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Estimating Structurally Similar Graphical Models
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Abstract—This paper considers the problem of estimating
the structure of structurally similar graphical models in high
dimensions. This problem is pertinent in multi-modal or multi-
domain datasets that consist of multiple information domains,
each modeled by one probabilistic graphical model (PGM), e.g., in
brain network modeling using different neuroimaging modalities.
Induced by an underlying shared causal source, the domains,
and subsequently their associated PGMs, can have structural
similarities. This paper focuses on Gaussian and Ising models
and characterizes the information-theoretic sample complexity
of estimating the structures of a pair of PGMs in the degree-
bounded and edge-bounded subclasses. The PGMs are assumed
to have p nodes with distinct and unknown structures. Their
similarity is accounted for by assuming that a pre-specified set
of ¢ nodes form identical subgraphs in both PGMs. Necessary
and sufficient conditions on the sample complexity for a bounded
probability of error are characterized. The necessary conditions
are information-theoretic (algorithm-independent), delineating
the statistical difficulty of the problem. The sufficient conditions
are based on deploying maximum likelihood decoders. While the
specifics of the results vary across different subclasses and pa-
rameter regimes, one key observation is that in specific subclasses
and regimes, the sample complexity varies with p and ¢ according
to to O(log(p — ¢)). For Ising models, a low complexity, online
structure estimation (learning) algorithm based on multiplicative
weights is also proposed. Numerical evaluations are also included
to illustrate the interplay among different parameters on the
sample complexity when the structurally similar graphs are
recovered by a maximum likelihood-based graph decoder and
the proposed online estimation algorithm.

Index Terms—Structure learning, probabilistic graphical mod-
els, Gaussian, Ising, high-dimensional estimation.

I. INTRODUCTION

Probabilistic graphical models (PGMs) are commonly used
for capturing the conditional interdependence in probabilistic
databases or random fields [1] and [2]. Each vertex of a PGM
represents a random variable. The edge connectivity structure
encodes the statistical dependence of these random variables,
and the joint distribution of the random variables is fully
characterized by the edge structure and parameters of the
graph. PGMs have a growing list of applications as various
technological, biological, and social systems are growing as
complex systems of interconnected platforms in which highly
structured data is constantly generated, communicated, and
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processed for various inferential and decision-making pur-
poses.

Structurally similar networks. In some domains, the data is
derived from multiple sources, owing to the proliferation of
sensing technologies. Graphically modeling such databases,
as a result, renders multiple PGMs, each corresponding to
one data source. An example is brain network modeling us-
ing different neuroimaging modalities. The interplay between
functional and structural connectivities of the brain can be
leveraged to understand intrinsic brain functioning [3], [4]
and relate it to different pathology and gender-related differ-
ences [5]. Another example is genomics, in which multiple
genetic networks can be organized to form a multiplex net-
work. Multiplex networks are often adopted to represent nodes
that have similar inter-relationships in different contexts. For
instance, a genetic network can be characterized by multiple
gene expression measurements, essentially, a phylogenetic
profile, a neighborhood in the interaction network, biological
pathways involved, and a protein domain profile. Each type
of measurement can form unique or similar links in different
genes [6]. Multimodal data analysis strategies are also relevant
in behavioral analysis [7]-[10]. For instance, the voting pat-
terns of the members of the US Senate for various categories
of bills can be modeled as a set of networks [7], where
the graphical structures revealed common dependencies in
voting patterns across different political affiliations. Emotion
analysis frameworks that leverage different modalities such
as language, visuals, and acoustics have also been investi-
gated [8] and [9].

Structural similarity. Induced by a shared underlying physi-
cal or biological cause, the structures of graphical models de-
rived from different sources are not always distinct, and often
they bear similarities. For instance, different gene networks
representing the same cancer subtypes share similar edges
across all subtypes and have unique edges corresponding to
each subtype [11]. Figure 1 illustrates the causal features and
the two induced networks with structurally similar clusters.
In the neuroimaging application, consider diffusion tensor
imaging (DTI) and functional magnetic resonance imaging
(fMRI) for brain imaging. DTI and fMRI images of a brain
represent different structures of the network underlying the
brain [12], and the conformity between the two images can be
leveraged to assess an individual’s cognitive health [13].

In this paper, we characterize the sample complexity of esti-
mating the structure of structurally similar graphical models',
in which the graph pair can share identical local structures ac-
counting for their underlying similarity. We establish necessary

IThe problem of estimating the structures of graphical models is also
referred to as model-based structure learning, especially in machine learning
literature. In this paper, sometimes these terms are used interchangeably.
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causal features

sub-type 1

sub-type 2\\ _—

Fig. 1. Two graphs with partially similar structures. For both graphs, the
causal features induce identical internal edge structures for purple nodes (p =
6,q = 3).

conditions (information-theoretic) and sufficient conditions on
the sample complexity in high-dimensional Gaussian and Ising
models under the bounded error probability criterion. The
necessary conditions are algorithm-independent and establish
the statistical difficulty of a problem. The sufficient condi-
tions are characterized by adopting maximum likelihood (ML)
decoders. While the problem of graphical model selection is
NP-hard [14], the problem of learning Markov random fields
(MREF) is well-posed and tractable strategies for inference have
been studied in [15]-[17].

A. Related Literature

Information-theoretic analysis establishes the algorithm-
independent guarantees on estimating the structures of graph-
ical models. The existing information-theoretic studies on
graphical models include those of [18]-[20], which analyze
the sample complexity for selecting the model of a given graph
in various subclasses of Ising models. Specifically, [18] estab-
lishes the necessary and sufficient conditions on the number
of samples for the exact recovery of the Ising models under
regimes characterized by a bounded degree and a bounded
number of edges. These studies are generalized in [21] to
establish necessary conditions for set-based graphical model
selection, in which the graph estimator outputs a set of poten-
tially true graphs instead of a unique graph. Necessary condi-
tions for recovering girth-bounded graphs and path-restricted
graphs are analyzed in [19]. The problem of graphical model
selection for various subclasses of Ising models under the cri-
terion of approximate recovery is investigated in [20], in which
a certain number of missed edges or incorrectly included edges
are tolerated in the estimated graph structure. Approximate
recovery bounds on the sample complexity are characterized
for Ising and Gaussian models without considering the effect
of edge weights in [22]. The problems of structure recovery
and inverse covariance matrix estimation for Gaussian models
are studied in [23], where information-theoretic bounds on
the sample complexity are delineated. Similarly, information-
theoretic bounds are established for the class of power-law
graphs in [24].

Algorithm-independent bounds on the sample complexity
have also been investigated for inference tasks other than
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model selection in graphical models. The problem of de-
tecting whether two Markov network structures are identical
or different is investigated in [25], and its sample com-
plexity is characterized. The problem of property testing for
high-dimensional Ising models is investigated in [26], where
information-theoretic limits for testing graph properties such
as connectivity, cycle presence, and maximum clique size are
established. In [27], the problem of density estimation using
the data from the Ising model is analyzed, and the minimax
rate of estimation is analyzed. Finally, active sampling strate-
gies to detect the true Markov random field model are studied
in [28]-[30].

The algorithmic aspects of high-dimensional model estima-
tion in different subclasses of the Ising model are investigated
in [15]-[17], [31]-[33]. Algorithms based on conditional in-
dependence testing for Ising models with correlation decay
are studied in [31]. Estimating the structures of tree-structured
Ising models is analyzed in [32]. Various algorithmic frame-
works for Ising models with restrictions on the graph degree
are proposed in [15]-[17], [33]. Specifically, Ising models with
bounds on the average degree are studied in [33], where the
correlation decay properties of Ising models are leveraged for
the design of the algorithms. A greedy approach for estimating
structures is studied in [16]. A convex optimization framework
for structure estimation is analyzed in [17]. An online learning-
based algorithm designed based on the principles of prediction
with expert advice is studied in [15].

Estimating the structures of structurally similar graphical
models, which is the problem that we focus on in this paper,
is studied substantially from an algorithmic perspective [7],
[11], [34]-[39]. Specifically, an empirical Bayes method is
studied in [11] to identify interactions that are unique to
each class and that are shared across all classes. Graphical
Lasso-based algorithms are investigated in [34] and [35]-
[37] for joint inference of Gaussian graphical models. An
optimization-based approach to the joint estimation of the
graph structures using discrete data is studied in [7]. A
Bayesian approach to jointly estimate Gaussian graphical
models is investigated in [38], where the models with shared
structures are identified from the data groups, and their relative
similarity is leveraged for inference. Approximately estimating
the structures of partially similar Ising models has been studied
from an information-theoretic perspective in [40], [41] where
algorithm-independent bounds on the sample complexity are
investigated.

B. Contributions

The existing studies on structure estimation (learning) in
multiple graphical models focus on empirical or algorithmic
frameworks for graph estimation or selection. Complementary
to these studies, in this paper, we characterize the information-
theoretic bounds on the sample complexity of jointly esti-
mating the two partially similar graphs in the edge-bounded
and degree-bounded subclasses of Ising models as well as
Gaussian models. These results provide algorithm-independent
necessary conditions on the sample complexity for an arbitrary
degree of reliability in the recovered graphs for an exact

E Xplore. Restrictions apply.
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recovery criterion. Besides the information-theoretic bounds,
we analyze an ML-based graph decoder for the exact recovery
of partially similar graphs in different subclasses. The analysis
of ML-based graph decoders establishes sufficient conditions
on the sample complexity.

Based on the necessary and sufficient conditions, we in-
vestigate the variation in the number of samples necessary
and sufficient for structure recovery with respect to structural
similarity. We also analyze the asymptotic scaling behavior of
the bounds on sample complexity. Our analysis reveals that for
two graphs with p nodes and the structural similarity spanning
q < p nodes, the sample complexity varies with p and ¢
according to log(p — ¢) in most regimes. This indicates how
the sample complexity improves as the structural similarity
increases. Our results, in its special cases when p = ¢, reduce
to the known results for estimating a single graphical model
in different subclasses of Ising models and Gaussian models
established in [18] and [23], respectively. Although an ML
decoder is optimal for structure estimation under the exact
recovery criterion, it may be intractable to implement for
general graphs. Therefore, we also propose a computationally
efficient joint structure estimation algorithm for structurally
similar Ising models that uses similar principles of the Hedge
algorithm as in [15]. We also evaluate the performance of our
algorithm and ML decoder in numerical experiments.

Besides the joint estimation results, to the best of our
knowledge, there exist no parallel results on the sufficient
conditions for recovering single graphs in certain classes of
Gaussian models (Theorems 8, 9, and 10).

C. Connection to the Results on Single-graph Estimation

We investigate the connection between the sample complex-
ities of jointly recovering two structurally similar graphs and
recovering them independently. In the Gaussian models, we
show that joint recovery strictly improves upon independent
recovery. This is established by showing that our sufficient
condition for joint recovery is strictly smaller than the neces-
sary condition for independent recovery. Furthermore, noting
that these conditions (even for independent recovery) are
not tight (and quite loose in a wide range of settings), the
actual performance gains are considerably higher than the gap
between the pertinent sufficient and necessary conditions.

We note that the results are provided for the general non-
asymptotic regimes of the graph size. By focusing on the
extremities of graph similarity, we can recover the sample
complexity of learning two identical single graphs. However,
the converse is not valid. The analysis of single graphs
provides no insight into the impact of structural similarity on
sufficient or necessary conditions of joint structure learning.
Specifically, one cannot predict the regimes in terms of graph
similarity parameters or their presence in the sample complex-
ity results from learning single graphs.

We conclude by noting that while there are close con-
nections between the joint and single-graph recovery results,
there are significant differences. Specifically, the two-graph
estimation problem is an independent inference problem that
has been investigated empirically, and the sample complexity
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results cannot be recovered from the known results for the
single-graph setting.

II. BACKGROUND AND PROBLEM FORMULATION
A. Markov Random Fields

Consider two sets of random variables X; = [X],..., X?]
and Xy = [X3,..., X}] taking values in the set X'P. Ran-
dom variables X; and X5 form Markov random fields with
respect to two distinct undirected graphs Gy = (V, Ey) and
Gy = (V, E5), respectively. These graphs are specified over
the same set of vertices V. = {1,...,p}, and the vertices
in G, are joined by the set of edges E; C V x V. The set of
edges in F; encodes the conditional independence among the
random variables X;. The structures in both graphs G; and Go
(i.e., edge sets E; and FEs) are unknown. Finally, we denote
the joint probability measure of X; by P;.

Ising Markov Random Fields. In the Ising model, the
random variables associated with vertices are binary, and
X; € {—1,1}P. The joint probability mass function (pmf)
of the random variables X; = [X},..., X?] associated with
probability measure P; and graph G; is given by

A
(x;) = AUV QU g0 1
pi(x;) Zi(A) eXp (u,%éEi i Ly Ty | o (D
where [A;]up = AP and Z;(A;) is the partition function
given by
Zi(A) = Z exp Z AP xd xy (2)
x;€{—1,1}» (u,v)EE;

Parameter \!Y € RT specifies the inter-dependence between
X} and X conditioned on all other random variables asso-
ciated with nodes s € V\{u,v} in graph G,;. As discussed
in [18] and shown in our analyses, the sample complexity for
recovering the structure of the graphs depends on the follow-
ing two quantities, which in turn depend on the interaction
parameters A}.

Definition 1 (Minimum interaction). We define the minimum
interaction constant as

A= (3)

min  min

Aw
i€{1,2} (u,v)EE;

This parameter captures the weakest interactions between any
two interacting random variables. As illustrated in [18], in the

asymptote of large or small values of \, recovering the graph’s
structure from its samples becomes increasingly more difficult.

Definition 2 (Maximum neighborhood weight). We define the
maximum neighborhood weight as

9 =
v:(u,v)EE;

4)

max max

A’{I/T)
i€{1,2} ueV '

Gauss-Markov Random Fields. In the Gauss-Markov ran-
dom fields, random variables X; = [X}!,..., X?] have a
joint Gaussian distribution with the joint probability density



Authorized licensed use limited to: The Li

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3207420

G2 = (V, E»)

Fig. 2. Two graphs with partially similar structures. Yellow nodes in both
graphs have identical internal edge structures (p = 7,q = 4).

function (pdf) associated with probability measure P; and
graph G; given by
det(P;)2

fi(xi) = (27r)§

exp <—2xiTPixi) , 5
where P, is the precision matrix associated with G,. The oft-
diagonal entries of P; represent the edge structure of G, i.e.,
the element at a coordinate (u,v) in P;, given by P;(u,v),
is non-zero if and only if (u,v) € E;. Structure recovery
in the Gaussian model depends on the quantity formalized
next, which reflects the scale-invariant minimum value of the
elements in matrix P;.

Definition 3 (Minimum partial correlation). We define the
minimum partial correlation factor as
2 | Pi(u,v) |

min min . (6)
i€{1,2} (w,v)€E; \/P;(u, u)P;(v,v)

p

B. Graph Similarity Models and Classes

Our objective of structure estimation is using the data (i.e.,
realizations of X; and X5) to recover the unknown structures
of G; and Gs. In this subsection, we formalize the similarity
models and the classes of the Ising and Gaussian graphical
models on which we will be focusing in this paper. Induced
by an underlying shared system that generates both datasets,
the two graphical models are assumed to have structural
similarities. Specifically, it is assumed that they have identical
structures in a pre-specified cluster of nodes denoted by
Vs C V. This means that the internal structures of the sub-
graphs formed by nodes V; are identical in both graphs. The
rest of the two graphs may or may not have similarities. An
example of a pair of structurally similar graphs is shown in
Fig. 2. Graph similarity is formalized next.

Definition 4 (g-similar graphs). Graphs Gi and G are said
to be g-similar, for some q € [p], when the size of the shared
cluster V is q, i.e., |Vi| =¢q.
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Classes of Ising models. We denote the general class of
Ising models by the minimum interaction constant A and the
maximum neighborhood weight ¢ by Z(\, ¢). Accordingly, we
denote the class of pairs of g-similar Ising models by Z, (A, ).
In this paper, we focus on the following subclasses of Z, (A, ).

e Degree-bounded class Ig()\, ). This class contains all ¢-
similar pairs of Ising graphical models G; and G5, where
each graph has the maximum degree d.

o Edge-bounded class I} (X, ). This class contains all g-
similar pairs of Ising graphical models G; and G5, where
each graph has at most k& edges and the shared cluster
Vs, has vk edges, where ~ € [0, 1].

In I(’;’,y()\, ), we introduce vk to account for scenarios where
not all k£ edges may be accommodated inside the shared region
due to the restrictions imposed by the number of nodes g and
let our analyses guide the appropriate regimes for 7 in the
sample complexity.

Classes of Gaussian models. We denote the class of ¢-similar
Gaussian models with minimum partial correlation p by G,(p).

In this paper, we consider the following subclass of G,(p).
o Degree-bounded class gg(p). This class contains all g¢-

similar pairs of Gaussian graphical models G; and G,
where each graph has the maximum degree d.

o Edge-bounded class G (p). This class contains all ¢-
similar pairs of Gaussian graphical models G; and Go,
where each graph has at most k edges.

C. Structure Estimation Criterion

For a given class S, € {Ig()\, 19),1'5’7(/\, 9), Qg(p), gf;(p)}
the nature selects a pair of graphical models from S,. Our
estimation objective consists of collecting n samples from
both graphs, denoted by xT' and x4 and jointly forming
estimates El and Eg corresponding to the structures F; and
E, respectively. This process is formalized next.

