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We consider the problem of exact low-rank matrix completion 
from a geometric viewpoint: given a partially filled matrix 
M , we keep the positions of specified and unspecified entries 
fixed, and study the minimal completion rank. If the entries 
of the matrix are complex and the known entries are chosen 
randomly according to a continuous distribution, then for a 
fixed pattern of locations of specified and unspecified entries, 
there is a unique minimum completion rank which occurs with 
probability one. We call this rank the generic completion rank. 
Over the real numbers there can be multiple ranks that occur 
with positive probability; we call them typical completion 
ranks. We introduce these notions formally, and provide a 
number of inequalities and exact results on typical and generic 
ranks for different families of patterns of known and unknown 
entries.
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1. Introduction

The problem of low-rank matrix completion received a tremendous amount of at-
tention recently [10,11,32,26,27], especially as far as efficient algorithms are concerned. 
Applications that have driven much of the research in this area include collaborative 
filtering [15], global positioning, [34,4,35], and the structure-from-motion problem in 
computer vision [36,12].
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We study the problem of exact low-rank matrix completion for generic data. Con-
cretely, we start with a partially-filled m × n matrix M , with real or complex entries, 
with the goal of finding the unspecified entries (completing M) in such a way that the 
completed matrix has the lowest possible rank, called the completion rank of M . We 
study how the completion rank depends on the known entries, while keeping the loca-
tions of specified and unspecified entries fixed. Generic data means that we only consider 
partial fillings of M where a small perturbation of the entries does not change the com-
pletion rank of M . It is well known that in case of complex entries, outside of a lower 
dimensional set, all partially-filled m ×n matrices with the same locations of known and 
unknown entries have the same completion rank (see [27]), which we call the generic 
(completion) rank for this given pattern. If we restrict the entries of the partially-filled 
matrix and its completions to real numbers, the situation becomes more complicated: 
there can be several full-dimensional semi-algebraic subsets in the real vector space of 
partially-filled matrices on which the completion ranks are different. In analogy with 
tensor rank, we call such ranks typical (completion) ranks. In this paper, we present fun-
damental results about generic and typical ranks, provide first techniques to study these 
notions, and present case studies of generic, typical, and maximal completion ranks for 
various families of patterns.

We encode the locations of specified and unspecified entries in a partially-filled m ×n

matrix by a bipartite graph G, with parts of size m and n, corresponding to rows and 
columns, such that (i, j) is an edge of G if the entry (i, j) is specified. Similarly, locations 
of specified and unspecified entries in a partially-filled n × n symmetric matrix can be 
encoded by a semisimple graph (that is loops, but no multiple edges, allowed) where 
{i, j} is an edge of G if the (i, j) and (j, i) entries are specified. We will refer to the set 
of matrices with the pattern of specified and unspecified entries given by G as MG. The 
number of known entries of M is |E|, the number of edges of G. The G-partial matrices 
form a vector space of dimension |E|.

In many applications one assumes that a given partial matrix is either exactly or ap-
proximately completable to a matrix of rank significantly below the generic completion 
rank, and the main question is finding this completion algorithmically. A popular ap-
proach is to relax the non-convex rank minimization problem into a convex problem of 
minimizing the nuclear norm of a completion [33]. In the present paper we only consider 
exact completion, and we do not treat completion to a rank below the generic rank, since 
this occurs on a low-dimensional subset of the vector space of G-partially filled matrices.

We now present a brief summary of the literature on generic and typical completion 
ranks: It is relatively easy to show that the generic completion rank of G is 1 if and only 
if G is a tree [19,35]. In this case, 1 is also the unique typical completion rank of G. In 
[2], graphs with generic completion rank 2 were classified using techniques of tropical 
geometry. Generic ranks were also examined by Kalai, Nevo, and Novik [25] under the 
name of bipartite rigidity. However, not much is known beyond generic rank 2, and typical 
completion ranks have not been examined. A related property of bipartite graphs called 
rank determinacy was studied in [13,38] (also see [30] for a survey on matrix completion 
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problems). For the symmetric low-rank completion problem, Uhler showed that generic 
completion rank can be used to certify existence of the maximum likelihood estimator of 
a Gaussian graphical model [37, Theorem 3.3]. Bounds on symmetric generic completion 
rank were further analyzed in [18] and [5].

1.1. Main results in detail

In Section 2 we prove some elementary but foundational results on generic and typical 
completion ranks. First we show that in the case of complex entries the generic completion 
rank exists. This was previously observed in [27], and we provide an elementary proof in 
Proposition 2.2. We sketch a simple algorithm that determines the generic completion 
rank of a bipartite graph with probability one (see Algorithm 3.2). We then prove a 
simple but important result on the behavior of typical and generic ranks:

Proposition (Proposition 2.8). Let G be a bipartite graph. The minimal typical rank of G
is equal to the generic completion rank of G. Furthermore, all ranks between the minimal 
typical rank and the maximal typical rank of G are typical.

See [1] and [6] for the analogous results for the rank with respect to a variety. We also 
prove an interesting inequality on the maximal typical and generic ranks:

Theorem (Theorem 4.6). Let G be a bipartite graph with generic completion rank r. Then 
the maximal typical completion rank of G is at most 2r − 1.

There are two easy lower bounds on the generic completion rank of G. Recall that 
Kr,r denotes the complete bipartite graph on two parts, each of size r.

Proposition (Proposition 2.5). Let G be a bipartite graph with parts of size m and n and 
edge set E. Then the following are lower bounds on the generic completion rank of G:

(1) the smallest k such that k(m + n) − k2 ≥ |E|,
(2) the largest r such that G contains Kr,r as a subgraph.

If the first bound is sharp, we say that the generic completion rank of G is predicted 
by the dimension count. Observe that a Kr,r subgraph corresponds to a fully specified 
r × r submatrix. Therefore if the second bound above is sharp, we say that the generic 
completion rank of G is predicted by the maximal specified submatrix.

We show that while the behavior of the generic completion rank and typical ranks 
is quite complicated in general, the above bounds are actually sharp for several large 
classes of graphs. One example is the class of bipartite chordal graphs; see Subsection 5.2
and [16] as a general reference. We show the following:
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Theorem (Theorem 5.3, parts (a) and (b)). Let G be a bipartite chordal graph. Then the 
generic completion rank and the maximal typical rank of G are predicted by the maximal 
specified submatrix. In particular, there is only one typical completion rank in MG, which 
is equal to the generic completion rank.

Furthermore, one may ask which partial matrices are completable to the generic com-
pletion rank. The exceptional set of partial matrices, which have completions of rank 
smaller than the generic completion rank or no completion of rank equal to the generic 
completion rank, is lower-dimensional in the complex setting, since it is contained in 
a Zariski-closed set. Nevertheless, finding the exceptional set exactly is often difficult. 
To illustrate this, in Section 3 we completely describe the behavior of generic and typ-
ical ranks for the case of 4 × 4 matrices with unknown diagonal. For bipartite chordal 
graphs, we show that if all fully specified minors of a partially specified matrix in MG

are non-zero, then the matrix is completable to the generic completion rank.

Theorem (Theorem 5.3 Part (c)). Let G be a bipartite chordal graph. Every G-partial 
matrix M whose completely specified minors are non-vanishing can be completed to rank 
gcr(G).

For relations to rank determinacy, see [13,38]. We also derive a sufficient condition for a 
graph to have generic completion rank predicted by the dimension count (Lemma 4.13). 
We use this lemma to prove that a certain subclass of bipartite circulant graphs (as 
defined in [31]) have generic completion rank predicted by the dimension count (Propo-
sitions 5.4 and 5.7). One of our motivations for looking at this class of graphs is that 
none of our methods rule out the possibility that they exhibit more than one typical 
rank. We currently know that one of them, the graph of the 3-cube, exhibits two typical 
ranks, but beyond that the existence of multiple typical ranks for this class of graphs is 
completely open.

We prove several more “advanced” inequalities on the generic and typical completion 
ranks. The following inequality uses the notion of the k-core of a graph (see Defini-
tion 4.4). See also [18] for a related result in the symmetric setting.

Corollary (Corollary 4.5). Let r be the smallest integer such that the r-core of G is 
empty. Then the maximal typical rank of G is at most r − 1.

A bipartite clique sum of bipartite graphs G and H is a graph obtained by gluing G
and H along a common complete bipartite subgraph. We also show that the generic and 
typical completion ranks behave well under the operation of bipartite clique sum (see [5]
for a related result).

Theorem (Theorem 4.8). Let G = G1 ∪ G2 be a bipartite clique sum of bipartite graphs 
G1, G2 along a complete bipartite graph Km,n. The maximal typical rank of G is the 
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maximum max{mtr(G1), mtr(G2)} between the maximal typical ranks of the summands, 
given that this number is at least max{m, n}.

The above theorem allows us to find more examples of graphs with more than one 
typical rank; see Example 4.9. This is because it also holds with “generic completion 
rank” substituted for “maximal typical rank.”

Finally, we briefly examine the symmetric completion problem, where both the partial 
matrices as well as the completions are constrained to be symmetric (see [5,18,37] for 
connections to algebraic statistics and Gaussian graphical models). In this case, patterns 
of known and unknown entries are encoded by semisimple graphs (i.e. loops allowed but 
no multiple edges) and typical ranks are defined analogously. It is possible, unlike the 
non-symmetric case, that a graph on n vertices has n as a typical rank. We call such 
graphs full-rank typical and prove several results about their properties. We use these 
results to construct a family of semisimple graphs with no upper bound on the number 
of typical ranks exhibited by its members.

Theorem (Theorem 6.13). Let M be the collection of 2n × 2n symmetric matrices with 
unspecified antidiagonal. Then 2n is a typical symmetric completion rank of M, i.e. M is 
full-rank typical. The generic symmetric completion rank of M is 2n −

⌊ 1
2
(√

1 + 8n− 1
)⌋

.

We immediately obtain the following Corollary:

Corollary (Corollary 6.14). Let M be the collection of 2n × 2n symmetric matrices with 
unspecified antidiagonal. Then M has

1 +
⌊1

2
(√

1 + 8n− 1
)⌋

typical symmetric completion ranks.

