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1. Introduction

A set of unit vectors {ws,...,w,} in R™ is said to be a finite unit norm tight frame (or funtf) if the
matrix W := [w1 w2 ... wr] satisfies %WWT = Id,,, where Id,, is the n x n identity matrix. This generalizes
the notion of orthonormal bases for R™. The Zariski closure (over C) of the set of n x r matrices that are
finite unit norm tight frames forms an algebraic variety in C™*”, which we denote by X, ,. The variety
X, can be expressed as an algebraic set (see [12, p. 4] and [35, Equation 4]) as follows:

Xpy = {WeC™ . wwT = _1d,, diag(WTW) = diag(Id, )}, (1.1)
n
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where diag(M) denotes the diagonal entries of a matrix M. In this paper, we characterize the algebraic
matroid underlying X3, and provide additional partial results for X, .

The remainder of this section describes the applied motivation for our work here and gives a literature
review of the area. In Section 2, we provide the minimum necessary background on algebraic matroids.
In Section 3 we set up our notation and collect previous results we will need about X, ,. In particular,
we discuss how matroids arise in connection with algebraic frame completion problems. In Section 4, we
provide our main results on the algebraic matroid underlying X, , (Theorem 4.2). Section 5 gives a recursive
formula for computing the degree of a finite-to-one coordinate projection of X, , (Theorem 5.2) which we
then use to completely characterize the degrees of projection onto a basis of X3 ..

1.1. Algebraic frame theory

Frames generalize the notion of a basis of a vector space and have found use in numerous fields of science
and engineering. Given a Hilbert space H, a frame is a set of elements { fi}xer C H such that there exist
real numbers A, B such that 0 < A < B < oo and for every h € H

AllR)® <Y Ih, fi) P < BhIP.

kel

These frame conditions are given by Duffin and Schaeffer in [16, Equation (4)]. If A = B, then the frame is
called tight. If H is n-dimensional, then any frame has at least n elements. A frame where each element has
norm one is said to be a unit norm frame. In the literature unit norm frames are also known as normalized
frames, uniform frames, and spherical frames. Throughout this text, we identify the sequence of vectors in
a frame with the matrix whose columns are the vectors in the frame. The frames we are interested in are
frames of the Hilbert space R™; however, it is important to keep in mind that we are making a relaxation
to a question regarding an algebraic variety in C™*".

A finite frame which is both tight and unit norm is also called a finite unit norm tight frame and is
commonly abbreviated in the literature as funtf. Such frames are the focus of much research because they
minimize various measures of error in signal reconstruction [15,22,24,27]. Algebraic frame theory uses the
powerful tools of computational algebraic geometry to solve problems involving finite frame varieties. Such
approaches have found success in [11,17,35,40].

Given an n X r matrix where only a subset of the entries is observed, the finite unit norm tight frame
completion problem asks for values of the missing entries such that the resulting completed matrix is a funtf.
The jumping off point for this work is the relaxation of this problem that allows for the missing entries
to take on complex values. We call this relaxation the algebraic finite unit norm tight frame completion
problem.

Complex frames are also studied where a Hermitian inner product is used, but that is not the focus of this
article. Studying the variety X, , in place of the set of finite unit norm tight frames gives one access to tools
from algebraic geometry, and results about X,, , can lead to insight about the set of finite unit norm tight
frames—see for example [12]. Many works have studied the properties of various sets of frames considered
as varieties. For example, dimensions of (p, S)-frame varieties, which are spaces of matrices W = [wy - - - w;],
real or complex, satisfying WW* = S for some Hermitian (symmetric) positive definite matrix S such that
|lwi|l = px, were considered in [39]. Finite unit norm tight frames are a special case of these (, .S)-frames
where u; = 1 and S is a scalar multiple of the identity matrix. Along with the fundamental groups, the
dimensions of finite unit norm tight frame varieties were derived in [17].

In [40], nonsingular points of (u,S)-frames are characterized along with the tangent spaces at these
nonsingular points on these varieties. The connectivity of the finite unit norm tight frame variety along
with its irreducibility are studied in [11]. In [26], the polytope of eigensteps of finite equal norm tight frames
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is studied. These eigensteps are sequences of interlacing spectra used by [10] to construct finite frames of
prescribed norms and the dimension of finite unit norm tight frame varieties is noted to be related to the
dimension of these polytopes.

1.2. Algebraic finite unit norm tight frame completion

Due to their robustness to erasures and additive noise, unit norm tight frames play an important role
in signal processing. Explicit constructions for unit norm tight frames are quite recent despite theoretical
work regarding existence being quite classical. The Schur-Horn Theorem [28,38] characterizes the pairs
(A, ) such that there exists a frame whose frame operator has spectrum A and lengths p. However, explicit
constructions for these frames have remained scarce. In [23] the authors give a constructive characterization
for all unit norm tight frames in R? and provide a construction technique known as harmonic frames for
unit norm tight frames in R™. An alternative constructive technique called spectral tetris is given in [14].
An explicit construction of every unit norm tight frame was finally given by [10,21].

