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Estimating Structurally Similar Graphical Models
Saurabh Sihag and Ali Tajer, Senior Member, IEEE

Abstract—This paper considers the problem of estimating
the structure of structurally similar graphical models in high
dimensions. This problem is pertinent in multi-modal or multi-
domain datasets that consist of multiple information domains,
each modeled by one probabilistic graphical model (PGM), e.g., in
brain network modeling using different neuroimaging modalities.
Induced by an underlying shared causal source, the domains,
and subsequently their associated PGMs, can have structural
similarities. This paper focuses on Gaussian and Ising models
and characterizes the information-theoretic sample complexity
of estimating the structures of a pair of PGMs in the degree-
bounded and edge-bounded subclasses. The PGMs are assumed
to have p nodes with distinct and unknown structures. Their
similarity is accounted for by assuming that a pre-specified set
of q nodes form identical subgraphs in both PGMs. Necessary
and sufficient conditions on the sample complexity for a bounded
probability of error are characterized. The necessary conditions
are information-theoretic (algorithm-independent), delineating
the statistical difficulty of the problem. The sufficient conditions
are based on deploying maximum likelihood decoders. While the
specifics of the results vary across different subclasses and pa-
rameter regimes, one key observation is that in specific subclasses
and regimes, the sample complexity varies with p and q according
to to Θ(log(p − q)). For Ising models, a low complexity, online
structure estimation (learning) algorithm based on multiplicative
weights is also proposed. Numerical evaluations are also included
to illustrate the interplay among different parameters on the
sample complexity when the structurally similar graphs are
recovered by a maximum likelihood-based graph decoder and
the proposed online estimation algorithm.

Index Terms—Structure learning, probabilistic graphical mod-
els, Gaussian, Ising, high-dimensional estimation.

I. INTRODUCTION

Probabilistic graphical models (PGMs) are commonly used

for capturing the conditional interdependence in probabilistic

databases or random fields [1] and [2]. Each vertex of a PGM

represents a random variable. The edge connectivity structure

encodes the statistical dependence of these random variables,

and the joint distribution of the random variables is fully

characterized by the edge structure and parameters of the

graph. PGMs have a growing list of applications as various

technological, biological, and social systems are growing as

complex systems of interconnected platforms in which highly

structured data is constantly generated, communicated, and
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processed for various inferential and decision-making pur-

poses.

Structurally similar networks. In some domains, the data is

derived from multiple sources, owing to the proliferation of

sensing technologies. Graphically modeling such databases,

as a result, renders multiple PGMs, each corresponding to

one data source. An example is brain network modeling us-

ing different neuroimaging modalities. The interplay between

functional and structural connectivities of the brain can be

leveraged to understand intrinsic brain functioning [3], [4]

and relate it to different pathology and gender-related differ-

ences [5]. Another example is genomics, in which multiple

genetic networks can be organized to form a multiplex net-

work. Multiplex networks are often adopted to represent nodes

that have similar inter-relationships in different contexts. For

instance, a genetic network can be characterized by multiple

gene expression measurements, essentially, a phylogenetic

profile, a neighborhood in the interaction network, biological

pathways involved, and a protein domain profile. Each type

of measurement can form unique or similar links in different

genes [6]. Multimodal data analysis strategies are also relevant

in behavioral analysis [7]–[10]. For instance, the voting pat-

terns of the members of the US Senate for various categories

of bills can be modeled as a set of networks [7], where

the graphical structures revealed common dependencies in

voting patterns across different political affiliations. Emotion

analysis frameworks that leverage different modalities such

as language, visuals, and acoustics have also been investi-

gated [8] and [9].

Structural similarity. Induced by a shared underlying physi-

cal or biological cause, the structures of graphical models de-

rived from different sources are not always distinct, and often

they bear similarities. For instance, different gene networks

representing the same cancer subtypes share similar edges

across all subtypes and have unique edges corresponding to

each subtype [11]. Figure 1 illustrates the causal features and

the two induced networks with structurally similar clusters.

In the neuroimaging application, consider diffusion tensor

imaging (DTI) and functional magnetic resonance imaging

(fMRI) for brain imaging. DTI and fMRI images of a brain

represent different structures of the network underlying the

brain [12], and the conformity between the two images can be

leveraged to assess an individual’s cognitive health [13].

In this paper, we characterize the sample complexity of esti-

mating the structure of structurally similar graphical models1,

in which the graph pair can share identical local structures ac-

counting for their underlying similarity. We establish necessary

1The problem of estimating the structures of graphical models is also
referred to as model-based structure learning, especially in machine learning
literature. In this paper, sometimes these terms are used interchangeably.
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Fig. 1. Two graphs with partially similar structures. For both graphs, the
causal features induce identical internal edge structures for purple nodes (p =
6, q = 3).

conditions (information-theoretic) and sufficient conditions on

the sample complexity in high-dimensional Gaussian and Ising

models under the bounded error probability criterion. The

necessary conditions are algorithm-independent and establish

the statistical difficulty of a problem. The sufficient condi-

tions are characterized by adopting maximum likelihood (ML)

decoders. While the problem of graphical model selection is

NP-hard [14], the problem of learning Markov random fields

(MRF) is well-posed and tractable strategies for inference have

been studied in [15]–[17].

A. Related Literature

Information-theoretic analysis establishes the algorithm-

independent guarantees on estimating the structures of graph-

ical models. The existing information-theoretic studies on

graphical models include those of [18]–[20], which analyze

the sample complexity for selecting the model of a given graph

in various subclasses of Ising models. Specifically, [18] estab-

lishes the necessary and sufficient conditions on the number

of samples for the exact recovery of the Ising models under

regimes characterized by a bounded degree and a bounded

number of edges. These studies are generalized in [21] to

establish necessary conditions for set-based graphical model

selection, in which the graph estimator outputs a set of poten-

tially true graphs instead of a unique graph. Necessary condi-

tions for recovering girth-bounded graphs and path-restricted

graphs are analyzed in [19]. The problem of graphical model

selection for various subclasses of Ising models under the cri-

terion of approximate recovery is investigated in [20], in which

a certain number of missed edges or incorrectly included edges

are tolerated in the estimated graph structure. Approximate

recovery bounds on the sample complexity are characterized

for Ising and Gaussian models without considering the effect

of edge weights in [22]. The problems of structure recovery

and inverse covariance matrix estimation for Gaussian models

are studied in [23], where information-theoretic bounds on

the sample complexity are delineated. Similarly, information-

theoretic bounds are established for the class of power-law

graphs in [24].

Algorithm-independent bounds on the sample complexity

have also been investigated for inference tasks other than

model selection in graphical models. The problem of de-

tecting whether two Markov network structures are identical

or different is investigated in [25], and its sample com-

plexity is characterized. The problem of property testing for

high-dimensional Ising models is investigated in [26], where

information-theoretic limits for testing graph properties such

as connectivity, cycle presence, and maximum clique size are

established. In [27], the problem of density estimation using

the data from the Ising model is analyzed, and the minimax

rate of estimation is analyzed. Finally, active sampling strate-

gies to detect the true Markov random field model are studied

in [28]–[30].

The algorithmic aspects of high-dimensional model estima-

tion in different subclasses of the Ising model are investigated

in [15]–[17], [31]–[33]. Algorithms based on conditional in-

dependence testing for Ising models with correlation decay

are studied in [31]. Estimating the structures of tree-structured

Ising models is analyzed in [32]. Various algorithmic frame-

works for Ising models with restrictions on the graph degree

are proposed in [15]–[17], [33]. Specifically, Ising models with

bounds on the average degree are studied in [33], where the

correlation decay properties of Ising models are leveraged for

the design of the algorithms. A greedy approach for estimating

structures is studied in [16]. A convex optimization framework

for structure estimation is analyzed in [17]. An online learning-

based algorithm designed based on the principles of prediction

with expert advice is studied in [15].

Estimating the structures of structurally similar graphical

models, which is the problem that we focus on in this paper,

is studied substantially from an algorithmic perspective [7],

[11], [34]–[39]. Specifically, an empirical Bayes method is

studied in [11] to identify interactions that are unique to

each class and that are shared across all classes. Graphical

Lasso-based algorithms are investigated in [34] and [35]–

[37] for joint inference of Gaussian graphical models. An

optimization-based approach to the joint estimation of the

graph structures using discrete data is studied in [7]. A

Bayesian approach to jointly estimate Gaussian graphical

models is investigated in [38], where the models with shared

structures are identified from the data groups, and their relative

similarity is leveraged for inference. Approximately estimating

the structures of partially similar Ising models has been studied

from an information-theoretic perspective in [40], [41] where

algorithm-independent bounds on the sample complexity are

investigated.

B. Contributions

The existing studies on structure estimation (learning) in

multiple graphical models focus on empirical or algorithmic

frameworks for graph estimation or selection. Complementary

to these studies, in this paper, we characterize the information-

theoretic bounds on the sample complexity of jointly esti-

mating the two partially similar graphs in the edge-bounded

and degree-bounded subclasses of Ising models as well as

Gaussian models. These results provide algorithm-independent

necessary conditions on the sample complexity for an arbitrary

degree of reliability in the recovered graphs for an exact
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recovery criterion. Besides the information-theoretic bounds,

we analyze an ML-based graph decoder for the exact recovery

of partially similar graphs in different subclasses. The analysis

of ML-based graph decoders establishes sufficient conditions

on the sample complexity.

Based on the necessary and sufficient conditions, we in-

vestigate the variation in the number of samples necessary

and sufficient for structure recovery with respect to structural

similarity. We also analyze the asymptotic scaling behavior of

the bounds on sample complexity. Our analysis reveals that for

two graphs with p nodes and the structural similarity spanning

q < p nodes, the sample complexity varies with p and q
according to log(p − q) in most regimes. This indicates how

the sample complexity improves as the structural similarity

increases. Our results, in its special cases when p = q, reduce

to the known results for estimating a single graphical model

in different subclasses of Ising models and Gaussian models

established in [18] and [23], respectively. Although an ML

decoder is optimal for structure estimation under the exact

recovery criterion, it may be intractable to implement for

general graphs. Therefore, we also propose a computationally

efficient joint structure estimation algorithm for structurally

similar Ising models that uses similar principles of the Hedge

algorithm as in [15]. We also evaluate the performance of our

algorithm and ML decoder in numerical experiments.

Besides the joint estimation results, to the best of our

knowledge, there exist no parallel results on the sufficient

conditions for recovering single graphs in certain classes of

Gaussian models (Theorems 8, 9, and 10).

C. Connection to the Results on Single-graph Estimation

We investigate the connection between the sample complex-

ities of jointly recovering two structurally similar graphs and

recovering them independently. In the Gaussian models, we

show that joint recovery strictly improves upon independent

recovery. This is established by showing that our sufficient

condition for joint recovery is strictly smaller than the neces-

sary condition for independent recovery. Furthermore, noting

that these conditions (even for independent recovery) are

not tight (and quite loose in a wide range of settings), the

actual performance gains are considerably higher than the gap

between the pertinent sufficient and necessary conditions.

We note that the results are provided for the general non-

asymptotic regimes of the graph size. By focusing on the

extremities of graph similarity, we can recover the sample

complexity of learning two identical single graphs. However,

the converse is not valid. The analysis of single graphs

provides no insight into the impact of structural similarity on

sufficient or necessary conditions of joint structure learning.

Specifically, one cannot predict the regimes in terms of graph

similarity parameters or their presence in the sample complex-

ity results from learning single graphs.

We conclude by noting that while there are close con-

nections between the joint and single-graph recovery results,

there are significant differences. Specifically, the two-graph

estimation problem is an independent inference problem that

has been investigated empirically, and the sample complexity

results cannot be recovered from the known results for the

single-graph setting.

II. BACKGROUND AND PROBLEM FORMULATION

A. Markov Random Fields

Consider two sets of random variables X1
△
= [X1

1 , . . . , X
p
1 ]

and X2
△
= [X1

2 , . . . , X
p
2 ] taking values in the set X p. Ran-

dom variables X1 and X2 form Markov random fields with

respect to two distinct undirected graphs G1
△
= (V,E1) and

G2
△
= (V,E2), respectively. These graphs are specified over

the same set of vertices V
△
= {1, . . . , p}, and the vertices

in Gi are joined by the set of edges Ei ⊂ V × V . The set of

edges in Ei encodes the conditional independence among the

random variables Xi. The structures in both graphs G1 and G2

(i.e., edge sets E1 and E2) are unknown. Finally, we denote

the joint probability measure of Xi by Pi.

Ising Markov Random Fields. In the Ising model, the

random variables associated with vertices are binary, and

Xi ∈ {−1, 1}p. The joint probability mass function (pmf)

of the random variables Xi
△
= [X1

i , . . . , X
p
i ] associated with

probability measure Pi and graph Gi is given by

pi(xi)
△
=

1

Zi(λi)
exp





∑

(u,v)∈Ei

λuvi xui x
v
i



 , (1)

where [λi]uv
△
= λuvi , and Zi(λi) is the partition function

given by

Zi(λi)
△
=

∑

xi∈{−1,1}p

exp





∑

(u,v)∈Ei

λuvi xui x
v
i



 . (2)

Parameter λuvi ∈ R+ specifies the inter-dependence between

Xu
i and Xv

i conditioned on all other random variables asso-

ciated with nodes s ∈ V \{u, v} in graph Gi. As discussed

in [18] and shown in our analyses, the sample complexity for

recovering the structure of the graphs depends on the follow-

ing two quantities, which in turn depend on the interaction

parameters λuvi .

Definition 1 (Minimum interaction). We define the minimum

interaction constant as

λ
△
= min

i∈{1,2}
min

(u,v)∈Ei

λuvi . (3)

This parameter captures the weakest interactions between any

two interacting random variables. As illustrated in [18], in the

asymptote of large or small values of λ, recovering the graph’s

structure from its samples becomes increasingly more difficult.

Definition 2 (Maximum neighborhood weight). We define the

maximum neighborhood weight as

ϑ
△
= max

i∈{1,2}
max
u∈V

∑

v:(u,v)∈Ei

λuvi . (4)

Gauss-Markov Random Fields. In the Gauss-Markov ran-

dom fields, random variables Xi = [X1
i , . . . , X

p
i ] have a

joint Gaussian distribution with the joint probability density
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Fig. 2. Two graphs with partially similar structures. Yellow nodes in both
graphs have identical internal edge structures (p = 7, q = 4).

function (pdf) associated with probability measure Pi and

graph Gi given by

fi(xi) =
det(Pi)

1

2

(2π)
p
2

exp

(

−1

2
x
T

i Pixi

)

, (5)

where Pi is the precision matrix associated with Gi. The off-

diagonal entries of Pi represent the edge structure of Gi, i.e.,

the element at a coordinate (u, v) in Pi, given by Pi(u, v),
is non-zero if and only if (u, v) ∈ Ei. Structure recovery

in the Gaussian model depends on the quantity formalized

next, which reflects the scale-invariant minimum value of the

elements in matrix Pi.

Definition 3 (Minimum partial correlation). We define the

minimum partial correlation factor as

ρ
△
= min

i∈{1,2}
min

(u,v)∈Ei

| Pi(u, v) |
√

Pi(u, u)Pi(v, v)
. (6)

B. Graph Similarity Models and Classes

Our objective of structure estimation is using the data (i.e.,

realizations of X1 and X2) to recover the unknown structures

of G1 and G2. In this subsection, we formalize the similarity

models and the classes of the Ising and Gaussian graphical

models on which we will be focusing in this paper. Induced

by an underlying shared system that generates both datasets,

the two graphical models are assumed to have structural

similarities. Specifically, it is assumed that they have identical

structures in a pre-specified cluster of nodes denoted by

Vs ⊆ V . This means that the internal structures of the sub-

graphs formed by nodes Vs are identical in both graphs. The

rest of the two graphs may or may not have similarities. An

example of a pair of structurally similar graphs is shown in

Fig. 2. Graph similarity is formalized next.

Definition 4 (q-similar graphs). Graphs G1 and G2 are said

to be q-similar, for some q ∈ [p], when the size of the shared

cluster Vs is q, i.e., |Vs| = q.

Classes of Ising models. We denote the general class of

Ising models by the minimum interaction constant λ and the

maximum neighborhood weight ϑ by I(λ, ϑ). Accordingly, we

denote the class of pairs of q-similar Ising models by Iq(λ, ϑ).
In this paper, we focus on the following subclasses of Iq(λ, ϑ).

• Degree-bounded class Id
q (λ, ϑ). This class contains all q-

similar pairs of Ising graphical models G1 and G2, where

each graph has the maximum degree d.

• Edge-bounded class Ik
q,γ(λ, ϑ). This class contains all q-

similar pairs of Ising graphical models G1 and G2, where

each graph has at most k edges and the shared cluster

Vs, has γk edges, where γ ∈ [0, 1].

In Ik
q,γ(λ, ϑ), we introduce γk to account for scenarios where

not all k edges may be accommodated inside the shared region

due to the restrictions imposed by the number of nodes q and

let our analyses guide the appropriate regimes for γ in the

sample complexity.

Classes of Gaussian models. We denote the class of q-similar

Gaussian models with minimum partial correlation ρ by Gq(ρ).
In this paper, we consider the following subclass of Gq(ρ).

• Degree-bounded class Gd
q (ρ). This class contains all q-

similar pairs of Gaussian graphical models G1 and G2,

where each graph has the maximum degree d.

• Edge-bounded class Gk
q (ρ). This class contains all q-

similar pairs of Gaussian graphical models G1 and G2,

where each graph has at most k edges.

C. Structure Estimation Criterion

For a given class Sq ∈ {Id
q (λ, ϑ), Ik

q,γ(λ, ϑ),Gd
q (ρ),Gk

q (ρ)}
the nature selects a pair of graphical models from Sq . Our

estimation objective consists of collecting n samples from

both graphs, denoted by x
n
1 and x

n
2 and jointly forming

estimates Ê1 and Ê2 corresponding to the structures E1 and

E2, respectively. This process is formalized next.

Definition 5 (Graph decoding). We define a graph decoder ψ
as a function that maps the data (xn

1 ,x
n
2 ) to a pair of graphs

in Sq , i.e.,

ψ : Xn×p ×Xn×p → Sq , (7)

where X = {−1,+1} for the Ising models and X = R for

the Gaussian models.

To capture the accuracy of a decoder ψ , we adopt the exact

recovery criterion. Specifically, for a generic class of q-similar

graph pairs Sq , we define P(Sq) as the maximal probability

of error in the exact recovery of (E1, E2), i.e.,

P(Sq)
△
= max

(G1,G2)∈Sq

P(ψ(xn
1 ,x

n
2 ) 6= (E1, E2)) , (8)

where the probability is evaluated with respect to both mea-

sures P1 and P2. We are interested in analyzing sample

complexity, that is the number of samples n required for

achieving a target decision reliability P(Sq).

Definition 6 (Sample complexity). We define n(q, ε) as the

number of samples required for recovering a pair of q-similar

graphs in the class Sq such that P(Sq) ≤ ε.
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We are interested in analyzing the scaling behavior of n(q, ε)
with respect to q and ε, as well as parameters relevant to each

specific model (i.e., λ, ϑ in Ising and ρ in Gaussian) and each

subclass (i.e., graph size p, degree bound d, and edge bound k).

III. MAIN RESULTS: ISING MODELS

In this section, we provide the necessary and sufficient

conditions on the sample complexity n(q, ε) for different

models and their subclasses of Ising models. Specifically,

we provide algorithm-independent necessary conditions on

the sample complexity for recovering the structures with the

desired reliability. These sample complexity analyses establish

the performance benchmarks for any structure estimation

algorithm, presented in Section III-A. Furthermore, we also

provide the counterpart sufficient conditions by adopting max-

imum likelihood (ML) decoders. These results are provided in

Section III-B.

A. Necessary Conditions for Ising Models

We start by providing the necessary condition on the sample

complexity n(q, ε) that any decoder requires to ensure that

P(Sq) ≤ ε in Ising models. Throughout this section, we

use the shorthand n for n(q, ε). We provide the necessary

conditions for the exact recovery and remark on the scaling

behavior of the sample complexity with respect to the various

parameters involved. We start with the degree-bounded sub-

class Id
q (λ, ϑ), for which, depending on the relative scaling

behavior of λ with respect to the degree bound d we have

different necessary conditions.

Theorem 1 (Necessary condition for class Id
q (λ, ϑ)). Con-

sider a pair of q-similar graphs G1 and G2 in class Id
q (λ, ϑ).

Any graph decoder ψ that achieves P(Id
q (λ, ϑ)) ≤ ε, has the

following sample size requirements:

1) In the regime λ = O (1/d), the sample size n satisfies:

a) if
(

q
2

)

≤
(

p−q
2

)2
,

n ≥ (1− ε)

4λ tanh(λ)

(

4 log
p− q − 1√

2
− 1

)

, (9)

b) if
(

q
2

)

>
(

p−q
2

)2
,

n ≥ (1− ε)

4λ tanh(λ)

(

2 log
q√
2
− 1

)

. (10)

2) In the regimes λ = Θ(1) and λ = Θ(d), the sample size

n satisfies:

a) if q + 2
√

q
d ≤ p,

n ≥ (1− ε) · e
ϑ−λ

8ϑ

(

2 log
d(p− q)

4
− 1

)

,

(11)

b) if q + 2
√

q
d > p,

n ≥ (1− ε) · e
ϑ−λ

8ϑ

(

log
dq

4
− 1

)

. (12)

Proof. See Section V-A.