1.2. Open problems, and conjectures

We end this section by a list of open problems, questions, and conjectures. Wherever 
specialized notation is used, we refer the reader to the section where it is introduced.

Typical ranks: An important and mostly unexplored research direction is to find examples 
of graphs exhibiting multiple typical ranks.

Problem 1.1. Find a family of bipartite graphs with an increasing number of typical 
ranks. Concretely, we ask: do n ×n matrices with unspecified diagonal have an unbounded 
number of typical ranks as n grows?
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Dressler and Krone recently classified bipartite graphs with typical rank n − 1 [28]. 
It follows from their result that n − 1 is a typical rank for matrices with unspecified 
diagonal if and only if n ≤ 4.

At present we do not have any examples of bipartite graphs with 3 typical ranks, so 
as a first step toward Problem 1.1 we can ask for 3 typical ranks:

Problem 1.2. Find a bipartite graph that has three or more typical ranks. Concretely, we 
conjecture that the graph G(8, 6) exhibits three typical ranks (see Section 5).

It is known that all planar bipartite graphs have generic completion rank 2 and it 
follows from Theorem 4.6 that planar bipartite graphs have maximal typical rank 3. 
However, we do not know which planar bipartite graphs have 3 as a typical rank.

Problem 1.3. Characterize the planar bipartite graphs that have 3 as a typical rank. More 
generally, characterize bipartite graphs with generic completion rank 2 that have 3 as a 
typical rank.

An answer to Problem 1.3 would be implied by the following conjecture:

Conjecture 1.4. Let G be a graph with non-empty 3-core (see Definition 4.4). Then the 
maximal typical rank of G is at least 3.

It is also reasonable to assume in addition (in Conjecture 1.4) that G is planar. This 
would still lead to the resolution of Problem 1.3.

Generic ranks: We conjecture that all bipartite circulant graphs of the form G(n, l) (see 
Section 5) have generic completion rank predicted by the dimension count:

Conjecture 1.5. All graphs G(n, l) have generic completion rank predicted by the dimen-
sion count (cf. Proposition 5.4).
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2. Preliminaries

In this section, we introduce notions that are well known in the geometry of tensors in 
the context of matrix completion. Our setup here is the following: Let G = (R∪C, E) be 
a bipartite graph on parts R and C and edges E ⊂ R×C. Throughout, we let m be the 
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cardinality of R and n the cardinality of C. Let Mm×n(K) be the space of m ×n matrices 
with entries in a field K, which for us is usually the field R of real numbers or the field 
C of complex numbers, whose rows are indexed by elements of R and whose columns are 
indexed by elements of C. We let Mm×n

r (K) ⊆ Mm×n(K) denote the variety consisting 
of m × n K-matrices with rank at most r. When the base field is clear from context, 
we may drop the K from our notation. We write πG for the coordinate projection from 
Mm×n(K) to KE that takes a matrix (aij) to the vector (aij : (i, j) ∈ E). Elements of 
KE will be called G-partial matrices We think of elements in KE as partially specified 
matrices. For example, the following matrix

(
a11 ? a13
a21 a22 ?
? a32 a33

)
row 1

row 2

row 3 col 3

col 2

col 1

is a representation as a G-partial matrix of an element of KE for the 6-cycle, which is 
bipartite on two parts, each of size 3.

Definition 2.1. Let G = (R ∪ C, E) be a bipartite graph. The (K-)completion rank of a 
G-partial matrix M ∈ KE is the smallest rank among all completions of M with entries 
in K, i.e. all matrices A ∈ Mm×n(K) such that πG(A) = M . For K = C, we usually say 
complex completion rank. Analogously, we say real completion rank in the case K = R.

Completion rank is not rank with respect to variety, as investigated in [1,6,29]. Al-
though it may be tempting to believe that the completion rank of a G-partial matrix 
X is the same as its rank with respect to the projection of the variety of rank 1 matri-
ces onto the coordinates indexed by G, this is not always the case – see Example 2.10. 
Nevertheless, the notions of generic rank over C and typical ranks over R apply in this 
context. Some elementary general results on generic and typical ranks carry over to our 
situation as well.

Proposition 2.2 ([27, Lemma 8]). Let G = (R ∪ C, E) be a bipartite graph and suppose 
that K is algebraically closed (e.g. K = C). Then there exists a unique integer r that 
is the completion rank of almost all G-partial matrices. Here, “almost all” means all 
G-partial matrices in the complement of a certain hypersurface in KE.

Proof. The projection πG restricted to Mm×n
j gives a morphism from Mm×n

j to KE . 
So the image πG(Mm×n

j ) is a constructible subset of KE by Chevalley’s Theorem [22, 
Exercise 3.19]. If it is Zariski-dense in the image, it contains a Zariski-open set [22, Ex-
ercise 3.18]. Since KE is irreducible, the image of Mm×n

j under πG is either of dimension 
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less than #E or it is Zariski-dense in KE . So the smallest j such that πG(Mm×n
j ) is 

Zariski-dense in KE is the integer r that we are looking for. !

Remark 2.3. By generic smoothness of algebraic morphisms, the generic rank of the 
differential is equal to the dimension of the image of the morphism. Applied to our 
situation, this means that the generic completion rank of a bipartite graph G = ([m] ×
[n], E) is the smallest r such that the projection πG of the tangent space to the variety 
of m × n matrices of rank at most r at a generic point A is surjective.

Definition 2.4. We call the integer r for K = C of the previous Proposition 2.2 the generic 
completion rank of the bipartite graph G. We write gcr(G) for the generic completion 
rank.

Proposition 2.5. Let G = (R ∪ C, E) be a bipartite graph. Then the following are both 
lower bounds for the generic completion rank of G:

(1) the smallest k such that k(m + n) − k2 ≥ #E,
(2) the largest r such that G has Kr,r as a subgraph.

Proof. The first lower bound follows from dimension theory in algebraic geometry. The 
dimension of Mm×n

k , i.e. the set of matrices of rank at most k as before, is k(m +n) −k2

(see e.g. [21, Proposition 12.2]) and therefore, the dimension of the image of Mm×n
r under 

πG has dimension at most k(m + n) − k2. In order for it to be dense in KE , we need 
dim(KE) = #E = dim(πG(Mm×n

r )) ≤ k(m + n) − k2 by [21, Theorem 11.12].
The second lower bound follows by noting that a Kr,r subgraph of G corresponds to 

a completely specified r × r submatrix of any G-partial matrix. !

A phenomenon that is specific to the field of real numbers is the existence of typical 
ranks.

Definition 2.6. We call r a typical completion rank of a bipartite graph G if the set of 
points in RE that have real completion rank r has non-empty interior in the Euclidean 
topology.

We will see examples below showing that a bipartite graph can have several typical 
completion ranks. The difference compared to the generic rank in the complex case is 
caused by the fact that Chevalley’s Theorem does not hold for real algebraic sets. It 
must be substituted by Tarski’s quantifier elimination.

Remark 2.7. We may reinterpret typical ranks from a probabilistic point of view. If we fix 
a “nice” probability measure on RE (e.g. measures that have a continuous and positive 
density with respect to the Lebesgue measure), then the typical ranks of G = (R∪C, E)
are exactly the real completion ranks that occur with positive probability.
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Since the rank of a matrix is invariant under scaling, we can also consider probability 
distributions on the unit sphere in RE, which is compact. Again, the typical ranks are 
exactly the ranks that occur with positive probability for measures that have a continuous 
and positive density with respect to the Haar measure on the unit sphere.

The analogue of the following statement in the context of ranks in projective geometry 
was proved in [1, Theorem 1.1].

Proposition 2.8. Let G = (R ∪ C, E) be a bipartite graph.

(a) The smallest typical completion rank of G is the generic completion rank of G.
(b) If r1 < r2 are typical completion ranks of G, then so is every r such that r1 ≤ r ≤ r2.

Proof. The dimension of πG(Mm×n
r (R)) is equal to the dimension of its Zariski-closure 

in CE [7, Proposition 2.8.2]. Thus part (a) follows.
To show part (b), let r1 ≤ r < r2 and assume r + 1 is not typical. Then there exists 

a matrix A′ ∈ Mm×n(R) of rank r with πG(A) = πG(A′) for a generic real matrix 
A ∈ Mm×n(R) of rank r + 1 because dim(πG(Mm×n

r+1 ) \ πG(Mm×n
r )) < dim(πG(Mm×n

r+1 )). 
Since a generic matrix A ∈ Mm×n(R) of rank r+m can be written as A = A1 +A2 with 
generic matrices A1, A2 ∈ Mm×n(R) satisfying rk(A1) = r + m − 1, and rk(A2) = 1, we 
can proceed by induction on the rank to show that r + m is not typical for any m ≥ 1, 
which contradicts the fact that r2 > r is typical. !

The maximal rank of a bipartite graph G is the maximum completion rank of any 
G-partial matrix (which usually occurs in a Zariski-thin set). Proposition 2.9 says that 
this is bounded above by twice the generic completion rank. At first glance, this seems 
like a special case of Theorem 1 in [6], but it is not quite because coordinate projections 
of the variety of rank-one matrices may not be Zariski closed, see Example 2.10. However, 
the proof is the same simple geometric argument that applies for both the complex and 
real case.

Proposition 2.9. Let G = (R ∪ C, E) be a bipartite graph.

(a) The maximal complex completion rank of a G-partial matrix in CE is at most twice 
the generic completion rank of G.

(b) The maximal real completion rank of a G-partial matrix in RE is at most twice the 
minimal typical rank of G.

Proof. The argument for both cases is essentially the same. Let M be a G-partial ma-
trix, with real or complex entries. Choose an interior point M ′ in the set of G-partial 
matrices with complex or real completion rank equal to gcr(G) and write r = gcr(G). 
In the complex case, open refers to the Zariski topology and existence is guaranteed by 
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Proposition 2.2. In the real case, we use the Euclidean topology and existence is guar-
anteed by definition of typical rank. Consider the line L spanned by M and M ′. Then 
this line has a spanning set of two points M1 and M2 with completion rank r because 
the intersection of the line with the set of points of completion rank r is a subset of L
with non-empty interior. Fix completions A1 and A2 of M1 and M2 of rank r. Then the 
appropriate linear combination of A1 and A2 is a completion of M and has rank at most 
2r. !

