeterminants 
indexed by E will be denoted K[xe : e ∈ E] and the corresponding field of rational functions will be denoted 
K(xe : e ∈ E). The ideal in K[xe : e ∈ E] generated by a finite set of polynomials f1, . . . , fk ∈ K[xe : e ∈ E]
will be notated as (f1, . . . , fk). Given a set X ⊆ KE , we let I(X) denote the ideal of all polynomial functions 
that vanish on X.

Definition 2.1. Let E be a finite set, let K be R or C, and let X ⊆ KE be an irreducible variety. A subset 
of coordinates S ⊆ E is

(1) independent in X if I(πS(X)) is the zero ideal,
(2) spanning in X if dim(πS(X)) = dim(X),
(3) a basis of X if S is both independent and spanning.

Any one of the three set systems consisting of the independent sets, the spanning sets, or the bases of an 
irreducible variety determines the other two. The combinatorial structure specified by any one of these set 
systems is called the algebraic matroid underlying X.

Example 2.2. Let X ⊂ R[4] be the linear variety defined by the vanishing of the linear forms x1 − 5x2 = 0
and x3 + 2x4 = 0. The bases of X are

{1, 3}, {1, 4}, {2, 3}, {2, 4}.

The independent sets of X are the subsets of the bases, and the spanning sets are the supersets. More-
over, all the bases have cardinality two, which is also the dimension of X. This is not a coincidence—see 
Proposition 2.3 below.

We now describe the intuition behind the algebraic matroid underlying an irreducible variety X ⊆ KE . 
When S ⊆ E is independent, the coordinates (xe)e∈S can be given arbitrary generic values, and the resulting 
vector can be completed to a point in X. When S ⊆ E is spanning and x ∈ X is generic, then the coordinates 
(xe)e/∈S can be determined by solving a zero-dimensional system of polynomials whose coefficients are 
polynomials in (xe)e∈S . In other words, the set π−1

S (πS(x)) ∩X is generically finite.
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It’s important to recall Definition 2.1 requires X to be an irreducible variety. This ensures that the 
algebraic matroid underlying X is indeed a matroid (see for example [4, Proposition 1.2.9]). Proposition 2.3
below then follows from the fact that all bases of a matroid have the same size [36, Chapter 1].

Proposition 2.3. For any basis B ⊆ E of an irreducible variety X ⊆ KE, the cardinality of the set B equals 
dim(X).

Given finite sets A and B and a field K, we let KA×B denote the set of matrices with entries in K whose 
rows are indexed by elements of A and whose columns are indexed by elements of B. Given polynomials 
f1, . . . , fk ∈ K[xe : e ∈ E] the Jacobian matrix of f1, . . . , fk is the matrix J(f1, . . . , fk) ∈ (K(xe : e ∈
E))[k]×E whose (i, e) entry is the partial derivative ∂fi

∂xe
. In Section 4, we will often work with submatrices 

of a Jacobian matrix. For this reason, we introduce the following notation.

Notation 2.4. Let M denote a matrix whose columns are indexed by a set E. The submatrix of a given M
with columns corresponding to the elements of a subset S of E is denoted MS .

The following proposition is useful for computing the bases of the algebraic matroid underlying a given 
irreducible variety. It is well known, and usually stated in terms of matroid duals. We state it here in more 
elementary terms for the purposes of keeping the necessary matroid theory background at a minimum. For 
more details, see [37, Section 2.2] and [36, Proposition 6.7.10].

Proposition 2.5. Let E be a finite set, let K be R or C and let X ⊆ KE be an irreducible variety of 
dimension d such that I(X) = (f1, . . . , fk). A subset S ⊆ E of size d is a basis of X if and only if the rank 
of J(f1, . . . , fk)E\S is |E| − d.

3. Algebraic matroids to algebraic funtf completion

Recall from equation (1.1) that the Zariski closure in Cn×r of the set of n × r matrices such that the 
columns form a finite unit norm tight frame is denoted by Xn,r. In other words, this paper studies the 
following algebraic relaxation of Problem 1.1.

Problem 3.1 (The algebraic frame completion problem). Given some known entries of an n × r matrix, 
determine if the matrix can be completed to an element of Xn,r.