This theorem specifies how the sample complexity scales

with respect to varying λ. Next, we discuss the impact of

other parameters involved (i.e., p, q, and d) on the necessary

conditions for the sample complexity. It is noteworthy that

the conditions in (10) and (12) hold only when graphs G1

and G2 have a high degree of similarity (i.e., q ≈ p). For

instance, when p ≥ 128, the condition in (10) holds only

when q ≥ 0.9p. This is further amplified in (12) due to the

additional role that d plays in making the gap between q
and p smaller. Hence, except for the case of almost identical

graphs, the necessary conditions on the sample complexity

are specified by (9) and (11). We remark that the extreme

cases are of less interest since, in these settings, the structure

estimation objective reduces to the well-investigated structure

estimation in a single graph. Motivated by this, for the rest of

the discussions, unless stated explicitly, we focus on analyzing

(9) and (11). We start by evaluating the impact of increasing

similarity level q on the sample complexity.

Corollary 1 (Sample complexity versus q). Consider a

pair of q-similar graphs G1 and G2 in class Id
q (λ, ϑ) with

increasing similarity q. For any graph decoder ψ that

achieves P(Id
q (λ, ϑ)) ≤ ε, the sample complexity scales with

respect to q and p as Ω(log(p− q)).

This corollary indicates that as the similarity level of the

two graphs increases, the sample complexity requirement

decreases. This signifies the gain of jointly recovering both

structures instead of treating them in isolation, that is, for

recovering the two structures separately, the sample complex-

ity scales with Ω(log p), while when recovering them jointly,

it reduces to Ω(log(p − q)). Next, we evaluate the effect of

increasing maximum degree d on the sample complexity.

Corollary 2 (Sample complexity versus d.). Consider a pair

of q-similar graphs G1 and G2 in class Id
q (λ, ϑ) with an

increasing maximum degree d. Any graph decoder ψ that

achieves P(Id
q (λ, ϑ)) ≤ ε, has the following sample size re-

quirements:

1) In the regime λ = O (1/d), the sample complexity scales

with respect to d as Ω(d2).
2) In the regimes λ = Θ(1) and λ = Θ(d), the sample

complexity scales with respect to d exponentially.

We note that the necessary condition on the sample com-

plexity has a non-exponential behavior in d in the regime

λ = O (1/d). This observation is consistent with that for

recovering single graphs in [18]. Next, we provide the coun-

terpart necessary conditions for the edge-bounded class of pair

of Ising models. For this purpose, we define

γ̄
△
= 1− γ . (13)

Theorem 2 (Necessary condition for class Ik
q,γ(λ, ϑ)). Con-

sider a pair of q-similar graphs G1 and G2 in class Ik
q,γ(λ, ϑ).

Any graph decoder ψ that achieves P(Ik
q,γ(λ, ϑ)) ≤ ε, has the

following sample size requirements:

1) In the regimes k = o(p) or λ = O(1/
√
k), the sample

size n satisfies:
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a) if
(

q
2

)

≤
(

p−q
2

)2
,

n ≥ (1− ε)

4λ tanh(λ)

(

4 log
p− q − 1√

2
− 1

)

,

(14)

b) if
(

q
2

)

>
(

p−q
2

)2
,

n ≥ (1− ε)

4λ tanh(λ)

(

2 log
q − 1√

2
− 1

)

. (15)

2) In the regime k = Ω(p) and λ satisfies either λ = Θ(1)
or Θ(

√
k), the sample size n satisfies:

a) if γ > 0.5 and 2λ2k < log2(γ/γ̄)
(1−2

√
γγ̄)

,

i) if k ≤ 4γ
γ̄2 ,

n ≥ (1− ε)

32 exp(2λ) sinh(λ)

× exp(λ
√
kγ)

λ
√
kγ

·
(

log
kγ

4
− 1

)

, (16)

ii) if k > 4γ
γ̄2 ,

n ≥ (1− ε)

32 exp(2λ) sinh(λ)

× exp(λ
√
kγ)

λ
√
kγ

·
(

2 log
kγ̄

4
− 1

)

. (17)

b) if γ ≤ 0.5, 2λ2k ≥ log2(γ̄/γ)
(1−2

√
γγ̄)

, and k > 4γ
γ̄2 ,

n ≥ (1− ε)

32 exp(2λ) sinh(λ)

× exp(λ
√
kγ̄)

λ
√
kγ̄

·
(

2 log
kγ̄

4
− 1

)

. (18)

Proof. See Section V-B.

We observe that in the regime that either λ satisfies λ =
O(1/

√
k) or k satisfies k = o(p), the sample complexity

necessary condition follows the same structure as in the regime

λ = O(1/d) in the degree-bounded class. In all other cases, the

sample complexity is characterized by the maximum number

of edges in the non-shared clusters, i.e., γ̄k, and the number of

edges in the shared cluster, i.e., γk. The results in (16), (17),

and (18) provide the necessary conditions for different regimes

of interest. However, the regimes listed in the theorem are

not exhaustive. We remark that the regimes excluded from

Theorem 2 when k = Ω(p) are either too restrictive or their

corresponding sample complexity results are superseded by

that in (14) and (15). For instance, the condition k > 4γ
γ̄2

in (18) is satisfied by all settings with k > 8 and, therefore,

the setting with the complementary condition k ≤ 4γ
γ̄2 when

γ ≤ 0.5 is too restrictive and not of interest. An exhaustive

discussion of all possible regimes and their implications on

the sample complexity is included in Section V-B. Similar to

the observation in the regime λ = O(1/
√
k), we note that

in the latter regimes, the sample complexity is dominated

by the characteristics of the shared cluster (in this case,

γk) only for extensively similar graphs such that γ > 0.5.

However, for sufficiently large k such that k > 4γ
γ̄2 , the sample

complexity in (17) includes logarithmic dependence on γ̄k,

although the exponential factor still dominates the sample

complexity in γk. We note that except for the unlikely cases

of extensively identical graphs with most edges in the shared

cluster, the necessary condition on the sample complexity is

captured by (18), which is of interest to understand the effect

of structural similarity on sample complexity. Therefore, we

focus our subsequent discussions on (18). Next, we further

analyze (14) and (18), and start by evaluating the effect of

similarity levels q and γ on the sample complexity.

Corollary 3 (Sample complexity versus q and γ.). Consider

a pair of q-similar graphs G1 and G2 in class Ik
q,γ(λ, ϑ)

with increasing number of edges in the shared cluster γk
and similarity level q. Any graph decoder ψ that achieves

P(Ik
q,γ(λ, ϑ)) ≤ ε has the following sample size requirements:

1) In the regime k = o(p), the sample complexity scales

with respect to q as Ω(log(p− q)).
2) In the regime k = Ω(p), the sample complexity scales

with respect to γ as Ω
(

exp(
√
kγ̄)√

kγ̄
log kγ̄)

)

.

This indicates that for sparse graphs, the sample complexity

is primarily characterized by q, and as the similarity level

increases, the sample complexity decreases. For k = Ω(p),
the sample complexity is characterized by γ̄k, which is the

maximum number of edges in the non-shared cluster in each

graph, and as γ increases, the sample complexity decreases.

These observations signify the gain of jointly recovering both

structures instead of treating them in isolation, that is for

recovering the two structures separately the sample complexity

scales with Ω(log p) and Ω(e
√
k/
√
k log k) in sparse and

non sparse regimes, respectively, while when recovering them

jointly, it reduces to Ω(log(p − q)) and Ω
(

e
√

kγ̄

√
kγ̄

log kγ̄)
)

,

respectively. Next, we evaluate the effect of an increasing

number of edges k on the sample complexity.

Corollary 4 (Sample complexity versus k.). Consider a pair

of q-similar graphs G1 and G2 in class Ik
q,γ(λ, ϑ) with increas-

ing number of edges k. Any graph decoder ψ that achieves

P(Ik
q,γ(λ, ϑ)) ≤ ε has the following sample size requirements:

1) In the regime λ = O(1/
√
k), the sample complexity

scales with respect to k as Θ(k).
2) In the regimes λ = Θ(1) and λ = Ω(

√
k), the sample

complexity scales with respect to k as Ω(e
√
k/
√
k).

From Corollary 4, we note that the necessary condition on

the sample complexity for jointly recovering the structures

of the two graphs has a non-exponential behavior in k. This

observation is consistent with that for recovering the structure

of a single graph in this regime [18].

Remark 1. We remark that the necessary conditions on the

sample complexity in different regimes in Theorem 2 are

independent of the maximum weight ϑ. However, this is an

artifact of the fully-connected ensembles with k edges used for

recovering the necessary conditions in the regimes λ = Θ(1)
and λ = Θ(

√
k), for which we have ϑ = λ

√
k in the ensemble

constructions for the edge-bounded subclass.
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B. Sufficient Conditions for Ising Models

In this section, we provide sufficient conditions on the

number of samples for model selection of different classes

of Ising models. The sufficient conditions for exact recovery

of graph models in or a generic class of q-similar graph pairs

Sq are derived based on the large deviations analysis of an

ML-based graph decoder given by

Ψ(xn
1 ,x

n
2 ) = arg max

(G1,G2)∈Sq

fG1,G2
(xn

1 ,x
n
2 ) , (19)

where fG1,G2
(xn

1 ,x
n
2 ) is the joint pmf of the data samples x

n
1

and x
n
2 . Note that since all q-similar graph pairs in a generic

class Sq are equally likely to exist in nature, the ML decoder

in (19) is equivalent to the maximum-a-posteriori rule, which

is optimal for minimizing the probability of error in (8).

Theorem 3 (Class Id
q (λ, ϑ)). Consider a pair of q-similar

graphs G1 and G2 in class Id
q (λ, ϑ). There exists a graph

decoder that achieves P(Id
q (λ, ϑ)) ≤ ε, if the sample size n

satisfies:

1) if (υ − 1)4(υ + 1)2 ≥ 32
d ,

n ≥ 2c1d log
8d(p− q)2(p+ q)

ε
, (20)

2) if (υ − 1)4(υ + 1)2 < 32
d ,

n ≥ c1d log
q3d

2ε
, (21)

where we have defined

c1
△
=

2(3 exp(2ϑ) + 1)

sinh2(λ/4)
, and υ

△
=

p√
q
. (22)

Proof. See Section VI-A1.

Examining the conditions in (20) and (21) implies that the

condition of (21) will be satisfied when the two graphs are

nearly identical for a wide range of feasible values of d. For

instance, in this regime, when we have d = 1 and p = 10,

we must have q ≥ 0.75p and for d = 5 and p = 10,

we must have q ≥ 0.92p. Therefore, except for the extreme

cases, (20) provides the sample complexity for recovering two

identical graphs jointly. We focus the rest of our analysis

and discussions on the regime specified by (20). We start by

evaluating the impact of structural similarity q on the sample

complexity.

Corollary 5 (Sample complexity versus q.). Consider a pair of

q-similar graphs G1 and G2 in class Id
q (λ, ϑ) with increasing

similarity level qin the regime characterized by (20). There

exists a graph decoder that achieves P(Id
q (λ, ϑ)) ≤ ε, if the

sample size n scales with respect to q and p as

Ω
(

log d(p− q)2(p+ q)
)

. (23)

We note that the sample complexity monotonically decreases

in the similarity level q and its dependency on the edge

parameters λ and ϑ is the same as that for joint recovery

in [18]. This observation implies the gain in the sample

complexity of jointly recovering the two structures jointly in

contrast to recovering them independently, which has a sample

complexity of Θ(log dp) [18]. Next, we evaluate the effect of

the degree d on the sample complexity.

Corollary 6 (Sample complexity versus d.). Consider a pair

of q-similar graphs G1 and G2 in class Id
q (λ, ϑ) with increas-

ing maximum degree d. There exists a graph decoder that

achieves P(Id
q (λ, ϑ)) ≤ ε, if the number of samples satisfies

the following conditions:

1) In the regime λ = O(1/d), the sample complexity scales

with respect to d as Ω(d3 log p).
2) In the regimes λ = Θ(1) and Θ(d), the sample com-

plexity scales with respect to d as Ω(ded log p).

From Corollary 6, we note that the sufficient condition on the

sample complexity for joint structure estimation has a non-

exponential scaling behavior in the regime λ = O(1/d) and is

consistent with that for the sample complexity of recovering a

graph structure independently in this regime [18]. This implies

that tractable algorithms with polynomial complexity in d exist

for recovering q-similar graphs.

Theorem 4 (Class Ik
q,γ(λ, ϑ)). Consider a pair of q-similar

graphs G1 and G2 in class Ik
q . There exists a graph decoder

that achieves P(Ik
q,γ(λ, ϑ)) ≤ ε, if for sufficiently large p, the

sample size n satisfies:

1) if log q ≥ 2(γ̄k+1)
γk+1 log p and γ ≥ 2k+1

3k ,

n ≥ c1
2

[

6(γk + 1) log q + log
1

ε

]

, (24)

2) otherwise,

n ≥ c1

[

6(γ̄k + 1) log p+ log
1

ε

]

. (25)

Proof. See Section VI-A2.

Theorem 4 specifies the sufficient conditions on the sample

complexity under different regimes of q and γ. It can be readily

verified that the conditions in (24) hold only when the graphs

G1 and G2 are near identical, and most edges lie in the shared

cluster Vs. Hence, we focus our subsequent discussions on

the analysis of (25) to evaluate the sample complexity for

cases except for near identical graphs. We start by evaluating

the impact of the similarity metrics q and γ on the sample

complexity.

Corollary 7 (Sample complexity versus γ.). Consider a

pair of q-similar graphs G1 and G2 in class Ik
q,γ(λ, ϑ)

with increasing number of edges in the shared cluster

γk and similarity level q. In the regime characterized by

the conditions in (24), there exists a graph decoder that

achieves P(Ik
q,γ(λ, ϑ)) ≤ ε, if the sample complexity scales

with respect to γ as Ω (γ̄k log p).

Corollary 7 indicates that as the number of edges in the

shared cluster γk increases, i.e., the proportion of total edges

increases in Vs, the sample complexity decreases linearly with

γk (recall that γ̄ = 1 − γ). This observation signifies the

gain of jointly recovering the two graphs over treating them

in isolation.
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Corollary 8 (Sample complexity versus k.). Consider a pair

of q-similar graphs G1 and G2 in class Ik
q,γ(λ, ϑ) with increas-

ing number of maximum edges k. There exists a graph decoder

that achieves P(Ik
q,γ(λ, ϑ)) ≤ ε if the sample complexity

satisfies the following requirements:

1) In the regime λ = O(1/
√
k), the sample complexity

scales with respect to k as Ω(k2).
2) In the regimes λ = Θ(1) and λ = Θ(

√
k), the sample

complexity scales with respect to k as Ω(keϑ).

According to the definition of ϑ in (4), variations in k
inevitably induce variations in ϑ as well. In the regime

λ = O(1/
√
k), the effect of ϑ can be controlled because as

we observe in Remark 1, for the worst case graph models

that lead to the factor exp(ϑ) in the sample complexity, we

have ϑ ≥ λ
√
k. Therefore, in this regime, ϑ can be set to an

arbitrary constant that will never be exceeded by its minimum

feasible value for any combination of λ and k. On the other

hand, in the regimes λ = Θ(1) and λ = Θ(
√
k), the lower

bound on ϑ increases with an increase in k and, therefore,

the sample complexity scales exponentially in ϑ. This scaling

behavior is consistent with the scaling behavior of the sample

complexity for an extreme case of recovering a single graph

independently [18].

Finally, we compare the results of Theorems 1, 2, 3, and 4

jointly in order to isolate the regimes under which we have

the same scaling behavior of the sample complexity, i.e., the

necessary and sufficient conditions scale at the same rate for

both subclasses Id
q (λ, ϑ) and Ik

q,γ(λ, ϑ). Note that for the

class Id
q (λ, ϑ) with d fixed, the sample complexity depends

on the similarity level q as the factor log(p − q) in the

necessary conditions (see Corollary 1) and log((p−q)2(p+q))
in the sufficient conditions (see Corollary 5). Therefore, if

q grows linearly with p, i.e., q = Θ(p), the necessary and

sufficient conditions on the sample complexity have a similar

asymptotic scaling behavior of Θ(log p). On evaluating the

dependence of sample complexity on d in Corollary 2 and

Corollary 5, we observe that there is a mismatch of a factor of

d between the sufficient and the necessary conditions. Next,

for the class Ik
q,γ(λ, ϑ), we observe that when γk is fixed

and q scales linearly with p, the necessary conditions and the

sufficient conditions have a similar scaling behavior of Θ(p).
On the other hand, from Corollary 4 and Corollary 8, we

observe that there is a mismatch of a factor of k between

the necessary and the sufficient conditions on the sample

complexity. By combining these observations, we can specify

a specific regime for which the necessary conditions and

the sufficient conditions meet, and the corresponding sample

complexity is optimal.

Theorem 5 (Optimal Sample Complexity). When the maxi-

mum degree d and the maximum number of edges k are fixed,

and in the regimes that satisfy λ = O(1/p) and q = Θ(p),
i.e., q increases linearly with p, the sample complexity of re-

covering graph models in the classes Id
q (λ, ϑ) and Ik

q,γ(λ, ϑ)
scales as Θ(p2 log p) with growing graph size, p.

The results that specify the bounds in necessary and sufficient

conditions that have non-exponential scaling behavior for the

classes Id
q (λ, ϑ) and Ik

q,γ(λ, ϑ) are summarized in Table 1.

Furthermore, we note that the two extreme cases of q = 0 and

q = p correspond to recovering two independent graphs and

two identical graphs, respectively. For both these scenarios,

the problem analyzed in this paper simplifies to the problem

of structure estimation (learning) of one graph under an exact

recovery criterion studied in [18]. In general, however, when

we depart from these special cases, the results provided in this

paper are distinct from the results in the existing literature.

This observation is formalized in the following corollary.

Corollary 9 (Special cases for exact recovery). The necessary

and sufficient conditions for the exact recovery of partially

similar graphs in the subclasses Id
q (λ, ϑ) and Ik

q,γ(λ, ϑ) in

the extreme cases of q = 0 and q = p subsume the existing

results for the exact recovery of single graphs.

We note that our results encompassing the necessary and

sufficient conditions on the sample complexity are provided

in non-asymptomatic regimes and, therefore, characterize the

interplay between different graph parameters and similarity

level q. Specifically, from Table 1, we observe that the factor

log(p− q) appears in both necessary and sufficient conditions

for the bounded degree class Id
q .

To theoretically establish that joint learning of q-similar

Ising models is easier than recovering them independently, we

would need to have the necessary conditions on the sample

complexity for recovering graphs independently to be strictly

larger than that for recovering q-similar graphs jointly for

different q. However, such an analysis for Ising models is

prohibited by a large mismatch in the terms that depend

on edge parameters λ and ϑ in the two sets of conditions.

For instance, for d = 1, the mismatch between the factor
1

4λ tanh(λ) in the necessary condition and c1 (defined in (22)

in the sufficient condition in terms of ratio is at least 512
for any λ > 0. Similarly, for d > 1, the mismatch between

the factor
exp(ϑ−λ)

8ϑ and c1 in terms of ratio scales at least

as 471d2 for any λ > 0. This mismatch is highlighted in

Table 1, where we see the sufficient conditions to scale at a

factor d larger for class Id
q and a factor k larger for class Ik

q,γ

for certain regimes. Since the relative gain in terms of the

ratio of sample complexities of jointly recovering q-similar

graph models over independent graph recovery is at most 2,

the mismatch between the different aforementioned factors in

the case of Ising models is too large to be overcome by the

gains offered by similarity level q in the sufficient conditions

on the sample complexity for joint recovery. We remark that

this is a limitation of the analysis techniques and is also present

in the results for single graph recovery in both degree and

edge bounded subclasses of Ising models [18]. However, these

limitations are not as prominent in the analysis of Gaussian

models, and we will discuss these aspects in Section IV.

We also remark that our numerical experiments for Ising

models in Section 7 illustrate that learning q-similar graphs

jointly indeed requires a significantly smaller number of

samples than recovering the graphs independently for various

settings. In our experiments, we start by using an ML decoder

to recover sparse graphs. However, an ML decoder may be

computationally intractable to implement due to the large
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TABLE I
SUMMARY OF MAIN RESULTS (NON-EXPONENTIAL SCALING) FOR EXACT RECOVERY OF ISING MODELS.

Graph Class
Parameters

Sample Complexity

Necessary Sufficient (ML)

Bounded degree I
d
q λ = O

(

1
d

)

Θ(d2 log(p− q)) Θ(d3 log((p− q)2(p+ q))

(p− q)2 ≫ q λ = O
(

1
p

)

Θ(p2 log p) Θ(p2 log p))d fixed

q = Θ(p)

Bounded edge I
k
q λ = O

(

1√
k

)

Θ(k log(p− q)) Θ(γ̄k2 log p)

(p− q)2 ≫ q λ = O
(

1
p

)

Θ(p2 log p) Θ(p2 log p)γ̄2
≫ γ k fixed

q = Θ(p)

computational complexity involved in the recovery of large

graphs. In the next section, we discuss a computationally

feasible structure estimation algorithm for jointly recovering

similar graphs for Ising models that are valid for both degree-

bounded and edge-bounded subclasses. This algorithm is sub-

sequently applied to recover Ising models in our experiments

in Section VII.

C. A Prediction-guided Algorithm for Jointly Recovering Ising

Models

In this section, we discuss a computationally efficient

structure estimation algorithm described in Algorithm 1 for

recovering graph pairs jointly. The structure of the algorithm

is motivated by a recent approach to structure estimation of

MRFs in an online manner based on Hedge algorithm [15].

The Hedge algorithm uses multiplicative weight update rules

for online estimation with expert advice in the context of

multi-armed bandits [42]. We specify the steps involved in this

algorithm and establish the sample complexity for perfectly

recovering the graphs. For convenience in analysis, corre-

sponding to each random variable Xu
i ∈ {−1, 1}, we define

the Bernoulli random variable Bu
i

△
= 1

2 (1−Xu
i ) and instead

of analyzing Xu
i we equivalently analyze Bu

i . The random

instance of Bu
i based on j-th graph sample of Gi is given by

bui (j) and computed as

bui (j) =
1

2
(1− xui (j)) , (26)

where xui (j) is the j-th random sample collected at node u
in Gi. The prediction-guided algorithm consists of two steps.

