
Deep Neural Network Training With
Distributed K-FAC

J. Gregory Pauloski , Lei Huang, Weijia Xu, Kyle Chard , Ian T. Foster , and Zhao Zhang

Abstract—Scaling deep neural network training tomore processors and larger batch sizes is key to reducing end-to-end training time;
yet, maintaining comparable convergence and hardware utilization at larger scales is challenging. Increases in training scales have
enabled natural gradient optimizationmethods as a reasonable alternative to stochastic gradient descent and variants thereof.
Kronecker-factored Approximate Curvature (K-FAC), a natural gradient method, preconditions gradients with an efficient approximation
of the Fisher InformationMatrix to improve per-iteration progress when optimizing an objective function. Here we propose a scalable
K-FAC algorithm and investigate K-FAC’s applicability in large-scale deep neural network training. Specifically, we explore layer-wise
distribution strategies, inverse-free second-order gradient evaluation, and dynamic K-FAC update decoupling, with the goal of preserving
convergencewhileminimizing training time.We evaluate the convergence and scaling properties of our K-FAC gradient preconditioner,
for image classification, object detection, and languagemodeling applications. In all applications, our implementation converges to
baseline performance targets in 9–25% less time than the standard first-order optimizers on GPU clusters across a variety of scales.

Index Terms—Optimization methods, neural networks, scalability, high-performance computing

Ç

1 INTRODUCTION

DEEP neural networks (DNNs) have revolutionized how
tasks in classification, object detection, segmentation,

language modeling, and more are solved. As the computa-
tional needs for DNN training have grown due to larger
models and datasets, there has been a growing interest in
exploiting the powerful memory and communication archi-
tectures available on high-performance computing (HPC)
systems [1], [2], [3], [4], [5], [6]. The intersection of deep
learning and HPC has specifically enabled new uses of deep
learning for scientific applications [7], [8], [9].

Supercomputers can yield significant speedups in train-
ing time, but it is an open challenge to efficiently utilize
available hardware without harming convergence (e.g., loss
or validation accuracy) [10]. Many prior approaches are
focused on first-order optimization methods such as sto-
chastic gradient descent (SGD) [11]. Significant work has
been devoted to understanding and improving the scaling
properties of SGD [1], [3], [4], [5], [11], [12]. Impressive
results have been shown for specific applications such as
ResNet-50 [13] and BERT [14]; however, improvements are
often made possible via techniques specific to the applica-
tion or hardware such as distributed batch normalization
and communication optimizations, respectively.

SGD alternatives that incorporate second-order informa-
tion, such as natural gradient methods, have been explored
more recently as incorporating second-order information
can improve the per-iteration progress made when optimiz-
ing an objective function. Kronecker-factored Approximate
Curvature (K-FAC), a second-order method, has shown
promising results due to K-FAC’s efficient approximation
of the Fisher Information Matrix (FIM) [6], [15], [16]. K-FAC
significantly reduces iterations required for convergence
and scales well to Oð1000Þ GPUs [6], but prior implementa-
tions have only been evaluated on ResNet-like convolution
models and often struggle to either maintain comparable
convergence to the acceptable performance baselines [17] or
exceed the time-to-convergence of SGD.

In this paper, we investigate methods for designing
K-FAC-based optimizers that reduce iterations-to-conver-
gence and exhibit efficient scaling.We investigate the perfor-
mance, in terms of convergence and time-per-iteration, of an
explicit matrix inverse algorithm and implicit eigen decom-
position algorithm. We exploit a conventional method in L-
BFGS [18] to decouple the approximation of the FIM from
gradient preconditioning which allows us to recompute the
FIM less frequently which speeds up training time, and we
investigate the effect this frequency has on final convergence.
We analyze the training time and model convergence of K-
FAC specific hyperparameter schedules such as damping
andK-FACupdate frequency decay.

We implement our preconditioner in the popular PyTorch
framework [19] and evaluate with a suite of reference appli-
cations including ResNets [13], Mask R-CNN [20], and BERT
[14] on two clusters with different hardware. We find that
our implementation converges to or exceeds the baseline
performance metrics in fewer iterations and 9–25% less time
across all applications.

This paper extends our prior work [21] by improving our
K-FAC preconditioner implementation and broadening our

J. Gregory Pauloski, Kyle Chard, and Ian T. Foster are with the Depart-
ment of Computer Science, University of Chicago, Chicago, IL 60637 USA.
E-mail: {jgpauloski, chard, foster}@uchicago.edu.

Lei Huang, Weijia Xu, and Zhao Zhang are with Texas Advanced Com-
puting Center, Austin, TX 78758 USA. E-mail: {huang, xwj, zzhang}
@tacc.utexas.edu.