The previous paragraph covers results on explicitly constructing frames with prescribed spectrum and
whose vectors’ lengths are prescribed. However, what if you have specific vectors you want included in your
frame? How do you complete this partial set of vectors into a tight frame? The work [19] answers how
many vectors must be added to complete your set of vectors into a tight frame, and in the case when all
vectors are unit norm, they also provide a lower bound (which is not sharp) for the number of vectors
required to complete the set of vectors into a tight frame. The minimum number of vectors needed to add
to your set of vectors to complete it to a frame when their norms are prescribed is provided by [33]. In both
papers, it is assumed that you start with a set of vectors. See also [20], in which the authors characterize
the spectra of all frame operators of frames completed from the addition of extra vectors to another frame
and discuss completion in such a way as to produce a frame minimizing the condition number, the mean
squared reconstruction error, and the frame potential.

In this paper, we take a different approach than Feng, Wang, and Wang, Massey and Ruiz, or Fickus,
Marks, and Poteet. Instead of starting with a set of vectors and asking how many more vectors are needed
to have a tight frame, we have the following generalization of the problem.

Problem 1.1. Given a partially observed n x r matrix, determine if the missing entries can be completed
such that the columns form a finite unit norm tight frame.

A generalization of Problem 1.1 is to ask how many completions there are.

Problem 1.2. Given some known entries of an n X r matrix, find the cardinality of the number of completions
such that the columns form a finite unit norm tight frame.

When studying the algebraic geometry of low-rank matrix completion, one often studies the analogue of
Problems 1.1 and 1.2, where instead of completing to a finite unit norm tight frame, one completes to a
matrix of a particular specified low rank [31,7,3,5,6].

Problem 1.2 can be studied using algebraic geometry by considering the known entries as a set of defining
equations of an affine linear space £ in C™*" and then studying the degree of X,, , N L. When X,,, N L is a
finite set of points, the degree of X,, .NL is the number of points, counted with multiplicity, and is an upper
bound for the number of completions. The degree of X, . N L need not coincide with the degree of X, ,., but
when the linear space £ is generic such that X, , N £ # 0, the degree of X,, , N £ and X,, , are the same.
For n = r, the variety X, , is the orthogonal group and the degree of this variety was determined in [9]
using representation theory. An analogous question from rigidity theory asks for the number of realizations
of a rigid graph. This same algebraic approach for getting an upper bound works in this context, this time
by computing or bounding the degree of (coordinate projections of) the Cayley-Menger variety [30,18,13,8].
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After solving Problem 1.1, the most natural next problem is to actually compute such a completion, if
it exists. One can attempt to do this using Grobner bases algorithms, but this is likely to be prohibitively
slow. A faster way to do this would be using numerical algebraic geometry using e.g. Bertini [2], PHCPack
[41], or Macaulay2 [32,25]. Knowing the degree of coordinate projections of X, , could be helpful in this
approach. One could also try using the combinatorics of the set of known entries to derive polynomials in
the missing entries that could be solved to complete the finite unit norm tight frame. In the language of
algebraic matroids, this is the problem of finding combinatorial descriptions of the circuit polynomials of
Xp,r. This would be an interesting future direction.

2. The basics of algebraic matroids

We now take a detour to introduce the minimum necessary background on algebraic matroids. Since the
only matroids considered in this paper will be algebraic, we will not discuss or define abstract matroids.
Moreover, our study will be limited to those that are algebraic over R or C. The reader who is interested
in learning about more general (algebraic) matroids is advised to consult the textbook [36].

Let K be a field. Given a finite set £, we let K¥ denote the vector space whose coordinates are indexed by
the elements of E. Each subset S C E of coordinates is associated with the linear projection 7g : KE — K
that sends each point (2.)ccr t0 (Ze)ees. The ring of polynomials with coefficients in K and indeterminants
indexed by E will be denoted K|z, : e € E] and the corresponding field of rational functions will be denoted
K(x. : e € E). The ideal in K[z, : € € E] generated by a finite set of polynomials fi,..., fx € K[z, : e € F]
will be notated as (fi, ..., fx). Given a set X C K, we let I(X) denote the ideal of all polynomial functions
that vanish on X.

Definition 2.1. Let E be a finite set, let K be R or C, and let X C K¥ be an irreducible variety. A subset
of coordinates S C F is

(1) independent in X if I(wg(X)) is the zero ideal,
(2) spanning in X if dim(7g(X)) = dim(X),
(3) a basis of X if S is both independent and spanning.

Any one of the three set systems consisting of the independent sets, the spanning sets, or the bases of an
irreducible variety determines the other two. The combinatorial structure specified by any one of these set
systems is called the algebraic matroid underlying X.

Example 2.2. Let X C R be the linear variety defined by the vanishing of the linear forms x; — 5z5 = 0
and x3 + 224 = 0. The bases of X are

{1,3}, {1,4}, {2,3}, {2,4}.