Step 1 collects nT < n samples to form multiple prediction-

guided estimates for E1 and E2. Once the predictions are

formed, we use the remaining nM
△
= n − nT samples to

assess the risks associated with these predictions and to use

the risk metrics for making a final decision for the structure

estimates.

Step 1: Forming predictions of E1 and E2. This algorithm

runs sequentially and collects the nT samples one at a time,

which are used to update a sequence of prediction-related

decisions. The algorithm starts by considering that any pair

of nodes in V can be potential neighbors. Each node acts

as an expert and predicts the value of its neighbors. In the

jth iteration, at node u in Gi we form a prediction for Bu
i by

aggregating the data samples provided by other nodes followed

by a non-linear transformation according to

b̂ui (j) = σ
(

∑

v 6=u

wuv
i (j)xvi (j)

)

, for j ∈ {1, . . . , nT} ,

(27)

where {wuv
i (j)} are the weights to be selected properly

as described below and σ is the standard sigmoid function

σ(x) = 1
1+e−x . The main elements of this step are summarized

below.

1) Loss function. To quantify the quality of the predictions,

for every pair u, v ∈ V we evaluate the pairwise loss

function

ℓuvi (j)
△
=

1

2

(

1 + [b̂ui (j)− bui (j)]x
v
i (j)

)

. (28)

2) Predictor Update. If nodes u and v lie in the set Vs, i.e.,

have a similar pairwise relationship in both graphs, we

allow the transfer of loss functions between the graphs

for updating the multiplicative weights associated with

the pairwise relationship between nodes u and v in

graph Gi:

κuvi (j + 1) = κuvi (j) · exp
(

β

2
[ℓuv1 (j) + ℓuv2 (j)]

)

,

(29)

where β is an appropriately set hyper-parameter and

κuvi (0) = 1
p−1 . Otherwise, the updates follow the rule

κuvi (j + 1) = κuvi (j) · exp (βℓuvi (j)) . (30)

We note that without the updates in (29), our algorithm

reduces to estimating the two subgraphs independently

using the algorithm in [15].

3) Pseudo weights: We introduce pseudo weights κ̃uvi to

accommodate for the setting when the neighborhood

weight of a node u in graph Gi is strictly less than ϑ.

4) Normalization of weights: Note that the weight updates

in (29) and (30) do not guarantee that
∑

v∈V

κuvi ≤ ϑ for
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any u ∈ V in Gi. Therefore, we introduce normalized

weights wuv
i which are evaluated as

wuv
i (j + 1) =

ϑκuvi (j + 1)
∑

x 6=u

(κuxi (j + 1) + κ̃uxi (j + 1))
. (31)

The processes above continue recursively until all the

nT samples are exhausted.

Step 2: Estimating E1 and E2. Finally, we collect additional

nM samples for all the nodes in V in graph Gi and based

on these, we assign a risk metric to each predicted set Ej
i ,

∀j ∈ {1, . . . , nT} according to

εji =
1

nM

n
∑

y=nT+1

∑

u∈V

[

b̂ui (j)− bui (j)
]2

. (32)

We select the predictions with the lowest empirical risks which

is given by

si = argmin
j∈{1,...,nT}

εji , (33)

for graph Gi and leverage the set of coefficients {wuv
i (si)} to

form the final estimates for E1 and E2 using a thresholding

operation. Specifically, for graph Gi, we form the prediction:

Esi
i

△
=
{

(u, v) : wuv
i (si) ≥

λ

2

}

, ∀i ∈ {1, 2}. (34)

The steps of the algorithm are specified in Algorithm 1.

Algorithm 1 Estimating E1 and E2

1: Input n = nT + nM pairs of data samples, β = 1 −
√

log p/nT

2: Initialize κuvi (1) = 1/(p − 1), κ̃uvi (1) = 1/(p − 1) and

wuv
i (1) = 0 for all u 6= v and i ∈ {1, 2}

3: for a new pair of data sample j ∈ {1, . . . , nT} do

4: For each u ∈ V , compute bui (j) according to (26) for

i ∈ {1, 2}
5: for each pair u, v ∈ V , u 6= v do

6: Compute losses ℓuvi (j) according to (28)

7: Update the weights κ̃uvi (j + 1) = κ̃uvi (j) exp(β/2)
8: if u, v ∈ Vs then

9: Update the weights κuvi (j + 1) according to (29)

10: else

11: Update the weights κuvi (j + 1) according to (30)

12: end if

13: end for

14: for each pair u 6= v do

15: Compute wuv
i (j + 1) according to (31)

16: end for

17: Compute empirical risks εki using nM samples accord-

ing to (32)

18: end for

19: Compute s1 and s2 according to (33)

20: Form estimates Es1
1 and Es2

2 according to (34)

21: return Es1
1 and Es2

1

The following theorem captures the sample complexity and

the computational complexity of Algorithm 1.

Theorem 6 (Algorithm 1). Consider a pair of q-similar

graphs G1 and G2. If the sample size n = nT + nM sat-

isfies nT = O
(

ϑ2 exp(ϑ)
λ4 log p

λε

)

and nM = Θ
(

log(nT/ε)
ρλ2

)

,

Algorithm 1 achieves P(Id
q (λ, ϑ)) ≤ 2ε for Id

q (λ, ϑ) and

P(Ik
q,γ(λ, ϑ)) ≤ 2ε for Ik

q,γ(λ, ϑ). The run time of Algorithm 1

is O(p2n).

Proof. See Appendix A.

Note that the mean loss function (ℓuv1 + ℓuv2 )/2 is bounded

in the range [0, 1]. Therefore, the rules for updating weights

in our algorithm satisfy the conditions for [15, Theorem 5]

to hold, which allows us to leverage the regret bound on

the Hedge algorithm in [42]. We remark that the results in

Theorem 6 are in the asymptotic regime and do not capture

the effect of structural similarity on the sample complexity.

However, we note that Algorithm 1 achieves optimal asymp-

totic sample complexity for both degree-bounded and edge-

bounded classes in the regime specified in Corollary 5. Specif-

ically, in the regime, λ = O(1/p) with the degree d fixed,

Algorithm 1 achieves the asymptotic sample complexity of

O(p2 log p) which is the same as the optimal scaling behavior

established for the regime in Corollary 5 when q = Θ(p).
Similarly, Algorithm 1 achieves optimal sample complexity

for Ik
q,γ(λ, ϑ) in the regime λ = O(1/p) with k fixed.

Our numerical evaluations in Section VII indicate a signifi-

cant gain in performance when q− similar graphs are learned

jointly using Algorithm 1 in comparison to when they are

learned independently using the algorithm in [15].

IV. MAIN RESULTS: GAUSSIAN MODELS

In this section, we provide the bounds on the sample com-

plexity for the degree-bounded and edge-bounded subclasses

of Gaussian models.

A. Necessary Conditions for Gaussian Models

We first provide necessary conditions on the sample com-

plexity n(q, ε) in order to ensure that P(Sq) ≤ ε. We use

the shorthand n for n(q, ε) and provide the scaling behavior

of the sample complexity in different regimes, illustrating

the dependence of sample complexity on different graph

parameters.

Theorem 7 (Class Gd
q (ρ)). Consider a pair of q-similar graphs

G1 and G2 in class Gd
q (ρ), for which ρ ∈ [0, 12 ]. Any graph

decoder ψ that achieves P(Gd
q (ρ)) ≤ ε, has the following

sample size requirements:

1) In the regime ρ = Θ
(

1
d

)

, the sample size satisfies:

a) if
(

q
2

)

≤
(

p−q
2

)2
,

n ≥ (1− ε)

4ρ2

(

4 log
p− q − 1√

2
− 1

)

, (35)

b) if
(

q
2

)

>
(

p−q
2

)2
,

n ≥ (1− ε)

4ρ2

(

2 log
q − 1√

2
− 1

)

. (36)

2) In the regime ρ = Θ(1), the sample size satisfies:
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a) if q +
√
qd ≤ p,

n ≥ 1− ε

log
(

1 + dρ
1−ρ

)

[

2d log
p− q

d
− 1

]

, (37)

b) if q +
√
qd > p,

n ≥ 1− ε

log
(

1 + dρ
1−ρ

)

[

d log
q

d
− 1
]

. (38)

Proof. See Section V-C.

Theorem 7 provides the necessary conditions on the sample

complexity for different regimes of ρ. We note that the

conditions on the similarity level q in (36) and (38) are satisfied

only in graph pairs with extensive similarity, i.e., q ≈ p,

for which the problem of structure estimation approaches the

extreme case of estimating two identical graphs. Therefore,

we focus our discussions on the analysis of sample complexity

based on (35) and (37). We start by evaluating the dependence

of sample complexity on the similarity level q.

Corollary 10 (Sample complexity versus q). Consider a pair

of q-similar graphs G1 and G2 in class Gd
q (ρ) with the simi-

larity level q. Any graph decoder that achieves P(Gd
q (ρ)) ≤ ε,

the sample complexity scales with respect to q and p
as Ω(log(p− q)).

This corollary indicates that the sample complexity require-

ment decreases with an increase in the similarity level of the

two graphs. Specifically, jointly recovering the two structures

requires a sample complexity that scales with Ω(log(p− q))
in contrast to treating the two graphs independently for which

the sample complexity scales as Ω(log p) [23]. Next, we

evaluate the effect of increasing degree d on the sample

complexity.

Corollary 11 (Sample complexity versus d). Consider a pair

of q-similar graphs G1 and G2 in class Gd
q (ρ). For any graph

decoder that achieves P(Gd
q (ρ)) ≤ ε, the sample complexity

satisfies the following conditions:

1) In the regime ρ = O
(

1
d

)

, the sample complexity scales

with respect to d as Ω(d2).
2) In the regime ρ = Θ(1), the sample complexity scales

with respect to d

Ω

(

d

log(1 + dρ)
log

p− q

d

)

(39)

The existing results in [43] show that the sufficient condition

on the sample complexity scales as Ω((d2 + ρ−2) log p). This

sample complexity is achievable via ℓ1-regularized ML-based

graphical model selection for single graphs. In the regime

ρ = Θ(1/d), the sufficient condition matches with the scaling

behavior of the necessary condition for single graphs up to

constant factors, indicating the scaling behavior of necessary

conditions is optimal in this regime. We conjecture that this

observation extends to the results for joint model selection,

i.e., the scaling behavior of the necessary conditions from

Theorem 7 is optimal in the regime ρ = Θ(1/d). In the regime

ρ = Θ(1), it is interesting to note that the lower bound on the

sample complexity scales approximately as Θ
(

dϕ log p−q
d

)

for some ϕ < 1, which has a non-monotonic scaling behavior

in d. We remark that the sample complexity in this regime is

dominated by the graphs with densely-connected subgraphs of

d nodes. This characteristic of the sample complexity implies

that the sample complexity of estimating graph models with

densely-connected subgraphs has a higher sample complexity

than that for nearly fully-connected graphs. We also note

that this observation is consistent with that of the sample

complexity of recovering a single graph [23].

Theorem 8 (Class Gk
q (ρ)). Consider a pair of q-similar graphs

G1 and G2 in class Gk
q (ρ), for which ρ ∈ [0, 12 ]. For any graph

decoder ψ that achieves P(Gk
q (ρ)) ≤ ε, the sample size must

satisfy the following requirements:

1) In the regime ρ = Θ(1/
√
k), the sample size n must

satisfy:

a) if
(

q
2

)

≤
(

p−q
2

)2
,

n ≥ (1− ε)

4ρ2

(

4 log
p− q − 1√

2
− 1

)

, (40)

b) if
(

q
2

)

>
(

p−q
2

)2
,

n ≥ (1− ε)

4ρ2

(

2 log
q − 1√

2
− 1

)

. (41)

2) In the regime ρ = Θ(1), the sample size n must satisfy:

a) if q +

√

qk̃ ≤ p,

n >
(1− ε)k̃

log
(

1 + k̃ρ
1−ρ

)

(

2 log
p− q

k̃
− 1

)

, (42)

b) if q +

√

qk̃ > p,

n >
(1− ε)k̃

log
(

1 + k̃ρ
1−ρ

)

(

log
q

k̃
− 1

)

, (43)

where

k̃
△
= ⌊

√
k⌋. (44)

Proof. See Section V-C.

Theorem 8 characterizes the necessary conditions on the

sample complexity under two regimes of ρ. Note that the

conditions on the similarity level q in (41) and (43) are satisfied

only by graphs with extensive similarity, i.e., q ≈ p. Therefore,

we subsequently discuss the sample complexity based on the

analysis of (40) and (42). It is readily observed that the sample

complexity has a dependence on the similarity level q that is

similar to that for the degree-bounded class, i.e., in terms of

the factor log(p − q). We formalize this observation in the

following Corollary.

Corollary 12 (Sample complexity versus q). Consider a

pair of q-similar graphs G1 and G2 in class Gk
q (ρ) with

increasing similarity level q. For any graph decoder that

achieves P(Gk
q (ρ)) ≤ ε, the sample complexity scales with

respect to q and p as Ω(log(p− q)).

Next, we evaluate the effect of increasing number of edges k
on the sample complexity.
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Corollary 13 (Sample complexity versus k). Consider a

pair of q-similar graphs G1 and G2 in class Gk
q (ρ) with

increasing similarity level q. For any graph decoder that

achieves P(Gk
q (ρ)) ≤ ε, as k increases, the sample complex-

ity n must satisfy the following conditions:

1) In the regime ρ = O(1/k̃), the sample complexity scales

with respect to k as Θ(k).
2) In the regime ρ = Θ(1), the sample complexity scales

with respect to k as

Θ

( √
k

log(1 + ρ
√
k)

log
p− q√
k

)

. (45)

Corollary 13 implies that the sample complexity has a linear

scaling behavior in k in the regime ρ = O(1/k̃). In the

regime, ρ = Θ(1), we observe that the sample complexity has

a non-monotonic scaling behavior in k. We remark that the

sample complexity in this context is recovered by the analysis

of densely-connected subgraphs of k̃ nodes. Therefore, the

necessary condition on the sample complexity implies that

recovering graphs with a densely-connected subgraph up to

a certain size dominates the sample complexity of recovering

graphs that are nearly fully connected. This observation is con-

sistent with our discussion in the context of degree-bounded

Gaussian models.

B. Sufficient Conditions for Gaussian Models

In this section, we provide sufficient conditions on the sam-

ple complexity for a specifically constructed set of ensembles

of graphs in classes Gd
q (ρ) and Gk

q (ρ). The sufficient conditions

are established based on the large deviation analysis of the

ML decoder similar to that in (19) for Gaussian models. We

provide Lemma 1, which is instrumental to establishing suffi-

cient conditions on the sample complexity. For this purpose,

consider an arbitrary class of distinct Gaussian models indexed

by S △
= {1, . . . ,m}. For model u ∈ S , denote the precision

matrix by P[u], and define Λu as its log-likelihood function,

i.e.,

Λu(x)
△
= log

(

√

det[P[u]]

(2π)
p
2

exp

(

1

2
x
T
P[u]x

)

)

. (46)

Lemma 1. Consider a Gaussian graphical model G in the set

S . For any u, v ∈ S we have

P[Λu(x) ≥ Λv(x)] ≤





det[P[u]] · det[P[v]]

det
2
[

P[u]+P[v]
2

]





1

4

. (47)

Proof. See Section VI-B.

This lemma is pivotal for comparing the likelihoods of differ-

ent models. For an unconstrained precision matrix P[u], ∀u ∈
S , it is infeasible to evaluate

det

[

P[u] +P[v]

2

]

(48)

for all possible graphs. Therefore, for our analysis, we focus

on three specifically constructed ensembles of graphs in the

degree and edge-bounded subclasses of Gaussian models,

denoted by Aq , Bq , and Cq , which enable us to gain intuition

into the performance of ML decoder in graphs with different

characteristics. Next, we provide the construction of subclasses

that consist of cliques of different sizes. For this purpose, we

define Um as the subset of nodes in a clique of size m ≤ p,

where Um ⊆ V . We also define the p × 1 subclass ✶Um
of

dimension p× 1, where its entries are given by

[✶Um
]i =

{

1 , if i ∈ Um

0 , if i ∈ V \Um

. (49)

.

Restricted Subclass Aq: The graphs in this subclass consist of

an isolated clique U2 consisting of 2 nodes that lie completely

either in the shared part or in the non-shared part of the graphs.

For a given parameter a ≥ 0, the associated precision matrix

is given by Pi = I+a✶U2
✶
⊤
U2

. There are
(

q
2

)

graph pairs with

the clique formed by U2 in the shared part, and
(

p−q
2

)2
graph

pairs with U2 in the non-shared part. Furthermore, we have

Aq ⊆ Gd
q (ρ) and Aq ⊆ Gk

q (ρ).

Restricted Subclass Bq: The graphs in this subclass consist

of a clique Ud formed by a set of d nodes and the associated

precision matrix is given by Pi = I + a✶Ud
✶
⊤
Ud

. We assume

that for each graph, the set Ud lies completely in either the

shared part or the non-shared part of the graph. If Ud lies in the

non-shared part, we have
(

q
d

)

number of possible graph pairs.

If Ud lies in the non-shared part, we have
(

p−q
d

)2
number of

possible graph pairs. Furthermore, in this class, we must have

q = Ω(d). Therefore, Bq ⊆ Gd
q (ρ).

Restricted Subclass Cq: The graphs in this subclass consist

of a clique Uk̃ formed by a set of k̃ nodes and the associated

precision matrix is given by Pi = I + a✶U
k̃
✶
⊤
U

k̃
. We assume

that for each graph, the nodes spanning Uk̃ lie completely

in either the shared part or the non-shared part of the graph.

If Uk̃ lies in the non-shared part, we have
(q

k̃

)

number of

possible graph pairs. If Uk̃ lies in the non-shared part, we

have
(p−q

k̃

)2
number of possible graph pairs. The properties

of this restricted subclass of graphs dictate that Cq ⊆ Gk
q (ρ).

Clearly, Aq represents the subclass of graph pairs with

unknown isolated edges, and Bq and Cq represent the subclass

of graph pairs with high connectivity in degree-bounded and

edge-bounded subclasses. Thus, analyzing the subclasses Aq ,

Bq , and Cq provides the bounds on sample complexity for

the subclasses that lie at the two extremes in terms of edge

connectivity in the classes Gd
q (ρ) and Gk

q (ρ). Next, we provide

sufficient conditions for the joint selection of graphs in the

subclasses Aq , Bq , and Cq .

Theorem 9 (Subclass Aq). Consider a pair of q-similar

graphs G1 and G2 in the subclass Aq . There exists a graph

decoder ψ that achieves P(Aq) ≤ ε, if the sample size n
satisfies:

1) if q +
√

q
√
2 ≤ p,

n ≥ 1

log 1
(1−ρ2)

(

4 log (p− q) + log
2

ε

)

, (50)
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2) if q +
√

q
√
2 > p,

n ≥ 1

log 1
(1−ρ2)

(

2 log q + log
2

ε

)

. (51)

Proof. See Section VI-B1.

Next, we analyze the variation in the bounds on sample

complexity with respect to the structural similarity q. As

observed previously, the regime for the sufficient condition

in (51) is valid for almost identical graphs. Therefore, we

focus our discussion on the analysis of the sufficient condition

in (50).

Corollary 14 (Sufficient condition and q). Consider a pair of

q-similar graphs G1 and G2 in the subclass Aq with increasing

similarity level q and graph size p. There exists a graph

decoder that achieves P(Aq) ≤ ε, if the following conditions

are satisfied:

1) In the regime ρ = Θ(1), the sample complexity scales

with respect to q and p as Ω(log(p− q)).
2) In the regime ρ = Θ(1/p), the sample complexity scales

with respect to q and p as Ω(p2 log(p− q)).

From Corollary 14, we note that in both regimes, the sample

complexity depends on q through log(p − q), which has a

decreasing behavior with increasing similarity level q. This

observation captures the gain in the sample complexity of

jointly recovering the two graphs. We also remark that since

we have Aq ⊆ Gd
q (ρ), in the regime ρ = Θ(1/d), the sufficient

condition on the sample complexity in Theorem 9 scales as

Θ(d2 log(p − q)), which matches the scaling behavior of the

necessary condition on the sample complexity in Theorem 7.

This observation indicates that an ML decoder achieves the

optimal sample complexity for recovering the q-similar graphs

in the subclass Aq .

Theorem 10 (Subclass Bq). Consider a pair of q-similar

graphs G1 and G2 in the subclass Bq . There exists a graph

decoder ψ that achieves P(Bq) ≤ ε, if the sample size satisfies:

n ≥ c2

(

2d log
(p− q)e

d
+ log

2

ε

)

, if q +

√

qd

2e
≤ p ,

(52)

n ≥ c2

(

d log
qe

d
+ log

2

ε

)

, if q +

√

qd

2e
> p ,

(53)

where we have defined

c2
△
=

[

log

(

1 +
d2

(1/ρ− 1)(1/ρ− 1 + d)

])−1

. (54)

Proof. See Section VI-B2.

Theorem 10 provides sufficient conditions on the sample com-

plexity for different regimes of q. From a similar discussion

as in the prior cases, we conclude that the regime in (53) is

applicable to scenarios with an extensive similarity between

the two graphs. Therefore, we focus our subsequent discussion

on the analysis of sample complexity in the regime in (52).

Corollary 15 (Sufficient condition and q). Consider a pair of

q-similar graphs G1 and G2 in the subclass Bq with increasing

similarity level q. There exists a graph decoder that achieves

P(Bq) ≤ ε, if the sample complexity scales with respect to q
as Ω(log(p− q)).