We say Xn,r is an affine finite unit norm tight frame variety and call a matrix in Xn,r a finite unit norm 
tight frame (funtf) matrix. The 

(n+1
2
)

+ r scalar equations defining Xn,r shown in (1.1) were found in [12, 
p. 4] and [35, Equation 4]. We will express the polynomials defining the affine finite unit norm tight frame 
variety in the ring K[xij : 1 ≤ i ≤ n, 1 ≤ j ≤ r] where xij will represent the ij entry of a matrix. Indeed, 
the column norm constraints on W can be expressed as the following r polynomials set to zero:

(g1, . . . , gr) := diag(WTW − Idr), (3.1)

while the orthogonal row constraints on W can be expressed as the following 
(n+1

2
)

polynomials fij , i ≤ j:




f11 f12 . . . f1n
f12 f22 . . . f2n
... . . . ...

f1n f2n . . . fnn



 := WWT − r

n
Idn . (3.2)

Elementary algebra shows that these polynomials satisfy the following relation
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n∑

i=1
fi,i =

r∑

j=1
gj = ||W ||2F − r, (3.3)

where || · ||F denotes the Frobenius norm.
The problem of algebraic finite unit norm tight frame completion can be cast as the problem of projecting 

an affine finite unit norm tight frame variety to a subset of coordinates. Let E ⊆ [n] × [r] denote a subset 
of coordinates of Cn×r. We will think of E as indexing “known” entries, and the algebraic finite unit norm 
tight frame completion problem is to determine the remaining “unknown” entries so that the completed 
matrix is a finite unit norm tight frame. Let πE denote the respective coordinate projection. The algebraic 
finite unit norm tight frame completions of a given M ∈ CE are the elements of the fiber π−1

E (M). It follows 
that E is independent in Xn,r if and only if every generic M ∈ CE has an algebraic finite unit norm tight 
frame completion and that E is spanning in Xn,r if and only if each nonempty fiber π−1(πE(M)) is finite 
when M is generic. Thus in the generic case, Problem 3.1 is equivalent to the following.

Problem 3.2. Find a combinatorial description of the algebraic matroid underlying Xn,r.

The first steps towards solving Problem 3.2 are determining the irreducibility and dimension of Xn,r. 
Fortunately, this was done in [17, Theorem 4.3(ii)], [40, Corollary 3.5], and [11, Theorem 1.4] which we 
summarize in the following theorem.

Theorem 3.3. The dimension of the affine finite unit norm tight frame variety Xn,r is

dim(Xn,r) = nr −
(
n + 1

2

)
− r + 1 provided r > n ≥ 2. (3.4)

It is irreducible when r ≥ n + 2 > 4.

In our work, we look to determine each basis (Definition 2.1, item 3) of Xn,r. We restrict our study to 
r ≥ n + 2 > 4 so that Xn,r is irreducible and thus gives a matroid. We seek a combinatorial description 
using bipartite graphs. Bipartite graphs provide a natural language for attacking Problem 3.2. Given finite 
sets A and B and a subset S ⊆ A × B, we let (A, B, S) denote the bipartite graph with partite vertex sets 
A and B and edge set S. We call two bipartite graphs (A1, B1, S1) and (A2, B2, S2) bipartite isomorphic if 
there exists a graph isomorphism φ : A1 ∪B1 → A2 ∪B2 such that φ(A1) = A2 and φ(B1) = B2.

Every subset E of entries of an n ×r matrix can be identified with the bipartite graph ([n], [r], [n] ×[r] \E), 
which we denote by GE (Fig. 1). The edges of GE are in bijection with the complement of E and not E
itself. This stands in contrast to what is often done in the algebraic matrix completion literature, but will 
make our results much cleaner to state. Neither row-swapping nor column-swapping affects whether a given 
subset E of entries of an n × r matrix is an independent set (or a basis, or spanning set) of Xn,r. Therefore, 
whether a given subset E of entries is independent (or a basis or spanning) in Xn,r only depends on the 
bipartite isomorphism equivalence class of GE . The (non-bipartite) graph isomorphism class of GE may not 
be sufficient to determine whether E is independent (or a basis or spanning) in Xn,r because the transpose of 
a finite unit norm tight frame matrix W may not be funtf. So from now on, we will only consider bipartite 
graphs up to their bipartite isomorphism classes. We may now phrase Problem 3.2 more concretely as 
follows.