Example 2.10. Let Tn denote the bipartite graph corresponding to partial matrices where 
the known entries are precisely those on and below the diagonal. Theorem 5.3 implies 
that gcr(Tn) =

⌈
n
2
⌉

(see also [39, Theorem 2.2]), which is the maximal size of a specified 
submatrix in a Tn-partial matrix. Consider the Tn-partial matrix Mn

Mn =





1 ? ? . . . ? ?
0 1 ? . . . ? ?
0 0 1 . . . ? ?
...

...
... . . . ...

...
0 0 0 . . . 0 1





with known entries corresponding to Tn. Any completion of Mn will have determinant 
equal to 1. Therefore, the maximum completion rank of Tn is n. This example shows 
that the bound provided in Proposition 2.9 for the maximum completion rank to be 
twice the generic completion rank is sharp. Although the completion rank of M is n, it is 
the limit of a sequence of Tn-partial matrices with generic completion rank 1. Explicitly, 
consider the sequence (Ak)k∈N of Tn-partial matrix where the (i, j)th entry of Ak is 
(2j−i)k (where i ≤ j). This sequence of Tn-partial matrices converges to Mn and each 
one has a completion of rank 1, namely the complete matrix ((2j−i)k)i,j – the sequence 
of completed matrices is, of course, not convergent. This argument shows that the rank 
of Mn with respect to the Zariski closure of the projection of rank 1 matrices is 1.

3. Example and computational tools

In this section we discuss an elementary example of 4 × 4 matrices with unspecified 
diagonal. We use it to showcase some of the computational tools and the difficulties in 
proving existence of several typical ranks. We also present a randomized algorithm for 
computing generic rank (Algorithm 3.2). Let G = ([4], [4], E) be the bipartite graph ob-
tained by removing a perfect matching from K4,4. Up to relabeling of rows and columns, 
the unknown entries of the corresponding partial matrices are the diagonal entries.

Example 3.1 (The 4 × 4 missing diagonal). We focus on the 4 × 4 case with unspecified 
diagonal, i.e. partial matrices of the following form, corresponding to the graph of the 
cube
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



? a12 a13 a14
a21 ? a23 a24
a31 a32 ? a34
a41 a42 a43 ?



 .

Since the determinant is multilinear and not identically constant in the unknown entries, 
we see that every such partial matrix has a completion of rank at most 3. So we describe 
exactly which partial matrices have complex completion rank 1, 2, and 3. Then we discuss 
the typical rank behavior over the reals. We start with (complex) rank 1 (see also [24]
for the general rank 1 case). The Zariski closure of the projection of the variety M4×4

1
of matrices of rank 1 onto the entries specified by G is defined by the elimination ideal, 
which is generated by the polynomials

a13a42 − a12a43, a32a41 − a31a42, a23a41 − a21a43,

a14a32 − a12a34, a24a31 − a21a34, a14a23 − a13a24, a23a34a42 − a24a32a43,

a13a34a41 − a14a31a43, a12a24a41 − a14a21a42, a12a23a31 − a13a21a32.

The first six generators are the completely specified 2 × 2 minors and the other four 
cubic generators express the condition that the 2 × 2 minors of the completion involving 
a diagonal entry vanish simultaneously. However, the image of M4×4

1 under this projection 
is not closed, it is only a constructible set. The elimination ideal defines its Zariski closure.

To compute the Zariski closure of the set cl(πG(M4×4
1 )) \πG(M4×4

1 ) – which we call the 
exceptional locus – we use the Extension Theorem [14, Chapter 3, Theorem 3] (see also 
[14], Chapter 3, Paragraph 2 and Chapter 8, Paragraph 5 for a more detailed description 
of the necessary computations). We compute a Gröbner basis of I(M4×4

1 ) with respect 
to an elimination order for the diagonal entries a11, a22, a33, a44. We then look at the 
leading coefficients. Since we eliminate several variables at the same time, we need to 
use the Extension Theorem iteratively, one variable at a time, or use an ad-hoc argument, 
which is easier in this case, because the leading coefficients turn out to be aij . By the 
Extension Theorem, a partial matrix satisfying the equations in the elimination ideal 
might not have a completion of rank 1 only if one of its entries is equal to 0. If this 
is the case, the entire row or column of the partial matrix must be zero in order to 
have a completion of rank 1, which follows from the usual parameterization of M4×4

1 as 
M4×4

1 = {vwt : v, w ∈ C4}.
Up to permutation of rows and columns, there is only one case: We can assume that 

a12 = 0. Adding this ideal to the elimination ideal leads to four irreducible components. 
Two of them correspond to what we expect, namely the first row or the second column 
being zero. The other two, however, are linear spaces corresponding to partial matrices 
of the form
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



? 0 0 a14
0 ? 0 a24
0 0 ? a34
a41 a42 a43 ?




or





? 0 a13 0
0 ? a23 0
a31 a32 ? a34
0 0 a43 ?




.

A generic matrix from either linear space satisfies the equations in the elimination ideal 
but they do not have completions of rank 1. So these linear spaces are irreducible com-
ponents of the exceptional locus. In total, there are four such linear spaces (one for each 
diagonal entry).

All these matrices in the exceptional locus have completions of rank at most 2. For 
this, consider a partial matrix as on the left. Let A denote the completion where we set 
a11 = a22 = a33 = a44 = 0. Then the resulting matrix equation Ax = 0 imposes only one 
linear condition on the three-dimensional vector space (x1, x2, x3, 0). This shows that A
has a kernel of dimension at least 2.

The generic completion rank of this completion problem is 2. In other words, the 
Zariski closure of the projection of the variety M4×4

2 of matrices of rank at most 2 is 
equal to the image space, which is equivalent to saying that the elimination ideal is the 
unit ideal. Using the Extension Theorem iteratively this time, we compute the Zariski 
closure of the complement of the image. Looking at a Gröbner basis of the ideal of 3 × 3
minors with respect to an elimination order of the diagonal entries with a44 being the 
last, there is only one leading coefficient of the last variable a44, namely the cubic c4
below. In fact, the Gröbner basis contains four polynomials whose leading monomial 
involves only one diagonal entry aii and each coefficient is a cubic ci. The four cubics 
are

c1 = a12a24a41 − a14a21a42

c2 = a13a34a41 − a14a31a43

c3 = a23a34a42 − a24a32a43

c4 = a12a23a31 − a13a21a32.

By the Extension Theorem, we cannot lift with respect to a44 only if c4 vanishes. Van-
ishing of this cubic does not yet describe an irreducible component of the exceptional 
locus. Now there are two possibilities: Either such an irreducible component comes from 
not being able to fill in a44 and another diagonal entry consistently or such an irreducible 
component comes from further restrictions on the given entries causing problems for the 
diagonal entry a44. To analyze the second case, we compute a Gröbner basis of the ideal 
of 3 × 3 minors plus the cubic c4 with respect to an elimination order. We find a new 
element of the Gröbner basis with leading term g4a44 for a quartic polynomial g4 in the 
off-diagonal entries. Now we can check that the prime ideal 〈c4, g4〉 defines an irreducible 
component of the exceptional locus. The polynomial g4 is

a13a24a32a41 +a12a23a34a41−a14a23a31a42−a13a21a34a42 +a12a24a31a43−a14a21a32a43.
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By symmetry, for the other three diagonal entries, we find three more irreducible com-
ponents with defining prime ideal 〈ci, gi〉. They have codimension 2 and degree 12.

To analyze the first case, looking directly at leading forms in the initial Gröbner 
basis, another cubic coefficient ci has to vanish. We check that this leads to another 
irreducible component of the exceptional locus. So by symmetry, we find six irreducible 
components, one for each of the six pairs ci, cj of cubics. The variety cut out by such a 
pair is reducible with two irreducible components, both of codimension 2. The relevant 
irreducible component, which is contained in the exceptional locus, is defined by the two 
cubics and a quartic. For example, the following ideal defines an irreducible component 
of the exceptional locus:

〈c1, c2, a12a24a31a43 − a13a21a34a42〉.

These six irreducible components have codimension 2 and degree 8.
In total, we find that the exceptional locus for rank 2 has ten irreducible components, 

which come in two types. One type contributes six irreducible components, one for every 
two out of the four cubics c1, c2, c3, c4. The other contributes four irreducible components 
whose prime ideal is generated by a cubic and a quartic.

We now discuss the typical ranks of G. Since gcr(G) = 2, Proposition 2.8 tells us that 
2 is a typical rank of G. Theorem 4.6 shows that 4 is not a typical rank of G. However, 
3 is a typical rank of G as we now show. If we consider the projection of the variety of 
rank 2 matrices on the coordinates





a11 a12 a13 a14
a21 ? a23 a24
a31 a32 ? a34
a41 a42 a34 ?





i.e. we project away the three diagonal entries a22, a33, a44, then the image will be a 
hypersurface whose equation has degree 2 in a11. This polynomial is most compactly 
expressed via determinants as follows

det
(
a11 a13
a21 a23

)
det

(
a11 a12 a14
a31 a32 a34
a41 a42 0

)
− det

(
a11 a12
a31 a32

)
det

(
a11 a13 a14
a21 a23 a24
a41 a43 0

)
.

To see where this polynomial comes from, consider the 3 × 3 minor of the matrix (aij)
obtained by removing the second row and third column, and the matrix obtained by 
removing the second column and third row. Both must vanish and thus can be rear-
ranged to give an expression for a44. The difference of these expressions must vanish. 
Clearing denominators in this difference gives the polynomial above. The discriminant 
of this polynomial with respect to a11 is written out below. When it is negative, the 
corresponding partial matrix has no real completion to rank 2.
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(a13a24a32a41 − a12a23a34a41 − a14a23a31a42 − a13a21a34a42 + a12a24a31a43

+ a14a21a32a43)2

− 4(a23a34a42 − a24a32a43)(a12a14a23a31a41 − a12a13a24a31a41 − a13a14a21a32a41

+ a12a13a21a34a41 + a13a14a21a31a42 − a12a14a21a31a43)

To see that this polynomial can in fact be negative, plug in the entries of the following 
matrix.