Definition 5 (Graph decoding). We define a graph decoder 1
as a function that maps the data (x7,x%) to a pair of graphs
inS,, ie,

) X X X S, (7)

where X = {—1,41} for the Ising models and X = R for
the Gaussian models.

To capture the accuracy of a decoder 1) , we adopt the exact
recovery criterion. Specifically, for a generic class of g-similar
graph pairs S;, we define P(S;) as the maximal probability
of error in the exact recovery of (E1, Es), i.e.,

P(S,) = P(p(x7,x5) # (B, B2)), (8

max
(G1,G2)€8,
where the probability is evaluated with respect to both mea-
sures P; and P;. We are interested in analyzing sample
complexity, that is the number of samples n required for
achieving a target decision reliability P(S,).

Definition 6 (Sample complexity). We define n(q,e) as the
number of samples required for recovering a pair of q-similar
graphs in the class Sq such that P(S,) < e.

E Xplore. Restrictions apply.
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We are interested in analyzing the scaling behavior of n(g,¢)
with respect to ¢ and ¢, as well as parameters relevant to each
specific model (i.e., A, ¥ in Ising and p in Gaussian) and each
subclass (i.e., graph size p, degree bound d, and edge bound k).

III. MAIN RESULTS: ISING MODELS

In this section, we provide the necessary and sufficient
conditions on the sample complexity n(g,e) for different
models and their subclasses of Ising models. Specifically,
we provide algorithm-independent necessary conditions on
the sample complexity for recovering the structures with the
desired reliability. These sample complexity analyses establish
the performance benchmarks for any structure estimation
algorithm, presented in Section III-A. Furthermore, we also
provide the counterpart sufficient conditions by adopting max-
imum likelihood (ML) decoders. These results are provided in
Section III-B.

A. Necessary Conditions for Ising Models

We start by providing the necessary condition on the sample
complexity n(q,e) that any decoder requires to ensure that
P(S;) < € in Ising models. Throughout this section, we
use the shorthand n for n(q,c). We provide the necessary
conditions for the exact recovery and remark on the scaling
behavior of the sample complexity with respect to the various
parameters involved. We start with the degree-bounded sub-
class Ig()\,ﬂ), for which, depending on the relative scaling
behavior of A with respect to the degree bound d we have
different necessary conditions.

Theorem 1 (Necessary condition for class Z¢(\,)). Con-
sider a pair of q-similar graphs G, and Gy in class Ig()\, 9).
Any graph decoder ) that achieves P(Z3(\,9)) < e, has the
following sample size requirements:

1) In the regime A = O (1/d), the sample size n satisfies:
, 2
@ i (3) = ("%
(1-¢) p—gq-—1
> ———— (4dlog——— —1
"= Dtanh(y) % A > O

. 2
b if (3) > (37"
(1-¢) q
—— | 2log—=—1] .
Itanh(V) \~ 88
2) In the regimes A = O(1) and X\ = ©(d), the sample size
n satisfies:

a) if¢g+2/T <p,

(10)

d—A d(p —
n > (1—6)-6819<210g(p4q)—1 ,
(1D

b ifq+2y/7 >0,
eV—A dq

> (1—¢)- log— —1] . 12
nz -9 S (e -1) .
Proof. See Section V-A. O
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This theorem specifies how the sample complexity scales
with respect to varying A. Next, we discuss the impact of
other parameters involved (i.e., p, ¢, and d) on the necessary
conditions for the sample complexity. It is noteworthy that
the conditions in (10) and (12) hold only when graphs G;
and G, have a high degree of similarity (i.e., ¢ =~ p). For
instance, when p > 128, the condition in (10) holds only
when ¢ > 0.9p. This is further amplified in (12) due to the
additional role that d plays in making the gap between ¢
and p smaller. Hence, except for the case of almost identical
graphs, the necessary conditions on the sample complexity
are specified by (9) and (11). We remark that the extreme
cases are of less interest since, in these settings, the structure
estimation objective reduces to the well-investigated structure
estimation in a single graph. Motivated by this, for the rest of
the discussions, unless stated explicitly, we focus on analyzing
(9) and (11). We start by evaluating the impact of increasing
similarity level ¢ on the sample complexity.

Corollary 1 (Sample complexity versus g¢). Consider a
pair of g-similar graphs G, and Gs in class Ig()\,ﬁ) with
increasing similarity q. For any graph decoder 1) that
achieves P(Z(X,0)) < &, the sample complexity scales with
respect to q and p as Q(log(p — q)).

This corollary indicates that as the similarity level of the
two graphs increases, the sample complexity requirement
decreases. This signifies the gain of jointly recovering both
structures instead of treating them in isolation, that is, for
recovering the two structures separately, the sample complex-
ity scales with Q(log p), while when recovering them jointly,
it reduces to Q(log(p — ¢)). Next, we evaluate the effect of
increasing maximum degree d on the sample complexity.

Corollary 2 (Sample complexity versus d.). Consider a pair
of q-similar graphs G1 and Gs in class Ig(/\,ﬁ) with an
increasing maximum degree d. Any graph decoder 1 that
achieves P(ZJ(X,0)) <, has the following sample size re-
quirements:

1) In the regime A = O (1/d), the sample complexity scales
with respect to d as Q(d?).

2) In the regimes A = O(1) and A = ©(d), the sample
complexity scales with respect to d exponentially.

We note that the necessary condition on the sample com-
plexity has a non-exponential behavior in d in the regime
A = O(1/d). This observation is consistent with that for
recovering single graphs in [18]. Next, we provide the coun-
terpart necessary conditions for the edge-bounded class of pair
of Ising models. For this purpose, we define

2

y=1-7. (13)
Theorem 2 (Necessary condition for class I;V()\, ¥)). Con-
sider a pair of q-similar graphs G, and G in class If;ﬁ()\7 ).
Any graph decoder 1 that achieves P(Ié“_’,y()\, 9)) < ¢, has the
following sample size requirements:
1) In the regimes k = o(p) or A = O(1/\Vk), the sample
size n satisfies:

E Xplore. Restrictions apply.
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@) if () < (39

(1-¢) pP—q-—
> 41
"= Ptanh(n) U8

, 2
b if (3) > ("27)"
(1—-¢) q—1
> 21 -1 . 1
"= Divtanh(n) 7% T2 (15)
2) In the regime k = Q(p) and X satisfies either A = ©(1)
or O(Vk), the sample size n satisfies:

j log?(v/%)
a) if v > 0.5 and 2/\2k<%’
D k<33,

n > (1-¢)
~ 32exp(2X) sinh(\)
exp(A\Vky) kv_)
Wiz <log 1 1), (16)

X
ey . 4y
i) if k> =2

n > (1)
~ 32exp(2A)sinh(\)

N ) B L B T
Why 4
b) if v < 0.5, 227k > P20 and k> 4,
(1—¢)
>
" 2 32exp(2)) sinh(\)

L SRR () B ) g

MWEY 4
Proof. See Section V-B. L)

We observe that in the regime that either A satisfies A =
O(1/Vk) or k satisfies k& = o(p), the sample complexity
necessary condition follows the same structure as in the regime
A = O(1/d) in the degree-bounded class. In all other cases, the
sample complexity is characterized by the maximum number
of edges in the non-shared clusters, i.e., ¥k, and the number of
edges in the shared cluster, i.e., vk. The results in (16), (17),
and (18) provide the necessary conditions for different regimes
of interest. However, the regimes listed in the theorem are
not exhaustive. We remark that the regimes excluded from
Theorem 2 when k& = Q(p) are either too restrictive or their
corresponding sample complexity results are superseded by
that in (14) and (15). For instance, the condition k& > %—Z
in (18) is satisfied by all settings with £ > 8 and, therefore,
the setting with the complementary condition k& < 43 when
v < 0.5 is too restrictive and not of interest. An exhaustive
discussion of all possible regimes and their implications on
the sample complexity is included in Section V-B. Similar to
the observation in the regime A = O(1/v'k), we note that
in the latter regimes, the sample complexity is dominated
by the characteristics of the shared cluster (in this case,
~vk) only for extensively similar graphs such that v > 0.5.
However, for sufficiently large k& such that &k > 47 the sample
complexity in (17) includes logarithmic dependence on 7k,
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although the exponential factor still dominates the sample
complexity in yk. We note that except for the unlikely cases
of extensively identical graphs with most edges in the shared
cluster, the necessary condition on the sample complexity is
captured by (18), which is of interest to understand the effect
of structural similarity on sample complexity. Therefore, we
focus our subsequent discussions on (18). Next, we further
analyze (14) and (18), and start by evaluating the effect of
similarity levels ¢ and  on the sample complexity.

Corollary 3 (Sample complexity versus ¢ and ~.). Consider
a pair of q-similar graphs Gy and Gy in class Ig’,y()\,ﬂ)
with increasing number of edges in the shared cluster vk
and similarity level q. Any graph decoder ) that achieves
P(ZF_ (X, 9)) < ¢ has the following sample size requirements:

1) In the regime k = o(p), the sample complexity scales
with respect to q as Q(log(p — q)).
2) In the regime k = Q(p), the sample complexity scales

o(VEY) 10 k"y))

with respect to vy as 2 ( NG

This indicates that for sparse graphs, the sample complexity
is primarily characterized by ¢, and as the similarity level
increases, the sample complexity decreases. For k = Q(p),
the sample complexity is characterized by 7k, which is the
maximum number of edges in the non-shared cluster in each
graph, and as + increases, the sample complexity decreases.
These observations signify the gain of jointly recovering both
structures instead of treating them in isolation, that is for
recovering the two structures separately the sample complexity
scales with Q(logp) and Q(eV*/Vklogk) in sparse and

non sparse regimes, respectively, while when recovering them
jointly, it reduces to Q(log(p — ¢)) and Q ge\\/ﬁglog kﬁ)),

respectively. Next, we evaluate the effect of an increasing
number of edges k on the sample complexity.

Corollary 4 (Sample complexity versus k.). Consider a pair
of q-similar graphs G, and G in class Ié“ﬁ (A, ) with increas-
ing number of edges k. Any graph decoder 1) that achieves
P(I(’;ﬁ()\, 1)) < € has the following sample size requirements:

1) In the regime N = O(1/\k), the sample complexity
scales with respect to k as O(k).

2) In the regimes \ = ©(1) and X\ = Q(\Vk), the sample
complexity scales with respect to k as Q(eV* /\V/E).

From Corollary 4, we note that the necessary condition on
the sample complexity for jointly recovering the structures
of the two graphs has a non-exponential behavior in k. This
observation is consistent with that for recovering the structure
of a single graph in this regime [18].

Remark 1. We remark that the necessary conditions on the
sample complexity in different regimes in Theorem 2 are
independent of the maximum weight 9. However, this is an
artifact of the fully-connected ensembles with k edges used for
recovering the necessary conditions in the regimes \ = O(1)
and \ = O(V'k), for which we have ¥ = Mk in the ensemble

constructions for the edge-bounded subclass.
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B. Sufficient Conditions for Ising Models

In this section, we provide sufficient conditions on the
number of samples for model selection of different classes
of Ising models. The sufficient conditions for exact recovery
of graph models in or a generic class of g-similar graph pairs
S, are derived based on the large deviations analysis of an
ML-based graph decoder given by

U(x7,x5) =arg max

19
(G1,G2)€8, ( )

fa1.6.(x1,%x3) ,
where fg, g, (xT,x%) is the joint pmf of the data samples x7}'
and x5 . Note that since all g-similar graph pairs in a generic
class S, are equally likely to exist in nature, the ML decoder
in (19) is equivalent to the maximum-a-posteriori rule, which
is optimal for minimizing the probability of error in (8).

Theorem 3 (Class Ig(/\,ﬂ)). Consider a pair of q-similar
graphs Gi and Gy in class Ig()\,ﬂ). There exists a graph
decoder that achieves P(ZJ(\,V)) < ¢, if the sample size n
satisfies:

D if (v=1)"v+1)*> %,

8d(p — q)*(p+q)

n > 2c1d log . , (20)
2) if (v-D*o+1)? <%,
3d
n > cd logq— , 21
2e
where we have defined
2 29)+1
g = —(3e.>xp2( )+1) , and v = L . (22
sinh®(A\/4) Va
Proof. See Section VI-Al. O

Examining the conditions in (20) and (21) implies that the
condition of (21) will be satisfied when the two graphs are
nearly identical for a wide range of feasible values of d. For
instance, in this regime, when we have d = 1 and p = 10,
we must have ¢ > 0.75p and for d = 5 and p = 10,
we must have ¢ > 0.92p. Therefore, except for the extreme
cases, (20) provides the sample complexity for recovering two
identical graphs jointly. We focus the rest of our analysis
and discussions on the regime specified by (20). We start by
evaluating the impact of structural similarity g on the sample
complexity.

Corollary 5 (Sample complexity versus q.). Consider a pair of
q-similar graphs G, and G5 in class Ig()\, ) with increasing
similarity level qin the regime characterized by (20). There
exists a graph decoder that achieves P(ZJ(X,0)) <, if the
sample size n scales with respect to q and p as

Q (logd(p —q)*(p+1q)) -

We note that the sample complexity monotonically decreases
in the similarity level ¢ and its dependency on the edge
parameters A and ¢ is the same as that for joint recovery
in [18]. This observation implies the gain in the sample
complexity of jointly recovering the two structures jointly in
contrast to recovering them independently, which has a sample

(23)
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complexity of ©(logdp) [18]. Next, we evaluate the effect of
the degree d on the sample complexity.

Corollary 6 (Sample complexity versus d.). Consider a pair
of q-similar graphs Gy and Gs in class Ig()\, ) with increas-
ing maximum degree d. There exists a graph decoder that
achieves P(ZY(X, 1)) < e, if the number of samples satisfies
the following conditions:

1) In the regime A\ = O(1/d), the sample complexity scales
with respect to d as 2(d>log p).

2) In the regimes A = ©(1) and ©(d), the sample com-
plexity scales with respect to d as Q(de?log p).

From Corollary 6, we note that the sufficient condition on the
sample complexity for joint structure estimation has a non-
exponential scaling behavior in the regime A = O(1/d) and is
consistent with that for the sample complexity of recovering a
graph structure independently in this regime [18]. This implies
that tractable algorithms with polynomial complexity in d exist
for recovering g-similar graphs.

Theorem 4 (Class If;w()\,ﬁ)). Consider a pair of q-similar
graphs Gy and Gs in class Ié“. There exists a graph decoder
that achieves P(Z} (X, 9)) < e, if for sufficiently large p, the
sample size n satisfies:

1) iflogq > 295 logp and v > 22,
C1 1
n > 5 [6(7k+1)logq+log€} , (24)

2) otherwise,

1
n > ¢ [6('71@ +1)logp + log 5] (25)

Proof. See Section VI-A2. O

Theorem 4 specifies the sufficient conditions on the sample
complexity under different regimes of ¢ and ~. It can be readily
verified that the conditions in (24) hold only when the graphs
Gy and G are near identical, and most edges lie in the shared
cluster V5. Hence, we focus our subsequent discussions on
the analysis of (25) to evaluate the sample complexity for
cases except for near identical graphs. We start by evaluating
the impact of the similarity metrics ¢ and v on the sample
complexity.

Corollary 7 (Sample complexity versus ~.). Consider a
pair of q-similar graphs Gy and Go in class I(];,y()\,ﬂ)
with increasing number of edges in the shared cluster
vk and similarity level q. In the regime characterized by
the conditions in (24), there exists a graph decoder that
achieves P(If;ﬁ()\,ﬂ)) < g, if the sample complexity scales
with respect to v as Q (Vk log p).

Corollary 7 indicates that as the number of edges in the
shared cluster vk increases, i.e., the proportion of total edges
increases in V4, the sample complexity decreases linearly with
~vk (recall that ¥ = 1 — ~). This observation signifies the
gain of jointly recovering the two graphs over treating them
in isolation.

E Xplore. Restrictions apply.
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Corollary 8 (Sample complexity versus k.). Consider a pair
of q-similar graphs G, and Gy in class Igﬁ (A, ¥) with increas-
ing number of maximum edges k. There exists a graph decoder
that achieves P(ZF (X, 0)) < e if the sample complexity
satisfies the following requirements:

1) In the regime \ = O(1/\k), the sample complexity
scales with respect to k as Q(k?).

2) In the regimes A = O(1) and A = O(\Vk), the sample
complexity scales with respect to k as Q(ke”).

According to the definition of ¥} in (4), variations in k
inevitably induce variations in 9 as well. In the regime
A = O(1/Vk), the effect of ¥ can be controlled because as
we observe in Remark 1, for the worst case graph models
that lead to the factor exp(v) in the sample complexity, we
have ¥ > Ak. Therefore, in this regime, 1 can be set to an
arbitrary constant that will never be exceeded by its minimum
feasible value for any combination of A and k. On the other
hand, in the regimes A = ©(1) and A = @(\/E), the lower
bound on ¥ increases with an increase in k& and, therefore,
the sample complexity scales exponentially in ©J. This scaling
behavior is consistent with the scaling behavior of the sample
complexity for an extreme case of recovering a single graph
independently [18].