Manuscript received 24 Apr. 2021; revised 2 Mar. 2022; accepted 14 Mar. 2022.
Date of publication 22 Mar. 2022; date of current version 11 July 2022.
(Corresponding author: Zhao Zhang.)
Recommended for acceptance by V. Chaudhary.
Digital Object Identifier no. 10.1109/TPDS.2022.3161187

3616 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 16,2022 at 22:53:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6547-6902
https://orcid.org/0000-0002-6547-6902
https://orcid.org/0000-0002-6547-6902
https://orcid.org/0000-0002-6547-6902
https://orcid.org/0000-0002-6547-6902
https://orcid.org/0000-0002-7370-4805
https://orcid.org/0000-0002-7370-4805
https://orcid.org/0000-0002-7370-4805
https://orcid.org/0000-0002-7370-4805
https://orcid.org/0000-0002-7370-4805
https://orcid.org/0000-0003-2129-5269
https://orcid.org/0000-0003-2129-5269
https://orcid.org/0000-0003-2129-5269
https://orcid.org/0000-0003-2129-5269
https://orcid.org/0000-0003-2129-5269
https://orcid.org/0000-0001-5921-0035
https://orcid.org/0000-0001-5921-0035
https://orcid.org/0000-0001-5921-0035
https://orcid.org/0000-0001-5921-0035
https://orcid.org/0000-0001-5921-0035
mailto:jgpauloski@uchicago.edu
mailto:chard@uchicago.edu
mailto:foster@uchicago.edu
mailto:huang@tacc.utexas.edu
mailto:xwj@tacc.utexas.edu
mailto:zzhang@tacc.utexas.edu

evaluation to new model architectures. Specifically, we 1)
expand our comparisons with other K-FAC work, 2) imple-
ment support for more training configurations (communica-
tion backends, data-parallel training frameworks, mixed-
precision training, gradient accumulation), 3) to encourage
further research, extend our open-source implementation to
support prior K-FAC distribution strategies and algorithms
[6] in addition to our own novel methods, 4) provide evalu-
ations on a second GPU cluster with a different hardware
architecture, 5) extend the convergence and scaling evalua-
tions to include the Mask R-CNN and BERT MLPerf appli-
cations, and 6) provide a detailed profiling of the K-FAC
algorithm to understand how our distribution strategy
improves time-to-converegence compared to prior work.

We focus on the convergence capabilities of K-FAC and
refer readers to our related work, KAISA, which investigates
the memory and communication tradeoffs in distributed
K-FAC strategies [22].Wemake the following contributions:

A scalable distributed K-FAC strategy;
A study of K-FAC gradient preconditioning variants;
An analysis of K-FAC update intervals and optimal

values for our applications;
A study of the convergence abilities of K-FAC in three

applicationwith different distributed frameworks;
An open source implementation of the proposed

algorithm using PyTorch [19].
The remainder of the paper is organized as follows. We

discuss parallelism in DL training with SGD and K-FAC in
Section 2, review related work in large-scale DL training in
Section 3, introduce our system design choices in Section 4,
provide technical details in Section 5, present a detailed
experimental evaluation in Section 6, and finally draw con-
clusions in Section 7.

2 BACKGROUND

We review different forms of parallelism in DL training,
data parallelism in iterative batch optimization methods,
the K-FAC preconditioning method, and frameworks that
enable distributed DL training.

2.1 Data Parallelism
Data parallelism, model parallelism, and hybrid parallelism (i.e.,
a combination of data and model parallelism), are the typi-
cal methods used to distribute DL training across more than
one processor. Data parallelism, in which the entire model
is replicated on each processor, and in every iteration a
unique mini-batch is consumed by each processor, is the
common choice for scaling single-processor training to
many processors. Model parallelism is beneficial when
training cannot be performed on a single processor, such as
in the case where the model cannot fit in processor memory;
here, a single model instance is split across processors, and
this model division can happen layer-wise or even within a
layer. Hybrid approaches, combining data and model paral-
lelism in various ways, can also be used. For example, pro-
cessors can be grouped such that model parallelism is used
across processors within a group and data parallelism is
used between groups; alternatively, different parallelism
methods can be used on a per-layer basis.

Conventionally, model parallelism is used only when data
parallelism is not possible, because the use of model parallel-
ism can reduce machine utilization and often requires addi-
tional optimizations such as pipeline parallelism [23]. As
data parallelism is the dominant form of large scale DL train-
ing, numerous frameworks provide native support via
NCCL, Gloo [24], or MPI collective operations [25]: for exam-
ple, IntelMLSL [26], Horovod [27], TensorFlow [28], PyTorch
[19], andNVIDIAApex [29].

2.2 Stochastic Gradient Descent
In SGD, a batch optimization method [11], mini-batches of
training data are iteratively passed through the network to
compute a loss which is used for gradient computation
and variable update. Data parallel training with SGD takes
two forms, synchronous [30] and asynchronous [31], [32],
[33], [34], [35], and are distinguished by whether all varia-
bles are updated each iteration. We focus on synchronous
SGD methods in this work because asynchronous SGD has
a non-linear slowdown compared with the synchronous
form [36].

An iteration of synchronous data-parallel SGD has five
stages, depicted in Fig. 1. In the I/O stage, a fixed-size batch
of training data is read from storage, pre-processed, and
potentially moved to the local memory of the processor. The
batch is processed by the model in the forward pass phase
and the output is used to compute a loss. The gradient evalu-
ation stage, often referred to as backpropogation, uses the
loss to compute the gradient for each trainable variable.
Then, there is a collective communication operation between
processors to exchange the gradients. In the final stage, each
processor updates the variables in their local copy of the
model. Key to achieving high hardware utilization in mod-
ern frameworks is the exploitation of asynchronous I/O
methods for overlapping training data retrieval and gradient
exchangewith other stages.