A =




? −3

2 −1 1
−5 ? 1 −2
−2 1 ? −1
1 −1 −1 ?



 .

Note that this implies that A and any real G-partial matrix in a sufficiently small neigh-
borhood around A can be completed to rank 3 over R, but not rank 2. For instance, if 
we specify all variables in the above discriminant as given in the matrix A except for a12
and a21, we get an indefinite conic in the (a12, a21)-plane that has the topology of the 
hyperbola. The point (a12, a21) = (−3/2, −5) lies in a connected component where this 
quadratic polynomial is negative.

By doing the above computation for the other diagonal entries a22, a33, and a44 instead 
of a11, we obtain similar polynomials, derived from the other pairs of 3 × 3-minors 
involving diagonal entries. The algebraic boundary separating the G-partial matrices 
of real completion ranks 2 and 3 is defined by the vanishing of the product of the 
discriminant conditions that we get this way.

There are software packages that compute an algebraic description of the image of such 
a projection, i.e. of the constructible set πG(Mm×n

r ) ⊂ MG = CE . One recent example 
implemented in Macaulay2 [17] is TotalImage developed by Harris, Michałek, and Sertöz 
[20]. This is an exact algorithm based on similar ideas as discussed in Example 3.1.

To compute typical ranks over the reals, the general purpose algorithm is Tarski’s 
quantifier elimination [7, Corollary 1.4.7]. This algorithm is implemented in various com-
puter algebra systems. However, even the example of 4 ×4 matrices with missing diagonal 
is too complex for non-custom implementations of quantifier elimination that we have 
tried. Given the complexity of the output in the complex case described in the previous 
paragraph, it seems reasonable to suspect, that applying quantifier elimination algorithm 
in this case is currently not feasible.

We now give a probability-1 algorithm for computing generic completion ranks. The 
main idea is to check that πG is surjective when restricted to a generic tangent space of 
Mm×n

r . Similar algorithms have already been proposed in e.g. [35,27]. In the theory of 
algebraic matroids, this is known as linearization.

Algorithm 3.2. To determine the generic completion rank of a given bipartite graph G, we 
propose the following probabilistic algorithm that only uses linear algebra and correctly 
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determines the generic completion rank with probability 1. The key is to compute the 
rank of the projection on the tangent space at a random point as explained in Remark 2.3. 
To make this a linear algebra computation, pick a random (m − r)-dimensional vector 
space V in Cm with basis v1, v2, . . . , vm−r, and a random (n − r)-dimensional vector 
space W in (Cn)∗ with basis w1, w2, . . . , wn−r. Then the tangent space to Mm×n

r at a 
matrix M : Cm → Cn of rank r with kernel V and image W⊥ is the set of all m × n

matrices A with wiAvj = 0 for all i, j (see [21, page 185]). These conditions are linear 
in the entries in A. If the linear map πG|TM Mm×n

r : TM Mm×n
r → CE is surjective, the 

generic completion rank of G is at most r, see Remark 2.3. If it is not, then genericity 
of M implies that the generic completion rank of G is strictly less than r.

4. Bounding the typical ranks of a bipartite graph

This section gives various bounds on typical ranks of a bipartite graph. This is done 
by studying how deleting single vertices and taking bipartite clique sums affects typical 
ranks (Corollary 4.2 and Theorem 4.8). One consequence is that if the r-core of a bipar-
tite graph is empty, then its maximum typical rank is at most r−1 (Corollary 4.5), which 
in turn implies that the maximum typical rank of a graph G is at most 2 gcr(G) −1 (The-
orem 4.6). We end this section by giving two useful lemmas. One of them, Lemma 4.13, 
gives a sufficient condition on a graph G for sharpness of the lower bound on gcr(G) given 
by a dimension count. We begin with the simple observation of how generic completion 
rank behaves with respect to adding a vertex to a given bipartite graph.

Lemma 4.1. Let K = R or C. Let M ′ be an m × n matrix of rank r with entries in K. 
Consider the partial m × (n + 1) matrix

M = (M ′ v )

obtained by adding a new column to M ′ and suppose that v is a partially specified vector 
with k specified entries.

(1) If k ≤ r and all r × r minors of M ′ are non-zero, then M has a completion of rank 
r with entries in K.

(2) If k > r, then generically any completion of M with entries in K has rank r + 1. 
More precisely, the set of pairs (M ′, v), for which the conclusion fails is contained 
in a proper Zariski closed set.

Proof. We assume after permutation of the rows that the first k entries of v are specified. 
Since M ′ is generic, we can assume that the top left r × n block of M ′ has full rank r. 
In other words, the first r rows of M ′ form a basis of the rowspace of M ′.

With the assumption that k ≤ r, we can choose the first r rows of M to be a basis of 
the rowspace of M by filling in the appropriate entries in v to keep the linear relations 
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given by the rows of M ′. This shows that M has a completion of rank r, which implies 
(1).

If k > r, then the assumption that M ′ and the specified entries of v are generic, 
implies that the row relations among the rows of M ′ will be violated for M , so the rank 
of any completion must be larger than the rank of M . Since we are adding only one more 
column, the rank cannot increase by more than 1. !

Corollary 4.2. Let G be a bipartite graph and let v be a vertex of G of degree k. Let G′

be the graph obtained from G by deletion of v.

(1) If the generic completion rank of G′ is greater than or equal to k, then the generic 
completion rank of G is equal to the generic completion rank of G′.

(2) If the maximal typical completion rank over R of G′ is greater than or equal to 
k, then the maximal typical completion rank of G is equal to the maximal typical 
completion rank of G′.

Proof. A G-partial matrix is a G′-partial matrix with an additional column (after pos-
sibly transposing the matrix). So the result follows from the previous Lemma 4.1. !

Example 4.3. The genericity assumptions in Lemma 4.1 are important. Consider the 
partial matrix

(1 1 1
1 1 2
0 1 ?

)
.

The rank of the left 3 ×2 block M ′ is 2 and the last column v only has 2 specified entries, 
yet the matrix does not have a completion of rank 2 because the first two rows of M ′

are equal but the first two entries of v are different.

We now recall the notion of k-core from graph theory. For more on k-cores, see [9,23,
8].

Definition 4.4. The k-core of a graph G is the maximal subgraph of G such that all 
vertices have degree at least k. Equivalently, the k-core of G is the graph obtained from 
G by iteratively deleting vertices of degree less than k.

Corollary 4.5. If the k-core of a bipartite graph G is empty, then the maximal typical 
completion rank of G is less than k.

Proof. Saying that the k-core is empty is the same as saying that we can build the 
graph G by adding a vertex of degree less than k at a time. So the claim follows from 
Corollary 4.2. !
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Theorem 4.6. Let G be a bipartite graph with generic completion rank r. Then the max-
imum typical rank of G is at most 2r − 1.

Proof. Let k be the minimum degree of G and let m, n denote the sizes of the bipartite 
parts of G. Since there are at most r(m + n − r) edges of G (Proposition 2.5(a)), we 
must have k(m + n) ≤ 2r(m + n − r), i.e.

k ≤ 2
(
r − r2

m + n

)
.

Therefore the minimum vertex degree of G is at most 2r−1. By induction on the number 
of vertices of G, this implies that the 2r-core of G is empty and so Corollary 4.5 implies 
that the maximum typical rank of G is at most 2r − 1. !

Lemma 4.7. Let r be greater than or equal to the generic completion rank of the bipartite 
graph G = ([m], [n], E). The set of G-partial matrices M that have a completion of rank 
r and such that for every completion of M some r × r minor vanishes is contained in a 
proper Zariski closed subset of KE.

Proof. We first consider the case K = C. Let U be the set of m × n matrices of rank r
such that all r×r minors are non-zero. Then U is a Zariski-open subset of the irreducible 
variety Vr of m ×n matrices of rank at most r. So the claim follows by continuity of πG.

For K = R, essentially the same argument can be applied to the real points of Vr, 
because every real matrix of rank r has full local dimension in Vr and Vr(R) is the closure 
(in the Euclidean topology) of the set of real matrices of rank r. !

A bipartite clique sum of two bipartite graphs G and H is a graph obtained by gluing 
G and H together along a common complete bipartite subgraph. Let K be either R
or C. Define mtrK(G) to be the maximum typical rank of G over K. Theorem 4.8
below says that the maximum typical rank of a bipartite clique sum is the larger of the 
maximum typical ranks of the two pieces when the bipartite clique sum is taken along 
a sufficiently small common bipartite clique. The case K = C is easily implied by the 
“Gluing Lemma” in [25, Lemma 3.9(2)] but the case K = R requires a different proof, 
which we now provide. Since mtrC(G) = gcr(G), the Theorem below applies to generic 
completion rank as well as real typical rank.

Theorem 4.8. Let G = G1∪G2 be a bipartite clique sum of bipartite graphs G1, G2 along 
a complete bipartite graph Km,n. The maximal typical rank of G over a field K is the 
maximum max{mtrK(G1), mtrK(G2)} of the maximal typical ranks of the summands, 
given that this number is at least max{m, n}.

Proof. Since the summands Gi are subgraphs of G, the maximal typical rank of G is at 
least the maximal typical ranks of Gi for i = 1, 2. To show the reverse inequality, let M
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be a G-partial matrix, which can be written, after permutation of rows and columns, in 
the following form

M =
(
M1 M ′

1 ?
M ′′

1 K M ′
2

? M ′′
2 M2

)
,

where the upper left block is a G1-partial matrix and the bottom right block is a 
G2-partial matrix, and K is a completely specified submatrix corresponding to the bi-
partite clique Km,n = G1 ∩G2. Suppose that M is generic. First we complete the blocks 
using Lemma 4.7 to get a matrix

A =
(
A1 B1 ?
C1 K B2
? C2 A2

)
,

where the top left matrix is a matrix of rank at most mtr(G1) and the bottom right 
block a matrix of rank at most mtr(G2), both with minors non-vanishing according to 
Lemma 4.7. Set ri = mtr(Gi) and assume r1 ≥ r2. Our goal is to complete A to rank r1
over R. First, we consider the case that r1 is less than or equal to the number of rows 
m2 of the bottom right block. We claim that we can complete the r1 −m rows below C1
(m is the number of rows of K) to give us the following partial matrix

A =





A1 B1 ?
C1 K B2
E C ′

2 A′
2

? C ′′
2 A′′

2



 where C2 =
(
C ′

2
C ′′

2

)
, A2 =

(
A′

2
A′′

2

)

so that each row of (A1 B1 ) is a linear combination of the rows of the r1 × n1 matrix

F :=
(
C1 K
E C ′

2

)
.