The independent sets of X are the subsets of the bases, and the spanning sets are the supersets. More-
over, all the bases have cardinality two, which is also the dimension of X. This is not a coincidence—see
Proposition 2.3 below.

We now describe the intuition behind the algebraic matroid underlying an irreducible variety X C KZ.
When S C F is independent, the coordinates (z.).cs can be given arbitrary generic values, and the resulting
vector can be completed to a point in X. When S C FE is spanning and € X is generic, then the coordinates
(Tc)egs can be determined by solving a zero-dimensional system of polynomials whose coefficients are
polynomials in (z)ces. In other words, the set mg'(ms(x)) N X is generically finite.
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It’s important to recall Definition 2.1 requires X to be an irreducible variety. This ensures that the
algebraic matroid underlying X is indeed a matroid (see for example [4, Proposition 1.2.9]). Proposition 2.3
below then follows from the fact that all bases of a matroid have the same size [36, Chapter 1].

Proposition 2.3. For any basis B C E of an irreducible variety X C K, the cardinality of the set B equals
dim(X).

Given finite sets A and B and a field K, we let KA*Z denote the set of matrices with entries in K whose
rows are indexed by elements of A and whose columns are indexed by elements of B. Given polynomials
fis-- s fx € Klze : e € E] the Jacobian matriz of fi,..., fr is the matrix J(f1,...,fx) € (K(z. : e €

E)FIXE whose (i,e) entry is the partial derivative gﬂ{ . In Section 4, we will often work with submatrices

of a Jacobian matrix. For this reason, we introduce the following notation.

Notation 2.4. Let M denote a matrix whose columns are indexed by a set E. The submatrix of a given M
with columns corresponding to the elements of a subset S of E is denoted Mg.

The following proposition is useful for computing the bases of the algebraic matroid underlying a given
irreducible variety. It is well known, and usually stated in terms of matroid duals. We state it here in more
elementary terms for the purposes of keeping the necessary matroid theory background at a minimum. For
more details, see [37, Section 2.2] and [36, Proposition 6.7.10].

Proposition 2.5. Let E be a finite set, let K be R or C and let X C K¥ be an irreducible variety of
dimension d such that 1(X) = (f1,..., fx). A subset S C E of size d is a basis of X if and only if the rank

OfJ(fl, c. 7fk)E\S 8 |E| —d.
3. Algebraic matroids to algebraic funtf completion

Recall from equation (1.1) that the Zariski closure in C™*" of the set of n x r matrices such that the
columns form a finite unit norm tight frame is denoted by X, ,. In other words, this paper studies the
following algebraic relaxation of Problem 1.1.

Problem 3.1 (The algebraic frame completion problem). Given some known entries of an n X r matrix,
determine if the matrix can be completed to an element of X, ..

We say X, is an affine finite unit norm tight frame variety and call a matrix in X, » a finite unit norm
tight frame (funtf) matriz. The ("'QH) + r scalar equations defining X, , shown in (1.1) were found in [12,
p. 4] and [35, Equation 4]. We will express the polynomials defining the affine finite unit norm tight frame
variety in the ring K[z;; : 1 < i < n,1 < j < r] where z;; will represent the ¢j entry of a matrix. Indeed,
the column norm constraints on W can be expressed as the following r polynomials set to zero:

(91,22 9r) = diag(WTW —1d,), (3.1)

while the orthogonal row constraints on W can be expressed as the following (”42'1) polynomials f;;, ¢ < j:

fll f12 coe fln
ff f2 ff” =wwT - %Idn. (3.2)

Elementary algebra shows that these polynomials satisfy the following relation
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o fi=Y g =WlE-r, (3.3)
i=1 j=1

where || - || denotes the Frobenius norm.

The problem of algebraic finite unit norm tight frame completion can be cast as the problem of projecting
an affine finite unit norm tight frame variety to a subset of coordinates. Let E C [n] x [r] denote a subset
of coordinates of C"*". We will think of F as indexing “known” entries, and the algebraic finite unit norm
tight frame completion problem is to determine the remaining “unknown” entries so that the completed
matrix is a finite unit norm tight frame. Let 7 denote the respective coordinate projection. The algebraic
finite unit norm tight frame completions of a given M € C¥ are the elements of the fiber wgl(M ). It follows
that E is independent in X, , if and only if every generic M € C¥ has an algebraic finite unit norm tight
frame completion and that E is spanning in X, , if and only if each nonempty fiber 7= (7g(M)) is finite
when M is generic. Thus in the generic case, Problem 3.1 is equivalent to the following.

Problem 3.2. Find a combinatorial description of the algebraic matroid underlying X, .

The first steps towards solving Problem 3.2 are determining the irreducibility and dimension of X, ;.
Fortunately, this was done in [17, Theorem 4.3(ii)], [40, Corollary 3.5], and [11, Theorem 1.4] which we
summarize in the following theorem.

Theorem 3.3. The dimension of the affine finite unit norm tight frame variety X, , is

n+1

dim(X,, ) =nr — < 9

) —r+1 provided r > n > 2. (3.4)

It is irreducible when r > n+ 2 > 4.