Problem 3.4. For which (bipartite isomorphism classes of) bipartite graphs GE is E a basis of Xn,r?

We will sometimes find it useful to represent a subset E ⊆ [n] × [r] as the {0, 1}-matrix whose ij entry is 
1 if (i, j) ∈ E and 0 otherwise (Fig. 1). Such a representation will be called a matrix entry representation.
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1

2

3

1

2

3

4

5

(0 1 1 0 0
1 0 1 0 0
1 1 0 0 0

)

Fig. 1. Depicting E := {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)} ⊂ [3] × [5] as the bipartite graph GE and as a {0, 1}-matrix.

G = core2(G) = core2(G) =

Fig. 2. A bipartite graph G alongside its greater 2-core and its 2-core.

4. The algebraic matroid underlying the finite unit norm tight frame variety

In this section we give combinatorial criteria on the bases of Xn,r. First we show that if E is a basis of 
Xn,r, then the graph GE is connected. Moreover, when n = 3 the converse is true as well. Second, we show 
that whether or not E is a basis of Xn,r only depends on the 2-core of GE. This allows us to determine a 
combinatorial criterion for every r after fixing n.

4.1. Graph connectivity

We begin with some graph theoretic definitions. Let G = (A, B, S) be a bipartite graph. The greater 
2-core of G, denoted core2(G), is the graph obtained from G by iteratively removing all edges that are 
incident to a vertex of degree one. The 2-core of G, denoted core2(G), is the graph obtained by deleting the 
isolated vertices from core2(G). Fig. 2 shows a graph alongside its greater 2-core and its 2-core.

Since the graph G need not be connected, there may not exist a spanning tree for G. Instead, consider 
a spanning forest for G, which is a maximal acyclic subgraph of G, or equivalently a subgraph consisting 
of a spanning tree in each connected component. A circuit is a nonempty trail in G such that the first and 
last vertex coincide, or equivalently, a non-empty sequence (e1, . . . , ek) of edges in G for which there is a 
sequence of vertices (v1, . . . , vk, v1) such that for i = 1, . . . , k − 1 the vertices of ei are (vi, vi+1) and the 
vertices of ek are (vk, v1). A cycle is an example of a circuit. Given a spanning forest F of G and an edge e
of G not appearing in F , the graph F ∪ {e} has exactly one cycle which must contain e. This cycle is called 
the fundamental circuit of e with respect to F .

Given a subset S′ ⊆ S of the edge set of G, the characteristic vector of S′ is the vector in {0, 1}S that 
has ones at entries corresponding to elements of S′ and zeros at all other entries. The incidence matrix of 
G is the matrix whose rows are indexed by the vertices of G, and the row corresponding to a vertex v is 
the characteristic vector of the set of edges that are incident to v. The columns of the incidence matrix of 
G are indexed by the edges of G.

Example 4.1. We use the notation Ka,b to denote the complete bipartite graph on partite sets of size a
and b. The incidence matrix of K3,5 is given by the 8 × 15 matrix below
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



1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1





.

This matrix is naturally partitioned via the vertices in each partite of the graph K3,5.

Theorem 4.2. Assume r ≥ n + 2 > 4 and let E ⊆ [n] × [r] have cardinality nr −
(n+1

2
)
− r + 1. If E is a 

basis of Xn,r, then GE is connected. When n = 3, the converse is true as well.

Proof. Let gi and fij denote the polynomials as in (3.1) and (3.2); this set of polynomials generates the
ideal of Xn,r. Let J be the (r +

(n+1
2
)
) × nr Jacobian matrix

J := J(g1, . . . , gr, f11, f12 . . . , fnn).

Proposition 2.5 implies that E is a basis of Xn,r if and only if the (r +
(n+1

2
)
) × (r +

(n+1
2
)
− 1) matrix 

J[n]×[r]\E has full rank, or equivalently,

rank(J[n]×[r]\E) = r +
(
n + 1

2

)
− 1.