The communication required by synchronous SGD involves
communicating initial model weights and the gradient
exchange in each iteration, and these communications are gen-
erally performedwith the broadcast and allreduce collective oper-
ations, respectively.

2.3 K-FAC
K-FAC is an efficient natural gradient method that uses the
Fisher Information Matrix (FIM) which encodes the curva-
ture of the loss function. Here we briefly summarize the
math behind K-FAC, and we adopt the notation from our
prior work [21].

In the weight update equation for SGD (Equation (1)), the
weight at the kþ 1 iteration (wðkþ1Þ) is the difference of the
current weight (wðkÞ) and the product of the current learning
rate (aðkÞ) with gradient of the loss for the mini-batch of size
n. The gradient of the loss is computed as the average of the

Fig. 1. Synchronous SGD iteration stages. I/O: Batch creation. Forward:
Forward pass and loss computation. E: Gradient evaluation (backpropa-
gation). X: Gradient exchange. U: Trainable variable update [21].

PAULOSKI ET AL.: DEEP NEURAL NETWORK TRAINING WITH DISTRIBUTED K-FAC 3617

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 16,2022 at 22:53:33 UTC from IEEE Xplore. Restrictions apply.

gradient with respect to the loss over each ith example in the
mini-batch, denoted asrLiðwðkÞÞ.

wðkþ1Þ ¼ wðkÞ & aðkÞ

n

Xn

i¼1

rLiðwðkÞÞ (1)

With K-FAC, the gradient is preconditioned by F&1ðwkÞ,
the inverse of the FIM for the weights.

wðkþ1Þ ¼ wðkÞ & aðkÞF&1ðwðkÞÞ
n

Xn

i¼1

rLiðwðkÞÞ (2)

In this context, precondition means to transform a matrix to
accelerate iterative optimization algorithms, and in this case
the gradients are transformed by the FIM.

In practice, computing F for an entire model is intracta-
ble so K-FAC makes a layer-wise independence assumption
of the model to block diagonalize F as F̂ where the ith block
corresponds to the ith of L layers in the model.

F̂ ¼ diagðF̂1; :::; F̂i; :::; F̂LÞ (3)

Each F̂i is then further decomposed as a Kronecker-fac-
torization of two smaller matrices. A Kronecker product,
written as A'B where A has size m(n and B has size p(
q produces anmp(nq matrix:

A'B ¼

a11B . . . a1nB

..

. . .
. ..

.

am1B . . . amnB

2

664

3

775: (4)

In K-FAC, the Kronecker factors for layer i, often referred
to as covariance matrices, are computed from the activa-
tions of the previous layer, ai&1, and the gradients of the
output of the current layer, gi. The resulting equation for
F̂i is

F̂i ¼ ai&1a
>
i&1 ' gig

>
i ¼ Ai&1 'Gi: (5)

The Kronecker product has a convenient property that
ðA'BÞ&1 ¼ A&1 'B&1 which allows F̂&1

i to be more effi-
ciently calculated using the inverses of the smaller factors,
as shown in Fig. 2.

F̂&1
i ¼ A&1

i&1 'G&1
i (6)

F̂&1
i is used to precondition the gradient of the parame-

ters,rLðwðkÞ
i Þ, for layer i at iteration k.

wðkþ1Þ
i ¼ wðkÞ

i & aðkÞF̂&1
i rLðwðkÞ

i Þ (7)

However, the space complexity of the Kronecker product
means that F̂&1

i is a relatively large matrix, so we apply
the relation ðA'BÞ~c ¼ B>~cA to reduce the complexity of

preconditioning. The result is a more efficient form of
preconditioning the gradient with the two factors.

F̂&1
i rLðwðkÞ

i Þ ¼ G&1
i rLðwðkÞ

i ÞA&1
i&1: (8)

Tikhonov regularization is applied where gI is added to
each factor [6], [37]. The addition of the damping parameter
g compensates for inherent inaccuracies that cause a matrix
to be ill-conditioned for inversion. There are many methods
for computing g [6], [15]. ðF̂i þ gIÞ&1 is computed as

ðF̂i þ gIÞ&1 ¼ ðAi&1 þ gIÞ&1 ' ðGi þ gIÞ&1 (9)

such that the final weight update equation at iteration k is

wðkþ1Þ
i ¼ wðkÞ

i & aðkÞðGi þ gIÞ&1rLðwðkÞ
i ÞðAi&1 þ gIÞ&1: (10)

2.4 Frameworks
We develop our K-FAC preconditioner using PyTorch [19]
and Horovod [27].

PyTorch is widely adopted in the research community
due to its performant C++ runtime, comprehensive support
for layer and architectures types, and pythonic code struc-
ture that enables easy research and development. Specific to
our use case is the PyTorch module hook interface that
allows saving the intermediate values necessary for K-FAC
computations. PyTorch also provides an interface to collec-
tive communication in MPI, NCCL, or Gloo [24] and theDis-
tributedDataParallelmodel wrapper that enables data parallel
training.