Finally, we compare the results of Theorems 1, 2, 3, and 4
jointly in order to isolate the regimes under which we have
the same scaling behavior of the sample complexity, i.e., the
necessary and sufficient conditions scale at the same rate for
both subclasses ZZ¢(A,9) and ZF_ (A, 7). Note that for the
class Ig(x\, 9) with d fixed, the sample complexity depends
on the similarity level ¢ as the factor log(p — ¢) in the
necessary conditions (see Corollary 1) and log((p—q)?(p+q))
in the sufficient conditions (see Corollary 5). Therefore, if
g grows linearly with p, i.e., ¢ = ©(p), the necessary and
sufficient conditions on the sample complexity have a similar
asymptotic scaling behavior of ©(logp). On evaluating the
dependence of sample complexity on d in Corollary 2 and
Corollary 5, we observe that there is a mismatch of a factor of
d between the sufficient and the necessary conditions. Next,
for the class Ié“ﬁ()\,ﬁ), we observe that when vk is fixed
and q scales linearly with p, the necessary conditions and the
sufficient conditions have a similar scaling behavior of O(p).
On the other hand, from Corollary 4 and Corollary 8, we
observe that there is a mismatch of a factor of k between
the necessary and the sufficient conditions on the sample
complexity. By combining these observations, we can specify
a specific regime for which the necessary conditions and
the sufficient conditions meet, and the corresponding sample
complexity is optimal.

Theorem 5 (Optimal Sample Complexity). When the maxi-
mum degree d and the maximum number of edges k are fixed,
and in the regimes that satisfy A = O(1/p) and q = O(p),
i.e., q increases linearly with p, the sample complexity of re-
covering graph models in the classes Ig()\, 9) and If;,y()\, 9)
scales as ©(p*log p) with growing graph size, p.

The results that specify the bounds in necessary and sufficient
conditions that have non-exponential scaling behavior for the
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classes Z¢(\, ) and ZF_(X,9)) are summarized in Table 1.
Furthermore, we note that the two extreme cases of ¢ = 0 and
q = p correspond to recovering two independent graphs and
two identical graphs, respectively. For both these scenarios,
the problem analyzed in this paper simplifies to the problem
of structure estimation (learning) of one graph under an exact
recovery criterion studied in [18]. In general, however, when
we depart from these special cases, the results provided in this
paper are distinct from the results in the existing literature.
This observation is formalized in the following corollary.

Corollary 9 (Special cases for exact recovery). The necessary
and sufficient conditions for the exact recovery of partially
similar graphs in the subclasses T¢(\,9) and IF_(X,9) in
the extreme cases of ¢ = 0 and q = p subsume the existing
results for the exact recovery of single graphs.

We note that our results encompassing the necessary and
sufficient conditions on the sample complexity are provided
in non-asymptomatic regimes and, therefore, characterize the
interplay between different graph parameters and similarity
level q. Specifically, from Table 1, we observe that the factor
log(p — q) appears in both necessary and sufficient conditions
for the bounded degree class Ig.

To theoretically establish that joint learning of g-similar
Ising models is easier than recovering them independently, we
would need to have the necessary conditions on the sample
complexity for recovering graphs independently to be strictly
larger than that for recovering g¢-similar graphs jointly for
different q. However, such an analysis for Ising models is
prohibited by a large mismatch in the terms that depend
on edge parameters A and ¥ in the two sets of conditions.
For instance, for d = 1, the mismatch between the factor
m in the necessary condition and c; (defined in (22)
in the sufficient condition in terms of ratio is at least 512
for any A > 0. Similarly, for d > 1, the mismatch between
the factor % and c¢; in terms of ratio scales at least
as 471d? for any A > 0. This mismatch is highlighted in
Table 1, where we see the sufficient conditions to scale at a
factor d larger for class Ig and a factor k larger for class I;y
for certain regimes. Since the relative gain in terms of the
ratio of sample complexities of jointly recovering g-similar
graph models over independent graph recovery is at most 2,
the mismatch between the different aforementioned factors in
the case of Ising models is too large to be overcome by the
gains offered by similarity level ¢ in the sufficient conditions
on the sample complexity for joint recovery. We remark that
this is a limitation of the analysis techniques and is also present
in the results for single graph recovery in both degree and
edge bounded subclasses of Ising models [18]. However, these
limitations are not as prominent in the analysis of Gaussian
models, and we will discuss these aspects in Section IV.

We also remark that our numerical experiments for Ising
models in Section 7 illustrate that learning g-similar graphs
jointly indeed requires a significantly smaller number of
samples than recovering the graphs independently for various
settings. In our experiments, we start by using an ML decoder
to recover sparse graphs. However, an ML decoder may be
computationally intractable to implement due to the large
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SUMMARY OF MAIN RESULTS (NON-EXPONENTngLBsIE]::xLIING) FOR EXACT RECOVERY OF ISING MODELS.
Graph Class Parameters Sample Complexity
Necessary Sufficient (ML)
Bounded degree Z; | A=0 (%) | ©(d’log(p —q)) | ©(d*log((p — q)*(p + q))

(P—a)?>q A:O(ﬂ

d fixed O(p*logp) O(p*logp))
q=10(p)

Bounded edge 7, | A=0 () | ©(klogp - q)) O (7K log p)
(p—a)?>q A:O(@

72>y k fixed 9(172 log p) @(p2 log p)
q=10(p)

computational complexity involved in the recovery of large
graphs. In the next section, we discuss a computationally
feasible structure estimation algorithm for jointly recovering
similar graphs for Ising models that are valid for both degree-
bounded and edge-bounded subclasses. This algorithm is sub-
sequently applied to recover Ising models in our experiments
in Section VIIL.

C. A Prediction-guided Algorithm for Jointly Recovering Ising
Models

In this section, we discuss a computationally efficient
structure estimation algorithm described in Algorithm 1 for
recovering graph pairs jointly. The structure of the algorithm
is motivated by a recent approach to structure estimation of
MREFs in an online manner based on Hedge algorithm [15].
The Hedge algorithm uses multiplicative weight update rules
for online estimation with expert advice in the context of
multi-armed bandits [42]. We specify the steps involved in this
algorithm and establish the sample complexity for perfectly
recovering the graphs. For convenience in analysis, corre-
sponding to each random variable X € {—1,1}, we define
the Bernoulli random variable B = 1(1— X}) and instead
of analyzing X' we equivalently analyze B;‘. The random
instance of B;* based on j-th graph sample of G; is given by
b (j) and computed as

1

be(j) = 51— 2t(),
where x¥(j) is the j-th random sample collected at node u
in G;. The prediction-guided algorithm consists of two steps.
Step 1 collects nT < n samples to form multiple prediction-
guided estimates for £; and FE,. Once the predictions are
formed, we use the remaining nyg n — nt samples to
assess the risks associated with these predictions and to use
the risk metrics for making a final decision for the structure
estimates.

Step 1: Forming predictions of F; and E5. This algorithm
runs sequentially and collects the nt samples one at a time,
which are used to update a sequence of prediction-related
decisions. The algorithm starts by considering that any pair

(26)
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of nodes in V' can be potential neighbors. Each node acts
as an expert and predicts the value of its neighbors. In the
7' iteration, at node u in G; we form a prediction for B¥ by
aggregating the data samples provided by other nodes followed
by a non-linear transformation according to

b)) = o (3w ()er()

vF#EU

for je{l,...,n1},

27)

where {w¥¥(j)} are the weights to be selected properly
as described below and o is the standard sigmoid function
0 () = == The main elements of this step are summarized
below.
1) Loss function. To quantify the quality of the predictions,
for every pair u,v € V we evaluate the pairwise loss
function

) = 51+ BrG) - b el () -

2) Predictor Update. If nodes » and v lie in the set V, i.e.,
have a similar pairwise relationship in both graphs, we
allow the transfer of loss functions between the graphs
for updating the multiplicative weights associated with
the pairwise relationship between nodes u and v in
graph G;:

2l 28)

(J) - exp (g

R4 1) = R [é%“u)w;“(j)]) ,

(29)

where [ is an appropriately set hyper-parameter and
K{¥(0) = 513 Otherwise, the updates follow the rule

ki (7 +1) = ki) - exp (B (7)) -

We note that without the updates in (29), our algorithm
reduces to estimating the two subgraphs independently
using the algorithm in [15].

Pseudo weights: We introduce pseudo weights £}V to
accommodate for the setting when the neighborhood
weight of a node w in graph G; is strictly less than 4.
Normalization of weights: Note that the weight updates

in (29) and (30) do not guarantee that Y x¥¥ < ¢ for
veV

(30)

3)

4)

E Xplore. Restrictions apply.



Authorized licensed use limited to: The Li

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3207420

any u € V in G;. Therefore, we introduce normalized
weights w;'* which are evaluated as
VKM (5 + 1)

%ﬁ: (kT + D) +RETEG+1)

wi(j+1) = €29

The processes above continue recursively until all the
nT samples are exhausted.
Step 2: Estimating F; and F,. Finally, we collect additional
ny samples for all the nodes in V' in graph G; and based
on these, we assign a risk metric to each predicted set E7,
vj € {1,...,nr} according to

G-y Yo -ew)

y=nrt+1lucV

(32)

We select the predictions with the lowest empirical risks which
is given by

s; = argmin 5? , (33)
je{1,...,n1}

for graph G, and leverage the set of coefficients {w?"(s;)} to

form the final estimates for £ and E5 using a thresholding

operation. Specifically, for graph G;, we form the prediction:

{wo) w23}

The steps of the algorithm are specified in Algorithm 1.

By = Vie {1,2}. (34)

Algorithm 1 Estimating F; and F»
nt + ny pairs of data samples, § = 1 —

1: Input n =
VIogp/mr

2: Initialize £¥(1) = 1/(p — 1), Z**(1) = 1/(p — 1) and
w(1) =0 for all w # v and ¢ € {1,2}

3: for a new pair of data sample j € {1,...,n1} do
4:  For each v € V, compute b¥(j) according to (26) for
i€{1,2}

5:  for each pair u,v € V, u # v do

6: Compute losses ¢1'V(j) according to (28)

7: Update the weights £1V(j + 1) = R¥(j) exp(B/2)

8: if u,v €V, then

9: Update the weights k¥(j + 1) according to (29)

10: else

11 Update the weights xV(j + 1) according to (30)

12: end if

13:  end for

14:  for each pair u # v do

15: Compute w}"’(j + 1) according to (31)

16:  end for

17 Compute empirical risks ¥ using ny; samples accord-
ing to (32)

18: end for

19: Compute s; and s, according to (33)

20: Form estimates Fj' and E3? according to (34)

21: return E7' and E7?

The following theorem captures the sample complexity and
the computational complexity of Algorithm 1.
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Theorem 6 (Algorithm 1). Consider a pair of gq-similar
graphs G, and Q%. If the sample size n = nr + ny sat-
isfies np = O (719 e;\‘f(ﬂ) log )\%) and ny = © gilogi)rsg/s)),
Algorithm 1 achieves P(ZZ(X,9)) < 2 for T¢(\,0) and
P(ZF_ (X)) < 2 for I} (X, 9). The run time of Algorithm I
is O(p*n).

Proof. See Appendix A. O

Note that the mean loss function (¢}¥ + ¢4¥)/2 is bounded
in the range [0, 1]. Therefore, the rules for updating weights
in our algorithm satisfy the conditions for [15, Theorem 5]
to hold, which allows us to leverage the regret bound on
the Hedge algorithm in [42]. We remark that the results in
Theorem 6 are in the asymptotic regime and do not capture
the effect of structural similarity on the sample complexity.
However, we note that Algorithm 1 achieves optimal asymp-
totic sample complexity for both degree-bounded and edge-
bounded classes in the regime specified in Corollary 5. Specif-
ically, in the regime, A = O(1/p) with the degree d fixed,
Algorithm 1 achieves the asymptotic sample complexity of
O(p? log p) which is the same as the optimal scaling behavior
established for the regime in Corollary 5 when ¢ = O(p).
Similarly, Algorithm 1 achieves optimal sample complexity
for ZF_ (X, ¥) in the regime X\ = O(1/p) with k fixed.

Our numerical evaluations in Section VII indicate a signifi-
cant gain in performance when ¢g— similar graphs are learned
jointly using Algorithm 1 in comparison to when they are
learned independently using the algorithm in [15].

IV. MAIN RESULTS: GAUSSIAN MODELS

In this section, we provide the bounds on the sample com-
plexity for the degree-bounded and edge-bounded subclasses
of Gaussian models.

A. Necessary Conditions for Gaussian Models

We first provide necessary conditions on the sample com-
plexity n(g,¢) in order to ensure that P(S,) < . We use
the shorthand n for n(q, ) and provide the scaling behavior
of the sample complexity in different regimes, illustrating
the dependence of sample complexity on different graph
parameters.

Theorem 7 (Class g;l (p)). Consider a pair of q-similar graphs
Gy and Go in class Q;l(p), for which p € [0,3]. Any graph
decoder 1 that achieves P(gg(p)) < ¢, has the following
sample size requirements:

1) In the regime p = © (%), the sample size satisfies:

@) if (2) < (739"

n=> (36)

u 4;25) (2 log q\;; - 1) .

2) In the regime p = ©(1), the sample size satisfies:

E Xplore. Restrictions apply.
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a) if ¢+ +/qd < p,

1—¢
n> ————
log(l-i-ldfpp)

b) if ¢+ +/qd > p,

1-— q
m {dlogg—l} .

Proof. See Section V-C. O

[2dlog b ; q

—1} , @3

n> (38)

Theorem 7 provides the necessary conditions on the sample
complexity for different regimes of p. We note that the
conditions on the similarity level ¢ in (36) and (38) are satisfied
only in graph pairs with extensive similarity, i.e., ¢ ~ p,
for which the problem of structure estimation approaches the
extreme case of estimating two identical graphs. Therefore,
we focus our discussions on the analysis of sample complexity
based on (35) and (37). We start by evaluating the dependence
of sample complexity on the similarity level gq.

Corollary 10 (Sample complexity versus q). Consider a pair
of q-similar graphs G, and G, in class Q(‘f(p) with the simi-
larity level q. Any graph decoder that achieves P(gg(p)) <sg,
the sample complexity scales with respect to q and p

as Qlog(p — q)).

This corollary indicates that the sample complexity require-
ment decreases with an increase in the similarity level of the
two graphs. Specifically, jointly recovering the two structures
requires a sample complexity that scales with Q(log(p — q))
in contrast to treating the two graphs independently for which
the sample complexity scales as (logp) [23]. Next, we
evaluate the effect of increasing degree d on the sample
complexity.

Corollary 11 (Sample complexity versus d). Consider a pair
of q-similar graphs G, and G5 in class gg(p). For any graph
decoder that achieves P(GJ(p)) < ¢, the sample complexity
satisfies the following conditions:
1) In the regime p = O (é), the sample complexity scales
with respect to d as Q(d?).
2) In the regime p = O(1), the sample complexity scales
with respect to d
log 2= q)

(gt T
The existing results in [43] show that the sufficient condition
on the sample complexity scales as 2((d? + p~2)log p). This
sample complexity is achievable via ¢;-regularized ML-based
graphical model selection for single graphs. In the regime
p = ©(1/d), the sufficient condition matches with the scaling
behavior of the necessary condition for single graphs up to
constant factors, indicating the scaling behavior of necessary
conditions is optimal in this regime. We conjecture that this
observation extends to the results for joint model selection,
i.e., the scaling behavior of the necessary conditions from
Theorem 7 is optimal in the regime p = ©(1/d). In the regime
p = ©(1), it is interesting to note that the lower bound on the

(39)

sample complexity scales approximately as @(d*” log %)
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for some ¢ < 1, which has a non-monotonic scaling behavior
in d. We remark that the sample complexity in this regime is
dominated by the graphs with densely-connected subgraphs of
d nodes. This characteristic of the sample complexity implies
that the sample complexity of estimating graph models with
densely-connected subgraphs has a higher sample complexity
than that for nearly fully-connected graphs. We also note
that this observation is consistent with that of the sample
complexity of recovering a single graph [23].

Theorem 8 (Class Q(’; (p)). Consider a pair of q-similar graphs
Gy and Gy in class QL’; (p), for which p € [0, 3]. For any graph
decoder ) that achieves P(GF(p)) < e, the sample size must
satisfy the following requirements:
1) In the regime p = O(1/V'k), the sample size n must
satisfy:
@) if (3) < (729"
(1-¢)
4p?

2

n =

L 1) . (40)
b) if (3) > (%39,
(1 76) <210gq !

(4 g1t
-1 .
4p? V2 >

V2
n >
2) In the regime p = ©(1), the sample size n must satisfy:

(41)

a) if ¢+ \/ak <p,
1— )k _
n> % (210gp]~€q —1) (42
P
log (1 + 17p)
b) if g+ 1/qk > p,
Lk
n> % (logg - 1) . @3
log <1 + lfp)
where
k= V] (44)
Proof. See Section V-C. [

Theorem 8 characterizes the necessary conditions on the
sample complexity under two regimes of p. Note that the
conditions on the similarity level ¢ in (41) and (43) are satisfied
only by graphs with extensive similarity, i.e., ¢ = p. Therefore,
we subsequently discuss the sample complexity based on the
analysis of (40) and (42). It is readily observed that the sample
complexity has a dependence on the similarity level g that is
similar to that for the degree-bounded class, i.e., in terms of
the factor log(p — ¢). We formalize this observation in the
following Corollary.

Corollary 12 (Sample complexity versus g). Consider a
pair of q-similar graphs Gy and Go in class Q(’;(p) with
increasing similarity level q. For any graph decoder that
achieves P(G¥(p)) < e, the sample complexity scales with
respect to q and p as Q(log(p — q)).