Let J ′ and J ′′ denote the following matrices of size (r +
(n+1

2
)
) × nr and (r + n) × nr, respectively

J ′ := J · diag(1/x11, 1/x12 . . . , 1/xnr),
J ′′ := J(g1, . . . , gr, f11, f22, . . . , fii, . . . , fnn) · diag(1/x11, 1/x12 . . . , 1/xnr),

where diag(w) denotes the matrix with the vector w along its diagonal. The matrix J ′′ is twice the incidence 
matrix of Kn,r from Example 4.1, and J ′′

[n]×[r]\E is twice the incidence matrix of GE . Thus if GE has c
connected components, then

rank(J ′′
[n]×[r]\E) = r + n− c.

On the other hand, since J ′ can be obtained from J ′′ by including 
(n
2
)

additional rows, we have

rank(J ′
[n]×[r]\E) ≤ rank(J ′′

[n]×[r]\E) +
(
n

2

)
= r +

(
n + 1

2

)
− c.

Since rank(J[n]×[r]\E) = rank(J ′
[n]×[r]\E), we have that if GE is disconnected, then J[n]×[r]\E is rank deficient 

and thus E is not a basis.
Now, having proved that E being a basis implies connectivity of GE, we assume that n = 3 and prove 

the converse. Further assume that GE is connected with 
(n+1

2
)

+ r − 1 = r + 2 edges. We will show that E
is a basis of Xn,r by showing that J ′

[n]×[r]\E has full rank. This is done by splitting J ′
[n]×[r]\E into two row 

submatrices whose kernels intersect trivially.
Twice the incidence matrix of the complete bipartite graph K3,r is a row-submatrix of J ′. Therefore, any 

linear relation among the columns of J ′ must lie in the linear space
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C{vC : C is a circuit of K3,r}

where vC ∈ C[3]×[r] is the {1, −1, 0}-vector obtained from the characteristic vector of C by giving adjacent 
edges opposite signs. The row of J ′ corresponding to the constraint fab = 0 with a *= b has xbi/xai at 
the column corresponding to xai and xai/xbi at the column corresponding to xbi. For ease of notation, we 
introduce the change of variables

t1i := x2i/x1i t2i := x3i/x1i.

With this change of variables, the rows of J ′ corresponding to the constraints f12 = f13 = f23 = 0 form the 
matrix K shown below

K :=





x11 . . . x1r x21 . . . x2r x31 . . . x3r

f12 t11 . . . t1r t−1
11 . . . t−1

1r 0 . . . 0
f13 t21 . . . t2r 0 . . . 0 t−1

21 . . . t−1
2r

f23 0 . . . 0 t21t
−1
11 . . . t2rt

−1
1r t11t

−1
21 . . . t1rt

−1
2r



.

Fix a spanning tree T of GE and let e1, e2, e3 denote the three edges of GE that are not contained in T . Let 
Ci denote the fundamental circuit of ei with respect to T . The space of linear relations among the columns 
of J ′ corresponding to the edges of GE lies within the three-dimensional subspace C{vCi : i = 1, 2, 3}. We 
now show that no nonzero element of C{vCi : i = 1, 2, 3} lies in the kernel of K. It will then follow that the 
column-submatrix of J ′ corresponding to the edges of GE has maximum rank.

The three fundamental circuits C1, C2, and C3 all lie in core2(GE) which is a bipartite graph on partite 
sets of size n′ ≤ 3 and r′ ≤ r. Each vertex of core2(GE) has degree at least 2, so n′, r′ ≥ 2. Since GE is 
connected, core2(GE) must also be connected. Hence since C1, C2, and C3 all lie in core2(GE), core2(GE)
must have exactly n′+r′+2 edges. Since each vertex has degree at least 2, 2r′ ≤ n′+r′+2 and so r′ ≤ n′+2. 
So thus far, we only need to consider (n′, r′) = (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (3, 5). Among these, 
the only (n′, r′)-pairs such that there even exists such a bipartite graph with the correct number of edges 
are (2, 4), (3, 3), (3, 4), (3, 5). For these values of (n′, r′), we may compute all the connected bipartite graphs 
on partite sets of size n′ and r′ with minimum degree 2 and exactly n′ + r′ + 2 edges using the genbg
command of Nauty and Traces [34]. There are seven such graphs and they are displayed in Fig. 3 with 
vertices labeled according to which row or column they correspond to.