In our work, we look to determine each basis (Definition 2.1, item 3) of X, .. We restrict our study to
r > n+2 >4 so that X, , is irreducible and thus gives a matroid. We seek a combinatorial description
using bipartite graphs. Bipartite graphs provide a natural language for attacking Problem 3.2. Given finite
sets A and B and a subset S C A x B, we let (A, B,.S) denote the bipartite graph with partite vertex sets
A and B and edge set S. We call two bipartite graphs (A1, By, S1) and (As, Be, S3) bipartite isomorphic if
there exists a graph isomorphism ¢ : Ay U By — Ay U By such that ¢(A;) = Az and ¢(B;) = Ba.

Every subset E of entries of an n xr matrix can be identified with the bipartite graph ([n], [r], [#] X [F]\ E),
which we denote by Gg (Fig. 1). The edges of Gg are in bijection with the complement of F and not F
itself. This stands in contrast to what is often done in the algebraic matrix completion literature, but will
make our results much cleaner to state. Neither row-swapping nor column-swapping affects whether a given
subset E of entries of an n X r matrix is an independent set (or a basis, or spanning set) of X, . Therefore,
whether a given subset E of entries is independent (or a basis or spanning) in X,, , only depends on the
bipartite isomorphism equivalence class of Gg. The (non-bipartite) graph isomorphism class of G may not
be sufficient to determine whether E is independent (or a basis or spanning) in X, , because the transpose of
a finite unit norm tight frame matrix W may not be funtf. So from now on, we will only consider bipartite
graphs up to their bipartite isomorphism classes. We may now phrase Problem 3.2 more concretely as
follows.

Problem 3.4. For which (bipartite isomorphism classes of) bipartite graphs Gg is E a basis of X, ,.7

We will sometimes find it useful to represent a subset E C [n] x [r] as the {0, 1}-matrix whose ij entry is
1if (4,7) € F and 0 otherwise (Fig. 1). Such a representation will be called a matriz entry representation.
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1

1 2
0 1.1 00
2 3 101 00
110 0 0

3 4

)

Fig. 1. Depicting E := {(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)} C [3] x [5] as the bipartite graph Gg and as a {0, 1}-matrix.

G = cores (G) = corex(G) =

Fig. 2. A bipartite graph G alongside its greater 2-core and its 2-core.

4. The algebraic matroid underlying the finite unit norm tight frame variety

In this section we give combinatorial criteria on the bases of X, .. First we show that if E' is a basis of
Xn,r, then the graph G is connected. Moreover, when n = 3 the converse is true as well. Second, we show
that whether or not E is a basis of X,, , only depends on the 2-core of Gg. This allows us to determine a
combinatorial criterion for every r after fixing n.

4.1. Graph connectivity

We begin with some graph theoretic definitions. Let G = (A4, B, S) be a bipartite graph. The greater
2-core of G, denoted cores(G), is the graph obtained from G by iteratively removing all edges that are
incident to a vertex of degree one. The 2-core of G, denoted cores(G), is the graph obtained by deleting the
isolated vertices from cores(G). Fig. 2 shows a graph alongside its greater 2-core and its 2-core.

Since the graph G need not be connected, there may not exist a spanning tree for G. Instead, consider
a spanning forest for G, which is a maximal acyclic subgraph of G, or equivalently a subgraph consisting
of a spanning tree in each connected component. A circuit is a nonempty trail in G such that the first and
last vertex coincide, or equivalently, a non-empty sequence (e, ...,ex) of edges in G for which there is a
sequence of vertices (v1,...,v,v1) such that for ¢ = 1,...,k — 1 the vertices of e; are (v;,v;11) and the
vertices of ey are (vg,v1). A cycle is an example of a circuit. Given a spanning forest F' of G and an edge e
of G not appearing in F', the graph F'U {e} has exactly one cycle which must contain e. This cycle is called
the fundamental circuit of e with respect to F'.

Given a subset S’ C S of the edge set of G, the characteristic vector of S’ is the vector in {0,1}" that
has ones at entries corresponding to elements of S’ and zeros at all other entries. The incidence matriz of
G is the matrix whose rows are indexed by the vertices of GG, and the row corresponding to a vertex v is
the characteristic vector of the set of edges that are incident to v. The columns of the incidence matrix of
G are indexed by the edges of G.

Example 4.1. We use the notation K, to denote the complete bipartite graph on partite sets of size a
and b. The incidence matrix of K35 is given by the 8 x 15 matrix below
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1 111100O0O0O0OO0OO0O0O0O0@O0
000001 1111O0O0O0O0O0
00 00O0OO0OOO0OO0OCO0OT1TT1T1T11
1 000O01O0O0O0OO0OT1TO0GO0O0O@O
01 00O0O0O1O0O0O0OO0OT1TQO0TGO0O®O
001 00O0OO0O1O0O0OO0OO0OT1TGO0F®O0
00 01 00O0OO0O1O0OO0OO0OO0O0OT1PO0
00001 O0O0OO0OO0O1O0O0O0TQO0T1

This matrix is naturally partitioned via the vertices in each partite of the graph K3 5.