Then each such linear combination can be extended to a linear combination of the rows 
of

H :=
(
C1 K B2
E C ′

2 A′
2

)

in order to complete the unknown entries in the upper-right corner.
We now prove the claim. For each i = 1, . . . , r1 −m, let ci be ith row of C2 and let bi

be the ith row of B1. These are all well-defined since r1 −m ≤ m2 −m and m1 −m. By 
genericity, any (n − 1) × n submatrix K ′ of K gives rise to a linear dependence of the 
form x′K ′ + λbi = ci with λ .= 0. By padding with zeros, we extend x′ to a row vector x
of size m. Let ai be the ith row of A1. Then we set the ith row of E equal to xC1 + λai. 
This construction ensures that since
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Fig. 1. Two copies of a cube glued along a four-cycle, and along a single edge. Theorem 4.8 implies that both 
have two and three as their typical ranks.

J :=
(
A1 B1
C1 K

)

is a generic m1 ×n1 matrix of rank r1, the rows of F form a basis of the row space of J . 
This proves our claim.

Since r1 ≥ r2, each row of (C ′′
2 A′′

2 ) can be written as a linear combination of the 
rows of the r1 × n2 matrix

(
K B2
C ′

2 A′
2

)
.

As before, such a linear combination can be extended to a linear combination of the rows 
of H in order to complete the missing entries in the lower-left corner. This gives us a 
completion of any generic G-partial matrix to rank r1.

If r1 > m2, we may add r1 −m2 new vertices in G2 corresponding to r1 −m2 fully 
specified rows. This increases the generic completion rank of G2 to at most r1 and sets 
m2 = r1 thus bringing us back to the case where r1 ≤ m2. !

Example 4.9. Theorem 4.8 can be used to construct examples of graphs exhibiting mul-
tiple typical ranks. Let G = ([4], [4], E) be the graph of the cube. The corresponding 
pattern of missing entries in a 4 × 4 partial matrix has all entries known aside from the 
diagonals. We saw in Example 3.1 that G exhibits 2 and 3 as typical ranks over the reals. 
Let H be a bipartite graph with generic completion rank one (i.e. a tree) or two (see 
[2] for a classification). Now if we glue G and H together along a K2,2, a path of length 
three, a single edge, a single vertex, or the empty graph, then Theorem 4.8 tells us that 
the resulting graph has 2 and 3 as typical completion ranks. See Fig. 1 for two examples 
where H = G (note that gcr(G) = 2).

Example 4.10. The assumption that max{r1, r2} ≥ max{m, n} in Theorem 4.8 is impor-
tant. Let G be the clique sum of K2,4 and K3,4 with two edges removed, along a K1,3
such that a G-partial matrix looks like this
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



∗ ∗ ∗ ∗ ?
∗ ∗ ∗ ∗ ∗
? ∗ ∗ ∗ ?
? ∗ ∗ ? ∗



 .

Both blocks have generic completion rank 2, but the clique sum has generic completion 
rank 3, since G contains a K3,3.

The following lemma follows quickly from the “Cone Lemma” in [25]. However, we 
provide an elementary proof using arguments from linear algebra directly. We will make 
use of it in the next section.

Lemma 4.11. Let G = ([n] 0 [n], E) be a bipartite graph and let r be an integer such that 
the differential of the projection πG restricted to the variety of n ×n matrices of rank at 
most r is generically injective, i.e. injective outside of a proper Zariski closed set. Define 
G′ = ([n +1] 0 [n +1], E∪([n +1] ×{n +1}) ∪({n +1} × [n])), the bipartite graph obtained 
from G by adding a fully connected vertex to each part. Then the following statements 
hold.

(a) The differential of πG′ restricted to the variety of (n + 1) × (n + 1) matrices of rank 
at most r + 1 is generically injective.

(b) If G is maximal (in the partial order given by containment of edge sets) among all 
bipartite graphs on [n] 0 [n] of generic completion rank r, then G′ is maximal among 
all bipartite graphs on [n + 1] 0 [n + 1] of generic completion rank r + 1.

Before proving Lemma 4.11 we pause to recall a basic fact from linear algebra.

Lemma 4.12. Let I, K be linear subspaces of Kn of dimensions d and n − d respectively. 
Then there exists a matrix with image I and kernel K.

Proof. Let e1, . . . , ed be a basis of I and f1, . . . , fn−d be a basis of K. Let F be the 
n × (n − d) matrix with columns f1, . . . , fn−d. Let B be the (n − d) × (n − d) matrix 
consisting of the bottom n − d rows of F , and T be the d × (n − d) matrix consisting of 
the top d rows of F . Reordering rows of F if necessary, we may without loss of generality 
assume that B is nonsingular. Now we construct our matrix M with image I and kernel 
K. Set the first d columns of M equal to e1, . . . , ed. Let vi denote the row vector consisting 
of the d specified entries of the i-th row of M . Set the unspecified entries of the i-th row 
of M to be the unique solution x to the linear equation viT + xB = 0. !

Proof of Lemma 4.11. Let M be a generic (n +1) × (n + 1) matrix of rank r+ 1 and set 
k = n − r. Choose linearly independent linear functionals c1, . . . , ck ∈ (Kn+1)∗, whose 
vanishing defines the column span of M and choose a basis v1, . . . , vk ∈ Kn+1 of the 
kernel of M . Now let A ∈ TMV n+1

r+1 be an element of the tangent space to the variety 
V n+1
r+1 of (n + 1) × (n + 1) matrices of rank at most r+ 1 satisfying πG′(A) = 0. We need 
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to show that A = 0. The condition A ∈ TMV n+1
r+1 is equivalent to ciAvj = 0 for all i, j. 

Since the last row and last column of a G′-partial matrix are completely specified by 
construction of G′, the last row and column of A must be zero. Let us denote by c′i and v′j
the vectors obtained from ci and vj , respectively, by removing their last coordinate. Let 
A′ be the matrix obtained by removing the last row and column of A. Since πG′(A) = 0, 
the condition that A ∈ TMV n+1

r+1 is equivalent to c′iA
′v′j = 0 for all i, j. If r = 0, the 

proposition is clearly true so we assume r ≥ 1. It therefore follows from genericity of 
M that {c′1, . . . , c′k} and {v′1, . . . , v′k} are both linearly independent sets. So Lemma 4.12
implies the existence of an n × n matrix M ′ of rank r, whose column span is cut out by 
c′1, . . . , c

′
k and whose kernel is spanned by v′1, . . . , v

′
k. The condition that c′iA′v′j = 0 for 

all i, j is equivalent to the condition that A′ is in the tangent space to V n
r at M ′, the 

variety of n × n matrices of rank at most r. Since M ′ has rank r, it is a smooth point of 
V n
r . Genericity of M in V n+1

r+1 implies genericity of M ′ in V n
r because every n ×n matrix 

of rank r can be obtained from an (n +1) ×(n +1) matrix of rank r+1 by deletion of the 
last row and last column. So πE(A′) = 0 implies A′ = 0 by our injectivity assumption 
on the differential of πG restricted to V n

r . Since A′ = 0 implies A = 0, we have proved 
part (a).

The second statement follows from the first by a dimension count. If the differential of 
πG restricted to V n

r is not injective, then add an edge to G in such a way that the rank 
of the differential increases. The maximality of G with respect to the generic completion 
rank implies that the differential is in fact a bijection. The injectivity from part (a) 
together with a dimension count shows in fact that the differential of πG′ restricted to 
V n+1
r+1 is also bijective. Indeed, the dimension of V n+1

r+1 turns out to be dim(V n
r ) +2n +1, 

i.e. the number of edges of G′. This proves that the generic completion rank of G′ is 
r + 1 and if we add an edge to G′, the generic completion rank will necessarily increase, 
see Remark 2.3. !

We now give a lemma that is useful for showing that a given bipartite graph 
([m], [n], E) satisfying #E = r(m + n − 1) has generic completion rank r. Given a 
bipartite graph G and subsets A and B of the two parts of G, denote by GA,B the in-
duced subgraph on A ∪ B. We use it in the next section to show that certain bipartite 
circulant graphs have generic completion rank predicted by the dimension count.

Lemma 4.13. Let m, n, r be integers with r ≤ m, n and let G = ([m], [n], E) be a bipartite 
graph such that |E| = r(m + n − r). Then gcr(G) = r if there exist set partitions 
P1, . . . , Pm−r of [m] and Q1, . . . , Qn−r of [n] such that each bipartite subgraph GPi,Qj

on parts Pi and Qj contains exactly one non-edge of G, and every non-edge of G lies in 
some such GPi,Qj .

Example 4.14. Before proving Lemma 4.13, it will be helpful to have an example illus-
trating the statement. Let m = n = 4, let r = 2, and let G = ([4], [4], E) be the bipartite 
graph with E = {(i, j) : i .= j}. Then define P1 := {1, 2}, P2 := {3, 4}, Q1 := {1, 3}, and 
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Q2 := {2, 4}. The unique non-edge of GP1,Q1 is (1, 1), the unique non-edge of GP1,Q2

is (2, 2), the unique non-edge of GP2,Q1 is (3, 3), and the unique non-edge of GP2,Q2 is 
(4, 4). Note that all non-edges of G are accounted for. According to Lemma 4.13, this 
implies gcr(G) = 2.