From Corollary 15, we note that the sample complexity is

characterized by log(p − q), which indicates the savings in

sample complexity as the similarity level q increases. Next, we

discuss the sample complexity with respect to the maximum

degree d.

Corollary 16 (Sufficient condition and d). Consider a pair of

q-similar graphs G1 and G2 in the subclass Bq with increasing

maximum degree d. There exists a graph decoder that achieves

P(Bq) ≤ ε, if the following conditions are satisfied:

1) In the regime ρ = (1/d), the sample complexity scales

with respect to d as Ω(d log(p−q
d )).

2) In the regime ρ = Θ(1), the sample complexity scales

with respect to d as Ω
(

d
log(1+dρ2) log

p−q
d

)

.

We observe that in both regimes, the sample complexity

depends on q through log(p− q), which captures the savings

in the sample complexity as the similarity level q increases.

Furthermore, we also note that the sufficient condition on the

sample complexity for recovering graphs in Bq in the regime

ρ = Θ(1/d) is dominated by the corresponding condition

for the subclass Aq and the necessary condition (given by

Ω(d2 log(p − q))) for the class Gd
q (ρ) in Theorem 7. This

observation indicates that recovering the graphs in subclass Bq

is easier than the graphs in the worst-case scenario for Gd
q (ρ)

in this regime. On the other hand, in the regime ρ = Θ(1),
the sufficient condition on the sample complexity matches the

necessary condition on the sample complexity for graphs in

Gd
q (ρ) up to constant factors (refer to Corollary 11). Moreover,

we observe the non-monotonic scaling behavior of the sample

complexity of an ML decoder with respect to d, which is

consistent with the observations from the necessary conditions

in Corollary 11.

Theorem 11 (Subclass Cq). Consider a pair of q-similar

graphs G1 and G2 in the subclass Cq . There exists a graph

decoder ψ that achieves P(Cq) ≤ ε, if the sample size satisfies:

n ≥ 2c3k̃ log
(p− q)e

k̃
+ log

2

ε
, if q +

√

qk̃

2e
≤ p , (55)

n ≥ c3k̃ log
qe

k̃
+ log

2

ε
, if q +

√

qk̃

2e
> p , (56)

where we have defined

c3
△
= log−1

(

1 +
k̃2

(1/ρ− 1)(1/ρ− 1 + k̃)

)

, (57)

and k̃
△
= ⌊

√
k⌋.

Proof. See Section VI-B3.

Theorem 11 provides sufficient conditions on the sample

complexity in different regimes of q. We note that the regime
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in (56) implies extensive similarity between the two graphs.

For instance, when we have p = 150 and k = 100, the regime

in (56) is satisfied only for q ≥ 0.9p. Therefore, we focus our

discussion on the analysis of sample complexity in the regime

in (55), which covers cases other than the cases with extensive

structural similarity.

Corollary 17 (Sufficient condition and q). Consider a pair of

q-similar graphs G1 and G2 in the subclass Cq with increasing

similarity level q. There exists a graph decoder that achieves

P(Cq) ≤ ε, if the sample complexity scales with respect to q
and p as Ω(log(p− q)).

We observe in Corollary 17 that the sample complexity is

characterized by log(p − q), which quantifies the gains in

sample complexity as the similarity level q increases. Next, we

discuss the sample complexity with respect to the maximum

number of edges k.

Corollary 18 (Sufficient condition and k). Consider a pair of

q-similar graphs G1 and G2 in the subclass Cq with increasing

maximum number of edges k. There exists a graph decoder

that achieves P(Cq) ≤ ε, if the sample complexity satisfies:

1) In the regime ρ = Θ(1/k̃), the sample complexity scales

with respect to k as Ω(k̃ log(p−q

k̃
)), where k̃

△
= ⌊

√
k⌋.

2) In the regime ρ = Θ(1), the sample complexity scales

with respect to k as Ω
(

k̃
log(1+k̃ρ2)

log p−q

k̃

)

.

From Corollary 18, in both regimes, we observe that the

sample complexity depends on q through the factor log(p−q),
which quantifies the savings in the sample complexity as the

similarity level q increases. Furthermore, by comparing the

sufficient conditions in the regime ρ = Θ(1/k̃) in Corollary 18

with the corresponding sufficient conditions for subclass Aq

and the necessary condition for class Gk
q (ρ) in Theorem 8, we

note that recovering the graphs in subclass Cq is easier than

the graphs in the worst case scenario for Gk
q (ρ) in this regime.

On the other hand, in the regime ρ = Θ(1), the sufficient

condition on the sample complexity matches the necessary

condition on the sample complexity for graphs in Gk
q (ρ) up to

constant factors (see Corollary 13).

Comparing the necessary and sufficient conditions in sub-

classes Aq , Bq , and Cq provides the following insights into the

behavior of sample complexity:

1) As ρ → 0 in the regimes λ = Θ(1/d), λ = Θ(1/p),
or λ = Θ(1/k̃), the connectivity of the graphs with

isolated edges becomes harder to learn as compared to

the fully-connected graphs.

2) For an invariant ρ and a regime characterized by an

increase in p, d, or k at any rate, the connectivity of

the graphs with densely-connected subgraphs becomes

harder to learn as compared to the graphs with isolated

edges.

The main results that specify the bounds on the sample com-

plexity for the exact recovery of Gaussian models in classes

Gd
q (ρ) and Gk

q (ρ) are summarized in Table 2. The sufficient

conditions in Table 2 correspond to the sample complexity

of the dominant subclass of Gaussian models among the

restricted subclasses Aq , Bq , and Cq .

From Table 2, we note that the factor log(p − q) appears

in both necessary and sufficient conditions on the sample

complexity of recovering q-similar graphs jointly.

C. Strict Improvement Compared with Single-graph Recovery

To establish that the joint graph recovery of q-similar graphs

is indeed easier than independently recovering them, we

compare the lower bound on the sample complexity (necessary

conditions) for the single graph class and the upper bound on

the sample complexity (sufficient conditions) for the class of

q-similar graphs. In our analysis, we exclude the setting in

which the two graphs are either almost identical (i.e., q → p)

or almost distinct (i.e., q → 0). To this end, we focus on the

regime max{q, p − q} < p1−2ε. We note that this regime is

not too stringent. For instance, when ε = 0.1, q that satisfies

max{q, p−q} < p0.8 lies in q ∈ [p0.8, p−p0.8]. For p = 10000,

this range is [1585, 8415].

Theorem 12 (Degree-bounded Subclass). Consider a pair of

q-similar graphs G1 and G2 in the subclass Bq . For max{q, p−
q} < p1−2ε and ρ > 1

d+1 , the necessary condition on the

sample complexity for recovering G1 (or G2) independently

is strictly larger than the sufficient condition on the sample

complexity for recovering G1 and G2 jointly.

Proof. See Appendix B.

Theorem 12 establishes that the sample complexity of jointly

recovering the graphs is strictly smaller than that of re-

covering them independently for the graphs in subclass Bq ,

thus, providing conclusive evidence that the joint structure

learning of q-similar pair of graphs is easier than learning

them independently. By setting d = 1, class Bq reduces to

Class Aq . Due to the similarity in constructions and results,

the same line of analysis for Bq (with proper adjustments)

applies to Aq .

For the edge bounded subclass, Cq , we note that the con-

structions of classes Cq and Bq are derived from the ensemble

construction in Section V-C2. Therefore, the necessary condi-

tions for joint graph learning in Cq follow directly from (238)

for m = k̃ and the sufficient conditions follow from (209). We

next formalize the comparison between the sufficient condition

on the sample complexity for joint graph recovery and the

necessary condition for independent graph recovery.

Theorem 13 (Edge-bounded Subclass). Consider a pair of q-

similar graphs G1 and G2 in the subclass Cq . For max{q, p−
q} < p1−2ε and ρ > 1

k̃+1
, the necessary condition on the

sample complexity for recovering G1 (or G2) independently

is strictly larger than the sufficient condition on the sample

complexity for recovering G1 and G2 jointly.

Proof. The proof of Theorem 13 follows directly from the

proof for subclass Bq in Appendix B by replacing d with k̃. For

the edge bounded subclass, Cq , we note that the construction

of classes Cq and Bq is similar and stems from the ensemble

construction in Section V-C2. Therefore, the necessary con-

ditions for joint graph learning in Cq follow directly from

(117) and (238) and the sufficient conditions are established

in Section VI-B2 and Section VI-B3. Hence, the proof in
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TABLE II
SUMMARY OF THE MAIN RESULTS (NON-EXPONENTIAL SCALING) FOR THE EXACT RECOVERY OF GAUSSIAN MODELS. SUFFICIENT CONDITIONS

CORRESPOND TO THE DOMINANT SUBCLASS AMONG Aq ,Bq , AND Cq IN THE SPECIFIED REGIMES.

Graph Class
Parameters

Sample Complexity for Aq,Bq , and Cq

Necessary Sufficient∗

Degree-bounded G
d
q ρ = Θ

(

1
d

)

Θ(d2 log(p− q)) Θ(d2 log(p− q))

(p− q)2 ≫ q ρ = Θ(1) Θ
(

d log((p−q)/d)
log(1+ρd)

)

Θ
(

d log((p−q)/d)

log(1+ρ2d)

)

Edge-bounded G
k
q ρ = Θ

(

1√
k

)

Θ(k log(p− q)) Θ(k log(p− q))

(p− q)2 ≫ q ρ = Θ(1) Θ
(

k̃ log((p−q)/k̃)

log(1+ρk̃)

)

Θ
(

k̃ log((p−q)/k̃)

log(1+ρ2k̃)

)

Appendix B that establishes that the joint graph learning is

strictly easier than single graph recovery for Bq readily extends

to the class Cq by replacing d with k̃ = ⌊k⌋.

To establish our results in Theorem 12 and Theorem 13,

we assume that the single graph decoder is agnostic to the

similarity in two graphs in terms of q. However, we note that

the subclasses Aq , Bq , and Cq are structured to have the clique

completely in either the shared part or the non-shared part of

the graph. Hence, the size of the number of possible graphs in

the corresponding class for single graphs is smaller than
(

p
2

)

for Aq ,
(

p
d

)

for Bq and
(p

k̃

)

for Cq . In the following remark,

we clarify that the gains offered by joint graph recovery are

retained even if the clique in the construction of classes Bq

and Cq can span across shared and non-shared parts of the

graph.

Remark 2. For a pair of q-similar graphs in the class Bq

such that the clique Ud can span both shared and non-shared

parts, the necessary condition on the sample complexity for

recovering a single graph is strictly larger than the sufficient

condition on the sample complexity for recovering q-similar

graphs for sufficiently small ε.

Additional analysis details supporting Remark 2 are available

in Appendix C. Similar observations can be made for class Cq .

V. PROOFS OF NECESSARY CONDITIONS

In this section, we provide the proof of the information-

theoretic necessary conditions on the sample complexity of

recovering graph pairs in different classes of Ising and Gaus-

sian models. In general, we leverage Fano’s Lemma for char-

acterizing the necessary conditions, which are also used for

other structure estimation purposes in [18], [19]. To formalize

this, consider two q-similar graphs G1 and G2 that belong to

a generic class Sq of q-similar graphs that contains a total

of M pairs of q-similar graphs. Let G1 and G2 be selected

from Sq uniformly at random. We define ζ as a uniform

random variable over the set {1, . . . ,M} to denote the true

model for the pair G1 and G2 from class Sq . Define Qi as

the joint probability measure of X1 and X2 when ζ = i.
Also, we use the notations Gi

1 , (V,Ei
1) and Gi

2 , (V,Ei
2) to

identify the pair of q-similar graph when ζ = i. Hence, the

KullbackLeibler (KL) divergence between two distinct models

Qi and Qj is given by

DKL(Qi‖Qi) ,

∫

X1,X2

log

(

dQi

dQj

)

dQi , (58)

where dQi

dQj
is the Radon-Nikodym derivative of Qi with respect

to Qj . Accordingly, for each distinct pair i, j ∈ {1, . . . ,M}
we define the symmetricized KL divergence as:

SKL(Qi‖Qj) , DKL(Qi‖Qj) +DKL(Qj‖Qi) , (59)

where for Ising models, SKL(Qi‖Qj) can be readily verified

to be [18], [19]:

SKL(Qi‖Qj)

=
∑

r∈{1,2}





∑

(u,v)∈Ei
r\E

j
r

λuvr (Ei[X
u
rX

v
r ]− Ej [X

u
rX

v
r ])

+
∑

(u,v)∈Ej
r\Ei

r

λuvr (Ej [X
u
rX

v
r ]− Ei[X

u
rX

v
r ])



 ,

(60)

where Ej [X
u
rX

v
r ] is the expected value of the random variable

Xu
rX

v
r in graph Gj

r for u, v ∈ V . Furthermore, we define

I(ζ;X1,X2) as the mutual information between the random

variable ζ (capturing the true pair model) and one pair of graph

samples (X1,X2). By using the convexity of KL divergence,

it follows that

I(ζ;X1,X2) ≤
1

M2

M
∑

i=1

M
∑

j=1

SKL(Qi‖Qi) . (61)

For any class of graphs Sq with M number of total pos-

sible true graphs, we use the following variants of Fano’s

Lemma [44].

Lemma 2 (Fano’s Lemma ). For any class of graphs Sq with

M members, if the number of samples is upper bounded by

n ≤ (1− ε)(logM − 1) + ε

I(ζ;X1,X2)
, (62)

for some ε ∈ (0, 1), then the probability of forming erroneous

estimates of the true pair of graphs P(Sq) satisfies:

P(Sq) ≥ ε . (63)
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Lemma 2 characterizes the upper bound on the number of

samples for which P(Sq) is guaranteed to be bounded away

from 0 by an arbitrary finite value. Note that, in general, ε is

intended to be small and closer to 0, and, therefore, for clarity

in presentation, we will use a slightly looser condition on n.

Specifically, for any decoder to satisfy P(Sq) ≤ ε, we have

n ≥ (1− ε)

I(ζ;X1,X2)
(logM − 1) . (64)

A. Ising Models: Degree-bounded Subclass

Next, we provide the constructions of different ensembles

in the class Id
q (λ, ϑ) that enable us to recover the necessary

conditions on sample complexity in Theorem 1.

1) Ensemble 1: Single-edge Graphs: We first consider an

ensemble of the graph pairs such that each graph has exactly

one edge. Clearly, the number of such pairs is

b1 =

(

p− q

2

)2

+

(

q

2

)

. (65)

In this ensemble, when the single edge connects two shared

nodes, both graphs in the pair are identical. We remark that the

graphs in this ensemble lie in both Id
q (λ, ϑ) and Ik

q,γ(λ, ϑ).
Note that in this ensemble, if we have (u, v) 6∈ Ei, then

random variables Xu
i and Xv

i are independent. Also, for

any pair of edges (u, v) ∈ Ei
r and (w, x) ∈ Ej

r , we have

Ei[X
u
rX

v
r ] = Ej [X

u
rX

v
r ] = tanhλ for r ∈ {1, 2} and

i, j ∈ {1, . . . ,M}. By leveraging these observations, for each

pair of graphs, we have

SKL(Qi‖Qj) = 4λ tanhλ . (66)

Based on (64) and (66), for any graph decoder whose maximal

error in recovering any pair of graphs is less than ε, we must

have

n ≥ (1− ε)(log b1 − 1)

4λ tanhλ
. (67)

It can be verified that
(

q

2

)

≤ b1 ≤ 2

(

q

2

)

, if

(

q

2

)

≥
(

p− q

2

)2

,

(68)
(

p− q

2

)2

≤ b1 ≤ 2

(

p− q

2

)2

, if

(

q

2

)

<

(

p− q

2

)2

.

(69)

Clearly, b1 = Θ(q2) in regime in (68) and b1 = Θ((p−q)2) in

regime in (69), which clearly distinguish the scaling behavior

in terms of q in the two regimes. For clarity, we further

lower bound b1 by (q − 1)2/2 in the regime in (68) and by

(p− q − 1)2/2 in the regime in (69). Therefore, to accurately

capture the effect of structural similarity on the sample com-

plexity in the two regimes, we restate and simplify (67) as

n ≥ 1− ε

4λ tanhλ
max{A1, A2} , (70)

where

A1
△
= 2 log

q − 1√
2

− 1 , and A2
△
= 4 log

p− q − 1√
2

− 1 .

(71)

2) Ensemble 2: (d+ 1)-vertex Fully-connected Subgraphs:

For constructing this ensemble, we divide the shared vertices

into a group of (d + 1) vertices, rendering ⌊q/(d + 1)⌋ such

groups. We partition each of the two non-shared parts of the

two graphs into groups of (d + 1) vertices. Hence, the total

number of these groups is

⌊

p− q

d+ 1

⌋2

+

⌊

q

d+ 1

⌋

. (72)

The vertices within each group are fully-connected, and there

is no inter-group edges. Note that the selection of the nodes

and placing them into different groups has been arbitrary. We

refer to the two graphs defined over E1 and E2 as the base

graphs, and we denote them by Gb
1 and Gb

2 , respectively. Next,

we use this base graphs to construct an ensemble of graph

pairs. Specifically, the ensemble includes all possible graph

pairs (G1,G2) such that Gi constructed by removing one edge

of Gb
i . This ensemble of graphs lies in the class Id

q (λ, ϑ). By

noting that the total number of fully-connected cliques in the

base graphs is given in (72), it can be readily verified that the

total number of graph pairs in this ensemble is given by

[⌊

p− q

d+ 1

⌋(

d+ 1

2

)]2

+

⌊

q

d+ 1

⌋(

d+ 1

2

)

. (73)

For the rest of analysis, we consider two regimes depending

on the relative values of p and q.

1) Regime 1: In this regime we have either (p − q) <

2(d + 1) or q < 2(d + 1), resulting in
⌊

p−q
d+1

⌋

= 1 or
⌊

q
d+1

⌋

= 1, respectively. Hence, the number of graph

pairs specified in (73) is lower bounded by

a) if q < 2(d+ 1) and (p− q) ≥ 2(d+ 1),

b2
△
=

[

(p− q)d

4

]2

+
(d+ 1)d

2
, (74)

b) if q ≥ 2(d+ 1) and (p− q) < 2(d+ 1),

b3
△
=

[

(d+ 1)d

2

]2

+
qd

4
, (75)

c) if q < 2(d+ 1) and (p− q) < 2(d+ 1),

b4
△
=

[

(d+ 1)d

2

]2

+
(d+ 1)d

2
. (76)

We note that the regime (75) is characterized by the

graphs being overly similar. For instance, for d > 0.3p,

the regime in (75) corresponds to the case where q >
0.6p.

2) Regime 2: This is the complement of Regime 1, i.e.,

(p − q) ≥ 2(d + 1) and q ≥ 2(d + 1). In this regime,

the number of graph pairs specified in (73) can be lower

bounded by

b5
△
=

[

(p− q)d

4

]2

+
qd

4
, (77)

By using the bound 2(d + 1) > q in (74), 2(d + 1) >
(p− q) in (75), and the corresponding lower bounds on

(d + 1) in (76), we observe that the number of graphs
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b2, b3 and b4 in their respective regimes can be further

lower bounded by a term equivalent to b5, indicating

that the analyses of the structure estimation algorithm

in the regimes associated with (74), (75), (76), and (77)

are equivalent. Therefore, in the subsequent analysis, we

use the lower bound b5 on the number of graphs in this

ensemble.

By following the separation argument in [18, Lemma 2], we

find that when λ ≥ 1/d, for any pair of graphs in this ensemble

we have

SKL(Qi‖Qj) ≤
8ϑ exp(λ)

exp(ϑ)
. (78)

Therefore, using the number of graph pairs in different regimes

and the divergence result in (78) in Fano’s Lemma in (64),

we conclude that for any graph decoder to have the error

probability in recovering any pair of graphs in this ensemble

less than ε, it is necessary that

n ≥ exp(ϑ)(log b5 − 1)

8ϑ exp(λ)
. (79)

Clearly, the bound on sample complexity scales exponentially

with at least λd as we have ϑ ≥ λd, which reflects the

difficulty in estimating the graphs with large edge weights. We

simplify the condition in b5 by characterizing the regimes for

which qd
4 dominates

[

(p−q)d
4

]2

and vice-versa. Specifically, it

can be verified that
[

(p− q)d

4

]2

≤ b5 ≤ 2

[

(p− q)d

4

]2

, if q + 2

√

q

d
≤ p,

(80)

qd

4
≤ b5 ≤ qd

2
, if q + 2

√

q

d
> p .

(81)

Clearly, we have b5 = Θ((p − q)2d2) in the regime in (80),

and b5 = Θ(qd) in the regime in (81). Therefore, for a

better intuition into the effect of structure similarity on sample

complexity, by leveraging (80) and (81), we simplify the

condition in (79) to

n ≥ exp(ϑ− λ)

8ϑ
max{A3, A4} , (82)

where

A3
△
= log

qd

4
− 1 , and A4

△
= 2 log

(p− q)d

4
− 1 .

(83)

Finally, we combine the findings from the analysis of the

sample complexities of recovering graphs in Ensemble 1 and

Ensemble 2 to provide the necessary conditions on the sample

complexity for recovering the graphs in Id
q (λ, ϑ).