Next, we evaluate the effect of increasing number of edges k
on the sample complexity.

E Xplore. Restrictions apply.
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Corollary 13 (Sample complexity versus k). Consider a
pair of q-similar graphs Gy and Gy in class g(’;(p) with
increasing similarity level q. For any graph decoder that
achieves P(GF(p)) < e, as k increases, the sample complex-
ity n must satisfy the following conditions:
1) In the regime p = O(1/ l~f) the sample complexity scales
with respect to k as O(k).
2) In the regime p = O(1), the sample complexity scales
with respect to k as

VEk p—q> . 45)

© <1og(1 + pVk) o Vk

Corollary 13 implies that the sample complexity has a linear
scaling behavior in k in the regime p = O(1/k). In the
regime, p = O(1), we observe that the sample complexity has
a non-monotonic scaling behavior in k. We remark that the
sample complexity in this context is recovered by the analysis
of densely-connected subgraphs of k nodes. Therefore, the
necessary condition on the sample complexity implies that
recovering graphs with a densely-connected subgraph up to
a certain size dominates the sample complexity of recovering
graphs that are nearly fully connected. This observation is con-
sistent with our discussion in the context of degree-bounded
Gaussian models.

B. Sufficient Conditions for Gaussian Models

In this section, we provide sufficient conditions on the sam-
ple complexity for a specifically constructed set of ensembles
of graphs in classes g;j(p) and gf;(p). The sufficient conditions
are established based on the large deviation analysis of the
ML decoder similar to that in (19) for Gaussian models. We
provide Lemma 1, which is instrumental to establishing suffi-
cient conditions on the sample complexity. For this purpose,
consider an arbitrary class of distinct Gaussian models indexed
by S = {1,...,m}. For model u € S, denote the precision
matrix by P[u], and define A, as its log-likelihood function,

ie.,
Au(x) = log <(w exp <;XTP[U}X)> . (46)

Lemma 1. Consider a Gaussian graphical model G in the set
S. For any u,v € S we have

NG

det[P[u]] - det[P[v]
PlAu(x) = Au(x)] < det? [P[u];rP[v]}

Proof. See Section VI-B. O

(47)

This lemma is pivotal for comparing the likelihoods of differ-
ent models. For an unconstrained precision matrix P[u],Vu €
S, it is infeasible to evaluate
P P
det {M} (48)
2

for all possible graphs. Therefore, for our analysis, we focus
on three specifically constructed ensembles of graphs in the
degree and edge-bounded subclasses of Gaussian models,
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denoted by A,, B,, and C,, which enable us to gain intuition
into the performance of ML decoder in graphs with different
characteristics. Next, we provide the construction of subclasses
that consist of cliques of different sizes. For this purpose, we
define U, as the subset of nodes in a clique of size m < p,
where U,,, C V. We also define the p x 1 subclass 1, of
dimension p x 1, where its entries are given by

1
1y, )i = ’
[ U’nl ] { 0 ,

Restricted Subclass A,: The graphs in this subclass consist of
an isolated clique Us consisting of 2 nodes that lie completely
either in the shared part or in the non-shared part of the graphs.
For a given parameter a > 0, the associated precision matrix
is given by P; = I+aly, 1], . There are (4) graph pairs with

if i € Uy,

. 49
ifi € V\Up, “9)

the clique formed by Uy in the shared part, and (” gq)Q graph
pairs with Uy in the non-shared part. Furthermore, we have

Ay € G2(p) and A, € G¥(p).

Restricted Subclass B,: The graphs in this subclass consist
of a clique U, formed by a set of d nodes and the associated
precision matrix is given by P, =1+ a]lUd]lgd. We assume
that for each graph, the set U, lies completely in either the
shared part or the non-shared part of the graph. If Uy lies in the

non-shared part, we have (3) number of possible graph pairs.

If Uy lies in the non-shared part, we have (” ;q)z number of
possible graph pairs. Furthermore, in this class, we must have
q = Q(d). Therefore, B, C G(p).

Restricted Subclass C,: The graphs in this subclass consist

of a clique Uy, formed by a set of k nodes and the associated

precision matrix is given by P; =1+ a]lU,;,]lE,;' We assume

that for each graph, the nodes spanning U lie completely

in either the shared part or the non-shared part of the graph.
q

If U; lies in the non-shared part, we have (fc) number of

possible graph pairs. If U; lies in the non-shared part, we
have (p iq)2 number of possible graph pairs. The properties
of this restricted subclass of graphs dictate that C; C Q(’;(p).

Clearly, A, represents the subclass of graph pairs with
unknown isolated edges, and B, and C, represent the subclass
of graph pairs with high connectivity in degree-bounded and
edge-bounded subclasses. Thus, analyzing the subclasses A,
By, and C, provides the bounds on sample complexity for
the subclasses that lie at the two extremes in terms of edge
connectivity in the classes G¢(p) and G (p). Next, we provide
sufficient conditions for the joint selection of graphs in the
subclasses Ay, By, and C,,.

Theorem 9 (Subclass A,). Consider a pair of g-similar
graphs Gy and Gy in the subclass Aq. There exists a graph
decoder 1 that achieves P(Aq) < ¢, if the sample size n
satisfies:

D ifqg+vVav2 <p,

1 2
n>——— |4log(p—q)+log= ), (50)
log =52y c

E Xplore. Restrictions apply.
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2) if g+ VavV2>p,
2

n > T (210gq+10g) .
log =72y €

Proof. See Section VI-BI. [

(51

Next, we analyze the variation in the bounds on sample
complexity with respect to the structural similarity ¢q. As
observed previously, the regime for the sufficient condition
in (51) is valid for almost identical graphs. Therefore, we
focus our discussion on the analysis of the sufficient condition
in (50).

Corollary 14 (Sufficient condition and q). Consider a pair of
g-similar graphs G, and Gy in the subclass A, with increasing
similarity level q and graph size p. There exists a graph
decoder that achieves P(A,) < ¢, if the following conditions
are satisfied:

1) In the regime p = ©(1), the sample complexity scales
with respect to q and p as Q(log(p — q)).

2) In the regime p = ©(1/p), the sample complexity scales
with respect to q and p as Q(p?log(p — q)).

From Corollary 14, we note that in both regimes, the sample
complexity depends on ¢ through log(p — ¢), which has a
decreasing behavior with increasing similarity level g. This
observation captures the gain in the sample complexity of
jointly recovering the two graphs. We also remark that since
we have A, C GZ(p), in the regime p = O(1/d), the sufficient
condition on the sample complexity in Theorem 9 scales as
O(d?log(p — q)), which matches the scaling behavior of the
necessary condition on the sample complexity in Theorem 7.
This observation indicates that an ML decoder achieves the
optimal sample complexity for recovering the g-similar graphs
in the subclass A,.

Theorem 10 (Subclass B,). Consider a pair of q-similar
graphs Gy and Gy in the subclass B,. There exists a graph
decoder 1 that achieves P(B,) < ¢, if the sample size satisfies:

— 2 d

n=cy 2dlogw+log* L g E <y,
d € 2e

(52)
2 d

n>e(dlog® 41082 ) | if g+ >y,
d € 2e

(53)

where we have defined

a2 -1
1 14 . 54
o (1 ) Y
Proof. See Section VI-B2. [

N
Cy =

Theorem 10 provides sufficient conditions on the sample com-
plexity for different regimes of g. From a similar discussion
as in the prior cases, we conclude that the regime in (53) is
applicable to scenarios with an extensive similarity between
the two graphs. Therefore, we focus our subsequent discussion
on the analysis of sample complexity in the regime in (52).
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Corollary 15 (Sufficient condition and ¢). Consider a pair of
g-similar graphs Gi and G in the subclass B, with increasing
similarity level q. There exists a graph decoder that achieves
P(By) < ¢, if the sample complexity scales with respect to q

as Q(log(p — q)).

From Corollary 15, we note that the sample complexity is
characterized by log(p — ¢), which indicates the savings in
sample complexity as the similarity level g increases. Next, we
discuss the sample complexity with respect to the maximum
degree d.

Corollary 16 (Sufficient condition and d). Consider a pair of
g-similar graphs Gi and G in the subclass B, with increasing
maximum degree d. There exists a graph decoder that achieves
P(By) < ¢, if the following conditions are satisfied:
1) In the regime p = (1/d), the sample complexity scales
with respect to d as Q(dlog(*51)).
2) In the regime p = @(18 the sample complexity scales

. d n—
with respect to d as <) e 45T log 254 ).

We observe that in both regimes, the sample complexity
depends on ¢ through log(p — ¢), which captures the savings
in the sample complexity as the similarity level ¢ increases.
Furthermore, we also note that the sufficient condition on the
sample complexity for recovering graphs in B, in the regime
p = O(1/d) is dominated by the corresponding condition
for the subclass A, and the necessary condition (given by
Q(d?log(p — q))) for the class (]g(p) in Theorem 7. This
observation indicates that recovering the graphs in subclass B,
is easier than the graphs in the worst-case scenario for g{j’(p)
in this regime. On the other hand, in the regime p = O(1),
the sufficient condition on the sample complexity matches the
necessary condition on the sample complexity for graphs in
g;l(p) up to constant factors (refer to Corollary 11). Moreover,
we observe the non-monotonic scaling behavior of the sample
complexity of an ML decoder with respect to d, which is
consistent with the observations from the necessary conditions
in Corollary 11.

Theorem 11 (Subclass C,). Consider a pair of q-similar
graphs Gy and Gy in the subclass C,. There exists a graph
decoder 1 that achieves P(Cy) < ¢, if the sample size satisfies:

i _ 2 [ qk
nZQc;;klogM—i—logf, if q+ 9% <p, (55)
k € 2e

k
if g+ |2 >p . (56)
2e

K = ) ) (57)
(Up—1)(1/p—1+F)

~ 2
nzc;),k‘log@—klogf ,
k €

where we have defined

cg = log™! <1+

and k = |Vk|.
Proof. See Section VI-B3. O

Theorem 11 provides sufficient conditions on the sample
complexity in different regimes of q. We note that the regime

E Xplore. Restrictions apply.
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in (56) implies extensive similarity between the two graphs.
For instance, when we have p = 150 and k£ = 100, the regime
in (56) is satisfied only for ¢ > 0.9p. Therefore, we focus our
discussion on the analysis of sample complexity in the regime
in (55), which covers cases other than the cases with extensive
structural similarity.

Corollary 17 (Sufficient condition and g). Consider a pair of
g-similar graphs G and Gy in the subclass Cq with increasing
similarity level q. There exists a graph decoder that achieves
P(Cy) < e, if the sample complexity scales with respect to q

and p as Qlog(p — q)).

We observe in Corollary 17 that the sample complexity is
characterized by log(p — ¢), which quantifies the gains in
sample complexity as the similarity level ¢ increases. Next, we
discuss the sample complexity with respect to the maximum
number of edges k.

Corollary 18 (Sufficient condition and k). Consider a pair of
g-similar graphs G, and Gy in the subclass C, with increasing
maximum number of edges k. There exists a graph decoder
that achieves P(Cy) < ¢, if the sample complexity satisfies:

1) In the regime p = ©(1/ l;:), the sample complexity scales
with respect to k as Q(k log(£=1)), where E = |VE]

2) In the regime p = O(1), the sample complexity scales
with respect to k as Q&ogﬂii};ﬂ) log % .

From Corollary 18, in both regimes, we observe that the
sample complexity depends on ¢ through the factor log(p—g¢),
which quantifies the savings in the sample complexity as the
similarity level ¢ increases. Furthermore, by comparing the
sufficient conditions in the regime p = ©(1/k) in Corollary 18
with the corresponding sufficient conditions for subclass A,
and the necessary condition for class Qg(p) in Theorem 8, we
note that recovering the graphs in subclass C, is easier than
the graphs in the worst case scenario for G¥(p) in this regime.
On the other hand, in the regime p = ©(1), the sufficient
condition on the sample complexity matches the necessary
condition on the sample complexity for graphs in Q(’; (p) up to
constant factors (see Corollary 13).

Comparing the necessary and sufficient conditions in sub-
classes Ay, By, and C, provides the following insights into the
behavior of sample complexity:

1) As p — 0 in the regimes A = O(1/d), A = ©(1/p),
or A = ©O(1/k), the connectivity of the graphs with
isolated edges becomes harder to learn as compared to
the fully-connected graphs.

2) For an invariant p and a regime characterized by an
increase in p, d, or k at any rate, the connectivity of
the graphs with densely-connected subgraphs becomes
harder to learn as compared to the graphs with isolated
edges.

The main results that specify the bounds on the sample com-
plexity for the exact recovery of Gaussian models in classes
G3(p) and G¥(p) are summarized in Table 2. The sufficient
conditions in Table 2 correspond to the sample complexity
of the dominant subclass of Gaussian models among the
restricted subclasses A, By, and C,.
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From Table 2, we note that the factor log(p — ¢) appears
in both necessary and sufficient conditions on the sample
complexity of recovering g-similar graphs jointly.

C. Strict Improvement Compared with Single-graph Recovery

To establish that the joint graph recovery of g-similar graphs
is indeed easier than independently recovering them, we
compare the lower bound on the sample complexity (necessary
conditions) for the single graph class and the upper bound on
the sample complexity (sufficient conditions) for the class of
g-similar graphs. In our analysis, we exclude the setting in
which the two graphs are either almost identical (i.e., ¢ — p)
or almost distinct (i.e., ¢ — 0). To this end, we focus on the
regime max{q,p — q} < p'~2¢. We note that this regime is
not too stringent. For instance, when € = 0.1, ¢ that satisfies
max{q, p—q} < p"®liesin q € [p°8, p—p°-®]. For p = 10000,
this range is [1585, 8415].

Theorem 12 (Degree-bounded Subclass). Consider a pair of
q-similar graphs G, and G in the subclass B,. For max{q, p—
q} < pt7% and p > d%&-l’ the necessary condition on the
sample complexity for recovering Gy (or Gs) independently
is strictly larger than the sufficient condition on the sample
complexity for recovering G and Gy jointly.

Proof. See Appendix B. O

Theorem 12 establishes that the sample complexity of jointly
recovering the graphs is strictly smaller than that of re-
covering them independently for the graphs in subclass By,
thus, providing conclusive evidence that the joint structure
learning of g¢-similar pair of graphs is easier than learning
them independently. By setting d = 1, class B, reduces to
Class A,. Due to the similarity in constructions and results,
the same line of analysis for B, (with proper adjustments)
applies to A,.

For the edge bounded subclass, C,, we note that the con-
structions of classes C, and B, are derived from the ensemble
construction in Section V-C2. Therefore, the necessary condi-
tions for joint graph learning in C, follow directly from (238)
for m = k and the sufficient conditions follow from (209). We
next formalize the comparison between the sufficient condition
on the sample complexity for joint graph recovery and the
necessary condition for independent graph recovery.

Theorem 13 (Edge-bounded Subclass). Consider a pair of q-
similar graphs Gy and G, in the subclass C,. For max{q,p —
q} < p'~% and p > El , the necessary condition on the
sample complexity for recovering G, (or Go) independently
is strictly larger than the sufficient condition on the sample
complexity for recovering G and Gy jointly.

Proof. The proof of Theorem 13 follows directly from the
proof for subclass B, in Appendix B by replacing d with k. For
the edge bounded subclass, Cq, we note that the construction
of classes C; and B, is similar and stems from the ensemble
construction in Section V-C2. Therefore, the necessary con-
ditions for joint graph learning in C, follow directly from
(117) and (238) and the sufficient conditions are established
in Section VI-B2 and Section VI-B3. Hence, the proof in

E Xplore. Restrictions apply.
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TABLE II
SUMMARY OF THE MAIN RESULTS (NON-EXPONENTIAL SCALING) FOR THE EXACT RECOVERY OF GAUSSIAN MODELS. SUFFICIENT CONDITIONS
CORRESPOND TO THE DOMINANT SUBCLASS AMONG Ay, By, AND Cg IN THE SPECIFIED REGIMES.

Graph Class Sample Complexity for Ay, By, and Cq4
Parameters
Necessary Sufficient™
Degree-bounded G | p=0 (3) O(d?log(p — q)) | ©(d*log(p — q))
dlog((p—q)/d) dlog((p—q)/d)
b-a?>q | p=0() | O (") | o (‘B
Edge-bounded G* | p=© (ﬁ) Oklog(p—q)) | Oklogp —q))
klog((p—q)/k) Elog((p—q)/k)
w-0*>a | p=oe) |o("EEa?) | e (fEeat)

Appendix B that establishes that the joint graph learning is
strictly easier than single graph recovery for B, readily extends
to the class C, by replacing d with k = | k|. O

To establish our results in Theorem 12 and Theorem 13,
we assume that the single graph decoder is agnostic to the
similarity in two graphs in terms of q. However, we note that
the subclasses Aq, Bq, and Cq are structured to have the clique
completely in either the shared part or the non-shared part of
the graph. Hence, the size of the number of possible graphs in
the corresponding class for single graphs is smaller than (5)
for A, (Z) for B, and (g) for C,. In the following remark,
we clarify that the gains offered by joint graph recovery are
retained even if the clique in the construction of classes B,
and C, can span across shared and non-shared parts of the
graph.