By relabeling vertices, we may assume that core2(GE) is supported on partite vertex sets 1, . . . , n′ and 
1, . . . , r′. Let Acore2(GE) denote the incidence matrix of core2(GE) and let Mcore2(GE) denote the matrix 
whose columns are a basis of the kernel of Acore2(GE). Then C{vCi : i = 1, 2, 3} is the span of Mcore2(GE). 
Letting K ′ be the submatrix of K with columns corresponding to the edge set of core2(GE), we are done 
if we show that K ′Mcore2(GE) has rank 3 for the seven values of core2(GE) above. This is verified in a 
Mathematica script available at the following url [29].

https://dibernstein .github .io /Supplementary _materials /funtf .html

This Mathematica script computes each of the symbolic matrices K ′Mcore2(GE), then calculates their rank 
as matrices with entries in the appropriate function field. !

The following proposition is useful to construct examples showing that the converse of Theorem 4.2 is 
not true for n ≥ 4.

Proposition 4.3. Assume r ≥ n + 2 > 4 and let E ⊆ [n] × [r]. If E is spanning in Xn,r, then at most two 
vertices of GE corresponding to columns can have degree n.

https://dibernstein.github.io/Supplementary_materials/funtf.html
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R2
C2

C3

C1

R3 R1

C4

C5 C2 R3 C3

R1 R2
C1 C4

C5

R1

C1

C2

C5
C3 C4

R2

R3 C1 R3

C4R2 R1

C3

C2

C1

C2C3

R2 R1

R3

C4
R3

C2

C3 R1

R2

C1

R1

R2

C1C2 C3 C4

Fig. 3. The seven possibilities (up to bipartite isomorphism) for core2(GE) when E is a basis of X3,r.

Proof. Assume GE has k column vertices of degree n. Without loss of generality, assume they correspond 
to the first k columns so that (a, i) /∈ E for all 1 ≤ a ≤ n, 1 ≤ i ≤ k. Define E′ := {(a, i) : 1 ≤ a ≤
n, k+1 ≤ i ≤ r}, and observe E ⊆ E′. We show that when k ≥ 3, the dimension of π−1

E′ (πE′(M)) is positive 
for generic M . It follows that E′, and therefore E, is not spanning.

Let M ∈ Xn,r be a generic finite unit norm tight frame. The (i, a) entry of M will be denoted mia. Let 
g̃a, f̃ij denote the polynomials obtained from ga and fij , as in (3.1) and (3.2), by plugging in mia for xia

when (i, a) ∈ E′. The Zariski closure of π−1
E′ (πE′(M)) can be identified with the variety in Cn×k defined by 

the polynomials g̃1, . . . , ̃gk and f̃ij for 1 ≤ i ≤ j ≤ n.
Following from Equation (3.3), we have

f̃11 + f̃22 + · · · + f̃nn = g̃1 + · · · + g̃k (4.1)

and so π−1
E′ (πE′(M)) is in fact the vanishing locus of g̃1, . . . , ̃gk−1 and f̃ij for 1 ≤ i, j ≤ n. Moreover, the 

polynomials

f̃ij + δij
r

n
−

r∑

a=k+1
miamja where δij :=

{
1 i = j

0 i *= j
(4.2)
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



0 0 0 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1









0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 0 0 1 1 0 1
0 0 0 1 1 1 0
0 0 0 1 1 1 1





Fig. 4. Matrix entry representations of examples of the construction given in Example 4.4 for n = 4 and n = 5. These show that 
when n ≥ 4, a graph on nr −

(n+1
2

)
− r + 1 edges whose bipartite complement is connected may fail to be a basis of Xn,r .

parameterize the variety of n × n symmetric matrices of rank at most k, which has dimension nk −
(k
2
)

(see for example [6, Lemma 6.2]). Thus the 
(n+1

2
)

polynomials f̃ij , 1 ≤ i ≤ j ≤ n together contribute at 
most nk −

(k
2
)

to the codimension of π−1
E′ (πE′(M)). Hence the codimension of π−1

E′ (πE′(M)) is at most 
nk −

(k
2
)

+ k − 1, which is strictly less than nk for k ≥ 3. !

Example 4.4. Let n ≥ 4 and r ≥ n + 2 and let E′ := {(i, a) : 2 ≤ i ≤ n, 4 ≤ a ≤ r}. Let E be obtained from 
E′ by removing any 

(n−2
2
)
− 1 elements. Then E has nr −

(n+1
2
)
− r + 1 elements and GE is connected. 