Lemma 3 (Degree-bounded). Consider a pair of q-similar

graphs G1 and G2 in the class Id
q (λ, ϑ). Any graph decoder

ψ that achieves P(Id
q (λ, ϑ)) ≤ ε must satisfy

n ≥ (1− ε)max

{

1

4λ tanhλ
max{A1, A2}, (84)

exp(ϑ)

8ϑ exp(λ)
max{A3, A4}

}

. (85)

Next, we note that in the regime λ = O(1/d), we have
1

λ tanhλ = Ω(d2). Note that according to the definition of ϑ
in (4), variations in d inevitably induce variations in ϑ as well

since we have ϑ ≥ λd. However, in the regime λ = O(1/d),
the effect of ϑ can be controlled because in this regime, ϑ
can be set to an arbitrary constant that will never be exceeded

by its minimum feasible value for any combination of λ and

d. Therefore, the term 1
4λ tanhλ max{A1, A2} dominates the

sample complexity when we have λ = O(1/d) as the second

term in (84) has only a logarithmic scaling behavior in (p−q)
or q. In contrast, when we have λ = Θ(1) or λ = Θ(d), the

second term in (84) is characterized by an exponential scaling

behavior in ϑ which dominates the scaling behavior of the first

term. These observations complete the proof of Theorem 1.

B. Ising Models: Edge-bounded Subclass

The proof of the necessary conditions on the sample

complexity for recovering graphs in Ik
q,γ(λ, ϑ) follows the

same template of application of Fano’s Lemma as discussed

in Section V-A. Therefore, in this section, we discuss the

construction of ensembles in the class Ik
q,γ(λ, ϑ).

Note that the construction of Ensemble 1 discussed in

Section V-A consists of one edge per graph and, therefore,

it is also valid for the class Ik
q,γ(λ, ϑ). We provide the

construction of another ensemble to cover the scenario of

densely-connected graphs.

1) Ensemble 3: Graphs with Cliques: Let m1 be the largest

integer such that γk ≥
(

m1

2

)

and let m2 be the largest integer

such that γ̄k ≥
(

m2

2

)

, where γ̄ = 1− γ. Clearly, m1 and m2

satisfy

√
γk

2
≤ ⌊
√

γk⌋ ≤ m1 ≤ 2
√

γk (86)

and

√
γ̄k

2
≤ ⌊
√

γ̄k⌋ ≤ m2 ≤ 2
√

γ̄k . (87)

We form a base pair of q-similar graphs, denoted by Gb
1 and

Gb
2 , by constructing a fully-connected clique of m1 vertices

in the shared cluster and a fully-connected clique of m2

vertices in the non-shared cluster of each graph. Such selection

of the nodes and placing them into different groups for the

base pair is arbitrary. Next, we use this base pair of graphs

to characterize an ensemble of pairs of q-similar graphs.

Specifically, the ensemble includes all possible graphs pairs

G1,G2) such that the graph Gi is constructed from the base

graph Gb
i by removal of one edge. Considering the similarity

between the two graphs, there are

b6 ,

(

m2

2

)2

+

(

m1

2

)

(88)
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possible pairs of graphs in this ensemble. By leveraging [18,

Lemma 3], we have

SKL(Qi‖Qj)

≤
(

16λm1

exp(λm1)
+

16λm2

exp(λm2)

)

exp(2λ) sinhλ (89)

≤
(

32λ
√
γk

exp(λ
√
γk/2)

+
32λ

√
γ̄k

exp(λ
√
γ̄k/2)

)

exp(2λ) sinhλ ,

(90)

for any two distinct pair of graphs in this ensemble, where (90)

follows from (89) by leveraging (86) and (87). Using

Lemma 2, we get the necessary condition

n >
(1− ε)(log b6 − 1)

32λ
√
k exp(2λ) sinh(λ)

×
( √

γ

exp(λ
√
γk/2)

+

√
γ̄

exp(λ
√
γ̄k/2)

)−1

(91)

≥ (1− ε)b7

32λ
√
k exp(2λ) sinh(λ)

, (92)

where

b7
△
=

[

log

(

γ̄2k2

16
+
γk

4

)

− 1

]

×
( √

γ

exp(λ
√
γk/2)

+

√
γ̄

exp(λ
√
γ̄k/2)

)−1

, (93)

so that the error probability for the exact recovery is at most ε.
To magnify the focus on the effect of shared structure in

the graph, we relax the condition in (92) by investigating the

regimes when the terms characterized by γk or γ̄k dominate

the sample complexity. We make the following observations

in different regimes regarding b7.

1) Regime 1: In this regime, for γ̄ > 0.5, we have

a) if 2λ2k ≥ log2(γ̄/γ)
(1−2

√
γγ̄)

,

exp(λ
√
γ̄k/2)√
γ̄

≥ exp(λ
√
γk/2)√
γ

, (94)

b) otherwise,

exp(λ
√
γ̄k/2)√
γ̄

<
exp(λ

√
γk/2)√
γ

. (95)

Furthermore,

γ̄2k2

16
≥ γk

4
, if k >

4γ

γ̄2
, (96)

γ̄2k2

16
<
γk

4
, otherwise . (97)

Note that on comparing the regimes in (96) and (97) for

k > 8, the dominant regime is always (96). Therefore,

we focus our subsequent discussion on (96). We also

remark that the regime in (94) holds for a wide range of

combinations of γ and k, except for the values of λ in the

asymptote of λ→ 0. For instance, we have 2λ2k > 2.9
when γ = 0.05 and 2λ2k > 1.509 when γ = 0.5. In the

asymptote of λ → 0, the sample complexity scales as

logarithmic factors in k and our analysis will reveal that

in the regime λ = O(1/
√
k), the necessary conditions

for recovering graph-pairs in Ensemble 1 have a linear

dependence on k and, therefore, they dominate the

sample complexity. Therefore, between (94) and (95),

we focus our discussions only on (94). In the regime

specified by (94) and (96), we have
(

log
γ̄2k2

16
− 1

)

exp(λ
√
γ̄k/2)√
γ̄

≤ b7 (98)

and

b7 ≤ 2

(

log
γ̄2k2

8
− 1

)

exp(λ
√
γ̄k/2)√
γ̄

. (99)

Therefore, in this regime, we have

b7 = Θ

(

log γ̄2k2 · exp(λ
√
γ̄k/2)√
γ̄

)

, (100)

and the overall sample complexity is dominated by γ̄k,

which specifies the maximum number of edges in the

non-shared parts of the graphs. To place the emphasis

on the dominating effect of non-shared part, in the

regime specified jointly by the conditions γ̄ > 0.5, k >
4γ
γ̄2 , 2λ

2k ≥ log2(γ̄/γ)
(1−2

√
γγ̄)

, we modify the necessary condi-

tion on the number of samples for any graph decoder to

achieve a recovery error less than ε from (92) to

n >
(1− ε)

32λ exp(2λ) sinh(λ)
×A5 , (101)

where

A5
△
=

exp(λ
√
γ̄k/2)√
γ̄k

(

log
γ̄2k2

16
− 1

)

, (102)

2) Regime 2: In this regime, for γ > 0.5, we have

a) if 2λ2k < log2(γ/γ̄)
(1−2

√
γγ̄)

,

exp(λ
√
γ̄k/2)√
γ̄

≥ exp(λ
√
γk/2)√
γ

, (103)

b) otherwise,

exp(λ
√
γ̄k/2)√
γ̄

<
exp(λ

√
γk/2)√
γ

. (104)

Furthermore,

γ̄2k2

16
≥ γk

4
, if k >

4γ

γ̄2
, (105)

γ̄2k2

16
<
γk

4
, otherwise . (106)

We remark that for moderate to large sized graphs (for

instance, k > 50) the regime in (103) is applicable

only for small values of λ. Since the sample complexity

for small λ is dominated by that for ensemble 1, we

focus our discussion on (104). The condition in (105)

is satisfied for k > 8 when γ ≈ 0.5. However, as γ
becomes larger and gets closer to 1, the feasible values

of k under this regime become larger. For instance, the

regime in (105) implies that for γ = 0.1, we must have

k > 360, and for γ = 0.05, we must have k > 1520.

Using a similar line of arguments as in the Regime

1, for the regime specified jointly by the conditions
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γ > 0.5 and 2λ2k ≥ log2(γ/γ̄)
(1−2

√
γγ̄)

, we modify the necessary

condition on sample complexity from (92) to

n >
(1− ε)

32λ exp(2λ) sinh(λ)
×A6 , if k ≤ 4γ

γ̄2
,

(107)

where

A6
△
=

exp(λ
√
γk/2)√
γk

(

log
γk

4
− 1

)

, (108)

and

n >
(1− ε)

32λ exp(2λ) sinh(λ)
×A7 , if k >

4γ

γ̄2
,

(109)

where

A7 ,
exp(λ

√
γk/2)√
γk

(

log
γ̄2k2

16
− 1

)

. (110)

We summarize the results from Ensemble 1 in Section V-A

and Ensemble 3 to provide the necessary conditions for joint

recovery of q-similar graphs in the edge-bounded subclass.

Lemma 4 (Edge-bounded). Consider a pair of q-similar

graphs G1 and G2 in the class Ik
q,γ(λ, ϑ). Any graph decoder

ψ that achieves P(Ik
q,γ(λ, ϑ)) ≤ ε, must satisfy

n ≥ (1− ε)max

{

1

4λ tanhλ
max{A1, A2} ,

1

32λ exp(2λ) sinh(λ)
max{A5, A6, A7}

}

.

(111)

Next, we note that in the regime λ = O(1/
√
k), we have

1
λ tanhλ = Ω(k). According to the definition of ϑ in (4), vari-

ations in k inevitably induce variations in ϑ as well. However,

in the regime λ = O(1/
√
k), the effect of ϑ can be controlled

because for the graph models in ensemble 3 that lead to the

factor exp(ϑ) in the sample complexity, we have ϑ ≥ λ
√
k.

Therefore, in this regime, ϑ can be set to an arbitrary constant

that will never be exceeded by its minimum feasible value for

any combination of λ and k. Hence, 1
4λ tanhλ max{A1, A2}

dominates the sample complexity in this regime. On the other

hand, in the regimes λ = Θ(1) and λ = Θ(
√
k), the lower

bound on ϑ increases with an increase in k and, therefore,

the second term in (111) grows exponentially and dominates

the sample complexity. Specifically, when we have λ = Θ(1)
or λ = Θ(

√
k), the sample complexity has an exponential

behavior in
√
k as k increases. These observations complete

the proof of Theorem 2.

C. Gaussian Models

To recover the necessary conditions for Gaussian models,

we consider two simple ensembles for exact recovery of graph

pairs in the class Gd
q (ρ) and apply Fano’s Lemma.

1) Ensemble 1: Sparsely-connected Graphs: We consider

an ensemble of graph pairs in which each graph consists of

only one edge. Therefore, this ensemble of graphs lies in both

the degree-bounded and the edge-bounded subclasses of q-

similar Gaussian models. For our analysis, we consider two

specific cases corresponding to whether the edge lies in the

shared part or the non-shared part of a graph in a pair of

q-similar graphs.

1) Case 1: We first consider the case where the edge lies

in the shared cluster for both graphs. Therefore, the

problem of exact recovery of the two graphs becomes

equivalent to the problem of exact recovery of a single

graph from 2n samples. We note that there are
(

q
2

)

num-

ber of possible graph pairs in this scenario. Furthermore,

using the entropy based bound in [23, Theorem 1], we

have

I(ζ;X1,X2) ≤ 8ρ2 . (112)

By leveraging (112) and Lemma 2, we obtain that in

order for the recovery error to be upper bounded by ε,
we must have

n >
(1− ε)

8ρ2

[

log

(

q

2

)

− 1

]

, (113)

for ρ ∈ [0, 1/2].
2) Case 2: In this scenario, we assume that the edge lies in

the non-shared part of the q-similar graph pair. There-

fore, there are
(

p−q
2

)2
possible number of such graph

pairs. By using (112), we get the necessary condition

n >
(1− ε)

8ρ2

(

2 log

(

p− q

2

)

− 1
)

, (114)

for the recovery error to be upper bounded by ε.

Clearly, (113) and (114) lay emphasis on the sample com-

plexity due to shared cluster and the non-shared clusters in

the two graphs, respectively. Furthermore, the bound in (113)

dominates that in (114) if we have log
(

q
2

)

≥ 2 log
(

p−q
2

)

. To

further emphasize the effect of q on the sample complexity,

we slightly relax the results in (113) and (114) and conclude

that in order for the recovery error to be upper bounded by ε,
the the number of samples must satisfy

n >
(1− ε)

4ρ2
max

{

log
q − 1√

2
− 1, 2 log

p− q − 1√
2

− 1

}

,

(115)

for ρ ∈ (0, 1/2].
2) Ensemble 2: Densely-connected graphs: In this ensem-

ble, we consider the graph pairs in which each graph consists

of only one clique of m vertices. We assume that the clique

can completely lie either in the shared part or in the non-shared

part of the graph. This leads us to consider two cases.

1) Case 1: When the clique lies completely in the shared

cluster of the two graphs, we have
(

q
m

)

possible number

of graph pairs. Furthermore, using the KL divergence

based bound in [23, Theorem 1], we have

I(ζ;X1,X2) ≤ log

(

1 +
mρ

1− ρ

)

− mρ

1 + (m− 1)ρ
.

(116)
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Therefore, by using Lemma 2, we get the necessary

condition that

n > (1− ε)
log
(

q
m

)

− 1

log
(

1 + mρ
1−ρ

)

− mρ
1+(m−1)ρ

, (117)

for achieving P(Gd
q (ρ)) ≤ ε.

2) Case 2: When the clique lies completely in the non-

shared clusters of the two graphs, we have
(

p−q
m

)2

number of possible graph pairs. Therefore, by leverag-

ing (116) and Lemma 2, we get the necessary condition

that n must satisfy

n > (1− ε)
2 log

(

p−q
m

)

− 1

log
(

1 + mρ
1−ρ

)

− mρ
1+(m−1)ρ

, (118)

for achieving P(Gd
q (ρ)) ≤ ε.

For the degree-bounded subclass, we set m = d. To recover

the results for edge-bounded subclass, we set m =
√
k in

this ensemble. Finally, we summarize the results from the

two ensembles to provide the necessary conditions for joint

recovery of q-similar graphs in the degree-bounded and edge-

bounded subclasses.

Lemma 5 (Degree-bounded). Consider a pair of q-similar

graphs in the class Gd
q (ρ). Any graph decoder that achieves

P(Gd
q (ρ)) ≤ ε must satisfy

n ≥ (1− ε)max {C1, C2} , (119)

where

C1
△
=

1

4ρ2
max

{

log
q − 1√

2
− 1, 2 log

p− q − 1√
2

− 1

}

,

(120)

C2
△
=

1

log
(

1 + dρ
1−ρ

)

− dρ
1+(d−1)ρ

×max

{

log

(

q

d

)

− 1, 2 log

(

p− q

d

)

− 1

}

. (121)

We note that in the regime ρ = Θ(1/d), we have

ρd = Θ(1) and, therefore, C2 scales proportional to

dmax{log q/d, 2 log(p − q)/d}. On the other hand, in

this regime, C1 has a scaling behavior proportional to

d2 max{log q, 2 log(p − q)}, which clearly dominates that

of C2. In the regime ρ = Θ(1), we have log
(

q
d

)

≥ d log q
d

and log
(

p−q
d

)

≥ d log p−q
d and, therefore, C2 dominates

the sample complexity as C1 has only a logarithmic scaling

behavior in q or (p − q). These observations complete the

proof of Theorem 7. The necessary conditions on the sample

complexity for Gk
q (ρ) are formalized below.

Lemma 6 (Edge-bounded). Consider a pair of q-similar

graphs in the class Gk
q (ρ). Any graph decoder that achieves

P(Gk
q (ρ)) ≤ ε must satisfy

n ≥ 1− ε

8ρ2
max {C1, C3} , (122)

where

C3
△
=

1

log
(

1 + k̃ρ
1−ρ

)

− k̃ρ

1+(k̃−1)ρ

×max

{

log

(

q

k̃

)

− 1, 2 log

(

p− q

k̃

)

− 1

}

. (123)

We note that in the regime ρ = Θ(1/k̃), we have ρk̃ = Θ(1)
and, therefore, C1 dominates the sample complexity. On the

other hand, in the regime ρ = Θ(1), we have log
(q

k̃

)

≥ k̃ log q

k̃

and log
(p−q

k̃

)

≥ k̃ log p−q

k̃
and, therefore, C2 dominates the

sample complexity. These observations complete the proof of

Theorem 8.

VI. PROOFS OF SUFFICIENT CONDITIONS

To establish the sufficient conditions, we analyze the sample

complexity of an ML decoder using the large deviations

bound. We first provide the general setup for the analysis of

an ML decoder for any generic class. Similarly to the proof of

necessary conditions in Section V-A, we consider a subclass

Sq of q-similar graphs that consists of M = |Sq| pair of q-

similar graphs. The graphs G1 and G2 are selected from Sq

uniformly at random and the random variable ζ ∈ {1, . . . ,M}
denotes the true model. When ζ = i, the pair of q-similar

graphs are denoted by Gi
1 , (V,Ei

1) and Gi
2 = (V,Ei

2). Given

the collections of graph samples (xn
1 ,x

n
2 ), the ML decoder

decides on the true models according to the rule given by

Ψ(xn
1 ,x

n
2 ) = arg max

i∈{1,...,M}
ℓi(x

n
1 ,x

n
2 ) , (124)

where ℓi(x
n
1 ,x

n
2 ) is the log likelihood with respect to the

model i ∈ {1, . . . ,M} and is given by

ℓi(x
n
1 ,x

n
2 )

△
=

n
∑

w=1

log dQi(x1(w), x2(w)) , (125)

where xu(w) is the w-th sample of x
n
u. If the solution

to (124) is not unique, we randomly select one. If the data

(xn
1 ,x

n
2 ) is collected from a pair of graphs with true model

i ∈ {1, . . . ,M}, the ML decoder fails to recover the true

model only if there exists some other model j 6= i, for which,

ℓj(x
n
1 ,x

n
2 ) ≥ ℓi(x

n
1 ,x

n
2 ). Therefore, we have

P[Ψ(xn
1 ,x

n
2 ) 6= (Ei

1, E
i
2)]

= P





⋃

j∈{1,...,M}\i
ℓj(x

n
1 ,x

n
2 ) ≥ ℓi(x

n
1 ,x

n
2 )



 (126)

≤
∑

j∈{1,...,M}\i
P[ℓj(x

n
1 ,x

n
2 ) ≥ ℓi(x

n
1 ,x

n
2 )] , (127)

where (127) follows from the union bound. In the proofs of

sufficient conditions for all subclasses, we will upper bound

the probabilities in (127) such that P[Ψ(xn
1 ,x

n
2 ) 6= (Ei

1, E
i
2)]

diminishes with an increase in the number of samples n. Since

given the true model pair, the samples x1 and x2 are generated

independently for both graphs, we have

dQi(x1,x2) = pi1(x1)p
i
2(x2) , (128)

where pir is the marginal probability measure of Xr, for r ∈
{1, 2}, under model i ∈ {1, . . . ,M}. Next, we discuss the

results for Ising models.
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A. Ising Models

We start by providing the large deviations bound in

Lemma 7, which provides the sufficient conditions for the

probability of error of the ML decoder to vanish with an

increase in the sample size n. For this purpose, we define

λ
i
r ∈ R(

p

2) as the vector of edge parameters associated with

graph Gi
r when ζ = i ∈ {1, . . . ,M}. Furthermore, we define

Zr(λ
i
r) as the partition function of Gi

r with parameter vector

λ
i
r and the KL divergence between two Ising models with

parameter vectors λi
r and λ

j
r is denoted by DKL(λ

i
r‖‖λj

r) for

j ∈ {1, . . . ,M}.

Lemma 7. Given the i.i.d. graph samples (xn
1 ,x

n
2 ) from the

model i ∈ {1, . . . ,M}, for any model j 6= i, we have

P[ℓj(x
n
1 ,x

n
2 ) ≥ ℓi(x

n
1 ,x

n
2 )]

≤ exp
(

− n

2
(J(λi

1‖λj
1) + J(λi

2‖λj
2))
)

, (129)

where we have defined

J(λi
r‖λj

r)
△
= DKL

(

λ
i
r + λ

j
r

2
‖ λ

i
r

)

+DKL

(

λ
i
r + λ

j
r

2
‖ λ

j
r

)

, (130)

for r ∈ {1, 2}.

Proof. Let R
△
= ℓj(x

n
1 ,x

n
2 ) − ℓi(x

n
1 ,x

n
2 ). Then, using

Chernoff’s bound, we have

P(R ≥ 0) ≤ inf
s>0

Ei[exp(sR)] . (131)

Note that

Ei[exp(sR)]

=
∑

x
n
1
,xn

2

exp
(

n
∑

w=1

sℓj(x1(w),x2(w))−sℓi(x1(w),x2(w)))
)

×
n
∏

m=1

dQi(x1(m),x2(m)) . (132)

Then, using

ℓi(x1(w),x2(w)) = log dQi(x1(w),x2(w)) , (133)

from (132) we have

Ei[exp(sR)]

∑

x
n
1
,xn

2

n
∏

w=1

[dQj(x1(w),x2(w))]
s×[dQi(x1(w),x2(w))]

1−s
,

(134)

=

(

∑

x1,x2

[dQj(x1,x2)]
s
[dQi(x1,x2)]

1−s

)n

. (135)

Using (128) and (135), we have

Ei[exp(sR)]

=

(

∑

x1

[pj1(x1)]
s[pi1(x1)]

1−s
∑

x2

[pj1(x2)]
s[pi1(x2)]

1−s

)n

.

(136)

From (131), note that by setting s = 1/2, we always have

P(R ≥ 0) ≤ Ei

[

exp

(

R

2

)]

. (137)

Therefore, for s = 1/2, by using the expansions of pi1 and pj1
specified in (1), it can be readily verified that

∑

x1∈{−1,1}p

[

[pj1(x1)]
1/2[pi1(x1)]

1/2
]

=
Z1

(

λ
i
1
+λ

j
1

2

)

(Z1(λi
1)Z1(λ

j
1))

1/2
,

(138)

= exp

(

−J(λ
i
1‖λj

1)

2

)

,

(139)

where J(λi
1‖λj

1) is defined in (130). Following a similar

analysis as in (138) and (139) for G2, and by setting s = 1/2
in (135), we obtain

Ei[exp(R/2)] = exp
(

−n
2
(J(λi

1‖λj
1) + J(λi

2‖λj
2))
)

.