Theorem 4.2. Assume r > n+2 > 4 and let E C [n] x [r] have cardinality nr — ("3') —r + 1. If E is a
basis of Xy, ,, then Gg is connected. When n = 3, the converse is true as well.

Proof. Let g; and f;; denote the polynomials as in (3.1) and (3.2); this set of polynomials generates the
ideal of X,, .. Let J be the (r + (”;rl)) x nr Jacobian matrix

J = '](gla'"797‘7f117f12"'afnn)'

Proposition 2.5 implies that E is a basis of X, , if and only if the (r + (”;1)) x (r+ (";1) — 1) matrix

Jin)x [\ £ has full rank, or equivalently,

n+1
rank(J[,L]X[r]\E) =7r—+ < 9 > —1.

n+1

Let J' and J” denote the following matrices of size (r + ("}

)) x nr and (r +n) X nr, respectively

J/ =J- diag(l/xn,l/zlg. --71/557”")7
J// = J(glw"7g7"7f117f227"'7f'ii7"'7fnn> 'diag(l/xllal/xIQ~~‘71/wn7’>7

where diag(w) denotes the matrix with the vector w along its diagonal. The matrix J” is twice the incidence
matrix of K, , from Example 4.1, and J[’;]X[T]\ g is twice the incidence matrix of Gg. Thus if Gg has ¢
connected components, then

rank(J[';l]X[r]\E) =r+n—c

On the other hand, since J’ can be obtained from J” by including (%) additional rows, we have

n n+1
rank(J['n]X[r]\E) < rank(J[',/L]X[r]\E) + (2> =r+ < 9 ) —c.

Since rank(Jp)xrp\E) = rank(J[’n] <[]\ g)» we have that if G is disconnected, then Ji,) <)\ g is rank deficient
and thus F is not a basis.

Now, having proved that E being a basis implies connectivity of Gg, we assume that n = 3 and prove
the converse. Further assume that Gg is connected with (”'QH) +7r—1=r+2 edges. We will show that F

is a basis of X, , by showing that J[’n] NE has full rank. This is done by splitting J[’n}x[r]\ g into two row

X [r
submatrices whose kernels intersect trivially.
Twice the incidence matrix of the complete bipartite graph K3, is a row-submatrix of J’. Therefore, any

linear relation among the columns of J' must lie in the linear space
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C{vc : C is a circuit of K3, }

where ve € CBIXIM s the {1, —1,0}-vector obtained from the characteristic vector of C' by giving adjacent
edges opposite signs. The row of J' corresponding to the constraint f,;, = 0 with a # b has zp; /24 at
the column corresponding to x4; and x,;/xp; at the column corresponding to xp;. For ease of notation, we
introduce the change of variables

ti; = Ty /T1s toi = T3;/x1;.

With this change of variables, the rows of J’ corresponding to the constraints fio = f13 = fo3 = 0 form the
matrix K shown below

T11 Tir T21 Zor xr31 T3y
fio |t o ottt ot} 0 ... 0
K:=fi3 |t ... tar 0 ... 0 tyt o o)
fas | O .. 0ttt ... totDt otntal ... tiety!

Fix a spanning tree T' of Gg and let e, e3, e3 denote the three edges of Gg that are not contained in 7T'. Let
C; denote the fundamental circuit of e; with respect to T'. The space of linear relations among the columns
of J' corresponding to the edges of Gg lies within the three-dimensional subspace C{v¢, : i = 1,2,3}. We
now show that no nonzero element of C{vg, : i = 1, 2,3} lies in the kernel of K. It will then follow that the
column-submatrix of J’ corresponding to the edges of Gg has maximum rank.

The three fundamental circuits Cq,Cq, and Cj5 all lie in cores(Gg) which is a bipartite graph on partite
sets of size n’ < 3 and r’ < r. Each vertex of cores(Gg) has degree at least 2, so n’,7’ > 2. Since G is
connected, cores(Gg) must also be connected. Hence since Cp,Cy, and Cj all lie in corey(Gg), cores(GE)
must have exactly n’ +1'+2 edges. Since each vertex has degree at least 2, 2r’ < n/+7r'+2 and so r’ < n/+2.
So thus far, we only need to consider (n',r') = (2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(3,5). Among these,
the only (n/,r’)-pairs such that there even exists such a bipartite graph with the correct number of edges
are (2,4),(3,3),(3,4), (3,5). For these values of (n’,7’), we may compute all the connected bipartite graphs
on partite sets of size n’ and r’ with minimum degree 2 and exactly n’ + r’ + 2 edges using the genbg
command of Nauty and Traces [34]. There are seven such graphs and they are displayed in Fig. 3 with
vertices labeled according to which row or column they correspond to.