We also use Horovod [27], a library for data parallel
training with support for many major frameworks includ-
ing PyTorch, TensorFlow, and MXNet [38]. Similar to
PyTorch, Horovod provides MPI concepts such as size, rank,
and local rank and collective communication operations (all-
reduce, allgather, and broadcast). Horovod backs these interfa-
ces with MPI, NCCL, or IBM Distributed Deep Learning
Library (DDL) primitives. Horovod provides many optimi-
zation such as an implementation of allreduce via the scatter-
reduce algorithm, synchronous and asynchronous collective
operations, and user-configurable fusion buffers for batch-
ing communication operations.

3 RELATED WORK

While data parallelism is key to scalingDL training, data par-
allelism necessitates scaling the batch size by the number of
processors to maintain high utilization. Larger batch sizes
have been shown to producemodelswhich do not generalize
as well, and this inhibits practical training of DNNs on hun-
dreds or thousands of processors [39]. Batch sizes are not the
only limiting factors at the largest scales; communication
costs can also become prohibitive because the data needed to
be exchanged is proportional to the processor count. In this
section, we summarize priorwork that addresses theses limi-
tations in large-scale DL training.

3.1 Scaling Results of SGD
Early work in scaling SGD training focused on adapting the
learning rate by instituting a warmup and scaling the learn-
ing rate by the batch size [40]. Later work, LARS [1] and

Fig. 2. The K-FAC approximation of the FIM. A Kronecker product is
symbolized with ' [21].

3618 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 16,2022 at 22:53:33 UTC from IEEE Xplore. Restrictions apply.

LAMB [12], iterated on this idea with an SGD variant that
adapts the learning rate per-layer to enable even larger
batch sizes while maintaining convergence. This method
enabled ResNet-50 training on ImageNet-1k in 20 minutes
on 2048 Intel Xeon Platinum 8160 processors and BERT train-
ing in 76 minutes on a TPUv3 Pod with batch sizes of 32K for
both applications [1], [12]. Many works have leveraged these
optimizers with dedicated enhancements for the system
architectures (e.g., 2D torus) and hardware improvements
such as GPUs and TPUs. These iterative improvements have
resulted in researchers training ResNet-50 to 76.3% valida-
tion accuracy on ImageNet-1k in)2.2 minutes on 1024 TPUs
[4]. Many of these techniques, such as mixed precision, inter-
connect-aware allreduce, and distributed batch normaliza-
tion, are application or hardware specific, so in our work we
focus on a general optimization algorithm that is hardware,
network topology, and application agnostic.

3.2 Scaling Results of K-FAC
K-FAC can reduce iterations-to-convergence in image clas-
sification tasks with ResNets [6], [41] and natural language
tasks with RNNs [42]. The gradient preconditioning in K-
FAC, described in Section 2.3, results in much slower itera-
tions than SGD, so previous work used an asynchronous
K-FAC distributions scheme with a doubly-factored Kro-
necker approximation to achieve iteration times on par
with SGD for ImageNet-1k training [41]. The 2(training
speedup on eight GPUs is attributed to the faster conver-
gence at the start of training; however, the optimizations
necessary to achieve this speedup result in a low final
accuracy of 70%. In contrast, we use a synchronous scheme
and single-factored Kronecker approximation to maintain
convergence.

More recently, researchers have found greater benefits to
K-FAC in larger-scale training environments because the
factors corresponding to the FIM approximation for each
layer can be distributed across GPUs in a model parallel
fashion [6]. They showed that 978 iterations are sufficient to
reach 74.9% validation accuracy on ImageNet-1k in)10
minutes with K-FAC. While the reduction in iterations is
impressive, they did not show K-FAC to be faster than, nor
achieve the same validation accuracy as, SGD.

Later work from the same group addressed these limita-
tions and reached theMLPerf baseline in 10.5minutes on 512
GPUs [43] without the use of a stale FIM approximation.
They introduced a novel 21-bit floating point specification to
reduce communication, and carefully analyzed and opti-
mized the baseline SGD code. We show in Section 6.3.1 that
the MLPerf baseline can be reached with stale FIM approxi-
mations and find in practice that the standard FP16 and FP32
formats provided by PyTorch are sufficient for exceeding
SGD performance. We also show that our novel K-FAC
design reaches MLPerf acceptance baselines in less wall-
time than SGD, a set of criteria not met by prior work
but necessary to showcase K-FAC as a viable tool for
practitioners.

Scalable and Practical Natural Gradient Descent (SP-
NGD) can scale to large batch sizes with minimal overheads
[44]. SP-NGD reaches 74.9% ImageNet-1k validation accu-
racy in only 873 steps, an improvement over prior work, but
the method results in sub-MLPerf baseline performance

even at small batch sizes. In our work, we address the more
general question of can K-FAC easily enable both training
time and convergence improvements without the need for
careful tuning of all aspects of the baseline code.

KAISA, a K-FAC-enabled, adaptable, improved, and
scalable second-order optimizer framework, generalizes
the the distributed strategy of this work and prior work [6]
and investigates the tradeoffs between memory and com-
munication [22]. Whereas previous K-FAC works have
generally focused on comparing K-FAC and SGD with
fixed batch sizes, this work concludes that K-FAC can also
enable faster-than-SGD convergence with fixed memory
budgets.