(140)

From (131) and (140), the proof of Lemma 7 is completed.

Next, we leverage [18, Lemma 4] to find a lower bound on

the divergence J(λi
1‖λj

1) + J(λi
2‖λj

2)) in terms of the edge

mismatch between the models i and j for i, j ∈ {1, . . . ,M}.

For r ∈ {1, 2}, define T (λi
r,λ

j
r) as the matching number of

the graph whose edges are given by the set

Ei
r△Ej

r
△
= (Ei

r\Ej
r) ∪ (Ei

r\Ej
r) . (141)

We refer to |Ei
r△Ej

r | as edit distance between the models Gi
r

and Gj
r for i, j ∈ {1, . . . ,M}. Then, using [18, Lemma 4], we

have

J(λi
1‖λj

1) + J(λj
2‖λj

2) ≥
T (λi

1,λ
j
1) + T (λi

2,λ
j
2)

3 exp(2ϑ) + 1
sinh2

(

λ

4

)

,

(142)

where ϑ is the maximum neighborhood weight. We use

Lemma 7 and (142) to characterize the sufficient condi-

tions for recovery of graphs in Id
q (λ, ϑ) in Section VI-A1

and Ik
q,γ(λ, ϑ) in Section VI-A2.

1) Proof of Theorem 3: Consider models i and j in the

class Id
q (λ, ϑ) such that the non-shared parts of the graphs Gi

1

and Gj
1 have an edit distance e1, graphs Gi

2 and Gj
2 have an

edit distance e2, and the shared parts for the two models have

an edit distance es. In this case, we have |Ei
1△Ej

1| = e1 + es
and |Ei

2△Ej
2| = e2 + es. Since the maximum degree of the

graphs is bounded by d, we have

T (λi
1,λ

j
1) ≥

e1 + es
4d

, and T (λi
2,λ

j
2) ≥

e2 + es
4d

.

(143)

Furthermore, the shared part of the graphs can have at most

dq/2 edges and, therefore, es lies between 0 and qd. Without

loss of generality, we assume that (Gi
1,Gi

2) are the true models.

For each es ∈ {0, 1, . . . , qd}, we have at most
((q2)

es

)

models in

Id
q (λ, ϑ) that have a mismatch of es edges in the shared part

from that in the true model. Also, in general the non-shared
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part of the graph can have at most d(p− q) edges (when each

edge in the non-shared part is between a node from the non-

shared part and a node from the shared part of the graph) and,

therefore, e1 and e2 lie between 0 and 2d(p− q). Therefore,

there can be at most
(
(

p−q
2

)

+
(

p−q
1

)(

q
1

)

ℓ

)

(144)

number of models in Id
q (λ, ϑ) that have a mismatch in ℓ edges

from the true model i in the non-shared part. Using (127), the

large deviations bound in Lemma 7, and (142) we have

P[Ψ(xn
1 ,x

n
2 ) 6= (Ei

1, E
i
2)]

≤



1 +

2d(p−q)
∑

e1=1

B(e1)





2
(

1 +

qd
∑

es=1

A(es)

)

− 1 (145)

=





2d(p−q)
∑

e1=1

B(e1)





2

+2

2d(p−q)
∑

e1=1

B(e1) +

qd
∑

es=1

A(es)

+





2d(p−q)
∑

e1=1

B(e1)





2
qd
∑

es=1

A(es)+2

2d(p−q)
∑

e1=1

B(e1)

qd
∑

es=1

A(es) ,

(146)

where we have defined

A(es)
△
=

(
(

q
2

)

es

)

exp

(

−n es/(2d)

3 exp(2ϑ) + 1
sinh2

(

λ

4

))

,

(147)

and

B(e1)

△
=

(
(

p−q
2

)

+
(

p−q
1

)(

q
1

)

e1

)

exp

( −ne1/(4d)
3 exp(2ϑ)+1

sinh2
(

λ

4

))

.

(148)

If we have

qd
∑

es=1

A(es) ≤
ε

4
, (149)

and

2d(p−q)
∑

e1=1

B(e1) ≤
ε

4
, (150)

then the probability P[Ψ(xn
1 ,x

n
2 ) 6= (Ei

1, E
i
2)] is strictly less

than ε ∈ (0, 1). To ensure that (149) is satisfied, we obtain

qd
∑

es=1

A(es) ≤ max
es∈{1,...,qd}

exp

(

log qd+ log

(
(

q
2

)

es

)

−n es/(2d)

3 exp(2ϑ) + 1
sinh2

(

λ

4

))

, (151)

which is less than ε/4 if

n ≥ 2d(3 exp(2ϑ) + 1)

sinh2(λ/4)

(

2 log q + log qd+ log
1

ε

)

. (152)

Equation (152) provides one half of the sufficient conditions

in Theorem 3. To ensure that (150) is satisfied, we obtain

2d(p−q)
∑

e1=1

B(e1) ≤ max
e1∈{1,...,2(p−q)d}

{

exp
(

log 2d(p− q)

+ log

(
(

p−q
2

)(

p−q
1

)(

q
1

)

e1

)

−n e1/(4d)

3 exp(2ϑ) + 1
sinh2

(

λ

4

))}

, (153)

which is less than ε/4 if

n >
4d(3 exp(2ϑ) + 1)

sinh2(λ/4)

(

log 8d+ log(p− q)

+ log

((

p− q

2

)

+ (p− q)q

)

+ log
1

ε

)

. (154)

We remark that (152) and (154) place emphasis on the

sample complexity driven by the shared cluster and non-shared

clusters, respectively. Furthermore, the sufficient condition on

the sample complexity in (152) dominates that in (154) when

we have

q3d

2
≥
(

4d(p− q)(p2 − q2)
)2

, (155)

which simplifies to

32

d
≥ (1 + υ)2(υ − 1)4 , (156)

where υ = p√
q . This observation is formalized as follows. The

ML decoder achieves P(Sq) ≤ ε, if we have

1) if 32
d ≥ (1 + υ)2(υ − 1)4,

n ≥ 2d(3 exp(2ϑ) + 1)

sinh2(λ/4)

(

2 log q + log qd+ log
1

ε

)

,

(157)

2) otherwise,

n ≥ 4d(3 exp(2ϑ) + 1)

sinh2(λ/4)

(

log 8d+ log
p− q

ε

+ log

((

p− q

2

)

+ (p− q)q

))

. (158)

2) Proof of Theorem 4: Consider the models i and j in

the class Ik
q,γ(λ, ϑ) such that the non-shared parts of the

graphs Gi
1 and Gj

1 have an edit distance e1, that of Gi
2 and

Gj
2 have an edit distance e2, and the shared part of the two

models have an edit distance es. Therefore, eu ∈ {0, . . . , 2γ̄k},

for u ∈ {1, 2}, and es ∈ {0, . . . , 2γk}. Without loss of

generality, we assume ζ = i to be the true model. By using

notion of vertex cover, Next, we provide an upper bound

on the total number of models in Ik
q,γ(λ, ϑ) that satisfies

|Ei
1∆E

j
1| = e1 + es and |Ei

2∆E
j
2| = e2 + es. Note that the

vertex cover of a set of edges specifies a set of nodes such that

each edge is incident on at least one node in the vertex cover.

Furthermore, the nodes spanned by the maximal matching of a

given graph also form its vertex cover. Using the upper bound

on the number of graph models with a given edit distance

in [18, Section V-D], we conclude that there are at most

22γ̄kp2(e1+e2)(γ̄k+1)×2γkq2es(γk+1) number of q-similar graph
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pairs that differ in e1 edges in the non-shared part of Gi
1, e2

edges in the non-shared part of Gj
2 , and es edges in the shared

part of model i. Using (127), the large deviations bound in

Lemma 7, and (142) we obtain

P[Ψ(xn
1 ,x

n
2 ) 6= (Ei

1, E
i
2)]

≤
2γ̄k
∑

e1=0

2γ̄k
∑

e2=0

2γk
∑

es=0

22γ̄k+γk
(

p2(e1+e2)(γ̄k+1)

×q2es(γk+1)×exp

(

−n e1 + e2 + 2es
3 exp(2ϑ) + 1

sinh2
(

λ

4

))

− 1
)

(159)

= 22γ̄k+γk





(

1+

2γ̄k
∑

e1=1

C(e1)

)2

×
(

1+

2γk
∑

es=1

D(es)

)

−1



 ,

(160)

where

C(e1)
△
= p2e1(γ̄k+1) exp

(

− n
e1

3 exp(2ϑ) + 1
sinh2

(

λ

4

)

)

,

(161)

and

D(es)
△
= q2es(γk+1) exp

(

− n
2es

3 exp(2ϑ) + 1
sinh2

(

λ

4

)

)

.

(162)

We simplify (160) to

P[Ψ(xn
1 ,x

n
2 ) 6= (Ei

1, E
i
2)]

≤ 22γ̄k+γk





(

2γ̄k
∑

e1=1

C(e1)

)2

+ 2

2γ̄k
∑

e1=1

C(e1)+

2γk
∑

es=1

D(es)

+

(

2γ̄k
∑

e1=1

C(e1)

)2 2γk
∑

es=1

D(es)+2

2γk
∑

es=1

D(es)

2γ̄k
∑

e1=1

C(e1)

)

.

(163)

If we have

22γ̄k+γk

2γ̄k
∑

e1=1

C(e1) ≤
ε

4
and 22γ̄k+γk

2γk
∑

es=1

D(es) ≤
ε

4
,

(164)

then the probability P[Ψ(xn
1 ,x

n
2 ) 6= (Ei

1, E
i
2)] is strictly less

than ε ∈ (0, 1). To ensure that the first part of (164) is satisfied,

we obtain

22γ̄k+γk

2γ̄k
∑

e1=1

C(e1)

≤ max
e1∈{1,...,2γ̄k}

{

exp
(

(2γ̄k + γk) + log(2γ̄k)

+2e1(γ̄k + 1) log p

−n e1
3 exp(2ϑ) + 1

sinh2
(

λ

4

)

)

}

, (165)

which is less than ε/4 if

n ≥ 3 exp(2ϑ) + 1

sinh2(λ/4)

(

(2γ̄k + γk) + log 8γ̄k

+2(γ̄k + 1) log p+ log
1

ε

)

. (166)

To ensure that second part of (164) is satisfied, we obtain

22γ̄k+γk

2γk
∑

es=1

D(es)

≤ max
es∈{1,...,γk}

{

exp
(

(2γ̄k + γk) + log(2⌊γk⌋)

+2es(γk + 1) log q

−n 2es
3 exp(2ϑ) + 1

sinh2
(

λ

4

)

)

}

, (167)

which is less than ε/4 if

n ≥ 3 exp(2ϑ) + 1

2 sinh2(λ/4)

(

(2γ̄k + γk) + log(8γk)

+2(γk + 1) log q + log
1

ε

)

. (168)

We remark that (166) and (168) place emphasis on the sample

complexity due to the shared and non-shared parts, respec-

tively. This is noted by the fact that the bound in (168) domi-

nates that in (166) if we have log q ≥ 2(γ̄k+1)
γk+1 log p, which is

feasible only if we have 2(γ̄k + 1) ≤ γk + 1. Furthermore,

when the asymptotic scaling behavior for large graphs is in

focus, we can further simplify (166) and (168) to include only

the terms that dominate the sample complexity. Specifically,

in (166), for sufficiently large p, the term 2(γ̄k + 1) log p
dominates the terms (2γ̄k + γk) and log 8γ̄k, and specifies

the asymptotic scaling behavior of the sufficient condition. To

emphasize upon this behavior in the results, we relax the bound

in (166) to

n ≥ 3 exp(2ϑ) + 1

sinh2(λ/4)

(

6(γ̄k + 1) log p+ log
1

ε

)

. (169)

Similarly, we note that in (168), for sufficiently large q, the

term 2(γk+1) log q dominates the term (2γ̄k+γk+log 8γk)
and characterizes the asymptotic scaling behavior. Therefore,

to lay emphasis upon this behavior in the results, we modify

the bound in (168) to

n ≥ 3 exp(2ϑ) + 1

2 sinh2(λ/4)

(

6(γk + 1) log q + log
1

ε

)

. (170)

The results in (169) and (170) complete the sufficient condi-

tions in Theorem 4.

B. Gaussian Models

To establish the sufficient conditions for the subclasses of

Gaussian models, we first establish the large deviations bound

on the ML decoder for recovering a single graph in Lemma 1

and generalize it to the recovery of q-similar graph pairs. We

first restate Lemma 1 below.

Lemma 8. Consider a Gaussian graphical model G in the set

S . Then, for any u, v ∈ S , we have

P[Λu(x) ≥ Λv(x)] ≤ K(P[u],P[v]) , (171)

where we have defined

K(P([u],P[v])
△
=





det[P[u]] · det[P[v]]

det
2
[

P[u]+P[v]
2

]





1

4

. (172)
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Proof. Using Chernoff’s bound we have

P[Λu(x)− Λv(x) ≥ 0] ≤ inf
s>0

Ev[exp(sQ)] , (173)

where the expectation is with respect to model v and we have

defined Q
△
= Λu(x) − Λv(x), where Λu(x) is defined (46).

We define fu as the Gaussian pdf of x under model u that

is characterized by the inverse covariance matrix P[u], for

u ∈ {1, . . . , |S|}. Furthermore, we have

Ei[exp(sQ)] =

∫

[fu(x)]s[fv(x)]1−sdx . (174)

By setting s = 1/2 in (174), we get
∫

[fu(x)]1/2[fv(x)]1/2dx

=

∫

1
√

(2π)p
√

det(P−1[u])det(P−1[v])

× exp

(

1

2
x
T

(

P[u] +P[v]

2

)

x

)

dx (175)

=

(

det

[

(

P[u]+P[v]
2

)−1
])1/2

(det(P−1[u])det(P−1[v]))
1/4

. (176)

The statement of Lemma 8 follows from (173) and (176).

1) Proof of Theorem 9: We leverage the fact that the ensem-

ble Aq is the generalization of an ensemble for single Gaussian

models in [23] to a setting of two q-similar graphs. We first

restate the description of the relevant ensemble from [23] here.

Ensemble A: This ensemble is characterized by a set of single

graphs. Any graph G = (V,E) in A consists of one isolated

edge between a pair of nodes given by U2 ⊂ V and a clique

of d nodes in the set Ud ⊂ V such that Ud ∩U2 = φ. The set

Ud is fixed and known to the graph decoder and therefore, the

structure estimation problem reduces to estimating the set U2.

The inverse covariance matrix P for G is characterized by a

parameter a > 0 such that

P = I+ a✶U2
✶
T
U2

+ a✶Ud
✶
T
Ud
. (177)

Lemma 9 provides the sufficient conditions on the model

selection of single graphs in the classes A, which would be

instrumental in the proof of the results in Theorem 9.

Lemma 9. Consider a graph G in the class A. If the sample

size n satisfies

n ≥ 2
log
(

p−d
2

)

+ log 1
ε

1
log(1−ρ2)

, (178)

then there exists a graph decoder Φ : Rn×p → A that achieves

P(A) ≤ ε.

Proof. For class A, there are
(

p−d
2

)

number of possible

models. Assuming that any of the possible models can be

uniformly selected to be the true model, we denote the random

variable for selection of the true model by κ, which lies

in the set {1, . . . ,
(

p−d
2

)

}. Furthermore, we denote the graph

model associated with κ = i by Gi , (V,Ei) which has

an inverse covariance matrix P[i]. For Gi, we denote the

pair of nodes connected by the isolated edge by U i
2. Without

loss of generality, we assume that Gu is the true model, for

u ∈ {1, . . . ,
(

p−d
2

)

}. Using Lemma 8 and the union bound, we

have

P[Φ(xn) 6= Eu)] ≤
∑

v∈{1,...,(p2)}\u

P[Λv(x
n) ≥ Λu(x

n)] .

(179)

Since Ud is fixed and known, and U i
2 ∩ Ud = φ, the

graph decoder can estimate the unknown structure by samples

collected only from the nodes V \Ud. In this scenario, the

reduced inverse covariance matrix formed by the nodes in the

set V \Ud for model i is given by

P̃[i]
△
= I+ a✶Ui

2

✶
T
Ui

2

. (180)

It follows that we have det([P̃−1[i]]) = 1
1+2a , ∀i ∈

{1, . . . ,
(

p−d
2

)

} and

det





(

P̃[u] + P̃[v]

2

)−1


 ≤
(

1

1 + a

)2

, (181)

∀v ∈
{

1, . . . ,
(

p−d
2

)

}

\u. Using Lemma 1, (179), and (181),

we have

P[Φ(xn) 6= Eu)] ≤
(

p− d

2

)(

1 + 2a

(1 + a)2

)n/2

≤ exp

(

log

(

p− d

2

)

+ 0.5n log(1− ρ2)

)

,

(182)

where the second inequality in (182) follows from a
1+a ≥ ρ.

Therefore, the condition

P[Φ(xn) 6= Eu)] ≤ ε is satisfied if we have

n ≥ 2
log
(

p−d
2

)

+ log 1
ε

log 1
1−ρ2

. (183)

The proof of Theorem 9 leverages different elements of

Lemma 9. The graphs in ensemble Aq consist of only an

isolated edge, either in the shared part or the non-shared part

for each graph. Therefore, there are

c1
△
=

(

q

2

)

+

(

p− q

2

)2

(184)

number of possible graph pairs in Aq . Assuming that any of

the possible models can be selected uniformly to be the true

graph pair, the random variable ζ denotes the selection of the

true graph pairs from the set {1, . . . , c1}. When ζ = i, the

true graphs are given by Gi
1

△
= (V,Ei

1) and Gi
2

△
= (V,Ei

2)
and the inverse covariance matrix associated with Gi

r is Pr[i]
for r ∈ {1, 2}. Without loss of generality, we assume that

(Gu
1 ,Gu

2 ) is the true graph pair. Using the union bound in (126)
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and the technical arguments similar to those in (131)- (136)

we have

P [Ψ(xn
1 ,x

n
2 ) 6= (Eu

1 , E
u
2 )]

≤
∑

j∈{1,...,c1}\u
P[ℓj(x

n
1 ,x

n
2 ) ≥ ℓu(x

n
1 ,x

n
2 )]

≤
∑

j∈{1,...,c1}\u

(∫

[f j1 (x1)]
1

2 [fu1 (x1)]
1

2 dx1 ×

∫

[f j1 (x2)]
1

2 [fu1 (x2)]
1

2

dx2

)n

. (185)

Using (176), we obtain

P [Ψ(xn
1 ,x

n
2 ) 6= (Eu

1 , E
u
2 )]

≤
∑

j∈{1,...,c1}\u
(K(P1[j],P1[u])×K(P2[j],P2[u]))

n
.

(186)

From the proof of Lemma 8, we leverage the result

K(P1[j],P1[u]) ≤
(

1− ρ2
)

1

2 , (187)

for graph models with a single edge to update (186) to

P [Ψ(xn
1 ,x

n
2 ) 6= (Eu

1 , E
u
2 )] ≤ exp

(

log c1 + n log(1− ρ2)
)

.
(188)

Therefore, the condition P [Ψ(xn
1 ,x

n
2 ) 6= (Eu

1 , E
u
2 )] ≤ ε is

satisfied if we have

n ≥ 1

log 1
(1−ρ2)

log
c1
ε
. (189)

It can be readily verified that

1) if
(

q
2

)

≥
(

p−q
2

)2
,
(

q

2

)

≤ c1 ≤ 2

(

q

2

)

< q2 , (190)

2) if
(

q
2

)

≤
(

p−q
2

)2
,

(

p− q

2

)2

≤ c1 ≤ 2

(

p− q

2

)2

< (p− q)4 . (191)

Therefore, c1 = Θ(q2) in the regime in (190) and

c1 = Θ((p− q)2) in the regime in (191). For clarity in pre-

sentation and to place emphasis on the effect of structural

similarity on the sample complexity in the two regimes, we

relax (189) as

n ≥ 2

log 1
(1−ρ2)

×
(

max {log q, 2 log(p− q)}+ log
1

ε

)

.

(192)

2) Proof of Theorem 10: We leverage the fact that ensemble

Bq is the generalization of an ensemble in [23] to a setting

consisting of two q-similar graphs. We denote the relevant

ensemble in [23] by B whose description is as follows.

Ensemble B: This ensemble is characterized by a set of

single single graphs, where each graph consists of one clique

of size d. For a graph G with a clique formed by nodes in the

set Ud, its inverse covariance matrix is given by

P = I+ a✶Ud
✶
T
Ud
, (193)

for a > 0. For ensemble B, there are
(

p
d

)

total number of

possible models. Lemma 10 provides the sufficient conditions

on the model selection of single graphs in the classes B,

which would be instrumental in the proof of the results in

Theorem 10.

Lemma 10. Consider a graph G1 in the class B. If the sample

size n satisfies

n ≥ 2
log
(

p
d

)

+ log 1
ε

log (d2−d+1)ρ2+(d−2)ρ+1
(1−ρ)(1+(d−1)ρ)

, (194)

then there exists a graph decoder Φ : Rn×p → B that achieves

P(B) ≤ ε.