Proof of Lemma 4.13. Since G has r(m + n − r) edges, the lemma is equivalent to the 
statement that Mm×n

r has the same dimension as V , the Zariski closure of its image 
under the projection πG. We proceed by showing that dπG : TM Mm×n

r → TπG(M)V , 
the differential of πG|Mm×n

r
Mm×n

r → CE , is one-to-one for a particular choice of smooth 
point M . For now, we leave M unspecified. Since π is linear, we abuse notation by writing 
π instead of dπ.

Let A ∈ TM Mm×n
r and let B ∈ (dπ)−1(π(A)). Our goal is to show that for a particular 

choice of M , B must equal A. By [22, Example 14.16], a matrix C is in TM Mm×n
r if 

and only if C maps the kernel of M into the image of M . So let v1, . . . , vn−r ∈ Cn

span the kernel of M and let c1, . . . , cm−r ∈ (Cm)∗ be linear functionals whose vanishing 
cuts out the column span of M . The entries of B must satisfy the (n − r)(m − r) linear 
equations given by ciBvj = 0. If we plug in entries of B corresponding to the edges in 
G, this gives us a system of (n − r)(m − r) affine-linear equations that must be satisfied 
by the (n − r)(m − r) entries of B corresponding to the non-edges of G. We denote the 
(n −r)(m −r) ×(n −r)(m −r) coefficient matrix of this linear system by C. The constant 
terms in this linear system are determined by vi, cj , and the entries of B corresponding to 
edges in G. Note that the entries in these positions are the same in B and A. Therefore, 
if C is nonsingular, then B = A. We now finish the proof by constructing a smooth point 
M of Mm×n

r such that the corresponding C is nonsingular.
For i = 1, . . . , n − r, define ci to be the characteristic row vector of Pi and for j =

1, . . . , m − r, define vj to be the characteristic column vector of Qj. Note that each set 
{ci}, {vj} is linearly independent. So Lemma 4.12 implies that there exists an m × n

matrix M of rank r whose span is cut out by the cis and whose kernel is spanned 
by the vjs (see below for an example). Moreover M is a smooth point of Mm×n

r [22, 
Example 14.16]. Our hypotheses imply that the coefficient matrix C corresponding to 
{ci} and {vj} is a permutation matrix. In particular, C is nonsingular. !

Example 4.15. We illustrate the construction M from the proof of Lemma 4.13 for 
the situation given in Example 4.14. Here we would have c1 = (1 1 0 0), c2 =
(0 0 1 1), v1 = (1 0 1 0)T , and v2 = (0 1 0 1)T . Any matrix M whose 
column span is orthogonal to c1 and c2 and whose kernel is spanned by v1 and v2 is an 
acceptable choice. One such example is

M =





1 0 −1 0
−1 0 1 0
0 1 0 −1
0 −1 0 1



 .
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5. Planar bipartite, bipartite chordal, and circulant graphs

In this section we discuss three classes of bipartite graphs with respect to their typical 
and generic completion ranks. First we make a brief note about bipartite planar graphs. 
Then we discuss bipartite chordal graphs, which have a long history in the subject 
of matrix completion [30,38,39]. As we will see, they all have generic completion rank 
predicted by the maximal specified submatrix. Moreover, they have only one typical 
rank. We then turn to bipartite circulant graphs. We identify a subset of them whose 
generic completion ranks are predicted by a dimension count and conjecture that this 
is the case for all such graphs. We also discuss why this class of graphs might offer a 
promising direction in the search for bipartite graphs exhibiting many typical ranks.

5.1. Planar bipartite graphs

Theorem 5.1 ([25, Theorem 4.1]). Let G be a planar bipartite graph. Then gcr(G) = 2.

Theorems 4.6 and 5.1 imply that two and three are the only possible typical ranks of 
a planar bipartite graph. Hence we pose the following problem.

Problem 5.2. Characterize the planar bipartite graphs that exhibit 3 as a typical rank.

Corollary 4.2 implies that G has three as a typical rank if and only if its 3-core has 
three as a typical rank. Hence to solve Problem 5.2, it suffices to restrict attention to 
the case of planar bipartite graphs with minimum vertex degree three.

5.2. Bipartite chordal graphs

A bipartite graph G is said to be bipartite chordal if every induced cycle has length 4. 
Equivalently, G can be constructed by gluing together several complete bipartite graphs 
along common cliques. For more on bipartite chordal graphs, see [16]. The following 
theorem tells us that bipartite chordal graphs are quite simple in terms of their matrix 
completion properties.

Theorem 5.3. Let G be a bipartite chordal graph.

(a) The generic completion rank of G is the largest r such that G contains Kr,r as an 
induced subgraph.

(b) The only typical rank of G is its generic completion rank.
(c) Every G-partial matrix M whose completely specified minors are nonzero can be 

completed to rank gcr(G).

Proof. We prove (a) by induction on the number of vertices of G. The base case G =
K1,1 is trivial. For the induction step, we use that every bipartite chordal graph has a 
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bisimplicial edge, i.e. an edge {v, w} such that the induced graph on N(v) ∪N(w), the 
union of the neighborhoods of v and w, is a complete bipartite graph, see [16, Corollary 5]. 
Let m be the degree of v and n be the degree of w and assume that m ≤ n. Let G′ be 
the graph obtained from G by deleting the vertex v. Then G′ is also bipartite chordal 
and the induced subgraph on N(v) ∪ (N(w) \ {v}) is a complete bipartite graph Km,n−1
because {v, w} is bisimplicial. By induction, the generic completion rank of G′ is given 
by the largest bipartite clique in G′. Let r be the generic completion rank of G′.

Assume without loss of generality that m ≤ n. In case that m < n, we know that 
r ≥ m, so the claim follows by Lemma 4.1, because the degree of v is m. If m = n and 
r ≥ m, the same argument applies. If m = n and r < m then we must have r = n −1. In 
this case, G contains Km,n = Kr+1,r+1 as an induced subgraph on N(v) ∪N(w) and its 
generic completion rank is at most r + 1, because the generic completion rank of G′ is r
and we are adding one vertex, which corresponds to a new row or column in the partial 
matrix. This shows (a).

To prove (b), we argue similarly by induction on the number of vertices of G applying 
Lemma 4.1.

Finally, to prove (c), we also proceed by induction on the number of vertices by deleting 
vertices contained in bisimplicial edges. The assumption, that every completely specified 
minor of M is non-zero, clearly transfers to submatrices. So by applying Lemma 4.1, we 
get a completion of M of rank at most gcr(G). Since G contains a clique of size Kr,r for 
r = gcr(G), the rank of M is at least gcr(G) by assumption on the specified minors to 
be non-zero. !

5.3. Bipartite circulant graphs

In [31], a bipartite circulant graph was defined to be a bipartite graph whose biad-
jacency matrix is a circulant matrix (see [31] for a definition of circulant matrix). We 
consider the subset of such graphs whose parts A and B are disjoint copies of [n], where 
each i ∈ A is adjacent to all vertices in B aside from i, i +1, . . . , i +n − l− 1. We denote 
such a graph by G(n, l). Our motivation for studying this class of graphs is that it con-
tains the smallest bipartite graphs we know of where the possibility of multiple typical 
ranks is not immediately ruled out by a dimension count and Corollary 4.5. For example, 
we have already seen in Example 3.1 that G(4, 3) exhibits both 2 and 3 as typical ranks. 
The graphs G(8, 6) and G(9, 5) are the smallest graphs we know of that could potentially 
have three typical ranks, although we are still unable to determine whether or not they 
do. The number of edges in G(n, l) is nl, and so a dimension count says that its generic 
completion rank is at least 1n −

√
n2 − nl2. We begin by showing that this lower bound 

is obtained in some cases.

Proposition 5.4. Let n be a positive integer and choose another integer k such that k
divides n and n divides k2. Define l := n − k2

n . Then the generic completion rank of 
G(n, l) is n −

√
n2 − nl = n − k.
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Proof. Note that G(n, l) has n2 − k2 edges which is equal to the dimension of Mn×n
n−k . 

Therefore it suffices to find two partitions of [n] satisfying the hypotheses of Lemma 4.13. 
For i = 1, . . . , k, define Pi as

Pi :=
{
i, i + k, . . . , i +

(n
k
− 1

)
k
}
.

For a = 1, . . . , nk and b = 1, . . . , k2

n , define Qab as

Qab :=
{

(a− 1)k + b, (a− 1)k + b + k2

n
, . . . , k(a− 1) + b +

(n
k
− 1

) k2

n

}
.

For each pair (i, ab), the edges of the graph G(n, l)Pi,Qab must be obtainable from the 
following expression, allowing p and q to range over {0, . . . , nk − 1}

(i + pk, k(a− 1) + b + q
k2

n
).

This is a non-edge of G(n, l) if and only if

k(a− 1) + b + q
k2

n
− i− pk ∈ {0, 1, . . . , k

2

n
− 1}.

Since k divides n, k > k2

n and therefore this can happen for at most one value of (p, q).
Since there are exactly as many pairs (i, ab) as there are non-edges of G(n, l), it now 

suffices to show that each non-edge of G(n, l) appears as a non-edge of some G(n, l)Pi,Qj . 
Note that each j ∈ [n] can be expressed as i + pk for some p ∈ {0, . . . , nk − 1} and 
i ∈ {1, . . . , k}. Also, every j ∈ [n] can be expressed as k(a − 1) + b + q k2

n for some 
q ∈ {0, . . . , nk − 1}, a ∈ {1, . . . , nk }, and b ∈ {1, . . . , k2

n }. So for a given non-edge (u, v)
of G, we can choose i such that u ∈ Pi and ab such that v ∈ Qab thus making (u, v) a 
non-edge of G(n, l)Pi,Qj . !

It follows from Proposition 5.4 that gcr(G(8, 6)) = 4. Since the 6-core of G(8, 6) is 
nonempty, Corollary 4.5 does not rule out the possibility that G(8, 6) has both 5 and 6
as typical ranks. It would be interesting to know whether or not this is the case because 
if so, this would provide us with the first example of a bipartite graph exhibiting three 
or more typical ranks. Hence we ask the following question.

Question 5.5. Does G(8, 6) exhibit 6 as a typical rank?

We believe that Proposition 5.4 holds in more generality. In particular, we make the 
following conjecture.