4 DESIGN

Recent research has shown how the K-FAC overhead in dis-
tributed training can be reduced by assigning each layer to
a processor so that the K-FAC updates for each layer can be
computed in parallel [6]. However, that method has two pri-
mary limitations: 1) workers are left idle if the number of
layers is less than the number of workers and 2) communi-
cation of the preconditioned gradients is required at every
iteration regardless of if stale second-order information is
used. Our design improves on this method by increasing
the granularity of K-FAC computations, reducing the fre-
quency of communication, and maintaining convergence to
MLPerf baselines on benchmarks. Our open source K-FAC
code is designed as a preconditioner rather than an opti-
mizer so that it can be used in place with any existing opti-
mizer, such as SGD, Adam, or LARS, to gain additional
benefits of other optimization techniques.

4.1 Matrix Inversion
The largest computational cost of the K-FAC update step is
computing the inverse of ðAi&1 þ gIÞ and ðGi þ gIÞ to pre-
condition the gradients (Equation (9)). Existing distributed
K-FAC implementations use this method [6], [41], [43], but
the gradients can alternatively be preconditioned using an
eigen decomposition of the factors [37].

V1 ¼ Q>
GLðw

ðkÞ
i ÞQA (11Þ

V2 ¼ V1=ðyGy>A þ gÞ (12Þ

ðF̂i þ gIÞ&1rLðwðkÞ
i Þ ¼ QGV2Q

>
A (13)

Here, the eigen decompositions of the factors are Ai&1 ¼
QALAQ&1

A and Gi ¼ QGLGQ&1
G , and yA and yG are vectors

of the eigenvalues of Ai&1 and Gi, i.e., the diagonals of
LA and LG.

We refer to this method as the implicit eigen decomposi-
tion method and use it in our work. We compare the explicit
inverse and implicit eigendecompositionmethods in Table 1.
The final validation accuracy for ResNet-32 trained on
CIFAR-10 is consistently better as a function of batch size in
the eigen decompositionmethod.

4.2 Parallelism
The K-FAC gradient preconditioning process has three
steps, outlined in Fig. 3 and Algorithm 1 that occur after the
forward and backward pass and before weight update.

PAULOSKI ET AL.: DEEP NEURAL NETWORK TRAINING WITH DISTRIBUTED K-FAC 3619

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 16,2022 at 22:53:33 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1. K-FAC Update Pseudocode

// Compute Gradients
1: foreachworker do
2: Compute forward and backward pass
3: end
4: allreduce(rL1:Lðw1:LÞ)

// Step 1: Compute Factors
5: foreachworker do
6: Compute A0:L&1 and G1:L

7: end
8: allreduce(A0:L&1; G1:L)

// Step 2: Compute Eigen Decompositions
9: foreachworker w do
10: foreach Ai assigned to w do
11: QAi , LAi ¼ eigendecomposeðAiÞ
12: end
13: foreach Gj assigned to w do
14: QGj , LGj ¼ eigendecomposeðGjÞ
15: end
16: end
17: allgatherðQA0:L&1 , LA0:L&1 , QG1:L , LG1:LÞ

// Step 3: Precondition Gradients
18: foreachworker do
19: preconditionðrL1:Lðw1:LÞÞ
20: end

// Update Weights with SGD
21: foreachworker do
22: Update weights using preconditioned gradients
23: end

In the first step (lines 5–8 in Algorithm 1), the Kro-
necker factors Ai&1 and Gi are computed as a running
average of the individual factors computed from each
mini-batch using !, a running average hyper-parameter
in the range [0.9,1).

AðkÞ
i&1 ¼ !AðkÞ

i&1 þ ð1& !ÞAðk&1Þ
i&1 (14Þ

GðkÞ
i ¼ !GðkÞ

i þ ð1& !ÞGðk&1Þ
i (15)

Each worker uses the intermediate values saved during the
forward and backward passes to update the running aver-
ages of the factors in a data-parallel fashion. At the end of
the first step, the factors are allreduced across workers.

The second step in the K-FAC update transitions tomodel-
parallelism where individual calculations are assigned to
different workers (lines 9–17 in Algorithm 1). Existing imple-
mentations [6] assign each worker a layer in the model such
that the worker computes A&1

i&1, G
&1
i , and the final precondi-

tioned gradient ðF̂i þ gIÞ&1rLiðwðkÞ
i Þ. Workers then share

their preconditioned gradients so workers can update local
weights.

We approach the model parallel stage differently and
assign each worker a subset of factors to eigen decompose.
At the end of the second step, the eigen decompositions are
communicated to all workers.

In the third and final step, gradients are preconditioned
locally using the eigen decompositions which are now
cached locally due to the communication in the prior step
(lines 18–20 in Algorithm 1). We detail how decoupling the
eigen decomposition and gradient preconditioning steps is
key to reducing communication in Section 4.3.

Once the gradients are preconditioned, any standard
optimizer, such as SGD, can be used to update the weights.

4.3 Communication
Training with our K-FAC design requires three types of
communication: 1) gradient allreduce, 2), Kronecker factor
allreduce, and 3) eigen decomposition broadcast or allgather.