Proof. Assuming that any model in B can be selected uni-

formly to be the true model, we denote the random variable

for selection of the true model by ζ whose support lies in the

set {1, . . . ,
(

p
d

)

}. We use the same definitions as in the proof of

Lemma 8 for Gi and its inverse covariance matrix P[i] when

ζ = i. For graph Gi, we denote the set of d nodes that form

the clique by U i
d and, therefore, we have

det([P[i]]−1) =
1

1 + da
, (195)

and

det

[

(

P[i] +P[j]

2

)−1
]

≤
(

1

1 + da/2

)2

, (196)

∀j ∈ {1, . . . ,
(

p
d

)

}\u. Using Lemma 8, (195) and (196), we

have

P[Φ(xn) 6= Eu)]

≤
(

p

d

)(

1 + da

(1 + da/2)2

)n/2

(197)

≤ exp(log

(

p

d

)

−0.5n log
(d2−d+1)ρ2+(d−2)ρ+ 1

(1−ρ)(1+(d−1)ρ)
) ,

(198)

where (198) follows from (197) by using a
1+a ≥ ρ. The

condition P[Φ(xn) 6= Eu)] ≤ ε is satisfied if we have

n ≥ 2
log
(

p
d

)

+ log 1
ε

log (d2−d+1)ρ2+(d−2)ρ+1
(1−ρ)(1+(d−1)ρ)

. (199)

The proof of Theorem 10 leverages Lemma 10. The total

number of graph pairs in Bq is given by

c2
△
=

(

q

d

)

+

(

p− q

d

)2

. (200)

Therefore, under the assumption that any of the possible graph

pairs can be selected as the true models uniformly at random

and using similar arguments as in Section VI-B1, we obtain

P [Ψ(xn
1 ,x

n
2 ) 6= (Eu

1 , E
u
2 )]

≤
∑

j∈{1,...,c2}\u
(K(P1[j],P1[u])×K(P2[j],P2[u]))

n
.

(201)
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Furthermore, by leveraging the following result for single

graphs from B

K(Pr[j],Pr[u]) ≤
(

1 + da

(1 + da/2)2

)
1

2

, (202)

≤ (1− ρ)(1 + (d− 1)ρ

(d2 − d+ 1)ρ2 + (d− 2)ρ+ 1
, (203)

we update (201) to

P [Ψ(xn
1 ,x

n
2 ) 6= (Eu

1 , E
u
2 )]

≤ exp

(

log c2 − n log
(d2 − d+ 1)ρ2 + (d− 2)ρ+ 1

(1− ρ)(1 + (d− 1)ρ)

)

.

(204)

Therefore, the condition P [Ψ(xn
1 ,x

n
2 ) 6= (Eu

1 , E
u
2 )] ≤ ε is

satisfied if we have

n ≥ log c2/ε

log (d2−d+1)ρ2+(d−2)ρ+1
(1−ρ)(1+(d−1)ρ)

. (205)

In the context of c2, it readily follows that

1) if
(

q
d

)

≥
(

p−q
d

)2
,

(

q

d

)

≤ c2 ≤ 2

(

q

d

)

< 2
(qe

d

)d

, (206)

2) if
(

q
d

)

≤
(

p−q
d

)2
,

(

p− q

d

)2

≤ c2 ≤ 2

(

p− q

d

)2

< 2

(

(p− q)e

d

)2d

,

(207)

where the upper bounds in (206) and (207) follow from the

inequality
(

z
y

)

< (ze/y)y , for any pair of positive integers

z > y. Clearly, we have c2 = Θ(
(

q
d

)

) in the regime in (206)

and c2 = Θ(
(

p−q
d

)

) in the regime in (207). Therefore, for

clarity and to emphasize on the effect of structural similarity

on the sample complexity, we relax the bound in (205) to

n ≥ 1

log (d2−d+1)ρ2+(d−2)ρ+1
(1−ρ)(1+(d−1)ρ)

×
(

max

{

2d log
(p− q)e

d
, d log

qe

d

}

+ log
2

ε

)

.

(208)

3) Proof of Theorem 11: The proof of Theorem 11 follows

the same line of analysis as that of Theorem 10. Firstly, we

create an ensemble of single graphs C which consists of graphs

with cliques of size k̃. Note that ensemble C is similar to

the design of B with the size of the cliques being the only

difference between the two ensembles. The ensemble Cq is a

generalization of C to the setting with q-similar graph pairs

and consists of

c3
△
=

(

q

k̃

)

+

(

p− q

k̃

)2

, (209)

total number of graph pairs. Due to the equivalence in the

design of ensembles, we can leverage the results of Lemma 10

and follow the same line of analysis to recover the result that

the condition P [Ψ(xn
1 ,x

n
2 ) 6= (Eu

1 , E
u
2 )] ≤ ε is satisfied for

the ensemble Cq if we have

n ≥ log c3/ε

log (k̃2−k̃+1)ρ2+(k̃−2)ρ+1

(1−ρ)(1+(k̃−1)ρ)

. (210)

Next, we relax the bound in (210) using similar technical

arguments followed in (206) and (207) to obtain the condition

n ≥ 1

log (k̃2−k̃+1)ρ2+(k̃−2)ρ+1

(1−ρ)(1+(k̃−1)ρ)

×
(

max

{

2k̃ log
(p− q)e

k̃
, k̃ log

qe

k̃

}

+ log
2

ε

)

.

(211)

VII. NUMERICAL EVALUATIONS

In this section, we illustrate the effect of η = q/p, which

quantifies the structural similarity, on the performance of an

ML based graph decoder and Algorithm 1.

A. Joint Structure Estimation via ML Decoding

In general, for any class Sq , the graph decoder that min-

imizes P(Sq) is the ML decoder given in (19). Since the

implementation of (19) requires a search over all the possible

graph pairs in a class, it becomes computationally intractable

as the graph size p increases. Therefore, we evaluate this graph

decoder over a restricted ensemble of Ising models for which

the implementation is feasible.

We consider an ensemble that is characterized by many

isolated edges. We assume that for a graph with p total nodes

out of which q nodes lie in the shared cluster such that η = q
p ,

there are α isolated edges with ⌊ηα⌋ edges in the shared

cluster. Each graph is constructed in the following manner.

We randomly divide the non-shared cluster with p− q nodes

in (p − q)/2 pair of nodes and randomly connect α − ⌊ηα⌋
pairs. The edge structure in the shared cluster is constructed

in a similar manner.

Under joint recovery, the data from both graphs are pro-

cessed jointly to estimate the edge structure. Under indepen-

dent recovery, the structures of the graphs are learned indepen-

dently. Figure 3 illustrates the effect of structural similarity on

the performance of the graph decoder. Clearly, as η increases,

the graph decoder that jointly processes the data requires a

smaller number of samples to achieve the same performance as

a graph decoder that learns the graph structures independently.

For the results in Fig. 3, we set p = 100, α = 20, and λ = 1.

The performance of the graph decoders is evaluated over 1500

trials. Next, we keep the number of edges k and degree d fixed

as we evaluate the error probability for increasing the number

of nodes p. For the results in Fig. 4, we set α = 20, λ = 0.4
and η = 0.5, and evaluate the error probability for the graph

decoder based on 40 samples from each graph. We observe

that the error probability monotonically increases as the graph

size increases, indicating that the structure estimation problem

becomes more difficult, as implied by Corollary 1.
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B. Joint Structure Estimation using Algorithm 1

We study the performance of structure estimation of graphs

with loops which are, in general, infeasible to be learned by

an ML decoder. For this purpose, we generate an ensemble of

graphs of size p = 20, where the nodes are randomly divided

into groups of size 4 and each group is connected in a ring,

followed by random single-edge connections among different

groups, and each node in a group connected to at most one

other node outside its own group. Therefore, the maximum

degree of a node in this ensemble is 3.

Figure 5 illustrates the comparison of the mean performance

of Algorithm 1 for recovering graph pairs with different

structural similarities against recovering them independently

using the algorithm in [15] over 1000 random instances of

graph pairs. The probability of error corresponds to the event

that the true graph pair was not recovered exactly in any of

the iterations when the online estimation algorithm was run

up to a horizon indicated on the x-axis.

Clearly, our algorithm outperforms the independent struc-

ture estimation algorithm for η = 0.25, 0.5 and 1. When η = 1,

the graph pairs are identical and, therefore, Algorithm 1 is

equivalent to processing the data x
n
1 and x

n
2 in parallel with

two processing units processing one graph sample each in

every iteration with an exchange of pairwise loss functions

between the two. This indicates that Algorithm 1 performs

better by processing two graph samples in every iteration up

to a horizon nT compared to an approach that sequentially

processes one graph sample up to a horizon nT.
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Fig. 5. Error probability versus horizon (nT) or the number of samples for
each graph.

VIII. CONCLUSIONS

In this paper, we have considered the problem of structure

estimation of partially similar graphs in various subclasses

of Ising models and Gaussian models. Due to the partial

similarity in structure, any inference about the structure of

one graph provides side information about the structure of

the other graph. Under the criterion of exact recovery of the

structure of the graphs, we have characterized necessary and

sufficient conditions on the sample complexity of joint model

selection for various subclasses of Ising models and Gaussian

models. The sufficient conditions are based on the analysis

of an ML decoder which is optimal for exact recovery. We

have analyzed variation in sample complexity with respect to

structural similarity. We have also studied the scaling behavior

of the sample complexity in different regimes. Our analysis

has also revealed the regimes in which the asymptotic scaling

behavior of the necessary and sufficient conditions coincide,

thus establishing optimal sample complexity. Moreover, for

different subclasses of Gaussian models, our theoretical results

enable us to conclusively establish that jointly recovering q-

similar graphs is easier than recovering the graphs indepen-

dently.

APPENDIX A

PROOF OF THEOREM 6

We start by noting that the Sparsitron algorithm proposed

in [15] for estimating a sparse generalized linear model

(GLM) was shown to enable structure estimation of a single

Ising model due to certain properties of the random vari-

ables associated with a degree-bounded Ising model. Here,

we will build upon the principles adopted in [15] to first

propose Algorithm 2 for estimating two sparse GLMs jointly

and characterize its performance. Then, we will leverage the

performance of Algorithm 2 and the properties of Ising models

to complete the proof of Theorem 6.
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Algorithm 2 Estimating two GLMs jointly

1: Input β, R, data samples (cT1 ,d
T
1 ) and (cT2 ,d

T
2 )

2: initialize w0
i = 1a/a for i ∈ {1, 2}

3: for a new pair of data sample j ∈ {1, . . . , T} do

4: Compute h
j
i using (216)

5: Compute losses ℓ
j
i for i ∈ {1, 2} according to (215)

6: for t ∈ {1, . . . , a} do

7: Update the weights wj
i (t) according to (213)

8: end for

9: end for

A. Joint Estimation of Sparse GLMs

Define g1 and g2 as two pdfs in the space [−1, 1]a×{0, 1}
and (Ci, Di) as the random variables whose joint pdf is gi,
i.e., (Ci, Di) ∼ gi, where Ci ∈ [−1, 1]a and Di ∈ {0, 1}. We

assume that the pair Ci and Di satisfies the property

E[Di|Ci] = σ̃(ri · Ci) , for i ∈ {1, 2} , (212)

where σ̃ : R → [0, 1] is a non-decreasing 1-Lipschitz

function, and ri , [r1i , . . . , r
a
i ] is a vector of weights such

that ‖ri‖1 ≤ ϑ for i ∈ {1, 2} for ϑ > 0. Furthermore, we

assume that the vectors r1 and r2 are partially similar, i.e.,

ri1 = ri2, ∀i ∈ R, where R ⊆ {1, . . . , a} is the set of indices

at which the vectors r1 and r2 have identical entries. In this

scenario, the objective is to learn the vectors r1 and r2 from

the random samples from g1 and g2. The collection of T
independent and identically distributed (i.i.d.) samples from

gi is denoted by (cTi ,d
T
i ), where c

T
i

△
= [c1i , . . . , c

T
i ] and

d
T
i

△
= [d1i , . . . , d

T
i ]. Furthermore, corresponding to the model

gi, we denote the weight associated with the t-th element in

ri in the j-th iteration by wt
i(j) and its update rule is given

by

wj
i (t) = w0

i (t)

j
∏

u=1

exp(βLu
i (t)) , (213)

where

Lu
i (t) , ✶t∈R

(ℓu1 (t) + ℓu2 (t))

2
+ (1− ✶t∈R)ℓui (t) , (214)

and ✶{·} is an indicator function and the structure of the

loss function ℓu1 (t) is discussed next. We denote the local

loss function for model gi evaluated at the j−th iteration by

ℓ
j
i , [ℓji (1), . . . , ℓ

j
i (a)], where ℓji (t) is defined as

ℓ
j
i ,

1

2
(1a + (σ̃(ϑhj

i · c
j
i )− dji )c

j
i ) , (215)

1a is an a × 1 vector of all 1′s and h
j
i is obtained by

normalizing the vector w
j
i , [wj

i (1), . . . , w
j
i (a)] using

h
j
i =

w
j−1
i

‖wj−1
i ‖1

. (216)

In this scenario, the steps to jointly learn r1 and r2 are

provided in Algorithm 2 which builds upon the principles of

Hedge algorithm in [42]. Theorem 14 provides the sample

complexity of Algorithm 2.

Theorem 14. Given T = O(ϑ2(log(a/δε)/ε2) number of

i.i.d. samples from g1 and g2, Algorithm 2 forms estimates

r̂1 and r̂2 such that with probability at least 1− δ, we have

Eg1,g2 [(σ̃(r̂i · ci)− σ̃(ri · ci))2] ≤ ε , for i ∈ {1, 2}. (217)

Proof. We start by presenting a result similar to [42, Theorem

5], which establishes that the overall regret of an online

estimation framework given by Algorithm 2 is upper bounded

by the regret of the best expert with addition of terms that

scale as O(
√
T log a) + log a. This result is formalized in the

next lemma.

Lemma 11. Given T data samples, the overall regret cor-

responding to estimating the GLM for gi in Algorithm 2 is

bounded as

T
∑

j=1

h
j
i · L

j
i ≤ min

t∈{1,...,a}

T
∑

j=1

Lj
i (t) +O(

√

T log a) + log a ,

(218)

where

L
j
i , [Lj

i (1), . . . , L
j
i (a)]

T and h
j
i , [hji (1), . . . , h

j
i (a)] ,
(219)

such that ‖hj
i‖1 = 1 and hji (t) ≥ 0, ∀t ∈ {1, . . . , a}.

Proof. We note that

a
∑

t=1

wj
i (t) =

a
∑

t=1

wj−1
i (t) exp(βLj

i (t)) . (220)

Since, we have Lj
i (t) ∈ [0, 1], and from the convexity

argument in [42], we get

exp(βLj
i (t)) ≤ 1− (1− exp(β))Lj

i (t) . (221)

Therefore, it readily follows that

a
∑

t=1

wj
i (t) ≤

a
∑

t=1

wj−1
i (t)(1− (1− exp(β))hj

i · L
j
i ) . (222)

For j = T and by repeating the steps (220) and (222), we

have

a
∑

t=1

wT
i (t) ≤

a
∑

t=1

w0
i (t)

T
∏

j=1

(1− (1− exp(β))hj
i · L

j
i ) .

(223)

By using
a
∑

t=1
w0

i (t) = 1 and the property 1+ x ≤ exp(x), ∀x,

we get

a
∑

t=1

wT
i (t) ≤ exp(−(1− exp(β))

T
∑

j=1

h
j
i · L

j
i ) . (224)

The overall regret of the Algorithm 2 is given by
T
∑

j=1

h
j
i · L

j
i

and from (224), we have

T
∑

j=1

h
j
i · L

j
i ≤

− log(
a
∑

t=1
wT

i (t))

1− exp(β)
. (225)
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Therefore, we have established that the sequence of loss

functions for joint estimation of the two GLMs satisfies the

same property as the loss function for estimating a single GLM

in [15]. Subsequent arguments in Lemma 4 and Lemma 5

in [42] complete the proof of Lemma 11.

The proof of Theorem 14 leverages Lemma 11 and the

subsequent analysis follows the same line of analysis as in

the proof of [15, Theorem 3.1]. We will leverage Lemma 11

to characterize T for prediction of ri next. Corresponding to

gi, we define the random variable

V j
i , (hj

i − ri/ϑ) · Lj
i , (226)

such that, V j
i ∈ [−1, 1]. Based on V j

i , we define another

sequence of random variables

Zj
i = V j

i − E[V j
i |(c

j−1
1 ,dj−1

1 ), (cj−1
2 ,dj−1

2 )] . (227)

Then, we have Zj
i ∈ [−2, 2]. Note that using Azuma’s

inequality on martingales with bounded differences, we find

that the following event holds with probability at least 1− δ,

T
∑

j=1

E[V j
i |((c

j−1
1 ,dj−1

1 ), (cj−1
2 ,dj−1

2 )]

≤
T
∑

j=1

V j
i +O(T log(1/δ)) . (228)

Furthermore, note that

E[V j
i |((c

j−1
1 ,dj−1

1 ), (cj−1
2 ,dj−1

2 )] =
1

ϑ
E[(ϑhj

i − ri) · Lj
i ]

(229)

and

E[V j
i | ≥

1

4ϑ
E[σ̃(ϑhj

i · ci)− σ̃(ri · ci))2] (230)

where (230) follows from the inequality that ∀a, b ∈ R, (a −
b)(σ(a) − σ(b)) ≥ (σ(a) − σ(b))2 and that the lower bound

corresponds to indices with identical values in r1 and r2. Then,

it follows from (219), (228), and (230) that with probability

at least 1− δ, we have

1

4ϑ

T
∑

j=1

E[σ̃(ϑhj
i · ci)− σ̃(ri · ci))2]

≤ min
t∈{1,...,a}

T
∑

j=1

Lj
i (t)−

T
∑

j=1

(ri/ϑ) · Lj
i

+O(
√

T log a) + log a+O(T log(1/δ)) .
(231)

Clearly, when ‖ri‖1 = ϑ, we have that

min
t∈{1,...,a}

T
∑

j=1

Lj
i (t)−

T
∑

j=1

(ri/ϑ) · Lj
i ≤ 0 . (232)

When we have ‖ri‖1 < ϑ, we can augment ri with a

pseudo vector r̃i such that ‖[ri, r̃i]‖1 = ϑ and the random

vector ci with an additional element that corresponds to 0
such that r̃i corresponds to the weight associated with 0 and

proceed further [15]. This also motivates the inclusion of

auxiliary weights κ̃uvi in Algorithm 1. Next, we note that with

probability 1− δ, we have

1

4ϑ

T
∑

j=1

E[σ̃(ϑhj
i · ci)− σ̃(ri · ci))2]

= O(
√

T log a) +O(log a) +O(T log(1/δ)) . (233)

Therefore, for T = O(ϑ2 log(a/δ)/ε2, we must have that with

probability 1− δ,

min
j∈{1,...,T}

E[σ̃(ϑhj
i · ci)− σ̃(ri · ci))2] ≤ ε . (234)

B. Joint Estimation of Ising Models

To complete the proof of Theorem 6, we note that

E[Bu
i ] =

1

1 + exp(2λ
∑

{v:(u,v)∈Ei}
λuvi Xu

i X
v
i )

. (235)

Therefore, every node u ∈ V can determine its neighborhood

in G1 and G2 using Algorithm 2 by setting σ̃ to be a sigmoid

function σ(x) = 1
1+exp(−x) , a = p − 1, and Di = Bu

i in Gi.

In this scenario, we have the following lemma in the context

of Ising models that is equivalent to Theorem 14.

Lemma 12. For a node u in Gi, given nT = O
(

ϑ2

αε2 log
p
ε

)

number of pairs of samples from nodes in G1 and G2, Algo-

rithm 1 produces at least one set of weights {wuv
i (j)} for

j ∈ {1, . . . , nT} such that with probability at least 1− α
p2 ,

E



σ



−2
∑

{v:(u,v)∈Ej
i
}

wuv
i (j)Xv

i





−σ



−2
∑

{v:(u,v)∈Ei}
λuvi Xv

i







≤ε , ∀ε > 0. (236)

Subsequently, the statement of the Theorem 6 follows from

Lemma 12 and [15, Lemma 4.3].

APPENDIX B

PROOF OF THEOREM 12

In this class based on (205), the sufficient condition for

recovering two q-similar graphs is

n ≥ 1

log (d2−d+1)ρ2+(d−2)ρ+1
(1−ρ)(1+(d−1)ρ)

log

(

(

q
d

)

+
(

p−q
d

)2

ε

)

. (237)

In parallel, for recovering two graphs independently, we

have

n > (1− ε)
2 log

(

p
d

)

− 1

log
(

1 + dρ
1−ρ

)

− dρ
1+(d−1)ρ

, (238)

which is the result established in (Wang and Wainwright,

2010) and can also be recovered from our results by setting

q = 0 in (238) and m = d in the ensemble construction

for dense graphs in Section V-C2. To establish the desired
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result, in our analysis we exclude the setting in which the

two graphs are either almost identical (i.e., q → p) or almost

distinct (i.e., q → 0). To this end, we focus on the regime

max{q, p − q} < p1−2ε. We note that this regime is not

too stringent. For instance, when ε = 0.1, q that satisfies

max{q, p−q} < p0.8 lies in q ∈ [p0.8, p−p0.8]. For p = 10000,

this range is [1585, 8415].
We show that for any target error rate ε, as long as

max{q, p− q} < p1−2ε, for ρ > 1
d+1 , we have

(1− ε)
2 log

(

p
d

)

− 1

log
(

1+ dρ
1−ρ

)

− dρ
1+(d−1)ρ

>
1

log (d2−d+1)ρ2+(d−2)ρ+1
(1−ρ)(1+(d−1)ρ)

log

(

(

q
d

)

+
(

p−q
d

)2

ε

)

, (239)

which is equivalent to

log (d2−d+1)ρ2+(d−2)ρ+1
(1−ρ)(1+(d−1)ρ)

log
(

1 + dρ
1−ρ

)

− dρ
1+(d−1)ρ

>
1

(1− ε)(2 log
(

p
d

)

− 1)
log

(

(

q
d

)

+
(

p−q
d

)2

ε

)

. (240)

By noting that
(

q
d

)

<
(

q
d

)2
and leveraging the combinatorial

inequalities

(p

d

)d

≤
(

p

d

)

≤
(pe

d

)d

, (241)

we prove the following inequality, which is stronger than (240)

and implies (240):

log (d2−d+1)ρ2+(d−2)ρ+1
(1−ρ)(1+(d−1)ρ)

log
(

1 + dρ
1−ρ

)

− dρ
1+(d−1)ρ

>
1

(1− ε)(2d log p/d− 1)

(

log

(

2r

d

)2d

− log ε

)

,

(242)

where we have defined r
△
= max{q, p− q}e. Next, we show

that for ρ > 1
d+1 we have

log (d2−d+1)ρ2+(d−2)ρ+1
(1−ρ)(1+(d−1)ρ)

log
(

1 + dρ
1−ρ

)

− dρ
1+(d−1)ρ

> 1 , (243)

and for r < p1−2ε we have

1

(1− ε)(2d log p/d− 1)

(

log

(

2r

d

)2d

− log ε

)

< 1 .