Remark 2. For a pair of g-similar graphs in the class B,
such that the clique Uy can span both shared and non-shared
parts, the necessary condition on the sample complexity for
recovering a single graph is strictly larger than the sufficient
condition on the sample complexity for recovering q-similar
graphs for sufficiently small €.

Additional analysis details supporting Remark 2 are available
in Appendix C. Similar observations can be made for class C,.

V. PROOFS OF NECESSARY CONDITIONS

In this section, we provide the proof of the information-
theoretic necessary conditions on the sample complexity of
recovering graph pairs in different classes of Ising and Gaus-
sian models. In general, we leverage Fano’s Lemma for char-
acterizing the necessary conditions, which are also used for
other structure estimation purposes in [18], [19]. To formalize
this, consider two g-similar graphs G; and G- that belong to
a generic class S; of g-similar graphs that contains a total
of M pairs of g-similar graphs. Let G; and G, be selected
from S, uniformly at random. We define ¢ as a uniform
random variable over the set {1,..., M} to denote the true
model for the pair G; and G, from class S,. Define Q; as
the joint probability measure of X; and Xy when ( = i.
Also, we use the notations Gi = (V, E%) and G4 = (V, E}) to
identify the pair of g-similar graph when ¢ = ¢. Hence, the
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KullbackLeibler (KL) divergence between two distinct models
Q; and Q; is given by
( dQ;
log
1,X2

Dkr(Qi[| Qi) £ / 0,
J
dQ;

b’

ag- is the Radon-Nikodym derivative of Q; with respect
J

to Q;. Accordingly, for each distinct pair 7,5 € {1,..., M}

we define the symmetricized KL divergence as:

Skr.(Qi]|Q;) £ Dxi(Qi]Q)) + Dxi(Q;]1Qi) ,  (59)

where for Ising models, Skr,(Q;||Q;) can be readily verified
to be [18], [19]:

> dQ; , (58)

where

Sk(Qil|Qy)

= > > AEXEXY] - Ei[XEXY))
re€{1,2} \(u,v)eEi\E]
+Y L WE XX - EXEXYD) |

(u,v)EEI\E?
(60)

where E; [ X X 7] is the expected value of the random variable
X“X? in graph GJ for u,v € V. Furthermore, we define
I(¢;X1,X2) as the mutual information between the random
variable ( (capturing the true pair model) and one pair of graph
samples (X, X5). By using the convexity of KL divergence,
it follows that
| MM
I(¢; X1,X5) < el ZZ SkL(Q4 Qi) -

i=1 j=1

(61)

For any class of graphs S, with M number of total pos-
sible true graphs, we use the following variants of Fano’s
Lemma [44].

Lemma 2 (Fano’s Lemma ). For any class of graphs S, with
M members, if the number of samples is upper bounded by
(I—-e)(logM —1)+¢
1(¢; X1, X2) 7
for some ¢ € (0, 1), then the probability of forming erroneous
estimates of the true pair of graphs P(S,) satisfies:

P(Sy) > €.

(62)

(63)

E Xplore. Restrictions apply.
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Lemma 2 characterizes the upper bound on the number of
samples for which P(S,) is guaranteed to be bounded away
from 0 by an arbitrary finite value. Note that, in general, € is
intended to be small and closer to 0, and, therefore, for clarity
in presentation, we will use a slightly looser condition on n.
Specifically, for any decoder to satisfy P(S,) < e, we have

(1-¢)

n>—c->=—logM—-1).

64
— I X, X;) 9

A. Ising Models: Degree-bounded Subclass

Next, we provide the constructions of different ensembles
in the class Ig()\, ) that enable us to recover the necessary
conditions on sample complexity in Theorem 1.

1) Ensemble 1: Single-edge Graphs: We first consider an
ensemble of the graph pairs such that each graph has exactly
one edge. Clearly, the number of such pairs is

ne () E)

In this ensemble, when the single edge connects two shared
nodes, both graphs in the pair are identical. We remark that the
graphs in this ensemble lie in both Z¢(X, ) and Z_ (X, ).
Note that in this ensemble, if we have (u,v) ¢ Fj, then
random variables X} and X are independent. Also, for
any pair of edges (u,v) € E! and (w,z) € EJ, we have
E;[ XX = E;[X*X?] = tanhX for r € {1,2} and
i, € {1,..., M}. By leveraging these observations, for each
pair of graphs, we have

SKL(QiH@j) =4 tanh \ .

Based on (64) and (66), for any graph decoder whose maximal
error in recovering any pair of graphs is less than €, we must
have

(65)

(66)

(1 —-¢)(logb; — 1)
>
"= T tanh A ©7)
It can be verified that

2
q q . (4 p—q
B)=n=2) ()02
(68)
p—aq\’ p—aq\’ q p—q\’
(2 =me () n ()< (2)
(69)

Clearly, b; = ©(g?) in regime in (68) and b; = O((p—q)?) in
regime in (69), which clearly distinguish the scaling behavior
in terms of ¢ in the two regimes. For clarity, we further
lower bound b; by (¢ — 1)?/2 in the regime in (68) and by
(p — g — 1)%/2 in the regime in (69). Therefore, to accurately
capture the effect of structural similarity on the sample com-
plexity in the two regimes, we restate and simplify (67) as

1—¢
P —— A A 70
n_4)\tanh/\max{ 1,42} (70)
where
-1 p—q—1
A 2 210" 1 and Ay £ 4logPTI T .
1 g \/5 2 g \/E
(71)
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2) Ensemble 2: (d + 1)-vertex Fully-connected Subgraphs:
For constructing this ensemble, we divide the shared vertices
into a group of (d + 1) vertices, rendering |g/(d + 1)] such
groups. We partition each of the two non-shared parts of the
two graphs into groups of (d + 1) vertices. Hence, the total
number of these groups is

p—4q ? q

keaiRdre
The vertices within each group are fully-connected, and there
is no inter-group edges. Note that the selection of the nodes
and placing them into different groups has been arbitrary. We
refer to the two graphs defined over E; and Es as the base
graphs, and we denote them by G? and G, respectively. Next,
we use this base graphs to construct an ensemble of graph
pairs. Specifically, the ensemble includes all possible graph
pairs (G1, G2) such that G; constructed by removing one edge
of GP. This ensemble of graphs lies in the class Z¢(\, ). By
noting that the total number of fully-connected cliques in the
base graphs is given in (72), it can be readily verified that the
total number of graph pairs in this ensemble is given by

(] ) (31)

For the rest of analysis, we consider two regimes depending
on the relative values of p and q.

(72)

(73)

1) Regime 1: In this regime we have either (p — ¢) <
2(d+1) or ¢ < 2(d + 1), resulting in LS—:{J =1or
ﬁJ = 1, respectively. Hence, the number of graph
pairs specified in (73) is lower bounded by
a) if g<2(d+1)and (p—q) > 2(d+ 1),

s [(p—a)d]* | (d+1)d
by = [ 1 ] T (74)
b) if ¢ >2(d+1)and (p —q) < 2(d+1),
s [(d+1)d]*  qd
bs = [2:| +Z, (75)
c) ifg<2(d+1)and (p—¢q) < 2(d+1),
2
by 2 [(dzl)d] +(d+21)d. (76)

We note that the regime (75) is characterized by the
graphs being overly similar. For instance, for d > 0.3p,
the regime in (75) corresponds to the case where g >
0.6p.

2) Regime 2: This is the complement of Regime 1, i.e.,
(p—¢q) >2(d+1) and ¢ > 2(d + 1). In this regime,
the number of graph pairs specified in (73) can be lower
bounded by

s [p—9d]” | ¢d
b5 - |: 4 :l + 4 )

By using the bound 2(d + 1) > ¢ in (74), 2(d + 1) >

(p — ¢) in (75), and the corresponding lower bounds on

(d+ 1) in (76), we observe that the number of graphs

(77)

E Xplore. Restrictions apply.
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ba, bs and by in their respective regimes can be further
lower bounded by a term equivalent to b5, indicating
that the analyses of the structure estimation algorithm
in the regimes associated with (74), (75), (76), and (77)
are equivalent. Therefore, in the subsequent analysis, we
use the lower bound b5 on the number of graphs in this
ensemble.
By following the separation argument in [18, Lemma 2], we
find that when A\ > 1/d, for any pair of graphs in this ensemble
we have
8 exp ()
exp(¥)
Therefore, using the number of graph pairs in different regimes
and the divergence result in (78) in Fano’s Lemma in (64),
we conclude that for any graph decoder to have the error
probability in recovering any pair of graphs in this ensemble
less than ¢, it is necessary that

. exp(¥)(logbs — 1)

- 89 exp(A)
Clearly, the bound on sample complexity scales exponentially
with at least \d as we have ¢ > Ad, which reflects the

difficulty in estimating the graphs with large edge weights. We
simplify the condition in bs bg characterizing the regimes for

SkL(Qi|Q;) < (78)

(79)

which qu dominates {W] and vice-versa. Specifically, it
can be verified that

2 2
[(p;q)d] <bs < 2 [(p;q)d] | if q+2\/g<p,
(80)
d d
qzﬁbsﬁ %, ifq+2\/g>p.
81)

Clearly, we have b5 = O((p — q)2d?) in the regime in (80),
and by = O(gd) in the regime in (81). Therefore, for a
better intuition into the effect of structure similarity on sample
complexity, by leveraging (80) and (81), we simplify the
condition in (79) to

. exp(¥ — )

= ) maX{A3)A4} )

(82)

where

—q)d
21og%71.

(83)
Finally, we combine the findings from the analysis of the
sample complexities of recovering graphs in Ensemble 1 and

Ensemble 2 to provide the necessary conditions on the sample
complexity for recovering the graphs in Ig()\, ).

Az = and A, =

Lemma 3 (Degree-bounded). Consider a pair of g-similar
graphs Gy and G in the class Ig()\ﬁ). Any graph decoder
1 that achieves P(Ig()\7 ) < € must satisfy

max{A4;, Az}, (84)

1
4\ tanh A
exp(9)
8 exp(N)

nZ(l—E)max{

max{As, A4}} . (85)
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Next, we note that in the regime A\ = O(1/d), we have
i = Q(d?). Note that according to the definition of
in (4), variations in d inevitably induce variations in ¢ as well
since we have ¥ > Ad. However, in the regime A = O(1/d),
the effect of 9 can be controlled because in this regime, 9
can be set to an arbitrary constant that will never be exceeded
by its minimum feasible value for any combination of A and
d. Therefore, the term mmax{Al,Ag} dominates the
sample complexity when we have A = O(1/d) as the second
term in (84) has only a logarithmic scaling behavior in (p —q)
or ¢. In contrast, when we have A = ©(1) or A = O(d), the
second term in (84) is characterized by an exponential scaling
behavior in ¥ which dominates the scaling behavior of the first
term. These observations complete the proof of Theorem 1.

B. Ising Models: Edge-bounded Subclass

The proof of the necessary conditions on the sample
complexity for recovering graphs in Ié“_’,y()\,ﬁ) follows the
same template of application of Fano’s Lemma as discussed
in Section V-A. Therefore, in this section, we discuss the
construction of ensembles in the class Z¥_ (X, ¥).

Note that the construction of Ensemble 1 discussed in
Section V-A consists of one edge per graph and, therefore,
it is also valid for the class Z}_(\,9). We provide the
construction of another ensemble to cover the scenario of
densely-connected graphs.

1) Ensemble 3: Graphs with Cliques: Let m, be the largest
integer such that vk > ("51) and let mo be the largest integer
such that 7k > ("3?), where 4 = 1 — 7. Clearly, m; and my
satisfy

@ < LVk] <mi < 2v/7k (86)
and
@SL\/%JSW2<2 7k (87)

We form a base pair of g-similar graphs, denoted by GP and
GY, by constructing a fully-connected clique of m; vertices
in the shared cluster and a fully-connected clique of mo
vertices in the non-shared cluster of each graph. Such selection
of the nodes and placing them into different groups for the
base pair is arbitrary. Next, we use this base pair of graphs
to characterize an ensemble of pairs of g¢-similar graphs.
Specifically, the ensemble includes all possible graphs pairs
G1,G>) such that the graph G; is constructed from the base
graph GP by removal of one edge. Considering the similarity
between the two graphs, there are

e () 4 (%)

(88)

E Xplore. Restrictions apply.
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possible pairs of graphs in this ensemble. By leveraging [18,
Lemma 3], we have

S (Qil|Qy)
16Am,y 16Am; .
<€Xp(/\m1) eXp()\mg)) exp(2A) sinh A (89)
3207k 3207k |
< (eXp()\\/’W/Q) exp()\\/%/m) exp(2A) sinh A |

(90)

for any two distinct pair of graphs in this ensemble, where (90)
follows from (89) by leveraging (86) and (87). Using
Lemma 2, we get the necessary condition

(1—-¢)(logbg —1)
322k exp(2)) sinh(\)

Yl Vi N
: <exp<w%/2> i exp(AWk/z)) o)
(1 —e)br ©92)
~ 320Vk exp(2)) sinh(\)

Ky
s (%) -
(0T o ) oo
exp(MWAk/2)  exp(\WAK/2))
so that the error probability for the exact recovery is at most .
To magnify the focus on the effect of shared structure in
the graph, we relax the condition in (92) by investigating the
regimes when the terms characterized by vk or 7k dominate

the sample complexity. We make the following observations
in different regimes regarding b7.

where

>

by

1) Regime 1: In this regime, for 4 > 0.5, we have
a) if 2)\216 > log?(3/7v)

(1-2v/77)°
exp(MWAk/2)  exp(\W7k/2) o4)
VA B Vel ’
b) otherwise,
exp(MWTk/2) _ exp(AVrk/2) 95
VAl VY
Furthermore,
~21.2
¥k vk . 4y
> 17 ~
6 =41 lfk>7y2’ (96)
~21.2
Yk® Ak .
16 < 1 otherwise . ©7N

Note that on comparing the regimes in (96) and (97) for
k > 8, the dominant regime is always (96). Therefore,
we focus our subsequent discussion on (96). We also
remark that the regime in (94) holds for a wide range of
combinations of y and k, except for the values of \ in the
asymptote of A — 0. For instance, we have 2)\?k > 2.9
when v = 0.05 and 2A\%k > 1.509 when v = 0.5. In the
asymptote of A — 0, the sample complexity scales as
logarithmic factors in & and our analysis will reveal that
in the regime A = O(1/Vk), the necessary conditions
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2)

for recovering graph-pairs in Ensemble 1 have a linear
dependence on k and, therefore, they dominate the
sample complexity. Therefore, between (94) and (95),
we focus our discussions only on (94). In the regime
specified by (94) and (96), we have

Yk exp(AV7k/2)
1 -1 <b 98
<°g 16 ) ;oS oY
and
by <2 (log TR 1) expAVTR/2) (99)
8 VAl
Therefore, in this regime, we have
VAk/2
by =0O (log’kaQ . eXp(/\’yk/)) , (100)
V&l

and the overall sample complexity is dominated by 7k,
which specifies the maximum number of edges in the
non-shared parts of the graphs. To place the emphasis
on the dominating effect of non-shared part, in the
regime speciﬁecg jointly by the conditions 4 > 0.5,k >
%—Z, 2%k > %, we modify the necessary condi-
tion on the number of samples for any graph decoder to
achieve a recovery error less than € from (92) to

(1-¢)

> As , 101
"7 32N exp(2N) sinh(n) P (101
where
VAk/2 72 k2
4y & SPAVIR/Z) (1og7 ~1), (102
vk 16
Regime 2: In this regime, for v > 0.5, we have
. 2 log®(v/7)
a) if 27k < EESNLOIE
exp(AVYk/2) _ exp(AVk/2) (103)
NG B Vel ’
b) otherwise,
NG val
Furthermore,
~21.2
Yk vk . 4y
> f — 1
TR 1k>'72’ (105)
=212
Yk 9k .
— h . 1
6 < 1 otherwise (106)

We remark that for moderate to large sized graphs (for
instance, k > 50) the regime in (103) is applicable
only for small values of \. Since the sample complexity
for small A\ is dominated by that for ensemble 1, we
focus our discussion on (104). The condition in (105)
is satisfied for £ > 8 when v ~ 0.5. However, as y
becomes larger and gets closer to 1, the feasible values
of k under this regime become larger. For instance, the
regime in (105) implies that for v = 0.1, we must have
k > 360, and for v = 0.05, we must have k > 1520.
Using a similar line of arguments as in the Regime
1, for the regime specified jointly by the conditions

E Xplore. Restrictions apply.
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~ > 0.5 and A%k > %, we modify the necessary

condition on sample complexity from (92) to

(1—-¢)

> it
32X exp(2)) sinh(\)

¥ )
107)

n XA6, 1fl<:§

where

A, 2 exp(A/7k/2) <log1k _ 1> , (108)

vk

and
(1—¢) . 4y
A fk>—
"= 32X exp(2)) sinh(\) XA R ool
(109)
where
exp(A/7k/2 72 k?
A, 2 & g/ ) <log 716 1> . (110)

We summarize the results from Ensemble 1 in Section V-A
and Ensemble 3 to provide the necessary conditions for joint
recovery of g-similar graphs in the edge-bounded subclass.