Using stale Kronecker factors is commonly used to
reduce the average K-FAC iteration time. In this case, the
factors are eigen decomposed every n iterations. As a conse-
quence, in iterations where eigen decompositions are not
recomputed, the communication in (2) and (3) can be
avoided because all workers cache prior eigen decomposi-
tions locally in our design. In Algorithm 1, this is repre-
sented as skipping the first and second steps (lines 5–17).

The staleness of the factors increases with n, but the fac-
tors stabilize over the course of training because the factors
are a running average over all mini-batches. In practice,
values of n in the tens or hundreds are acceptable for

TABLE 1
Validation Accuracy With Inverse and Eigen Decomposition
K-FAC Methods for ResNet-32 Trained on CIFAR-10 [21]

Batch Size 256 512 1024

SGD 92.77% 92.58% 92.69%
K-FAC with Inverse 92.58% 92.36% 91.71%
K-FAC with Eigen-decomp. 92.76% 92.90% 92.92%

Fig. 3. Overview of a distributed K-FAC update step. The forward pass, backward pass, and gradient allreduce are computed as normal in synchro-
nous SGD. The K-FAC update, shaded in blue, has three steps. In step 1, each worker computes the factors for all layers using the intermediate val-
ues cached in the forward and backward passes. The factors are then allreduced across workers prior to step 2 where the eigen decompositions of
the factors are computed in a model parallel fashion. That is, each worker eigen decomposes a unique subset of the factors. The resulting eigen
decompositions are then communicated to all workers such that in step 3, each worker can precondition the gradients for all layers. After the K-FAC
update, the weight update is performed as normal with SGD or a similar optimizer.

3620 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 16,2022 at 22:53:33 UTC from IEEE Xplore. Restrictions apply.

maintaining convergence. Since K-FAC communications are
required less frequently as n increases in this design, minimal
extra communication is required over standard data-parallel
SGD training in the limit of n.

We contrast this approach with that of prior work where
the gradients for a specific layer are preconditioned on a sin-
gle worker so additional communication is required every
iteration regardless of n [6]. Decoupling eigen decomposi-
tion and preconditioning also allows double the maximum
worker utilization because eigen decompositions for the
two factors of a single layer can be performed on different
workers.

5 IMPLEMENTATION

In this section, we describe our existing PyTorch implemen-
tation [21] and modifications to support a more diverse
range of applications. Our K-FAC code is open source with
the MIT license and is hosted at https://github.com/
gpauloski/kfac_pytorch. Code used for the experiments in
Section 6 is either directly provided or linked to in this
repository.

5.1 K-FAC Usage
Core to our goal of enabling easy and fast training with K-
FAC is our choice to implement K-FAC as a gradient pre-
conditioner. Practioners can use K-FAC with two lines of
code: initializing the preconditioner and calling the step()
function. In the initialization, hooks are registered to all
Conv2D and Linear modules for saving the necessary inter-
mediate data. The K-FAC step() function, called prior to the
optimizer’s step() function, performs the K-FAC update to
precondition the gradients.

5.2 Improved Application Support
We extend our prior implementation to support a wider
variety of applications and use-cases for K-FAC.

5.2.1 Communication Backends

We extend our distributed training support from only Horo-
vod to the distributed data parallel model wrappers pro-
vided by PyTorch [19], NVIDIA Apex [29], and DeepSpeed
[45]. With Horovod, we use the provided Horovod interfa-
ces to collective communication operations, and with
PyTorch, NVIDIA Apex, and DeepSpeed, we use the native
PyTorch interfaces to collective communication operations.
In both cases, we use asynchronous variants of the opera-
tions to overlap communication with computation.

Horovod implements data-parallel training via a custom
wrapper for the optimizer, so the gradient communication
is performed in the optimization step. Since K-FAC needs to
precondition the final averaged gradients prior to the opti-
mization step, the Horovod optimizer’s synchronize() must
be called prior to the K-FAC step().

PyTorch, NVIDIA Apex, and DeepSpeed provide model
wrappers rather than optimizer wrappers so gradient com-
munication is performed during the backwards pass. Thus,
no additional changes are needed, and K-FAC can be used
as described in Section 5.1.

5.2.2 Mixed Precision Training

Mixed precision training is becoming increasingly impor-
tant for training larger models as hardware support for
FP16 operations has improved [46]. We provide support for
storing and communicating the factors and eigen decompo-
sitions in FP32 or FP16. CUDA does not allow eigen decom-
position with FP16 matrices so we cast to FP32 and back if
the factors are stored in FP16.

5.2.3 Gradient Accumulation

Gradient accumulation is a process where multiple forward
and backward passes are performed between optimization
steps. The result is that the effective batch size is scaled by
the number of passes per optimization step. Previously, our
implementation collated each mini-batch between K-FAC
step() calls into a larger batch and computed the factors
from the larger batch in the K-FAC step(). However in appli-
cations that require many gradient accumulation iterations,
the K-FAC memory usage grows linearly so we adapt our
code to provide support for computing factors for individ-
ual mini-batches during the forward and backward passes.

5.3 K-FAC Hyper-Parameters
Our K-FAC preconditioner introduces hyper-parameters for
factor update interval, damping, and gradient scaling.