(244)

To show the inequality in (262), we start by noting that for

any ρ and d, we have

[ρ(d+ 1)− 1]2 ≥ 0 . (245)

This is equivalent to

ρ2d2 ≥ −2ρ2d+ 2ρd− ρ2 + 2ρ− 1 . (246)

Adding 3ρ2d2 to both sides results in

4ρ2d2 ≥ [(3d+ 1)ρ− 1][(d− 1)ρ+ 1] , (247)

or equivalently in

ρ2d2

(1− ρ)[(d− 1)ρ+ 1]
≥ (3d+ 1)ρ− 1

4(1− ρ)
. (248)

Subsequently

1 +
ρ2d2

(1− ρ)[(d− 1)ρ+ 1]
≥ 3

4

(

1 +
dρ

1− ρ

)

. (249)

By noting that 1√
2
< 3

4 , (249) implies that

1 +
ρ2d2

(1− ρ)[(d− 1)ρ+ 1]
≥ 1√

2

(

1 +
dρ

1− ρ

)

, (250)

or equivalently

log

(

1 +
ρ2d2

(1− ρ)[(d− 1)ρ+ 1]

)

≥ log

(

1 +
dρ

1− ρ

)

− 1

2
.

(251)

Next, we note that for ρ > 1
d+1 , we have

dρ

1 + (d− 1)ρ
>

1

2
. (252)

Hence, (251) and (252) indicate that

log

(

1 +
ρ2d2

(1− ρ)[(d− 1)ρ+ 1]

)

> log

(

1 +
dρ

1− ρ

)

− dρ

1 + (d− 1)ρ
, (253)

which proves that for ρ > 1
d+1 , the inequality in (262) holds.

Next, we show that for r < ρ1−2ε and log p > 1
2dε

(

2 +

log 1
ε

)

, (244) holds as well. To show this, we start by noting

that

log p >
1

2dε

(

2 + log
1

ε

)

, (254)

implies that

2dε log p > 2 + log
1

ε
− (ε+ ε log d) . (255)

By expanding ε as ε = (1−ε)−(1−2ε) and leveraging (255)

we obtain

2d

[

log
p1−ε

p1−2ε
+ log

d

d1−ε

]

> 2− ε+ log
1

ε
. (256)

By noting that r < p1−2ε, from (256), we get

2d

[

log
p1−εd

rd1−ε

]

> 2− ε+ log
1

ε
, (257)

which is equivalent to

2d(1− ε) log
p

d
− (1− ε)

> 1 + 2d log
r

d
− log ε = log

(

2
( r

d

)2d
)

+ log
1

ε
,

(258)

thus, establishing the inequality in (244).
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APPENDIX C

GAINS OVER INDEPENDENT RECOVERY FOR SHARED

CLIQUE IN GAUSSIAN MODELS

We expand our analysis for gains in the Gaussian models

to consider a class of q-similar graphs in which the d-clique,

Ud is not restricted to lie wholly within the shared part or the

non-shared part. Therefore, this class supercedes the class Bq .

Class Dq: We assume that any graph in this sub-class consists

of a clique of d nodes. Therefore, there are
d
∑

d′=0

(

q
d′

)(

p−q
d−d′

)2

number of q-similar graph pairs in this subclass.

Note that this subclass has significantly higher number of

possible q-similar graph pairs than the original class Bq . Since

the d-clique can also lie at the interface of shared and non-

shared parts for Dq , a sub-class of single graphs with
(

p
d

)

number of graphs (i.e., the single graph class in [23]) is apt

for comparison of sample complexities to establish gains due

to structural similarity. The sufficient condition for sample

complexity for jointly recovering two q-similar graphs in Dq

is given by

n ≥ 1

log (d2−d+1)ρ2+(d−2)ρ+1
(1−ρ)(1+(d−1)ρ)

log











d
∑

d′=0

(

q
d′

)(

p−q
d−d′

)2

ε











.

(259)

To prove theoretical gains of joint recovery, we need to

establish

(1− ε)
2 log

(

p
d

)

− 1

log
(

1 + dρ
1−ρ

)

− dρ
1+(d−1)ρ

>
1

log (d2−d+1)ρ2+(d−2)ρ+1
(1−ρ)(1+(d−1)ρ)

log











d
∑

d′=0

(

q
d′

)(

p−q
d−d′

)2

ε











,

(260)

which is equivalent to

log (d2−d+1)ρ2+(d−2)ρ+1
(1−ρ)(1+(d−1)ρ)

log
(

1 + dρ
1−ρ

)

− dρ
1+(d−1)ρ

>
1

(1− ε)(2 log
(

p
d

)

− 1)
log
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







d
∑
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(

q
d′

)(

p−q
d−d′
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ε











.

(261)

For the left hand side of (261), we note that the following holds

for any ρ > 1
d+1 from our previous analysis in Appendix B:

log (d2−d+1)ρ2+(d−2)ρ+1
(1−ρ)(1+(d−1)ρ)

log
(

1 + dρ
1−ρ

)

− dρ
1+(d−1)ρ

> 1 . (262)

Therefore, we need to establish that

1

(1− ε)(2 log
(

p
d

)

− 1)
log











d
∑

d′=0

(

q
d′

)(

p−q
d−d′

)2

ε











< 1 . (263)

By re-arranging the terms in (263), we note that (263) is

equivalent to

log

(

p
d

)2(1−ε)

d
∑

d′=0

(

q
d′

)(

p−q
d−d′

)2
> 1− ε− log ε . (264)

From Vandermonde’s identity, we have

(

p

d

)

=

d
∑

d′=0

(

q

d′

)(

p− q

d− d′

)

, (265)

and therefore,

(

p

d

)2

=

(

d
∑

d′=0

(

q

d′

)(

p− q

d− d′

)

)2

>

d
∑

d′=0

(

q

d′

)2(
p− q

d− d′

)2

.

(266)

Define

Ad′
△
=

(

q

d′

)(

p− q

d− d′

)2

and Bd′
△
=

(

q

d′

)2(
p− q

d− d′

)2

.

(267)

Therefore,

Bd′

Ad′
=

(

q

d′

)

≥ q, ∀d′ > 0, d′ < d . (268)

From (266) and (267), we note that (263) is satisfied if we

have

log

(

∑d
d′=0Bd′

∑d
d′=0Ad′

)

+ log
1

(

p
d

)2ε > 1− ε− log ε . (269)

Further, from (268), we have Bd′ > qAd′ for all 0 < d′ < d.

Therefore, (263) is satisfied if we have

log((d− 2)q + 2) + log
1

(

p
d

)2ε > 1− ε− log ε . (270)

We note that for sufficiently small ε, (270) is always satisfied.

For instance, if ε = 1/p, p = 1000 and q ∈ [300, 1000], (270)

is always satisfied for any d > 8 and for d > 27 for q ∈
[100, 300). Therefore, we are able to establish gains for joint

graph recovery for class Dq which supercedes class Bq and has

the corresponding class of single graphs as considered in [23].

REFERENCES

[1] S. L. Lauritzen, Graphical Models. Clarendon Press, May 1996, vol. 17.
[2] J. Pearl, Causality: Models, Reasoning, and Inference., 2nd ed. Cam-

bridge, UK: Cambridge University Press, 2009.
[3] F. Battiston, J. Guillon, M. Chavez, V. Latora, and F. de Vico Fallani,

“Multiplex core–periphery organization of the human connectome,”
Journal of the Royal Society Interface, vol. 15, no. 146, p. 20180514,
2018.

[4] T. Simas, M. Chavez, P. R. Rodriguez, and A. Diaz-Guilera, “An alge-
braic topological method for multimodal brain networks comparisons,”
Frontiers in psychology, vol. 6, p. 904, 2015.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3207420

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on September 16,2022 at 22:00:16 UTC from IEEE Xplore.  Restrictions apply. 



32

[5] A. Nebli and I. Rekik, “Adversarial brain multiplex prediction from a
single brain network with application to gender fingerprinting,” Medical

Image Analysis, p. 101843, Jan. 2021.

[6] B. Lee, S. Zhang, A. Poleksic, and L. Xie, “Heterogeneous multi-layered
network model for omics data integration and analysis,” Frontiers in

Genetics, vol. 10, p. 1381, 2020.

[7] J. Guo, J. Cheng, E. Levina, G. Michailidis, and J. Zhu, “Estimating
heterogeneous graphical models for discrete data with an application to
roll call voting,” The Annals of Applied Statistics, vol. 9, no. 2, pp. 821
– 848, Jun. 2015.

[8] R. Saqur and K. Narasimhan, “Multimodal graph networks for compo-
sitional generalization in visual question answering,” Proc. Advances in

Neural Information Processing Systems, vol. 33, 2020.

[9] A. B. Zadeh, P. P. Liang, S. Poria, E. Cambria, and L.-P. Morency,
“Multimodal language analysis in the wild: CMU-MOSEI dataset and
interpretable dynamic fusion graph,” in Proc. Annual Meeting of the

Association for Computational Linguistics, Melbourne, Australia, Jul.
2018, pp. 2236–2246.

[10] J. Banks, “Multimodal, multiplex, multispatial: A network model of the
self,” New Media and Society, vol. 19, no. 3, pp. 419–438, Mar. 2017.

[11] X. Chen, F. J. Slack, and H. Zhao, “Joint analysis of expression profiles
from multiple cancers improves the identification of microRNA–gene
interactions,” Bioinformatics, vol. 29, no. 17, pp. 2137–2145, 2013.

[12] C. J. Honey, R. Kötter, M. Breakspear, and O. Sporns, “Network
structure of cerebral cortex shapes functional connectivity on multiple
time scales,” Proceedings of the National Academy of Sciences, vol. 104,
no. 24, pp. 10 240–10 245, 2007.

[13] R. L. Buckner, J. R. Andrews-Hanna, and D. L. Schacter, “The brain’s
default network: anatomy, function, and relevance to disease.” 2008.

[14] D. M. Chickering, “Learning Bayesian networks is NP-complete,”
Learning from Data, vol. 112, pp. 121–130, 1996.

[15] A. Klivans and R. Meka, “Learning graphical models using multiplica-
tive weights,” in Proc. Annual Symposium on Foundations of Computer

Science, Berkeley, CA, Oct. 2017, pp. 343–354.

[16] G. Bresler, “Efficiently learning Ising models on arbitrary graphs,” in
Proc. Annual ACM Symposium on Theory of Computing, Jun. 2015, pp.
771–782.

[17] M. Vuffray, S. Misra, A. Lokhov, and M. Chertkov, “Interaction screen-
ing: Efficient and sample-optimal learning of Ising models,” in Proc.

Advances in Neural Information Processing Systems, Barcelona, Spain,
Dec. 2016, pp. 2595–2603.

[18] N. P. Santhanam and M. J. Wainwright, “Information-theoretic limits of
selecting binary graphical models in high dimensions.” IEEE Transac-

tions on Information Theory, vol. 58, no. 7, pp. 4117–4134, May 2012.

[19] R. Tandon, K. Shanmugam, P. K. Ravikumar, and A. G. Dimakis,
“On the information-theoretic limits of learning Ising models,” in Proc.

Advances in Neural Information Processing Systems, Montreal, Canada,
Dec. 2014, pp. 2303–2311.

[20] J. Scarlett and V. Cevher, “On the difficulty of selecting Ising models
with approximate recovery,” IEEE Transactions on Signal and Informa-

tion Processing over Networks, vol. 2, no. 4, pp. 625–638, Dec. 2016.

[21] D. Vats and J. M. Moura, “Necessary conditions for consistent set-based
graphical model selection,” in Proc. IEEE International Symposium on

Information Theory, Saint-Petersburg, Russia, Jul. 2011, pp. 303–307.

[22] A. K. Das, P. Netrapalli, S. Sanghavi, and S. Vishwanath, “Learning
Markov graphs up to edit distance,” in Proc. IEEE International Sym-

posium on Information Theory, Cambridge, MA, Jul. 2012, pp. 2731–
2735.

[23] W. Wang, M. J. Wainwright, and K. Ramchandran, “Information-
theoretic bounds on model selection for Gaussian Markov random
fields,” in Proc. IEEE International Symposium on Information Theory,
Austin, Texas, Jun. 2010.

[24] R. Tandon and P. Ravikumar, “On the difficulty of learning power
law graphical models,” in Proc. IEEE International Symposium on

Information Theory, Istanbul, Turkey, Jul. 2013, pp. 2493–2497.

[25] A. Gangrade, B. Nazer, and V. Saligrama, “Lower bounds for two-
sample structural change detection in Ising and Gaussian models.” in
Proc. Annual Allerton Conference on Communication, Control, and

Computing, Monticello, IL, Oct. 2017, pp. 1016–1025.

[26] M. Neykov and H. Liu, “Property testing in high dimensional Ising
models,” Annals of Statistics, vol. 47, no. 5, pp. 2472–2503, 10 2019.

[27] L. Devroye, A. Mehrabian, and T. Reddad, “The minimax learning rate
of Normal and Ising undirected graphical models,” Electronic Journal

of Statistics, vol. 14, no. 1, pp. 2338–2361, Jun. 2020.

[28] J. Heydari, A. Tajer, and H. V. Poor, “Quickest detection of gauss-
markov random fields,” in Proc. Annual Allerton Conference on Com-

munication, Control, and Computing, Monticello, IL, Sep. 2015, pp.
808–814.

[29] ——, “Quickest detection of Markov networks,” in Proc. IEEE Interna-

tional Symposium on Information Theory (ISIT), Barcelona, Spain, Jul.
2016, pp. 1341–1345.

[30] A. Tajer, J. Heydari, and H. V. Poor, “Active sampling for the quickest
detection of markov networks,” IEEE Transactions on Information

Theory, vol. 68, no. 4, pp. 2479–2508, 2021.
[31] R. Wu, R. Srikant, and J. Ni, “Learning loosely connected Markov

random fields,” Stochastic Systems, vol. 3, no. 2, pp. 362–404, 2013.
[32] G. Bresler and M. Karzand, “Learning a tree-structured Ising model

in order to make predictions,” Annals of Statistics, vol. 48, no. 2, pp.
713–737, Apr. 2020.

[33] A. Anandkumar, V. Y. F. Tan, F. Huang, and A. S. Willsky, “High-
dimensional structure estimation in Ising models: Local separation
criterion,” The Annals of Statistics, vol. 40, no. 3, pp. 1346–1375, Jun.
2012.

[34] J. Fang, L. S. Dongdong, S. Charles, Z. Xu, V. D. Calhoun, and
Y.-P. Wang, “Joint sparse canonical correlation analysis for detecting
differential imaging genetics modules,” Bioinformatics, vol. 32, no. 15,
pp. 3480–3488, 2016.

[35] P. Danaher, P. Wang, and D. M. Witten, “The joint graphical lasso for
inverse covariance estimation across multiple classes.” Journal of the

Royal Statistical Society: Series B (Statistical Methodology), vol. 76,
no. 2, pp. 373–397, Mar. 2014.

[36] S. Yang, Z. Lu, X. Shen, P. Wonka, and J. Ye, “Fused multiple graphical
lasso,” SIAM Journal on Optimization, vol. 25, no. 2, pp. 916–943, 2015.

[37] K. Mohan, P. London, M. Fazel, D. Witten, and S.-I. Lee, “Node-
based learning of multiple Gaussian graphical models,” The Journal of

Machine Learning Research, vol. 15, no. 1, pp. 445–488, 2014.
[38] C. B. Peterson, F. C. Stingo, and M. Vannucci, “Bayesian inference of

multiple Gaussian graphical models,” Journal of the American Statistical

Association, vol. 110, no. 509, pp. 159–174, 2015.
[39] H. Qiu, F. Han, H. Liu, and B. Caffo, “Joint estimation of multiple

graphical models from high-dimensional time series,” Journal of the

Royal Statistical Society: Series B (Statistical Methodology), vol. 78,
no. 2, pp. 487–504, 2016.

[40] S. Sihag and A. Tajer, “Structure learning with side information: Sam-
ple complexity,” in Proc. Advances in Neural Information Processing

Systems, Vancouver, Canada, Dec. 2019, pp. 14 380–14 390.
[41] ——, “Approximate recovery of Ising models with side information,”

in Proc. IEEE International Symposium on Information Theory, Paris,
France, Jul. 2020, pp. 1319–1324.

[42] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of Computer

and System Sciences, vol. 55, no. 1, pp. 119 – 139, Apr. 1997.
[43] P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu, “High-

dimensional covariance estimation by minimizing ℓ1-penalized log-
determinant divergence,” Electronic Journal of Statistics, vol. 5, pp.
935–980, 2011.

[44] T. M. Cover and J. A. Thomas, Elements of Information Theory., 2nd ed.
John Wiley and Sons, 2012.

Saurabh Sihag Saurabh Sihag (Member, IEEE) received the B.Tech. and
M.Tech. degrees in electrical engineering from the Indian Institute of Tech-
nology Kharagpur, Kharagpur, India, in 2016, and the Ph.D. degree in
electrical engineering from Rensselaer Polytechnic Institute, Troy, NY, USA,
in 2020. He was the recipient of the 2021 Charles M. Close ’62 Doctoral
Prize by the Department of Electrical, Computer and Systems Engineering
at Rensselaer Polytechnic Institute. He is currently a postdoctoral research
fellow with the University of Pennsylvania, Philadelphia, PA, USA, where
he was the Clinical Research in ALS and related disorders for Therapeutic
Development (CReATe) Consortium scholar in 2021. His research interests
include statistical signal processing, information theory, high-dimensional
statistics, machine learning, and network neuroscience.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3207420

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on September 16,2022 at 22:00:16 UTC from IEEE Xplore.  Restrictions apply. 



33

Ali Tajer (S’05, M’10, SM’15) received the B.Sc. and M.Sc. degrees in
Electrical Engineering from Sharif University of Technology in 2002 and
2004, respectively. During 2007-2010 he was with Columbia University where
he received the M.A degree in Statistics and the Ph.D. degree in Electrical
Engineering, and during 2010-2012 he was with Princeton University as a
Postdoctoral Research Associate. He is currently an Associate Professor of
Electrical, Computer, and Systems Engineering at Rensselaer Polytechnic
Institute. His research interests include mathematical statistics, statistical
signal processing, and network information theory, with applications in
wireless communications and power grids. His recent publications include an

edited book entitled Advanced Data Analytics for Power Systems (Cambridge
University Press, 2021). He has received an NSF CAREER award in 2016 and
AFRL Faculty Fellowship in 2019. He is currently serving as an Associate
Editor for the IEEE Transactions on Information Theory and for the IEEE
Transactions on Signal Processing. In the past he has served as an an Editor
for the IEEE Transactions on Communications, a Guest Editor for the IEEE
Signal Processing Magazine, an Editor for the IEEE Transactions on Smart
Grid, an Editor for the IET Transactions on Smart Grid, and as the Guest
Editor-in-Chief for the IEEE Transactions on Smart Grid Special Issue on
Theory of Complex Systems with Applications to Smart Grid Operations.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3207420

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on September 16,2022 at 22:00:16 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Related Literature
	Contributions
	Connection to the Results on Single-graph Estimation

	Background and Problem Formulation
	Markov Random Fields
	Graph Similarity Models and Classes
	Structure Estimation Criterion

	Main Results: Ising Models
	Necessary Conditions for Ising Models
	Sufficient Conditions for Ising Models
	A Prediction-guided Algorithm for Jointly Recovering Ising Models

	Main Results: Gaussian Models
	Necessary Conditions for Gaussian Models
	Sufficient Conditions for Gaussian Models
	Strict Improvement Compared with Single-graph Recovery

	Proofs of Necessary Conditions
	Ising Models: Degree-bounded Subclass
	Ensemble 1: Single-edge Graphs
	Ensemble 2: (d+1)-vertex Fully-connected Subgraphs

	Ising Models: Edge-bounded Subclass
	Ensemble 3: Graphs with Cliques

	Gaussian Models
	Ensemble 1: Sparsely-connected Graphs
	Ensemble 2: Densely-connected graphs


	Proofs of Sufficient Conditions
	Ising Models
	Proof of Theorem 3
	Proof of Theorem 4

	Gaussian Models
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Theorem 11


	Numerical Evaluations
	Joint Structure Estimation via ML Decoding
	Joint Structure Estimation using Algorithm 1

	Conclusions
	Appendix A: Proof of Theorem 6
	Joint Estimation of Sparse GLMs
	Joint Estimation of Ising Models

	Appendix B: Proof of Theorem 12
	Appendix C: Gains over Independent Recovery for Shared Clique in Gaussian Models
	References
	Biographies
	Saurabh Sihag
	Ali Tajer (S'05, M'10, SM'15)