Lemma 4 (Edge-bounded). Consider a pair of q-similar
graphs G1 and G in the class If;ﬁ(/\, 9). Any graph decoder
Y that achieves P(Z}_ (X, 1)) <&, must satisfy

n>(1-e¢) max{ max{A;, As} |

1
4 tanh A
1
32X exp(2)) sinh(A)

InaX{A5, A6, A7}}
1)

Next, we note that in the regime A = O(1/Vk), we have
iy = Q(k). According to the definition of ¥ in (4), vari-
ations in k inevitably induce variations in ¢ as well. However,
in the regime A = O(1/v/k), the effect of ¥ can be controlled
because for the graph models in ensemble 3 that lead to the
factor exp("?) in the sample complexity, we have ¥ > AV/k.
Therefore, in this regime, ¥ can be set to an arbitrary constant
that will never be exceeded by its minimum feasible value for
any combination of A and k. Hence, it max{A;, Az}
dominates the sample complexity in this regime. On the other
hand, in the regimes A = ©(1) and A = ©(v/k), the lower
bound on ¥ increases with an increase in k and, therefore,
the second term in (111) grows exponentially and dominates
the sample complexity. Specifically, when we have A = ©(1)
or A\ = O(Vk), the sample complexity has an exponential
behavior in vk as k increases. These observations complete
the proof of Theorem 2.

C. Gaussian Models

To recover the necessary conditions for Gaussian models,
we consider two simple ensembles for exact recovery of graph
pairs in the class gg (p) and apply Fano’s Lemma.
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1) Ensemble 1: Sparsely-connected Graphs: We consider
an ensemble of graph pairs in which each graph consists of
only one edge. Therefore, this ensemble of graphs lies in both
the degree-bounded and the edge-bounded subclasses of g-
similar Gaussian models. For our analysis, we consider two
specific cases corresponding to whether the edge lies in the
shared part or the non-shared part of a graph in a pair of
g-similar graphs.

1) Case 1: We first consider the case where the edge lies
in the shared cluster for both graphs. Therefore, the
problem of exact recovery of the two graphs becomes
equivalent to the problem of exact recovery of a single
graph from 2n samples. We note that there are (‘21) num-
ber of possible graph pairs in this scenario. Furthermore,
using the entropy based bound in [23, Theorem 1], we
have

1(¢;Xq,X3) < 8p° . (112)

By leveraging (112) and Lemma 2, we obtain that in
order for the recovery error to be upper bounded by e,

we must have
q

1 -1

s (2) ]
for p € [0,1/2].

2) Case 2: In this scenario, we assume that the edge lies in

the non-shared part 02f the g-similar graph pair. There-
fore, there are (P;%)" possible number of such graph

2
pairs. By using (112), we get the necessary condition

n> (18;25) <2log (p;q> _ 1) :

for the recovery error to be upper bounded by e¢.
Clearly, (113) and (114) lay emphasis on the sample com-
plexity due to shared cluster and the non-shared clusters in
the two graphs, respectively. Furthermore, the bound in (113)
dominates that in (114) if we have log (%) > 2log (*39). To
further emphasize the effect of ¢ on the sample complexity,
we slightly relax the results in (113) and (114) and conclude
that in order for the recovery error to be upper bounded by e,
the the number of samples must satisfy
_1210g P9t —1} :

(1 — 5) max {10g T
(115)

(1—-¢)

n >
8p?

(113)

(114)

q—1

V2

n >

4p?

for p € (0,1/2].

2) Ensemble 2: Densely-connected graphs: In this ensem-
ble, we consider the graph pairs in which each graph consists
of only one clique of m vertices. We assume that the clique
can completely lie either in the shared part or in the non-shared
part of the graph. This leads us to consider two cases.

1) Case 1: When the clique lies completely in the shared
cluster of the two graphs, we have () possible number
of graph pairs. Furthermore, using the KL divergence
based bound in [23, Theorem 1], we have

mp mp
I(C,X17X2) S log (1+ 1—p> — 1+ (m_ 1)p .
(116)

E Xplore. Restrictions apply.
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Therefore, by using Lemma 2, we get the necessary
condition that

log (gl) -1
log (1+ {2 ) — 2y,

for achieving P(G¢(p)) < e.

2) Case 2: When the clique lies completely in the non-
shared clusters of the two graphs, we have (”;f‘)z
number of possible graph pairs. Therefore, by leverag-
ing (116) and Lemma 2, we get the necessary condition
that n must satisfy

n>(1-e) . am

2log (P-9) — 1

log (1+ {22 ) — 2y,

for achieving P(gg(p)) <e.

For the degree-bounded subclass, we set m = d. To recover
the results for edge-bounded subclass, we set m = Vk in
this ensemble. Finally, we summarize the results from the
two ensembles to provide the necessary conditions for joint
recovery of g-similar graphs in the degree-bounded and edge-
bounded subclasses.

n>(1l-¢)

;o (118)

Lemma 5 (Degree-bounded). Consider a pair of q-similar
graphs in the class gfll(p). Any graph decoder that achieves
P(gg(p)) < ¢ must satisfy

n > (1 —¢)max {C1,Cs} (119)
where
s 1 g—1 p—q—1
= 1 —1,2log—— -1
Ch 12 rnax{og 7 ,2log 7 },
(120)
Co = !
, =

d d
log (1 + ﬁpp) — T,

X max {log (fl) —1,2log <pdq) f 1} . a2n

We note that in the regime p = ©(1/d), we have
pd = O(1) and, therefore, Co scales proportional to
dmax{logq/d,2log(p — ¢q)/d}. On the other hand, in
this regime, C; has a scaling behavior proportional to
d?> max{log q,2log(p — ¢q)}, which clearly dominates that
of Cs. In the regime p = ©(1), we have log (9) > dlog %
and log (";7) > dlog25% and, therefore, C; dominates
the sample complexity as C; has only a logarithmic scaling
behavior in ¢ or (p — ¢). These observations complete the
proof of Theorem 7. The necessary conditions on the sample
complexity for G¥(p) are formalized below.

Lemma 6 (Edge-bounded). Consider a pair of q-similar
graphs in the class Q(’; (p). Any graph decoder that achieves
P(GF(p)) < & must satisfy

S 1—c¢
n
Sy

max {C1,C5} | (122)
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where

1
Cs

1>

A
log (1+1*P) T+ (R-1)p

X max {log <Z> —1,2log (p i q> - 1} . (123)

We note that in the regime p = ©(1/k), we have pk = ©(1)
and, therefore, C'; dominates the sample complexity. On the
other hand, in the regime p = ©(1), we have log () > l%log%
and log (p gq) > klog % and, therefore, Cy dominates the
sample complexity. These observations complete the proof of
Theorem 8.

VI. PROOFS OF SUFFICIENT CONDITIONS

To establish the sufficient conditions, we analyze the sample
complexity of an ML decoder using the large deviations
bound. We first provide the general setup for the analysis of
an ML decoder for any generic class. Similarly to the proof of
necessary conditions in Section V-A, we consider a subclass
S, of g-similar graphs that consists of M = |S,| pair of g-
similar graphs. The graphs G; and G, are selected from S,
uniformly at random and the random variable ¢ € {1,..., M}
denotes the true model. When ( = i, the pair of g¢-similar
graphs are denoted by Gi £ (V, E%) and G5 = (V, E}). Given
the collections of graph samples (x7,x%), the ML decoder
decides on the true models according to the rule given by

U(x7,x5) = ar ma, 0;(xT,x%), 124
(x1,x3) gie{ ,.-?,(M} (x7,x3) (124)

where £;(x},x5) is the log likelihood with respect to the
model ¢ € {1,..., M} and is given by

G(x,x5) =) logdQy(a(w), za(w)),  (125)
w=1

where x,(w) is the w-th sample of xI'. If the solution
to (124) is not unique, we randomly select one. If the data
(xT,x%) is collected from a pair of graphs with true model
i € {1,...,M}, the ML decoder fails to recover the true
model only if there exists some other model j # ¢, for which,
2;(x7,x5) > €;(x7,x%). Therefore, we have

PU(x},x}) # (B, E3)]

=P @(x’f;x?) > 0;(xT,x5) (126)
Je{l,... ., M}\i
< Y P xE) > 4T, xE)] . (127)
je{l,...,M}\i

where (127) follows from the union bound. In the proofs of
sufficient conditions for all subclasses, we will upper bound
the probabilities in (127) such that P[¥(x7},x%) # (E%, E})]
diminishes with an increase in the number of samples n. Since
given the true model pair, the samples x; and x, are generated
independently for both graphs, we have

dQ; (x1,x2) = pi (x1)py(x2) , (128)

where pt is the marginal probability measure of X,., for r €
{1,2}, under model i € {1,...,M}. Next, we discuss the
results for Ising models.

E Xplore. Restrictions apply.
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A. Ising Models

We start by providing the large deviations bound in
Lemma 7, which provides the sufficient conditions for the
probability of error of the ML decoder to vanish with an
increase in the sample size n. For this purpose, we define
AL e R(2) as the vector of edge parameters associated with
graph G when ¢ =i € {1,..., M}. Furthermore, we define
Z,(AL) as the partition function of G¢ with parameter vector
Al and the KL divergence between two Ising models with
parameter vectors A’ and A/ is denoted by Dkt (A%]|[|AZ) for
jed{l,...,.M}.

Lemma 7. Given the i.i.d. graph samples (x7,x3) from the
model i € {1,..., M}, for any model j # i, we have

Pl (x',x3) > 4i(xT, x3)]

Sexp (= SN +IIA)) . (129)
where we have defined
i\ AN
T 2 D (252 1)
AL+ N ,
+ DkL <T 5 o )\i) , (130)
forr e {1,2}.

Proof Let R =  £;(x},x3)
Chernoff’s bound, we have

— {;(x},x%). Then, using

P(R > 0) < inf Eifexp(sR)] - (131)
Note that
Eyfexp(s )
= > ew (ils&»(xl(w),X2<w>>—smxl<w>,X2<w>>>)
< TT dQutxatm) xa(m)) (132)
(1 (w), %2 (1)) = log dQi(x1 (w), x2(w)) ,  (133)

from (132) we have

E;[exp(sR)]

> TT1AQ; (xa(w), xa(w)))” x [AQi (1 (w), x2 (w))]

n n j—
xP,xzw=1

(134)
= (Z [dQ; (%1, %2)]” [in(Xth)}”)n : (135)
Using )((1;8) and (135), we have
E,lexp(sR)] §
= (; [p] (1)) [P} (1))~ ; (1 (¢2)]* [ (x2)] H) :
(136)
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From (131), note that by setting s = 1/2, we always have

r20) < 5, oo (2]

Therefore, for s = 1/2, by using the expansions of p¢ and p{
specified in (1), it can be readily verified that

D

(137)

[l Gea )M/ 2[ph ()] /2] = ol

x1€{-1,1}7 (Zl()‘ll)Zl(Ajl))l/z
(138)
- (_ J(MIIM)) |
2
(139)

where J(Ai||A7) is defined in (130). Following a similar
analysis as in (138) and (139) for Gs, and by setting s = 1/2
in (135), we obtain

Eilexp(R/2)] = exp (—5 (JIA) + J(A3I1A)))
(140)
From (131) and (140), the proof of Lemma 7 is completed. [

Next, we leverage [18, Lemma 4] to find a lower bound on
the divergence J(A!||A7) + J(AL]|AL)) in terms of the edge
mismatch between the models ¢ and j for i,5 € {1,...,M}.
For r € {1,2}, define T(A%, A]) as the matching number of
the graph whose edges are given by the set

EIAE] = (E]\E))U(E]\E)) . (141)
We refer to |ELAE| as edit distance between the models G

and gg’ fori,j € {1,..., M}. Then, using [18, Lemma 4], we

have
A
N h2 -
sin (4)

(142)

TAL M) + (A%, X))
3exp(29) + 1

TN + J(A[IN) >

where ¢ is the maximum neighborhood weight. We use
Lemma 7 and (142) to characterize the sufficient condi-
tions for recovery of graphs in Ig(/\,ﬁ) in Section VI-Al
and Z}_ (X, 9) in Section VI-A2.

1) Proof of Theorem 3: Consider models ¢ and j in the
class Ig (X, ¥) such that the non-shared parts of the graphs G}
and Q{ have an edit distance ey, graphs g;’ and gg have an
edit distance ez, and the shared parts for the two models have
an edit distance es. In this case, we have |E{AE]| = e + e,
and |E}AFE)| = es + es. Since the maximum degree of the
graphs is bounded by d, we have

e+ e
4d

€es + €

T(ALA]) > and  T(A}, A)) >

(143)

Furthermore, the shared part of the graphs can have at most
dq/2 edges and, therefore, e lies between 0 and gd. Without
loss of generality, we assume that (G¢, G4) are the true models.
For each e € {0,1,...,qd}, we have at most ((egs)) models in
T4(A,9) that have a mismatch of e edges in the shared part
from that in the true model. Also, in general the non-shared

E Xplore. Restrictions apply.
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part of the graph can have at most d(p — g) edges (when each
edge in the non-shared part is between a node from the non-
shared part and a node from the shared part of the graph) and,
therefore, e; and e; lie between 0 and 2d(p — ¢). Therefore,
there can be at most

((qu) +€(p1q) ((1])> (144)

number of models in Z¢ (), ¥) that have a mismatch in £ edges
from the true model ¢ in the non-shared part. Using (127), the
large deviations bound in Lemma 7, and (142) we have

P¥(x},x3) # (B, E3)]

2d(p—q) ? qd
1+ > Ber) (1 +) A(es)> -1 (145)

<
e1=1 es=1
2d(p—q) 2 2d(p—q) qd
= Y Bler)] +2 Y Blen)+ > Ales)
e;=1 e1=1 es=1
2d(p—q) 2 qd 2d(p—q) qd
+| >0 Blen)| D A(e)+2 > Ble)) Ales)
e1=1 es=1 e1=1 es=1

(146)

where we have defined

e = (W) (rp 220 (3))

(147)
and
B(e1)
2 ((9+000) —ney/(4d) 5 (X
_< o exp Sexp(w)Hsmh 1))
(148)
If we have
qd
> Ale) < 5 (149)
es=1
and
2d(p—q) .
> Ble) < 1 (150)
e1=1

then the probability P[¥(x7,x5) # (Ei, EY)] is strictly less
than ¢ € (0,1). To ensure that (149) is satisfied, we obtain

S (3)
Z Aes) < max  exp <log qd + log ( 2 )
] es€{1,..., qd} [

es/(2d) LA
—nmslnh (4)) s (151)

which is less than /4 if

"> 2d(3exp(29) + 1)
sinh?(\/4)

1
(2 log g + log qd + log a) . (152)
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Equation (152) provides one half of the sufficient conditions
in Theorem 3. To ensure that (150) is satisfied, we obtain

2d(p—q)
E Bley) < max
o1 e1€{l,....,2(p—q)d}

g (00

{CXp (log 2d(p — q)

€1

e1/(4d) oA
7”mslnh <4>>} y (153)

which is less than e/4 if

4d(3exp(29) + 1)
> 2 (/) (log 8d + log(p — q)

— 1
+ log ((p 5 q) + (- q)q) + log 5) . (154)

We remark that (152) and (154) place emphasis on the
sample complexity driven by the shared cluster and non-shared
clusters, respectively. Furthermore, the sufficient condition on
the sample complexity in (152) dominates that in (154) when
we have

3
q°d 2 2y)?
ESREN _ _
= (4 - a0 - ) (155)
which simplifies to
32
== (1+v)*(v—1)*, (156)

where v = -2 . This observation is formalized as follows. The
ML decoder achieves P(S;) < ¢, if we have
D if 32 > (14 0)2(v—1)%,

2d(3exp(29) + 1)

S

1
> 21 +logqd +log - | ,
T T2 (0V4) ( 08408 qd T 08 5)
(157)
2) otherwise,
4 2 1 —
> d(3.exg( 9)+1) (log 8d + log L
sinh®(A/4) €
+ log <<p2q> +(p—q)q>) . (158)

2) Proof of Theorem 4: Consider the models ¢ and j in
the class Ié“ﬁ()\ﬁ) such that the non-shared parts of the
graphs Q{ and g{ have an edit distance e, that of g; and
gé have an edit distance es, and the shared part of the two
models have an edit distance es. Therefore, e,, € {0,..., 2%k},
for w € {1,2}, and es € {0,...,2vk}. Without loss of
generality, we assume ( = ¢ to be the true model. By using
notion of vertex cover, Next, we provide an upper bound
on the total number of models in ZF_(X,9)) that satisfies
|EiAE?| = e + e and |ELAES| = ey + 5. Note that the
vertex cover of a set of edges specifies a set of nodes such that
each edge is incident on at least one node in the vertex cover.
Furthermore, the nodes spanned by the maximal matching of a
given graph also form its vertex cover. Using the upper bound
on the number of graph models with a given edit distance
in [18, Section V-D], we conclude that there are at most
227k p2(erte2) (Yh+1) 5 97k g2es(Vk+1) number of g-similar graph

E Xplore. Restrictions apply.
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pairs that differ in e; edges in the non-shared part of Gi, es
edges in the non-shared part of G3, and e, edges in the shared
part of model ¢. Using (127), the large deviations bound in
Lemma 7, and (142) we obtain

P¥(x},x3) # (B, E3)]

27k 257k 2vk

< Z Z Z 927k-+k <p2(el+62)(w+1)

e1=0 e3=0 es=0
A
inh (4)) 1)

X qQGS(’Y]H‘l) X exp (_n citest 265
(159)

Sexp(20) +1°

29k 2 29k
= Q2Vk+k <1+ > C’(el)> x <1+Z D(es)) -1,
e1=1 es=1
(160)
where

2 2e; (Th+1) _ el oA
Cle1) = p exp( n73exp(219)+lsmh (4) ) ,
(161)