The kfac-update-freq parameter controls the number of
iterations between eigen decomposition updates and com-
munication. We find the running average of the factors can
be updated and communicated at a frequency 10(that of
the kfac-update-freq without affecting the convergence. As
mentioned previously, the factors become more stable
throughout training so at fixed iterations, we decrease the
kfac-update-freq by a scalar factor to reduce the computation
and communication. Small improvements can be gained via
advanced kfac-update-freq schedules, but we found that a
constant value was generally sufficient in terms of perfor-
mance for the entirety of training.

Similarly, we use a fixed damping decay schedule such
that larger damping values early account for rapid changes
in the FIM at the start of training [6].

We scale preconditioned gradients Gi by n to prevent the
norm of Gi becoming large compared to wi [6], where n is
computed as

n ¼ min 1;
ffi

k

a2
Pn

i¼1 jG
>
i rLiðwiÞj

r !

(16)

using a user-defined constant k [47], [48]. We found values
for k on the order of 10&3 were sufficient for all of our
applications.

5.4 Math Libraries
We perform matrix eigen decomposition and inversion on
the GPU. Our code supports PyTorch 1.6 and later, but we
note the underlying libraries used for eigen decomposition
and inversion depend on the PyTorch version. In PyTorch
1.7 and older, we use torch.symeig() for eigen decomposition
and torch.inverse() for matrix inversion. The functions are
deprecated in favor of torch.linalg.eigh() and torch.linalg.inv()
in PyTorch 1.8. The construction of the factors ensures the

PAULOSKI ET AL.: DEEP NEURAL NETWORK TRAINING WITH DISTRIBUTED K-FAC 3621

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 16,2022 at 22:53:33 UTC from IEEE Xplore. Restrictions apply.

https://github.com/gpauloski/kfac_pytorch
https://github.com/gpauloski/kfac_pytorch

factors are real and symmetric so we can use eigen decompo-
sition algorithms optimized for symmetric matrices. For the
analysis in Section 4.1, we use CUDA 10.0 and PyTorch 1.6 so
the matrix inverses are computed using MAGMA’s getrf and
getri routines. For symmetric eigen decomposition, PyTorch
1.8 and older uses MAGMA’s syevd and heevd routines while
PyTorch 1.9 and newer use the cuSolver equivalents.

6 EXPERIMENTS

We select the ResNet model family, Mask R-CNN, and BERT
to examine convergence and to compare with the original
optimizers. These applications cover three typical DNN
usage domains: image classification, object detection, and
language modeling. For ResNet-50 and Mask R-CNN, we
adopt theMLPerf [17] acceptance performance as baseline.

6.1 Platform and Software Stacks
We use two clusters in our experiments. The first is Long-
horn, the GPU subsystem of the Frontera supercomputer
hosted at the Texas Advanced Computing Center (TACC).
Longhorn has 112 nodes each with two IBM Power9 pro-
cessors, four NVIDIA V100 GPUs, and 256 GB of RAM.
Nodes are connected by an InfiniBand EDR network. We
run ResNet and Mask R-CNN training on Longhorn using
PyTorch 1.6, CUDA 10.0, CUDNN 7.6.4, and NCCL 2.4.7.
We use single-precision floating point numbers (FP32) for
training and communication.

The second system is ThetaGPU, the GPU subsystem of
the Theta supercomputer at Argonne National Laboratory.
ThetaGPU has 24 NVIDIA DGXA100 nodes each with eight
40GB A100 GPUs (192 A100 GPUs in total). We perform
BERT training on ThetaGPU with PyTorch 1.9, CUDA 11.3,
CUDNN 8.2.0, and NCCL 2.9.9.

We enable distributed synchronous data-parallel training
with Horovod for ResNet examples, NVIDIA Apex’s Dis-
tributedDataParallel for Mask R-CNN, and PyTorch’s native
DistributedDataParallel for BERT.

6.2 Datasets and Applications
We use ResNet-34 [13] with the CIFAR-10 [49] dataset to test
correctness. We then use the ImageNet-1k dataset [50] with
the ResNet model family and the COCO 2014 [51] dataset
with Mask R-CNN to evaluate the performance of K-FAC as
a preconditioner to the original optimizers.

A common practice to evaluate BERT convergence is to
fine tune the pretrained model for downstream tasks, such
as SQuAD v1.1, a question and answer benchmark, and use
the validation results of the downstream tasks as the con-
vergence metric. Researchers have reported F1 scores of
91.08% using the NVIDIA implementation [52] for SQuAD
v1.1. However, this case trains with the English Wikipedia
[53] and the Toronto BookCorpus [54] datasets, the latter of
which is no longer available online as a holistic package. So
for BERT experiments, we train a BERT-Large uncased
model with only the WikiText dataset and report the results
with Fused-LAMB optimizer as the baseline.

Using these applications, we study the correctness, per-
formance, and scalability of our K-FAC preconditioner and
provide comparisons to the original optimizers.

6.3 Convergence
We now present training results with K-FAC and compare
the validation performance with the original optimizers in
ResNet model family, Mask R-CNN, and BERT.