Conjecture 5.6. Bipartite circulant graphs of the form G(n, l) have the generic completion 
rank predicted by the dimension count. That is, gcr(G(n, l)) = n −

⌊√
n2 − nl

⌋
.
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Computations provide some evidence for Conjecture 5.6. A first step towards proving 
may involve relaxing the assumption that k divides n in Proposition 5.4.

In Section 6 below, we identify a family of semisimple graphs which exhibit arbitrarily 
many typical ranks in the symmetric matrix situation. We would like to find something 
similar in the non-symmetric situation. As of now, it seems that the most promising 
family of bipartite graphs for this goal are those of the form G(n, n −1). Such graphs are 
sometimes called “crown graphs” and, up to row-swapping, their corresponding partial 
matrices have all entries known aside from the diagonals. In Proposition 5.7 below we 
compute their generic completion ranks.

Proposition 5.7. The generic completion rank of G(n, n − 1) is n − 3
√
n4.

Proof. When n is a perfect square the proposition follows from Proposition 5.4 with 
k = √

n. So let k be a positive integer and assume n = k2 + a for some 0 < a < 2k + 1. 
A dimension count shows that the generic completion rank of G(n, n − 1) is at least 
n − 3

√
n4. Let Hn denote the bipartite graph corresponding to the n × n partial matrix 

that is missing k2 diagonal entries. Note that one can obtain Hn from G(n, n − 1)
by adding a edges. Then gcr(G(n, n − 1)) ≤ gcr(Hn) and Lemma 4.11 implies that 
gcr(Hn) = k2 − k + a. Then note that n − 3

√
n4 = k2 − k + a. !

6. Symmetric matrix completion

In this section, we discuss some aspects of the matrix completion problems for sym-
metric partially filled matrices. Instead of using bipartite graphs as in the non-symmetric 
case, a pattern of known entries will be encoded by a semisimple graph G (that is, loops 
are allowed but no multiple edges), where we put in an edge between i and j if the entries 
(i, j) and (j, i) are known. After preliminaries, we give some operations for constructing 
graphs on n vertices that have n as a typical rank. We then construct a family of graphs 
exhibiting an unbounded number of typical ranks.

We now introduce notation and terminology. Let G = (V, E) be a semisimple graph on 
vertex set V , which we usually take to be [n]. Let Sn(K) denote the set of n ×n symmet-
ric matrices with entries in a field K whose rows and columns are indexed by [n]. Denote 
the variety consisting of matrices of rank at most r by Sn

r (K). As in the non-symmetric 
case, we write πG for the coordinate projection from Sn

r (K) to KE taking a matrix (aij)
to the vector (aij : (i, j) ∈ E). In analogy to the non-symmetric case, we define the (K-) 
completion rank of a G-partial matrix X to be the minimum among all ranks of sym-
metric K-completions of X. Many of the preliminary results for non-symmetric low-rank 
matrix completion problems have analogues in the symmetric case. In particular, there 
exists a unique integer, which we call the generic completion rank of G and denote by 
sgcr(G), that is the completion rank of almost all G-partial C-matrices. This was noted 
in [37] for its utility in bounding the number of observations required to ensure existence 
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of maximum likelihood estimators for Gaussian graphical models. We summarize some 
other preliminary results for symmetric matrix completion in the proposition below.

Proposition 6.1. Let G = (V, E) be a semisimple graph with |V | = n.

(1) The generic completion rank of G is at least the smallest k such that nk−
(k
2
)
≥ #E.

(2) The smallest (real) typical rank of G is sgcr(G).
(3) If r1 < r2 are typical ranks of G, then so is every r satisfying r1 ≤ r ≤ r2.
(4) The maximal real or complex completion rank of G is at most twice sgcr(G).

The proof of Proposition 6.1 is essentially the same as the analogous results for the 
non-symmetric case. The only missing piece is the dimension of Sn

r , which we give in 
Lemma 6.2 below, along with some other basic facts about Sn

r that we will use later.

Lemma 6.2.

(a) Let L ⊆ Kn be a linear subspace of dimension d. Then there exists an n ×n symmetric 
matrix of rank n − d whose kernel is L.

(b) The dimension of Sn
r is nr −

(r
2
)
.

(c) Let M be a generic n ×n symmetric matrix of rank r. Then the tangent space to Sn
r

at M is the set of n ×n symmetric matrices B such that xTBx = 0 for all x ∈ kerM .

Proof. Let A ∈ K(n−d)×n be a matrix whose rows are a basis of the space of linear 
functionals vanishing on L. Then ATA is an n ×n symmetric matrix with kernel L thus 
proving (a).

Part (b) is well known, but a precise reference is difficult to locate. Hence we include 
a proof here. If A is a generic n ×n symmetric matrix of rank r, then the upper-left r×r

submatrix, which we will denote A′, will be a generic symmetric matrix. The lower-left 
(n − r) × r submatrix will also be generic. This gives us a total of rn −

(r
2
)

independent 
parameters. These entries uniquely determine the rest. Specifically, the upper-right r ×
(n −r) submatrix is the transpose of the lower-left (n −r) ×r submatrix. Each remaining 
entry aij is uniquely determined by the equation

det
(
A′ bTj
bi aij

)
= 0

where bi denotes the i-th row of the lower-left (n − r) × r submatrix of A.
For part (c), we differentiate the usual parameterization of the variety of n × n sym-

metric complex matrices of rank r given by the factorization M = UUT , which shows 
that the tangent space to Sn

r at M is the set of all matrices of the form UAT + AUT . 
We have xT (UAT + AUT )x = 0 for all x ∈ ker(UT ) = ker(M). By part (b), it suffices 
to prove that the dimension of the set of symmetric matrices B such that xTBx = 0
for all x ∈ ker(M) is nr −

(r
2
)
. By diagonalizing M and possibly permuting rows and 
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columns, we can assume that M is diagonal with the r non-zero diagonal entries at the 
top left. Then the set of all symmetric B with xTBx = 0 for all x ∈ ker(M) is the 
set of symmetric matrices whose lower (n − r) × (n − r) block is all zeros. This set has 
dimension nr −

(r
2
)
. !

6.1. Full-rank typical graphs

We say that a semisimple graph G = (V, E) is full-rank typical if |V | is a typical rank 
of G. This subsection explores how to construct examples of full-rank typical graphs 
with elementary arguments. In particular, we show that the disjoint union of a complete 
semi-simple graph and an isolated loop is full-rank typical. Moreover, given a full-rank 
typical graph G, we show that one can construct a new full-rank typical graph by adding 
edges, adding a suspension vertex with a loop, or taking the join with another full-rank 
typical graph.

Since the determinant of a matrix is a continuous function of its entries, one can prove 
that a given graph G is full-rank typical by exhibiting a single real G-partial matrix X
such that every real completion of X has nonzero determinant. This will be our primary 
tool for showing that a given graph is full-rank typical.

Proposition 6.3. Assume G = (V, E) is full-rank typical. Then E must contain all loops.

Proof. Assume G does not contain the loop at some vertex v, i.e. the G-partial matrix 
is not specified at the diagonal entry corresponding to v. Let G′ be the graph obtained 
by adding all missing edges to G except for the loop at v. Let X be a generic G-partial 
matrix and let X ′ be a generic G′-partial matrix that agrees with X at all common 
entries. The determinant of X ′ is a polynomial of degree 1 in the single missing entry. 
This polynomial has a real zero corresponding to a completion of X ′, and therefore of 
X, with rank at most |V | − 1. !

Now we give three operations on graphs that preserve the property of being full-rank 
typical. We begin with the simplest such operation – adding edges.

Proposition 6.4. If G = (V, E) is full-rank typical, then so is any graph H = (V, E ∪ F )
on the same set of vertices that contains G as a subgraph.

Proof. This follows from the fact that the completion rank of a partial matrix can only 
go up when we specify more entries. !

Given a graph G = (V, E), a suspension vertex is a vertex v ∈ V that is connected 
to every other vertex. That is, a vertex v satisfying {v, w} ∈ E for all w ∈ V \ {v}. If 
G has a loop at a suspension vertex v, then we call v a looped suspension vertex. As we 
see in the following proposition, the operation of adding a new looped suspension vertex 
preserves the property of being full-rank typical.
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Proposition 6.5. If G is full-rank typical, so is the graph obtained from G by adding a 
looped suspension vertex.

Proof. In terms of matrices, this means that we grow G-partial matrices by a new row 
and column, which are completely specified. So the completion rank of a generic G-partial 
matrix increases by 1. !

Our last graph operation that preserves the property of being full-rank typical is 
binary. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs on disjoint vertex sets. Define 
their join as G1 +G2 = (V1 ∪ V2, E1 ∪E2 ∪E), where E is the edge set of the complete 
bipartite graph on parts V1 and V2. So a G1 + G2-partial matrix is a block sum of G1-
and G2-partial matrices that are also completely specified in the top right and bottom 
left blocks.

Proposition 6.6. If G1 = (V1, E1) and G2 = (V2, E2) are full-rank typical, then so is 
G1 + G2, the join of G1 and G2.

Proof. Let Xi be a generic Gi-partial matrix that is minimally completable to full rank. 
Let Y be the (G1+G2)-partial matrix whose entries corresponding to edges in V1×V2 are 
all 0, and whose entries corresponding to edges in Ei agree with Xi. Then the determinant 
of any completion of Y is the product of the determinants of completions of X1 and X2, 
both of which must be nonzero. !

We now give an infinite family of full-rank typical graphs that are minimal in the sense 
that they cannot be built up from smaller full-rank typical graphs via the operations of 
adding edges, adding suspension vertices or taking joins (see Proposition 6.9). Let K◦

n

denote the complete semisimple graph on n vertices. Given two graphs G1 = (V1, E1)
and G2 = (V2, E2) on disjoint vertex sets V1 and V2, let G1 ∪ G2 denote their disjoint 
union. That is, G1∪G2 := (V1∪V2, E1∪E2). Our infinite family of (minimally) full-rank 
typical graphs is {K◦

n ∪K◦
1}∞n=1.