By relabeling vertices, we may assume that cores(Gg) is supported on partite vertex sets 1,...,n’ and
1,...,r". Let Acore,(qy) denote the incidence matrix of corex(Gg) and let Mg, () denote the matrix
whose columns are a basis of the kernel of Acore,(ay)- Then C{ug, : i = 1,2,3} is the span of Mcgre,(ay)-
Letting K’ be the submatrix of K with columns corresponding to the edge set of cores(Gg), we are done
if we show that K'Mge,(c,) has rank 3 for the seven values of corey(Gg) above. This is verified in a
Mathematica script available at the following url [29].

https://dibernstein.github.io/Supplementary materials/funtf.html

This Mathematica script computes each of the symbolic matrices K'Moye, (1), then calculates their rank
as matrices with entries in the appropriate function field. O

The following proposition is useful to construct examples showing that the converse of Theorem 4.2 is
not true for n > 4.

Proposition 4.3. Assume r > n+2 > 4 and let E C [n] x [r]. If E is spanning in X, ., then at most two
vertices of Gg corresponding to columns can have degree n.


https://dibernstein.github.io/Supplementary_materials/funtf.html
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C5
R1 L R2
M
C2 R3 C3
R2 C4 R1
N
C1 R3 C3

C3 Cc4

C1 R2
O
R1 T
C4
O
C2 R3

C3 R1
R3 @ 1
C2 R2

C2 C4

@,
R1

Fig. 3. The seven possibilities (up to bipartite isomorphism) for cores(Gg) when E is a basis of X3 .

Proof. Assume Gg has k column vertices of degree n. Without loss of generality, assume they correspond
to the first & columns so that (a,i) ¢ E for all 1 < a < n, 1 < i < k. Define E' := {(a,i) : 1 < a <
n,k+1 <i <r}, and observe E C E’. We show that when & > 3, the dimension of 7, (7z (M)) is positive
for generic M. It follows that E’, and therefore E, is not spanning.

Let M € X, , be a generic finite unit norm tight frame. The (¢, a) entry of M will be denoted m;,. Let
Jas fij denote the polynomials obtained from g, and f;;, as in (3.1) and (3.2), by plugging in m;, for z;,
when (i,a) € E'. The Zariski closure of w5, (mg/(M)) can be identified with the variety in C"** defined by
the polynomials g1, ..., g, and fij for1<i<j<n.

Following from Equation (3.3), we have

fiit oot fan=01+ -+ G (4.1)

and so 7} (mp/(M)) is in fact the vanishing locus of gi,...,gr—1 and fij for 1 < i,5 < n. Moreover, the
polynomials

1 i=j

4.2
0 i#j (42)

,

x r

fij + 5@‘5 - E MiaMja where 0ij = {
a=k+1
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0000 O0O0O
000 0 00

0 001 1 11
0001 11

000 1 101
0001 11
000 1 1 1 0 001 110

000 1111

Fig. 4. Matrix entry representations of examples of the construction given in Example 4.4 for n = 4 and n = 5. These show that
when n > 4, a graph on nr — ("'2"1) — r + 1 edges whose bipartite complement is connected may fail to be a basis of X,, ;.

parameterize the variety of n X m symmetric matrices of rank at most k, which has dimension nk — (’2“)

(see for example [6, Lemma 6.2]). Thus the ("'QH) polynomials fij, 1 < i < j < n together contribute at

most nk — (§) to the codimension of 7y (g (M)). Hence the codimension of 7y (75 (M)) is at most

nk — (g) + k — 1, which is strictly less than nk for £ > 3. O

Example 4.4. Let n > 4 and r > n+2 and let ' := {(4,a) : 2 <i <n,4 <a <r}. Let E be obtained from

n+1
2

However, Proposition 4.3 implies that E cannot be a basis of X, ,.. Fig. 4 shows examples of this construction

E’ by removing any (”52) — 1 elements. Then E has nr — ( ) — 17+ 1 elements and Gg is connected.

forn =4 and n = 5.
4.2. Combinatorial criteria with fixed row size

The goal of this section is to fix n and find combinatorial criteria to determine if F is a basis of X, , for
any 7. This is made precise in Remark 4.6.

The following theorem tells us that whether or not a given E C [n] x [r] of cardinality nr — (ngl) -r+1
is a basis in X, , depends only on cores(Gg).

Theorem 4.5. Assume r > n+2 > 4 and let E C [n] x [r] such that |E| = nr — (";1) —r+1. Then E is
a basis in the algebraic matroid underlying X, , if and only if the set E' D E satisfying Gg» = corea(Gg)
is spanning in X, ,. Moreover, for a fized n, there are only finitely many possible graphs appearing as
corez(GE) as E ranges over all bases of X, .