[>

2e . A
D(es) - q265(7k+1) exp ( - nm Slnh2 <4> ) .
(162)
We simplify (160) to
P¥(xY,x3) # (E1, E3)]
27k 2~k

2 29k
< 92ktk (Z C(el)> +2 Cler)+ ) Dles)

e;=1 e;=1 es=1
2~k

29k 2ok 29k
+ <Z C(el)> > D(es)+2 > D(es) C(el)> .

e1=1 es=1 es=1 e1=1
(163)

If we have
2k
22"yk+'yk Z C’(el) <

61:1

2~k
and 2%k +k Z D(es) <

es=1

)

= M

£

4
(164)

then the probability P[W¥(x7,x%) # (E%, E})] is strictly less

than € € (0, 1). To ensure that the first part of (164) is satisfied,

we obtain

29k
22A7k+“/k Z 0(61)

e1=1

< 27k + vk) + log(27k
S e L (390200 o270

+2e1(7k + 1) logp

61 . 2 A )
—n———————sinh” | — 1
n3exp(219) M (4) } , (165)
which is less than e/4 if

< 3exp(29) +1

29k + k) + log 87k
sinh?(\/4) (( Tk + k) +log 87

1
+2(7k + 1) logp + log 8) . (166)
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To ensure that second part of (164) is satisfied, we obtain
2vk

227k Ak Z D(es)
es=1
- _
< cphax {eXp ((2%f + k) 4 log(2|vk])

+2es(vk + 1) log g

2@5 . 2 A
—n—————sinh” | — ) 167
"3exp20) +1 (4) } , (167)
which is less than e/4 if

S 3exp(29) + 1

> o) (276 9R) + log(89k)

+2(vk + 1) log g + log i) . (168)
We remark that (166) and (168) place emphasis on the sample
complexity due to the shared and non-shared parts, respec-
tively. This is noted by the fact that the bound in (168) domi-
nates that in (166) if we have log g > 2(;*::11) log p, which is
feasible only if we have 2(7k + 1) < ~k + 1. Furthermore,
when the asymptotic scaling behavior for large graphs is in
focus, we can further simplify (166) and (168) to include only
the terms that dominate the sample complexity. Specifically,
in (166), for sufficiently large p, the term 2(¥k + 1)logp
dominates the terms (27k + k) and log 8k, and specifies
the asymptotic scaling behavior of the sufficient condition. To
emphasize upon this behavior in the results, we relax the bound
in (166) to

3exp(29) +1

sinh?(\/4)

Similarly, we note that in (168), for sufficiently large ¢, the
term 2(vk+ 1) log ¢ dominates the term (25k + vk + log 8vk)
and characterizes the asymptotic scaling behavior. Therefore,
to lay emphasis upon this behavior in the results, we modify
the bound in (168) to

3exp(29) +1

= 2sinh?(\/4)

The results in (169) and (170) complete the sufficient condi-
tions in Theorem 4.

1
(6(%4— 1) logp + log g) . (169)

1
(6(7/{ +1)logq +log g) . (170)

B. Gaussian Models

To establish the sufficient conditions for the subclasses of
Gaussian models, we first establish the large deviations bound
on the ML decoder for recovering a single graph in Lemma 1
and generalize it to the recovery of g-similar graph pairs. We
first restate Lemma 1 below.

Lemma 8. Consider a Gaussian graphical model G in the set
S. Then, for any u,v € S, we have

P[Ay(x) > Ay(x)] < K(P[u], P[v]) , (171)
where we have defined
K(P([u], P[o]) 2 det[P[u]] - det[P[v]] (172)

det? [P[u];rP[v]}

E Xplore. Restrictions apply.
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Proof. Using Chernoff’s bound we have

PIAG) — Au(x) > 0] < inf Eufexp(sQ)] . (173)

where the expectation is with respect to model v and we have
defined Q = A, (x) — A,(x), where A, (x) is defined (46).
We define f“ as the Gaussian pdf of x under model « that
is characterized by the inverse covariance matrix P[u], for
u € {1,...,|S|}. Furthermore, we have

E;[exp(sQ)] = / [P [ ()] dx .

By setting s = 1/2 in (174), we get

Jir oo o 2ax
_ / 1
\/(2m)p\/det(PTu])det(P1[u])

X exp (;XT (W) x) dx  (175)

(det [(W)—lbwz

N (det(P_l[u])det(P—l[U]))l/4 ' (176)

The statement of Lemma 8 follows from (173) and (176). [

(174)

1) Proof of Theorem 9: We leverage the fact that the ensem-
ble A, is the generalization of an ensemble for single Gaussian
models in [23] to a setting of two g-similar graphs. We first
restate the description of the relevant ensemble from [23] here.
Ensemble A: This ensemble is characterized by a set of single
graphs. Any graph G = (V, E) in A consists of one isolated
edge between a pair of nodes given by U C V' and a clique
of d nodes in the set Uy C V such that U; N Us = ¢. The set
U, is fixed and known to the graph decoder and therefore, the
structure estimation problem reduces to estimating the set Us.
The inverse covariance matrix P for G is characterized by a
parameter a > 0 such that

P =1+aly,1y, +aly,1y, - (177)

Lemma 9 provides the sufficient conditions on the model
selection of single graphs in the classes A, which would be
instrumental in the proof of the results in Theorem 9.

Lemma 9. Consider a graph G in the class A. If the sample
size n satisfies

—d 1
. 2log(p2 2+logg
log(1—p?)

then there exists a graph decoder ® : R"*P — A that achieves
P(A) <e.

Proof. For class A, there are (%) number of possible
models. Assuming that any of the possible models can be
uniformly selected to be the true model, we denote the random
variable for selection of the true model by «, which lies
in the set {1,..., (";%)}. Furthermore, we denote the graph
model associated with k = i by G' £ (V, E*) which has
an inverse covariance matrix P[i]. For G’, we denote the

. (178)
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pair of nodes connected by the isolated edge by Ui. Without
loss of generality, we assume that G" is the true model, for
ue{1,..., ("%} Using Lemma 8 and the union bound, we
have
PG £#ED < Y PAKY) = Aux").
ve{l,...,(5)N\u
(179)

Since U, is fixed and known, and U§ NU; = ¢, the
graph decoder can estimate the unknown structure by samples
collected only from the nodes V\U,. In this scenario, the
reduced inverse covariance matrix formed by the nodes in the
set V\Uy for model i is given by

Pli] = I+alyl], . (180)
It follows that we have det([P~'[i]]) = i;,Vi €
{1,..., (3%} and
g (PELP) e (LY
2 “\l+a/) ’

vo e {1,...,(";) } \u. Using Lemma 1, (179), and (I81),
we have

< exp (log (p ; d) + 0.5nlog(1 — p2)> ,
(182)

where the second inequality in (182) follows from 1_%@ > p.
Therefore, the condition
P[®(x™) # E")] < ¢ is satisfied if we have

Jlog (757) +1log 2

n > I
log ==

(183)

O

The proof of Theorem 9 leverages different elements of
Lemma 9. The graphs in ensemble A, consist of only an
isolated edge, either in the shared part or the non-shared part
for each graph. Therefore, there are

s ()3

number of possible graph pairs in A,. Assuming that any of
the possible models can be selected uniformly to be the true
graph pair, the random variable ¢ denotes the selection of the
true graph pairs from the set {1,...,¢;}. When ¢ = i, the
true graphs are given by Gi = (V,Ei) and Gi = (V, E})
and the inverse covariance matrix associated with G is P,.[i]
for r € {1,2}. Without loss of generality, we assume that

(G3t, G¥) is the true graph pair. Using the union bound in (126)

(184)

E Xplore. Restrictions apply.
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and the technical arguments similar to those in (131)- (136)
we have

PW(x},x3) # (EY, E3)]
< Z P[gj(X?,Xg) > Eit(xrll7xg)}

Je{1,...,.ci}\u

< ¥

Fe{1,...,c1 \u

(] iR el el a »

[ el el ax) - ass
Using (176), we obtain
W] x5) # (B )
<3 KELP) < KR Palul)

Jje{l,..,er N\u
(186)

From the proof of Lemma 8, we leverage the result
-p 2)% )
for graph models with a single edge to update (186) to

P[¥(x},x5) # (B}, Ey)] < exp (log c1 + nlog(l — p?)) .
(188)

Therefore, the condition P [¥(x},x%) # (E}, EY)] < € is
satisfied if we have

K(Py[j],P1[u]) < (1 (187)

1
n> lillogc—l. (189)
08 T=p?)
It can be readily verified that
D it (§) = (757"
q q 2
<ec <2 1
(<o <a(l) i am

2) if (§) < (39"
2 2
(p;q) <o < 2<p;q) <(p-g¢*. 91

Therefore, ¢; = ©O(q¢?) in the regime in (190) and
c1 = O((p — ¢)?) in the regime in (191). For clarity in pre-
sentation and to place emphasis on the effect of structural
similarity on the sample complexity in the two regimes, we
relax (189) as

2 1
n > ———— x ( max {logq,2log(p — q)} +log - | .
log =72 €

192)
2) Proof of Theorem 10: We leverage the fact that ensemble
B, is the generalization of an ensemble in [23] to a setting
consisting of two g¢-similar graphs. We denote the relevant
ensemble in [23] by B whose description is as follows.
Ensemble B: This ensemble is characterized by a set of
single single graphs, where each graph consists of one clique
of size d. For a graph G with a clique formed by nodes in the
set Uy, its inverse covariance matrix is given by

P=1I+aly,ly, , (193)
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for a > 0. For ensemble B3, there are (Z) total number of
possible models. Lemma 10 provides the sufficient conditions
on the model selection of single graphs in the classes B,
which would be instrumental in the proof of the results in
Theorem 10.

Lemma 10. Consider a graph G in the class B. If the sample
size n satisfies

log (%) + log £
(d2—d+1)p*+(d—2)p+1 ’
(1=p)(1+(d—1)p)
then there exists a graph decoder ® : R™"*P — B that achieves
P(B) <e.

n>2

(194)

log

Proof. Assuming that any model in B can be selected uni-
formly to be the true model, we denote the random variable
for selection of the true model by { whose support lies in the
set {1,..., (5)}. We use the same definitions as in the proof of
Lemma 8 for G* and its inverse covariance matrix P[i] when
¢ = i. For graph G*, we denote the set of d nodes that form
the clique by Ué and, therefore, we have
1
1+ da

det [<w>_1] < (Hfm/z)Q . (196)

Vj € {1,...,(2)}\1;. Using Lemma 8, (195) and (196), we
have

P[O(x") # E")

< (0) (i)™

det([P[i]] 1) = : (195)

and

197)

P (d*—d+1)p*+(d—2)p+ 1
< exp(log < ) —0.5nlog ,
12 g A-p)(1+d-1p)
(198)
where (198) follows from (197) by using 1%1 > p. The
condition P[®(x") # E“)] < ¢ is satisfied if we have
log (%) + log 2
nz 2o T T - (199)
& T T=p)(I+(d=T)p)

[

The proof of Theorem 10 leverages Lemma 10. The total
number of graph pairs in B is given by

w2 ()03

Therefore, under the assumption that any of the possible graph
pairs can be selected as the true models uniformly at random
and using similar arguments as in Section VI-B1, we obtain

PW(xT, x3) # (EY, E3)]

< Y (K@), Pafu]) x K(Ps[j], Pafu])" .
je{l,e2aP\u

(200)

(201)

E Xplore. Restrictions apply.
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Furthermore, by leveraging the following result for single
graphs from B

K(P,[j],P,[u]) < (Uﬂj/z)z) , (202)
(L—p)A+(d—1)p 203)

T (P -d+1)p2+(d-2)p+1"
we update (201) to
P[W(x7,x3) # (EY, E5)]
(d? d+1)p2+(d2)p+1>
(1=p)(1+(d=1)p)

< exp (log co — nlog
(204)

Therefore, the condition P[U(x},x%) # (E¥, EY)] < € is
satisfied if we have

logca/e

n2 log (P—dt D2 H(d=2)p+1 * (205)

& T {A-p) (It (d-Dp)

In the context of cs, it readily follows that

Dt () = (7%
q q qe\?

T 2 (7) , 206
(o =o() o) om

2) if (9) < (39"

p—q\’ p—q\’ (p— qe )™
< < 2 2( ———
R O R G

(207)
where the upper bounds in (206) and (207) follow from the
inequality (Z) < (ze/y)Y, for any pair of positive integers
z > y. Clearly, we have c; = ©((%)) in the regime in (206)
and c; = ©((?;7)) in the regime in (207). Therefore, for
clarity and to emphasize on the effect of structural similarity

on the sample complexity, we relax the bound in (205) to

1

2 @t D@11
log =) (T @-1)p)

X (max {2d10g (p%dq)e

,dlogqe} + log 2) .
d €
(208)

3) Proof of Theorem 11: The proof of Theorem 11 follows
the same line of analysis as that of Theorem 10. Firstly, we
create an ensemble of single graphs C which consists of graphs
with cliques of size k. Note that ensemble C is similar to
the design of B with the size of the cliques being the only
difference between the two ensembles. The ensemble C, is a
generalization of C to the setting with g-similar graph pairs

and consists of
q p—q 2
yay

total number of graph pairs. Due to the equivalence in the
design of ensembles, we can leverage the results of Lemma 10
and follow the same line of analysis to recover the result that

(209)
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the condition P [¥(x7,x%) # (E}, EY)] < e is satisfied for
the ensemble C, if we have

. loges/e
= log (l%2—l%+1)p2+~(12—2)p+1 ’
(A=p)(14(k=1)p)

(210)

Next, we relax the bound in (210) using similar technical
arguments followed in (206) and (207) to obtain the condition

1
(152—15+1)p2+g12—2)p+1
(1=p)(1+(k—1)p)

- — ~ 2
X (max {leog w, klog (]Ne} + log > .
k k €

@211)

n >
log

VII. NUMERICAL EVALUATIONS

In this section, we illustrate the effect of 7 = ¢/p, which
quantifies the structural similarity, on the performance of an
ML based graph decoder and Algorithm 1.

A. Joint Structure Estimation via ML Decoding

In general, for any class S;, the graph decoder that min-
imizes P(S;) is the ML decoder given in (19). Since the
implementation of (19) requires a search over all the possible
graph pairs in a class, it becomes computationally intractable
as the graph size p increases. Therefore, we evaluate this graph
decoder over a restricted ensemble of Ising models for which
the implementation is feasible.

We consider an ensemble that is characterized by many
isolated edges. We assume that for a graph with p total nodes
out of which ¢ nodes lie in the shared cluster such that n = %,
there are « isolated edges with |na| edges in the shared
cluster. Each graph is constructed in the following manner.
We randomly divide the non-shared cluster with p — ¢ nodes
in (p — ¢)/2 pair of nodes and randomly connect « — |7«
pairs. The edge structure in the shared cluster is constructed
in a similar manner.

Under joint recovery, the data from both graphs are pro-
cessed jointly to estimate the edge structure. Under indepen-
dent recovery, the structures of the graphs are learned indepen-
dently. Figure 3 illustrates the effect of structural similarity on
the performance of the graph decoder. Clearly, as n increases,
the graph decoder that jointly processes the data requires a
smaller number of samples to achieve the same performance as
a graph decoder that learns the graph structures independently.
For the results in Fig. 3, we set p = 100, v = 20, and A = 1.
The performance of the graph decoders is evaluated over 1500
trials. Next, we keep the number of edges & and degree d fixed
as we evaluate the error probability for increasing the number
of nodes p. For the results in Fig. 4, we set « = 20, A = 0.4
and 1 = 0.5, and evaluate the error probability for the graph
decoder based on 40 samples from each graph. We observe
that the error probability monotonically increases as the graph
size increases, indicating that the structure estimation problem
becomes more difficult, as implied by Corollary 1.

E Xplore. Restrictions apply.
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B. Joint Structure Estimation using Algorithm 1

We study the performance of structure estimation of graphs
with loops which are, in general, infeasible to be learned by
an ML decoder. For this purpose, we generate an ensemble of
graphs of size p = 20, where the nodes are randomly divided
into groups of size 4 and each group is connected in a ring,
followed by random single-edge connections among different
groups, and each node in a group connected to at most one
other node outside its own group. Therefore, the maximum
degree of a node in this ensemble is 3.

Figure 5 illustrates the comparison of the mean performance
of Algorithm 1 for recovering graph pairs with different
structural similarities against recovering them independently
using the algorithm in [15] over 1000 random instances of
graph pairs. The probability of error corresponds to the event
that the true graph pair was not recovered exactly in any of
the iterations when the online estimation algorithm was run
up to a horizon indicated on the x-axis.

Clearly, our algorithm outperforms the independent struc-
ture estimation algorithm for n = 0.25,0.5 and 1. Whenn =1,
the graph pairs are identical and, therefore, Algorithm 1 is
equivalent to processing the data x7' and x4 in parallel with
two processing units processing one graph sample each in
every iteration with an exchange of pairwise loss functions
between the two. This indicates that Algorithm 1 performs
better by processing two graph samples in every iteration up
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to a horizon nt compared to an approach that sequentially
processes one graph sample up to a horizon nr.
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Fig. 5. Error probability versus horizon (nT) or the number of samples for
each graph.