However, Proposition 4.3 implies that E cannot be a basis of Xn,r. Fig. 4 shows examples of this construction 
for n = 4 and n = 5.

4.2. Combinatorial criteria with fixed row size

The goal of this section is to fix n and find combinatorial criteria to determine if E is a basis of Xn,r for 
any r. This is made precise in Remark 4.6.

The following theorem tells us that whether or not a given E ⊆ [n] × [r] of cardinality nr−
(n+1

2
)
− r+ 1

is a basis in Xn,r depends only on core2(GE).

Theorem 4.5. Assume r ≥ n + 2 > 4 and let E ⊆ [n] × [r] such that |E| = nr −
(n+1

2
)
− r + 1. Then E is 

a basis in the algebraic matroid underlying Xn,r if and only if the set E′ ⊇ E satisfying GE′ = core2(GE)
is spanning in Xn,r. Moreover, for a fixed n, there are only finitely many possible graphs appearing as 
core2(GE) as E ranges over all bases of Xn,r.

Proof. Let M ∈ Xn,r be a generic finite unit norm tight frame whose (i, a) entry is mia. Let g̃a and f̃ij
denote the polynomials obtained from ga and fij by setting xia = mia when (i, a) ∈ E. Then π−1

E (πE(M))
can be viewed as the zero-dimensional variety in C[n]×[r]\E defined by the vanishing of the polynomials g̃a, 
1 ≤ a ≤ r and f̃ij , 1 ≤ i ≤ j ≤ n. Since GE is connected, the edges of GE that are not in core2(GE) can be 
ordered (i1, a1), . . . , (ik, ak) such that for each j, in either g̃aj or f̃ijij , every variable other than xijaj that 
appears is of the form xilal for some l < j. It follows that given πE(M), one can solve a series of quadratic 
equations in order to recover, up to finite ambiguity, the entries of M at positions corresponding to edges of 
GE that are not in core2(GE). One can then solve for the remaining entries of M precisely when core2(GE)
is spanning in Xn,r. The “moreover” clause follows by Proposition 4.7 below. !

Remark 4.6. Given a set E ⊆ [n] × [r] that is spanning in Xn,r, the set E ∪ {(1, r + 1), . . . , (n, r + 1)}
is spanning in Xn,r+1. Thus Theorem 4.5 tells us that if we fix n but allow r to vary, then the problem 
of determining whether or not E ⊂ [n] × [r] is a basis of Xn,r is equivalent to determining whether or 
not core2(GE) appears on a certain finite list. Proposition 4.7 below gives us the finiteness statement in 
Theorem 4.5, as well as bounds on the size of core2(G).

Proposition 4.7. Let r ≥ n + 2 > 4 and let E ⊆ [n] × [r] such that GE is connected. Let α and β be the 
number of row- and column-vertices (respectively) in core2(GE). If E is a basis of Xn,r, then
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(1) α = n − 1 or α = n,
(2) α ≤ β ≤

(n
2
)

+ α− 1.

Proof. Let M ∈ Xn,r be a generic finite unit norm tight frame whose (i, a) entry is mia. Let g̃a and f̃ij
denote the polynomials obtained from ga and fij by setting xia = mia when (i, a) ∈ E. Then π−1

E (πE(M))
can be viewed as the zero-dimensional variety in C[n]×[r]\E defined by the vanishing of the polynomials g̃a, 
1 ≤ a ≤ r and f̃ij , 1 ≤ i ≤ j ≤ n.

First we show α = n − 1 or α = n. Without loss of generality, assume that core2(GE) has row-vertices 
1, . . . , α and column vertices 1, . . . , β. Let F := {(i, a) : 1 ≤ i ≤ α, 1 ≤ a ≤ β} \ E be the edge set of 
core2(GE). This set has cardinality given by |F | = α + β +