Proposition 6.7. The typical ranks of K◦
n ∪K◦

1 are n and n + 1.

Proof. Since K◦
n ∪ K◦

1 has a fully specified n × n minor, its generic completion rank 
is at least n. The determinant of a generic K◦

n ∪ K◦
1 -partial matrix is a non-constant 

polynomial in the n unknowns which must have a zero over the complex numbers. Hence 
the generic completion rank (which is the minimal typical rank) is n.

To see that n + 1 is also a typical completion rank, we construct an explicit example 
of a real partial K◦

n ∪K◦
1 -matrix with determinant bounded away from zero for all real 

completions. Namely, let Xn be the K◦
n ∪ K◦

1 -partial matrix whose (i, i) entry is 1 for 
1 ≤ i ≤ n, whose (n +1, n +1) entry is −1, and whose other known entries are 0. Denote 
the unknown entries of X by x1, . . . , xn. Then the determinant of Xn is −1 −x2

1 · · ·−x2
n
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(this is perhaps easiest to see via cofactor expansion along the bottom row). Note that 
this polynomial is strictly negative for all real x1, . . . , xn. !

Now we want to show that K◦
n∪K◦

1 is minimally full-rank typical with respect to our 
three graph operations that preserve the property of being full-rank typical. Note that 
since K◦

n ∪K◦
1 has an isolated vertex, it cannot be constructed by adding a suspension 

vertex to a smaller graph, nor via a graph join. So we only need to show that no subgraph 
obtained by edge deletion is full-rank typical. To establish this, we need Lemma 6.8, which 
gives us a convenient description of the generic real (K◦

n ∪K◦
1 )-partial matrices that are 

completable only to full rank.

Lemma 6.8. Let X be a generic real K◦
n ∪ K◦

1 -partial matrix. Let A denote the fully 
specified n × n submatrix of X corresponding to K◦

n and let λ denote the diagonal entry 
corresponding to K◦

1 . Then X can only be completed to a full rank matrix if and only if 
A is positive definite and λ < 0 or A is negative definite and λ > 0.

Proof. By the rank additivity of Schur complements [40, Section 0.9], the completion 
rank of X is n + 1 if and only if λ is not in the range of the quadratic form defined 
by A. Recall that the range of a quadratic form of a matrix A is R if and only if A
is indefinite, R≥0 if and only if A is positive semidefinite, and R≤0 if and only if A is 
negative semidefinite. !

Proposition 6.9. No proper subgraph of K◦
n ∪K◦

1 is full-rank typical.

Proof. Let G be a proper subgraph of K◦
n∪K◦

1 . If G lacks any loops, then Proposition 6.3
implies that G is not full-rank typical, so assume G has all loops. Then any G-partial 
matrix has some unspecified off-diagonal entry in the upper-left block. Choose one such 
entry, and randomly specify all other unknown entries in the upper-left block. By setting 
this yet unspecified entry to be sufficiently large or sufficiently negative, we can ensure 
that the upper-left block is neither positive definite, nor negative definite. Lemma 6.8
then implies that a completion to rank n exists. !

Given the results in this section, one can construct many examples of full-rank typical 
graphs by starting with an instance of K◦

n ∪ K◦
1 , adding edges and looped suspension 

vertices, and taking joins with other similarly constructed graphs.

Problem 6.10. Characterize semisimple graphs that are full-rank typical.

Problem 6.10 was recently solved by Lee and the first two authors [3], who showed 
that G is full-rank typical if and only if the complement of G is bipartite.
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6.2. Many typical ranks

Let Gn := (K◦
1 ∪ K◦

1 ) + · · · + (K◦
1 ∪ K◦

1 ) denote the graph obtained by taking the 
join of n copies of K◦

1 ∪K◦
1 . So Gn is the complete n-partite graph on n parts with two 

elements each and every loop. It has 2n vertices and 
(2n

2
)
−n +2n = 2n2 edges (including 

the loops). It follows from Propositions 6.7 and 6.6 that Gn is full-rank typical – i.e. its 
maximum typical rank is 2n. The main result of this subsection is to show that the 
generic completion rank of Gn is 2n −

⌊ 1
2
(√

1 + 8n− 1
)⌋

, thus establishing that Gn

exhibits many typical ranks (Theorem 6.13). Note that up to permutation of rows and 
columns, the partial symmetric matrix corresponding to Gn has all entries known aside 
from the anti-diagonal.

Proposition 6.11. The generic completion rank of G(k2+k)/2 is k2.

Proof. A dimension count shows that sgcr(G(k2+k)/2) ≥ k2 because the codimension of 
the variety of k2 +k symmetric matrices of rank at most k2−1 is 

(k+2
2
)
, which is greater 

than the dimension 
(k+1

2
)

of the kernel of the projection πG(k2+k)/2 . To establish the 

reverse inequality we will show that the projection map from the tangent space of Sk2+k
k2

at a particular point onto the non-anti-diagonal entries is one-to-one. By Lemma 6.2, 
parts (a) and (c), it suffices to find a linear subspace L ⊆ Ck2+k of dimension k such 
that if a symmetric matrix B defines a quadratic form that is identically zero on L and 
all non-anti-diagonal entries of B are zero, then B is zero.

We index the coordinates of Ck2+k by two disjoint copies of [k] 0
([k]

2
)
, which is possible 

because 2
(k+1

2
)

= k2 + k. We write xi, xij , xi∗ , and xij∗ for these coordinates, which we 
order essentially lexicographically as

x1, . . . , xk, x12, . . . , x(k−1)k, x1∗ , . . . , xk∗ , x12∗ , . . . , x(k−1)k∗ .

Let L be the subspace defined by xi = xi∗ , xij = xij∗ and xij = xi + xj . Then L is 
k-dimensional subspace of Ck2+k. Let B be a symmetric matrix whose entries off the 
anti-diagonal are all zero. Then the quadratic form that B defines with our labels is

xTBx =
∑

i

bixixi∗ +
∑

ij

bijxijxij∗ .

Restricting to L, we have

xTBx =
∑

i

cix
2
i +

∑

ij

cijxixj

where cij = 2bij and ci = bi +
∑

j bij . Therefore xTBx = 0 for all x ∈ L implies that 
ci, cij are all zero. Since the map from the b’s to the c’s is invertible, this implies that 
the bs are all zero. So B is the zero matrix. !
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The general case will follow easily from the lemma below. Its proof is very similar to 
that of its nonsymmetric analogue (Lemma 4.11).

Lemma 6.12. Let G = ([n], E) be a semisimple graph such that the differential of the 
projection πG restricted to variety of symmetric matrices of rank at most r is generically 
injective. Define G′ = ([n + 1], E ∪ [n] × {n + 1}) by adding a suspension vertex and its 
corresponding loop edge. Then the following statements hold.

(1) The differential of the projection πG′ restricted to the variety of (n + 1) × (n + 1)
symmetric matrices of rank at most r + 1 is generically injective.

(2) If G is maximal among all semisimple graphs on n vertices of generic completion 
rank r then G′ is maximal among all semisimple graphs on n + 1 vertices of generic 
completion rank r + 1.

Proof. Let M ∈ Sn+1
r+1 be a generic (n + 1) symmetric matrix of rank r + 1. Let A ∈

TMSn+1
r+1 be a tangent vector to the variety of symmetric matrices of rank at most r + 1

at M such that πG′(A) = 0. We will show that this implies A = 0. Let v1, . . . , vn−r be 
a generic basis of kerM . By Lemma 6.2(c), A ∈ TMSn+1

r+1 is equivalent to the condition 
that vTi Avj = 0 for all 1 ≤ i, j ≤ n − r. Since the last row and column of a G′-partial 
matrix are completely specified by construction of G′, πG′(A) = 0 implies that the last 
row and column of A are zero. Let v′i denote the vector obtained by deleting the last entry 
from vi and let A′ denote the symmetric matrix obtained by deleting the last row and 
column from A. Then A ∈ TMSn+1

r+1 is equivalent to (v′i)TA′v′j = 0 for all 1 ≤ i, j ≤ n −r. 
So A′ ∈ TNSn

r for some symmetric matrix N whose kernel is spanned by v′1, . . . , v
′
n−r

which exists by Lemma 6.2(a). Note that πG(A′) = 0. Since N is a generic matrix of 
rank r, the differential of πG restricted to Sn

r is injective on TNSn
r , which shows A′ = 0

and therefore A = 0.
Again, the second statement follows from the first by a dimension count as in the 

proof of Lemma 4.11. !

Theorem 6.13. Let Gn be the graph obtained as a join of n copies of K◦
1 ∪ K◦

1 . The 
generic completion rank of Gn is

2n−
⌊1

2
(√

1 + 8n− 1
)⌋

or equivalently, sgcr(Gn) = 2n − k where k is the least integer such that 
(k+1

2
)
≥ n. 

Moreover, every integer between sgcr(Gn) and 2n is a typical rank of Gn.

Proof. The “moreover” clause follows from Propositions 6.1, 6.6, and 6.7. The case n =
(k2 + k)/2 is Proposition 6.11. So assume n = (k2 + k)/2 + a with 1 ≤ a ≤ k. Note that 
the proposed value for sgcr(Gn) is a lower bound by a dimension count (Lemma 6.2(b)). 
We show that it is also an upper bound. Let G′

n denote the graph obtained by adding 2a
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suspension vertices (with loops) to Gn. Since G(k2+k)/2 is maximal of generic completion 
rank k2, Lemma 6.12 implies that G′

n is maximal of generic completion rank k2+2a. Since 
sgcr(Gn) ≤ sgcr(G′

n), we now have sgcr(Gn) ≤ k2 + 2a. Plugging in n = (k2 + k)/2 + a

to the proposed expression for sgcr(Gn) gives

k2 + k + 2a−
⌊1

2
(√

(2k + 1)2 + 8a− 1
)⌋

.

Note that the expression inside the 3·4 is k for all 1 ≤ a ≤ k. Hence the proposed value 
for sgcr(Gn) is equal to k2 + 2a. !

Corollary 6.14. The graph Gn exhibits 1 +
⌊1

2
(√

1 + 8n− 1
)⌋

typical ranks.
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