VIII. CONCLUSIONS

In this paper, we have considered the problem of structure
estimation of partially similar graphs in various subclasses
of Ising models and Gaussian models. Due to the partial
similarity in structure, any inference about the structure of
one graph provides side information about the structure of
the other graph. Under the criterion of exact recovery of the
structure of the graphs, we have characterized necessary and
sufficient conditions on the sample complexity of joint model
selection for various subclasses of Ising models and Gaussian
models. The sufficient conditions are based on the analysis
of an ML decoder which is optimal for exact recovery. We
have analyzed variation in sample complexity with respect to
structural similarity. We have also studied the scaling behavior
of the sample complexity in different regimes. Our analysis
has also revealed the regimes in which the asymptotic scaling
behavior of the necessary and sufficient conditions coincide,
thus establishing optimal sample complexity. Moreover, for
different subclasses of Gaussian models, our theoretical results
enable us to conclusively establish that jointly recovering g-
similar graphs is easier than recovering the graphs indepen-
dently.

APPENDIX A
PROOF OF THEOREM 6

We start by noting that the Sparsitron algorithm proposed
in [15] for estimating a sparse generalized linear model
(GLM) was shown to enable structure estimation of a single
Ising model due to certain properties of the random vari-
ables associated with a degree-bounded Ising model. Here,
we will build upon the principles adopted in [15] to first
propose Algorithm 2 for estimating two sparse GLMs jointly
and characterize its performance. Then, we will leverage the
performance of Algorithm 2 and the properties of Ising models
to complete the proof of Theorem 6.
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Algorithm 2 Estimating two GLMs jointly
1: Input 3, R, data samples (¢, d¥) and (cZ,d?)
2: initialize w{ = 1,/a for i € {1,2}
3: for a new pair of data sample j € {1,...,7} do
4 Compute h} using (216)
5. Compute losses £/ for i € {1,2} according to (215)
6. forte{l,...,a}do
7: Update the weights w (¢) according to (213)
8
9:

end for
end for

A. Joint Estimation of Sparse GLMs

Define g; and g2 as two pdfs in the space [—1,1]* x {0,1}
and (C;, D;) as the random variables whose joint pdf is g;,
ie., (Ci, D;) ~ g;, where C; € [—1,1]* and D; € {0,1}. We
assume that the pair C; and D; satisfies the property

E[DZ|CZ] = &(ri . Cl) R for i € {1,2} s (212)

where & : R — [0,1] is a non-decreasing 1-Lipschitz
function, and r; = [r},...,r¢] is a vector of weights such

that |r;|l; < ¢ for ¢ € {1,2} for ¥ > 0. Furthermore, we
assume that the vectors r; and ro are partially similar, i.e.,
ri =71l Vi € R, where R C {1,...,a} is the set of indices
at which the vectors ry and r, have identical entries. In this
scenario, the objective is to learn the vectors r; and re from
the random samples from g; and gs. The collection of T
independent and identically distributed (i.i.d.) samples from
gi is denoted by (¢, d7), where ¢ = [c!,...,¢T] and
d? £ [d},...,d"]. Furthermore, corresponding to the model
g;, we denote the weight associated with the ¢-th element in
r; in the j-th iteration by w!(j) and its update rule is given
by

J
w!(t) = wl(t) [] exp(BLE(Y)) (213)
u=1
where
Li(t) £ LGRW + (1= Lier)li(t) , (214

2

and 1 is an indicator function and the structure of the
loss function ¢%(¢) is discussed next. We denote the local
loss function for model g; evaluated at the j—th iteration by
£ & [0(1),..., ¢ (a)], where £(t) is defined as

1

5 (Lo + (@Wh! - ) —d))c])

he

(215)
1, is an a x 1 vector of all 1's and hg is obtained by
normalizing the vector w £ [w!(1),...,w!(a)] using
j—1
h) = —1

—1 N
oW

(216)

In this scenario, the steps to jointly learn r; and ry are
provided in Algorithm 2 which builds upon the principles of
Hedge algorithm in [42]. Theorem 14 provides the sample
complexity of Algorithm 2.
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Theorem 14. Given T = O(V¥?(log(a/dc)/e?) number of
i.i.d. samples from g1 and gs, Algorithm 2 forms estimates
71 and To such that with probability at least 1 — §, we have

Eg, 0. [(6(F - ;) — &(ri - ¢;))?] < e, forie{1,2}. (217)

Proof. We start by presenting a result similar to [42, Theorem
5], which establishes that the overall regret of an online
estimation framework given by Algorithm 2 is upper bounded
by the regret of the best expert with addition of terms that
scale as O(+/T'log a) + log a. This result is formalized in the
next lemma.

Lemma 11. Given T data samples, the overall regret cor-
responding to estimating the GLM for g; in Algorithm 2 is
bounded as

T T
D i -Li< min > Li(t)+O(yTloga) +loga,
te{l,...,a} ~
Jj=1 Jj=1
(218)
where

L2 (LI(1),....L@)]T and bl 2[hI(1),....h(a)],

(219)
such that |hl||y =1 and hl(t) > 0,9t € {1,...,a}.
Proof. We note that
Sowl(t)=>"wl Nt exp(BLI(t) . (220)
t=1 t=1

Since, we have L/(t) € [0,1], and from the convexity
argument in [42], we get

exp(BLI(t)) < 1— (1 —exp(B))Li(t) .

Therefore, it readily follows that

(221)

Swl(t) <3 w7 )1 - (1 —exp(8))h! L) . (222)

For j = T and by repeating the steps (220) and (222), we
have
a a T ) .
Y owl () <Y wl(®) [Tt~ (1 —exp(8)h] - L) .
t=1 t=1 j=1

(223)

By using > w?(t) = 1 and the property 1+ < exp(z), Vz,
=1

we get

a T
> wl(t) <exp(—(1—exp(8)) Y _h/-Li). (224
t=1 j=1

b L]

The overall regret of the Algorithm 2 is given by
and from (224), we have

T

J

a

—log(3_ wi (t))

t=1

=t 205
1 —exp(B) (229

T
STh! L <
j=1

E Xplore. Restrictions apply.
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Therefore, we have established that the sequence of loss
functions for joint estimation of the two GLMs satisfies the
same property as the loss function for estimating a single GLM
in [15]. Subsequent arguments in Lemma 4 and Lemma 5
in [42] complete the proof of Lemma 11. O

The proof of Theorem 14 leverages Lemma 11 and the
subsequent analysis follows the same line of analysis as in
the proof of [15, Theorem 3.1]. We will leverage Lemma 11
to characterize T' for prediction of r; next. Corresponding to
gi, we define the random variable

V)2 (b —r/0) L, (226)

such that, Vf € [-1,1]. Based on Vij , we define another
sequence of random variables

2l =V} —EV/|(c{"" ), (b a ] e2)

Then, we have Z/ € [-2,2]. Note that using Azuma’s
inequality on martingales with bounded differences, we find
that the following event holds with probability at least 1 — 4,

T
DBV (e i) (e5 7 dg )]
j=1

T
<N V7 +0(Tog(1/5)) . (228)
j=1

Furthermore, note that
. o o o o 1 . .
EVY[((c]7 d] ™), (¢}, d) 1)]:51[*3[(19113 —1;) - Lj]
(229)
and

E[V/| > %E[&(ﬁh{ ;) — (1 - ¢;))’] (230)

where (230) follows from the inequality that Va,b € R, (a —
b)(o(a) — (b)) > (o(a) — o(b))? and that the lower bound
corresponds to indices with identical values in r; and ro. Then,
it follows from (219), (228), and (230) that with probability
at least 1 — d, we have

1 « :
5 D B[R] - e) = 5(r - i)’
j=1

T T
< {r{lin }ZL{(t)—Z(ri/ﬁ)-L{
te{l,...,a} < )
j=1 j=1
+ O(\/Tloga) +loga+ O(Tlog(1/4)) .
231)
Clearly, when ||r;||; = ¥, we have that
T T ‘
min L(t) - r;/0) L] <0. (232)
i SO =

When we have ||r;|i < ¥, we can augment r; with a
pseudo vector T; such that ||[r;,T;]||y = ¢ and the random
vector c¢; with an additional element that corresponds to 0
such that r; corresponds to the weight associated with 0 and
proceed further [15]. This also motivates the inclusion of
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auxiliary weights £}V in Algorithm 1. Next, we note that with
probability 1 — J, we have

1« -
5 S BN )~ 5(ri <))

= O(y/Tloga) + O(loga) + O(Tlog(1/9)) .

Therefore, for T' = O(9? log(a/§) /€2, we must have that with
probability 1 — 4,

(233)

min _ E[5(9h? - ¢;) — d(r; - ¢;))?] <e. (234)
jE{la'“7T} )
O
B. Joint Estimation of Ising Models
To complete the proof of Theorem 6, we note that
1
E[BY] = (235)

l4exp(2A Y
{vi(u,v)EE;}

NUXPXY)

Therefore, every node u € V' can determine its neighborhood
in G; and G5 using Algorithm 2 by setting ¢ to be a sigmoid
function o(x) = e =P~ 1, and D; = B in G;.
In this scenario, we have the following lemma in the context
of Ising models that is equivalent to Theorem 14.

£
number of pairs of samples from nodes in Gy and Go, Algo-

rithm 1 produces at least one set of weights {w}"(j)} for
j€{1,...,nr1} such that with probability at least 1 — il

>

{v:(u,v)EET}

>

{v:(u,v)EE;}

Lemma 12. For a node v in G;, given np = O (

Elo (-2 wl ()XY

— [-2 AvxUll<e . We>0.  (236)

Subsequently, the statement of the Theorem 6 follows from
Lemma 12 and [15, Lemma 4.3].

APPENDIX B
PROOF OF THEOREM 12

In this class based on (205), the sufficient condition for
recovering two g-similar graphs is

q pP—q 2
n> 1 log<(d)+€( 2) ) . (237)

2 E—dr D@Dt
log = (Tr@—1))

In parallel, for recovering two graphs independently, we
have

2log (5) — 1
d d
log (1 + ﬁ) — T,

which is the result established in (Wang and Wainwright,
2010) and can also be recovered from our results by setting
g = 0 in (238) and m = d in the ensemble construction
for dense graphs in Section V-C2. To establish the desired

n>(1—¢) , (238)

E Xplore. Restrictions apply.
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result, in our analysis we exclude the setting in which the
two graphs are either almost identical (i.e., ¢ — p) or almost
distinct (i.e., ¢ — 0). To this end, we focus on the regime
max{q,p — q} < p'~2%. We note that this regime is not
too stringent. For instance, when ¢ = 0.1, ¢ that satisfies
max{q,p—q} < p°®liesin g € [p°8, p—p°-&]. For p = 10000,
this range is [1585, 8415].

We show that for any target error rate ¢, as long as
max{q,p — q} < p' =%, for p > -1, we have

d+1°
2log (f) — 1
d d
log (1+ 1—pp> - 1-;-((151);)

q p—q\2
> 1 log <(d) :( +") ) , (239)

(1—-¢)

(@ —d11)p? 1 (d—2)p+1
log =y (Tr @1

which is equivalent to

(d>—d+1)p*+(d—2)p+1
(1—p)(1+(d=1)p)

d d
log (1 + ﬁ) ~ T,

1 —_— 10g<(§)+5(”dq)2> . (40)

” (1—-¢)(2log

log

By noting that () < (3)2 and leveraging the combinatorial

inequalities
d d
(@) =(a)=(F)
d/ —\d) — \d
we prove the following inequality, which is stronger than (240)
and implies (240):

(241)

(d>—d+1)p*+(d—2)p+1
(1—p)(1+(d—1)p)

d d
log (1 + ﬁpp) — T,

1 r\
~ 0 —2o)2dlogp/d—1) (log (d) ~loge )
(242)

log

where we have defined » = max{q, p — ¢}e. Next, we show
1

that for p > 777 we have

(d>—d+1)p*+(d—2)p+1

lOg (1_p)(1+(d_1)p) > 1 (243)
d d ’
log (1 + fpp) ~ T,
and for r < p'~2¢ we have
L 1 Q—T “ loge | <1
(1—)(2dlogp/d—1) \ " ®\a 8 '
(244)

To show the inequality in (262), we start by noting that for
any p and d, we have

[p(d+1)—12*>0. (245)
This is equivalent to

pPd? > —2p%d+2pd — p* +2p—1. (246)
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Adding 3p%d? to both sides results in
4p?d* > [(Bd+1)p—1[(d - 1)p+1], (247
or equivalently in
p2d? Bd+1)p—1 (248)
A-pld—Dp+1 - 41-p)
Subsequently
2 72
p°d 3 dp
1 > —(14+—). 24
+ - 4( + 1-— p) (249)

(1=p)l(d=1)p+1]

By noting that % < %, (249) implies that

P2 > 1

(L=p)(d=1)p+1] ~ V2
or equivalently

1+

(1 n i—pp) . (250)

2 72
p°d dp 1
log<1+ >zlog(1+).
(L=p)l(d=1)p+1] l—p) 2
(251)
Next, we note that for p > %H’ we have
dp 1
—_ > —. 252
1+(d—1)p 2 (252)
Hence, (251) and (252) indicate that
2 72
p°d
log (1 + )
A= pld—1p+1]
dp dp
1 1 — 253
>‘£( +1—p) T@-np P

which proves that for p > 717, the inequality in (262) holds.
Next, we show that for r < pl’26 and logp > ﬁ(? +

log é), (244) holds as well. To show this, we start by noting
that

1 1
logp > o (2 +log g) : (254)
implies that
1
2delogp > 2+logg — (e +elogd) . (255)

By expanding ¢ as ¢ = (1 —¢) — (1 —2¢) and leveraging (255)
we obtain

p178 d 1
2d |log P2 + log = >2—¢c+log . (256)
By noting that r < p'~2¢, from (256), we get
plfa 1
2d |log=—7—| >2—e+1log—, (257)
rdl—¢ €
which is equivalent to
2d(1—¢) logg —(1—¢)
2d 1
>1+2d10g£710g6:10g Q(E) + log —,
d d €
(258)

thus, establishing the inequality in (244).

E Xplore. Restrictions apply.
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APPENDIX C
GAINS OVER INDEPENDENT RECOVERY FOR SHARED
CLIQUE IN GAUSSIAN MODELS

We expand our analysis for gains in the Gaussian models
to consider a class of g-similar graphs in which the d-clique,
Uy, is not restricted to lie wholly within the shared part or the
non-shared part. Therefore, this class supercedes the class B,;.
Class D,: We assume that any graph in this sub-class consists

d
of a clique of d nodes. Therefore, there are Y. (%)( (f:g,)Q
=0

number of ¢-similar graph pairs in this subclass.

Note that this subclass has significantly higher number of
possible g-similar graph pairs than the original class Bj,. Since
the d-clique can also lie at the interface of shared and non-
shared parts for D, a sub-class of single graphs with (%)
number of graphs (i.e., the single graph class in [23]) is apt
for comparison of sample complexities to establish gains due
to structural similarity. The sufficient condition for sample
complexity for jointly recovering two g-similar graphs in D,
is given by

1 —
n > 5 5 log =0
log (&=d+1)p?+(d—2)p+1 €

(1=p)(1+(d—1)p)

(259)

To prove theoretical gains of joint recovery, we need to
establish

2log (1) — 1
d d
1og(1+ 1_”[,) - 1+(d’il)p

(1—-¢)

> 1 log | =0
log (P=drDp2H(d—2)p11 08 c ’
& T T-p) (I (d-1)p)
(260)
which is equivalent to
(d®—d+1)p>+(d—2)p+1
log =5 w@-1p)
d d
log (1 + ?pp) — T,
4 g\ (p—q)2
1 Z (d’) (dfd’)
> log | =2
(1—¢)(2log (h) — 1) £
(261)

For the left hand side of (261), we note that the following holds
for any p > 2 from our previous analysis in Appendix B:

(d>—d+1)p*+(d—2)p+1
(I=p)(I+(d—1)p)

d d
log (1 + ipp) - 1+(d’il)p

log

>1. (262)
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Therefore, we need to establish that
d q\(pr—q\2
1 = (D0
log| &———— | <1. (263
(1—¢)(2log (5) — 1) & € (263)

By re-arranging the terms in (263), we note that (263) is
equivalent to

(p)Q(le)
log >1—¢e¢—loge. (264)
4 g\ (p—a)?
> () (=)
d'=0
From Vandermonde’s identity, we have
d
p q p—q
= 265
@-X()GE) e

and therefore,

O =(S0) -2

(266)
Define
A\ (p—a\ A\’ (p—q\’
AN - AN -
Ao = (d) (d—d’) and Ba = (d) (d_d,> |
(267)
Therefore,
Ba _ (4) S v >o0.d <d 268
Ad/ - d, - qa > 9 < . ( )

From (266) and (267), we note that (263) is satisfied if we
have

d
,_o Ba 1
log (Zg =0 7d ) + log CE
Zd’:o Aa (d)

Further, from (268), we have By > qAg for all 0 < d’ < d.
Therefore, (263) is satisfied if we have

(269)

>1—¢c—loge.

1
log((d—2)q+2)+logW >1—¢ec—loge. (270)

d

We note that for sufficiently small e, (270) is always satisfied.
For instance, if ¢ = 1/p, p = 1000 and g € [300, 1000], (270)
is always satisfied for any d > 8 and for d > 27 for ¢ €
[100, 300). Therefore, we are able to establish gains for joint
graph recovery for class D, which supercedes class B, and has
the corresponding class of single graphs as considered in [23].
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