(n
2
)
− 1. The elements of F index the entries 

in the upper-left submatrix of M that are, in principle, allowed to vary over the fiber π−1
E (πE(M)). After 

dropping one of the redundant g̃a’s via (4.1), there are exactly 
(α+1

2
)
+β−1 +α(n −α) equations among the 

g̃a’s and f̃ij ’s that involve entries in the upper-left α×β block of M . Since π−1
E (πE(M)) is zero-dimensional, 

we must have

α + β +
(
n

2

)
− 1 ≤

(
α + 1

2

)
+ β − 1 + α(n− α)

which simplifies to

−1
2α

2 +
(
n− 1

2

)
α−

(
n

2

)
≥ 0. (4.3)

Let us now consider the left-hand side of the inequality (4.3) as a polynomial h in α, treating n as a 
constant. The only roots of h are n − 1 and n, and h(α) is nonnegative if and only if n − 1 ≤ α ≤ n. 
Therefore, we must have α ∈ {n − 1, n}.

Now we show α ≤ β. As noted in the proof of Proposition 4.3, when (i, a) is an edge in GE but not 
core2(GE), we may solve a zero-dimensional quadratic system for xia given {mia : (i, a) ∈ E}. Thus we may 
now assume that GE = core2(GE) and allow E to be spanning in Xn,r (as opposed to a basis of Xn,r).

Assume for the sake of contradiction that α > β. Then, the 
(α+1

2
)

constraints f̃ij = 0 where 1 ≤ i ≤ j ≤ α

together can contribute at most αβ−
(β
2
)

to codimension. This is because for 1 ≤ i ≤ j ≤ α, the polynomials 
from (4.2) with k = β give the entries of an α×α symmetric matrix with rank at most β, and the dimension 
of the variety of α× α symmetric matrices of rank at most β is αβ −

(β
2
)

(see for example [6, Lemma 6.2]). 
Also, as before, at least one of the constraints g̃a = 0, 1 ≤ a ≤ β is redundant. Since π−1

E (πE(M)) is 
zero-dimensional, we must have |F | ≤ αβ −

(β
2
)

+ β − 1 and therefore

α(β − 1) −
(
β

2

)
−

(
n

2

)
≥ 0. (4.4)

After plugging in n − 1 for α, (4.4) becomes (β − n)2 + n + β ≤ 2, which is a contradiction because n ≥ 3. 
Plugging in n for α = n in (4.4), we get the inequality −n − β ≥ (β − n)2, which is a contradiction because 
the left hand side is strictly negative, and the right hand side is nonnegative. Hence, we have α ≤ β.

The final inequality β ≤
(n
2
)
+ α− 1 follows from the fact that core2(GE) has 

(n
2
)
+ α+ β − 1 edges and 

each of the β non-isolated column vertices has degree at least 2. !

5. Degree of projection and algebraic identifiability

Now that we have a handle on which subsets E ⊆ [n] × [r] yield projections πE : Xn,r → CE that are 
generically finite-to-one, we can ask about the cardinality of a generically finite fiber. In other words, we 
want to solve the following problem.
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Problem 5.1 (Algebraic identifiability complexity). Develop a combinatorial method for computing the degree 
of the map πE : Xn,r → CE from GE when E is a basis of Xn,r.

The following theorem gets us part of the way towards a solution to Problem 5.1.

Theorem 5.2. Let r ≥ n + 2 > 4 and let E ⊆ [n] × [r]. Define F ⊆ [n] × [r] such that core2(GE) = GF , and 
let k denote the number of vertices that are isolated in core2(GE) but not in GE. If E is a spanning set of 
Xn,r, then we have

deg πE = 2k · deg πF .

Proof. First observe, E ⊆ F and so we have a projection map h : πF (Xn,r) → CE that omits all the 
coordinates corresponding to elements of F \ E. Then we have πE = h ◦ πF and

deg πE = deg πF · deg h,

which can be seen as follows. The maps h : πF (Xn,r) → CE and πE : Xn,r → CE are each branched covers 
of CE . In other words, there exist dense Zariski open subsets U1 and U2 of CE such that h restricted to 
h−1(U1) and πE restricted to π−1

E (U2) are covering spaces. Moreover, h and πE restricted to U1 ∩ U2 are 
also covering spaces. Since πE = h ◦ πF , we have πF is a homomorphism of covering spaces and thus the 
topological degree of the restricted maps with image U1 ∩U2 satisfy deg πE = deg πF · deg h. As U1 and U2
are dense Zariski open subsets of CE , we have U1 ∩U2 is also a dense Zariski open subset of CE . Therefore, 
the equality above follows.