Proof. Let M € X,,, be a generic finite unit norm tight frame whose (i,a) entry is m;,. Let g, and ﬁ-j
denote the polynomials obtained from g, and f;; by setting x;, = m;q when (i,a) € E. Then wgl(ﬂE(M )
can be viewed as the zero-dimensional variety in C!"/*I"NF defined by the vanishing of the polynomials g,
1<a<rand fij, 1 <i < j <n. Since Gg is connected, the edges of Gg that are not in ¢ores(Gg) can be
ordered (i1, a1),..., (i, ar) such that for each j, in either Ja; OT ﬁjij, every variable other than z;,,; that
appears is of the form x;,,, for some [ < j. It follows that given 7x(M), one can solve a series of quadratic
equations in order to recover, up to finite ambiguity, the entries of M at positions corresponding to edges of
G g that are not in ¢ores(Gg). One can then solve for the remaining entries of M precisely when cores (Gg)
is spanning in X, ,. The “moreover” clause follows by Proposition 4.7 below. O

Remark 4.6. Given a set E C [n] x [r] that is spanning in X, ,, the set EU {(1,7 + 1),...,(n,r + 1)}
is spanning in X, 1. Thus Theorem 4.5 tells us that if we fix n but allow 7 to vary, then the problem
of determining whether or not E C [n] x [r] is a basis of X, , is equivalent to determining whether or
not cores(Gg) appears on a certain finite list. Proposition 4.7 below gives us the finiteness statement in
Theorem 4.5, as well as bounds on the size of cores(G).

Proposition 4.7. Let r > n+ 2 > 4 and let E C [n] x [r] such that Gg is connected. Let o and (3 be the
number of row- and column-vertices (respectively) in corea(Gg). If E is a basis of X,, ,, then
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Proof. Let M € X,,, be a generic finite unit norm tight frame whose (i,a) entry is m;,. Let g, and fi;
denote the polynomials obtained from g, and fi; by setting z;, = m;, when (i,a) € E. Then 75" (1g(M))
can be viewed as the zero-dimensional variety in C"/*["\F defined by the vanishing of the polynomials §q,
1§a§randﬁ-j,1§i§j§n.

First we show o = n — 1 or @ = n. Without loss of generality, assume that cores(Gg) has row-vertices
1,...,a and column vertices 1,...,8. Let F := {(i,a) : 1 < i < a,1 < a < }\ E be the edge set of
corey(Gp). This set has cardinality given by |F| = o+ 8+ (3) — 1. The elements of F index the entries
in the upper-left submatrix of M that are, in principle, allowed to vary over the fiber 7' (75(M)). After
dropping one of the redundant g,’s via (4.1), there are exactly (O‘;l) + 8 —14a(n—a) equations among the
Ga’s and fi;’s that involve entries in the upper-left a x 8 block of M. Since 75" (7 (M)) is zero-dimensional,
we must have

a+ﬂ+(g> -1< (a—;l)JrBlJra(na)

which simplifies to

7%@2 + (n — %) o — (;L) > 0. (4.3)

Let us now consider the left-hand side of the inequality (4.3) as a polynomial & in «, treating n as a
constant. The only roots of h are n — 1 and n, and h(«) is nonnegative if and only if n — 1 < a < n.
Therefore, we must have a € {n — 1,n}.

Now we show a < (. As noted in the proof of Proposition 4.3, when (i,a) is an edge in Gg but not
corez(Gg), we may solve a zero-dimensional quadratic system for x;, given {m;, : (i,a) € E}. Thus we may
now assume that Gy = cores(Gg) and allow E to be spanning in X, , (as opposed to a basis of X, ).

Assume for the sake of contradiction that o > . Then, the (a;l) constraints fij =0wherel <i<j<a
together can contribute at most o — (g) to codimension. This is because for 1 < ¢ < j < «, the polynomials
from (4.2) with k = /3 give the entries of an a X o symmetric matrix with rank at most 8, and the dimension
of the variety of a x o symmetric matrices of rank at most 3 is af — (§) (see for example [6, Lemma 6.2]).
Also, as before, at least one of the constraints g, = 0, 1 < a < 8 is redundant. Since 75" (7g(M)) is
zero-dimensional, we must have |F| < aff — (’g) + 8 — 1 and therefore

alf—1) — ({j) - (Z) > 0. (4.4)

After plugging in n — 1 for a, (4.4) becomes (8 —n)? +n + B < 2, which is a contradiction because n > 3.
Plugging in n for a = n in (4.4), we get the inequality —n — 8 > (8 —n)?, which is a contradiction because
the left hand side is strictly negative, and the right hand side is nonnegative. Hence, we have a < (.

The final inequality 8 < (3) + o — 1 follows from the fact that cores(Gg) has () + o+ 3 — 1 edges and
each of the 8 non-isolated column vertices has degree at least 2. O

5. Degree of projection and algebraic identifiability
Now that we have a handle on which subsets E C [n] x [r] yield projections 7z : X, — C¥ that are

generically finite-to-one, we can ask about the cardinality of a generically finite fiber. In other words, we
want to solve the following problem.
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Problem 5.1 (Algebraic identifiability complexity). Develop a combinatorial method for computing the degree
of the map g : X, , — C¥ from Gg when E is a basis of Xor

The following theorem gets us part of the way towards a solution to Problem 5.1.