It now suffices to show deg h = 2k. Let M ∈ Xn,r be generic and define g̃a and f̃ij as in the proofs 
of Theorem 4.5 and Proposition 4.7. We can order the elements of F \ E as (i1, a1), . . . , (ak, ik) such that 
for each j ∈ {1, . . . , k}, the only non-xijaj variables in at least one of gaj or fijij will be of the form xilal

with l < j. Let F denote the system of all such polynomials. The non-constant coordinates of h−1(πE(M))
are given by the variety defined by the vanishing of F . By solving F via “back-substitution” in the order 
xa1i1 , . . . , xakik , we see that this variety has exactly 2k points. Thus, |h−1(f(M))| = 2k and deg h = 2k. !

Let E ⊆ [n] × [r] with E a basis of Xn,r and define F ⊆ [n] × [r] so that GF = core2(GE). Let β
denote the number of column vertices in core2(GE) and let M ∈ Xn,r be generic whose (i, a) entry is mia. 
If r ≥ n + 2 > 4 and r ≥ β + 1, then the degree of the projection map πF : Xn,r → CF only depends 
on core2(GE) and not on r. This follows from the fact that if r ≥ β + 1, then the set of non-constant 
polynomials f̃ij and g̃a obtainable by substituting xia = mia for (i, a) ∈ F does not depend on r. So for 
a graph H such that H = core2(GE) for some basis E of Xn,r, let deg(H) denote the degree of πF when 
r ≥ β + 1. If r = β (r < β is not possible), then deg(πF ) ≤ deg(core2(GE)). Thus Theorem 5.2 gives us the 
bound deg(πE) ≤ 2k deg(core2(GE)).

Theorem 4.5 tells us, that for fixed n, there are only finitely many core2(GE). Thus one can compute all 
values of deg(core2(GE)) for a fixed n and use this to produce an algorithm that bounds the size of a finite 
fiber |π−1

E (πE(M))| by computing the 2-core of GE. This is done in Algorithm 1 and Example 5.3 illustrates 
this for the case n = 3.

Algorithm 1 For fixed n ≥ 3, bounds the size of a generic fiber π−1
E (πE(M)) when E is a basis of Xn,r. 

Assumes that all possible values of deg(core2(GE)) have been precomputed.
1: procedure BoundFiber(r, E) $ r ≥ n + 2 and E is a basis of Xn,r

2: H ← core2(GE)
3: k ← number of vertices in GE but not H
4: d ← deg(H) $ obtain by looking up in precomputed table
5: Return: d · 2k

6: end procedure
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Table 1
Each possible value of F ⊆ [3] × [5] such that GF =
core2(GE) when E is a basis of X3,r, alongside the de-
gree of the corresponding coordinate projection map.

F such that GF = core2(GE) | deg(core2(GE))|
(0 0 0

0 0 0
1 0 0

)
32

(0 0 0 0
0 0 0 0

)
24

(0 0 0 0
1 1 0 0
0 0 1 0

)
96

(0 0 1 0
0 1 0 0
1 0 0 0

)
128

(1 1 1 0 0
0 0 0 1 1
0 0 0 0 0

)
288

(0 0 1 1 0
1 1 0 0 0
0 0 0 0 1

)
576

(0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
384

Example 5.3. When E is a basis of X3,r, core2(GE) is one of seven graphs, displayed in Fig. 3. For each 
possible core2(GE), we compute the cardinality of a projection of an X3,r onto core2(GE) using probability-
one methods in Bertini [2] via Macaulay2 [25,1]. When core2(GE) has five or more column vertices, we 
took r = 5 and r = 6 and observed that in both cases, the degree of projection was the same. When 
core2(GE) has fewer than five column vertices, we take r = 5. These degrees are given in Table 1. Via the 
above discussion, this characterizes the possible degrees of a projection of X3,r onto a basis. For example, 
if E ⊆ [3] × [5] where as a zero-one matrix,

E =
(0 0 0 0 0

1 1 0 0 0
1 1 1 0 0

)
,

then the degree of a generic fiber of this projection is 128 = 22 · 32. This can be read off from Table 1
by noting that F such that GF = core2(GE) is given in the top row of the table and the degree of the 
corresponding fiber is 32.
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