Theorem 5.2. Let r > n+2 > 4 and let E C [n] x [r]. Define F' C [n] x [r] such that cores(Gg) = GF, and
let k denote the number of vertices that are isolated in cores(GE) but not in Gg. If E is a spanning set of
X, r, then we have

degmp = 2% - degmp.

Proof. First observe, E C F and so we have a projection map h : 7p(X,,) — CF¥ that omits all the
coordinates corresponding to elements of F'\ E. Then we have 7y = h o and

degmp = degmp - degh,

which can be seen as follows. The maps h : 7p (X, ) — C¥ and 7g : Xy — C¥E are each branched covers
of CP. In other words, there exist dense Zariski open subsets U; and U of CF such that h restricted to
h=1(U;) and 7g restricted to ﬂ'El(UQ) are covering spaces. Moreover, h and 7 restricted to U; N Uy are
also covering spaces. Since mg = h o mp, we have mp is a homomorphism of covering spaces and thus the
topological degree of the restricted maps with image Uy N Uy satisty degnp = degmp - degh. As Uy and Us
are dense Zariski open subsets of C¥, we have U; NUs is also a dense Zariski open subset of C¥. Therefore,
the equality above follows.

It now suffices to show degh = 2*. Let M € X,,, be generic and define §, and ﬁj as in the proofs
of Theorem 4.5 and Proposition 4.7. We can order the elements of F'\ E as (i1,a1),..., (ag,ix) such that
for each j € {1,...,k}, the only non-r;,,; variables in at least one of g,; or f; ;; will be of the form z;,,
with [ < j. Let F denote the system of all such polynomials. The non-constant coordinates of h~!(rg(M))
are given by the variety defined by the vanishing of F. By solving F via “back-substitution” in the order
Tayiys-- s Tapiy, We see that this variety has exactly 2% points. Thus, |h~1(f(M))| = 2% and degh = 2*. O

Let E C [n] x [r] with E a basis of X,,, and define F' C [n] x [r] so that Gp = tores(GEg). Let 3
denote the number of column vertices in core(Gg) and let M € X, . be generic whose (4, a) entry is m;q.
If r>n+2>4and r > B+ 1, then the degree of the projection map 7p : X, — C only depends
on corez(Gg) and not on r. This follows from the fact that if » > S + 1, then the set of non-constant
polynomials f;; and g, obtainable by substituting x;, = mj, for (i,a) € F does not depend on r. So for
a graph H such that H = corez(Gg) for some basis E of X, ,, let deg(H) denote the degree of 7 when
r>p+1.Ifr =73 (r < is not possible), then deg(np) < deg(corez(Gg)). Thus Theorem 5.2 gives us the
bound deg(ng) < 2¥ deg(cores(GR)).

Theorem 4.5 tells us, that for fixed n, there are only finitely many cores(Gg). Thus one can compute all
values of deg(corez(Gg)) for a fixed n and use this to produce an algorithm that bounds the size of a finite
fiber |7, (mg(M))| by computing the 2-core of G'g. This is done in Algorithm 1 and Example 5.3 illustrates
this for the case n = 3.

Algorithm 1 For fixed n > 3, bounds the size of a generic fiber 7' (7x(M)) when E is a basis of X, ..
Assumes that all possible values of deg(cores(Gg)) have been precomputed.

1: procedure BOUNDFIBER(T, E) > r >n+2and E is a basis of X, »
2: H + cores(Gg)

3: k <+ number of vertices in Gg but not H

4: d < deg(H) > obtain by looking up in precomputed table
5 Return: d - 2F

6: end procedure
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Table 1

Each possible value of F C [3] x [5] such that Gp =
corea(Gg) when E is a basis of X3 ,., alongside the de-
gree of the corresponding coordinate projection map.

F such that Gp = cores(Gg) | deg(core2(GE))|

0 0 0
00 0 32
100
00 0 0

(0 0 0 0) 24
00 0 0
1100 96
00 1 0
001 0
01 0 0 128
100 0
1110 0
000 11 288
0000 0
001 10
1100 0 576
0000 1
001 1 1
01 00 0 384
100 0 0

Example 5.3. When E is a basis of X3, corea(Gg) is one of seven graphs, displayed in Fig. 3. For each
possible cores(G ), we compute the cardinality of a projection of an X3, onto corez(Gg) using probability-
one methods in Bertini [2] via Macaulay2 [25,1]. When corez(Gg) has five or more column vertices, we
took r = 5 and r = 6 and observed that in both cases, the degree of projection was the same. When
corea(G ) has fewer than five column vertices, we take r = 5. These degrees are given in Table 1. Via the
above discussion, this characterizes the possible degrees of a projection of X3, onto a basis. For example,

if E C [3] x [5] where as a zero-one matrix,

00000
E=(110 0 0],
11100

then the degree of a generic fiber of this projection is 128 = 22 . 32. This can be read off from Table 1
by noting that F' such that Gp = corey(Gg) is given in the top row of the table and the degree of the
corresponding fiber is 32.
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