6.3.1 ResNet Convergence

We use the small ResNet-34 model trained on CIFAR-10 to
confirm the correctness of our K-FAC preconditioner and
adopt a 92.49% target for acceptable validation accuracy
[13]. We use the same batch sizes and learning rates for
both optimization methods. Specifically, the learning rate
is N (0:1 and the batch size as N (128 where N is the
number of GPUs. A linear learning rate warmup is used
for the first five epochs and then decreased by a factor of
10 at epochs 35, 75, 90 for K-FAC and 100, 150 for SGD. We
train for 100 epochs with K-FAC and twice as long with
SGD. K-FAC eigen decompositions are recomputed every
10 iterations.

We repeat the experiment on 1, 2, 4, and 8 V100 GPUs
and present the final validation accuracies in Table 2. Fig. 4
depicts the validation accuracy throughout training in the 1
and 2 GPU runs. Our K-FAC implementation meets or
exceeds the performance of SGD across a range of batch
sizes while converging in fewer iterations.

Our second experiment compares K-FAC and SGD train-
ing with ResNet-50 and the ImageNet-1k dataset. We verify
that K-FAC 1) converges to 75.9% validation accuracy, the
MLPerf baseline; 2) converges to a validation accuracy that is
at least equal to that of SGD; and 3) requires fewer iterations.
We train on 16 V100 GPUs with a batch size of 32(16=512
and learning rate of 0.0125(16 = 0.2 The learning rate is line-
arly warmed up for the first five epochs then decayed at
epochs 25, 35, 40, 45, and 50. Labels are smoothed with a fac-
tor of 0.1. The SGD momentum is 0.9, the K-FAC damping
value is 0.001, and the K-FAC approximation is updated
every 10 iterations.

The Top-1 validation accuracy is presented in Fig. 5a.
K-FAC converges to 76.4% validation accuracy, outper-
forms SGD by 0.2%, and converges to the MLPerf baseline
in 43 epochs compared to the 76 epochs required by SGD.

6.3.2 Mask R-CNN Convergence

Mask R-CNN has four components: the feature pyramid
networks (FPN) that encode the image, the region proposal
network (RPN) that generates bounding box proposals, the
box head that detects bounding boxes and classifies objects,
and the mask head that generates a pixel-wise mask for the
detected object. The original implementation uses SGD as
the optimizer. The validation baseline is 0.377 for bbox
mAP (mean average precision) and 0.342 for segmentation
mAP. We evaluate various ways to integrate K-FAC with

TABLE 2
Validation Accuracy Comparison of ResNet-32

on CIFAR-10 With KFAC and SGD [21]

GPUs 1 2 4 8

SGD 92.76% 92.77% 92.58% 92.69%
K-FAC 92.93% 92.76% 92.90% 92.92%

3622 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 16,2022 at 22:53:33 UTC from IEEE Xplore. Restrictions apply.

SGD and find that training converges by enabling K-FAC
for only the box head and mask head.

We empirically examine Mask R-CNN convergence with
32 V100 GPUs. We set the K-FAC update interval to 500
steps and the factorization interval to 50 steps. Figs. 5b and
5c show the validation curves of the bbox and segm mAP.
With SGD, these converge to the baseline at the end of 14th
epoch with values of 0.378 and 0.342, respectively. In con-
trast, K-FAC converges to the baseline by the end of 12th
epoch, with bbox mAP of 0.379 and segm mAP of 0.350. K-
FAC converges to the baseline in 18.1% fewer steps than
SGD on 32 V100 GPUs. The training time with K-FAC is 116
minutes—14.9% less than SGD.

6.3.3 BERT Convergence

In this experiment, we first measure the BERT-Large baseline
with Fused-LAMB using the hyper-parameter values speci-
fied in the NVIDIA documentation [52]. Phase 1 trains with a
maximum sequence length of 128 tokens for 7038 steps then
Phase 2 trains with the maximum sequence length of 512
tokens for 1563 steps. We run the experiment on 16 A100
GPUs and fine tune using the SQuAD v1.1 training set,
obtaining a validation F1 score of 90.1%, a 0.98% loss
compared to the case trained with Wikitext and Toronto
BookCorpus. We attribute the reduced F1 score to the
unavailability of the Toronto BookCorpus dataset. The global
batch size is 64K and 32K for Phase 1 and Phase 2, respec-
tively. We use a local batch size of 96 for Fused-LAMB and
90 for K-FAC in Phase 1; in Phase 2, these values are 16 and
12, respectively.

Next, we determine the earliest step that SQuAD v1.1
converges to this baseline by reducing the training steps in
Phase 2 with Fused-LAMB. The results in Table 3 show
that, with Fused-LAMB, training requires the full 1563 steps
in Phase 2 to converge to the 90.1% baseline.

We next examine convergence behavior when using
K-FAC. We first apply K-FAC for Phase 2 only. We evaluate
the K-FAC approximation every 50 steps, update A and G

every five steps, and fine tune SQuAD v1.1 at 1000, 1200,
1400, and 1563 steps. We find (Table 4 a) that with these set-
tings, SQuAD v1.1 converges above the 90.1% baseline with
as few as 1000 steps, a 36.0% reduction in iterations and
16.4% reduction in training time. The overall training time,
combining Phase 1 and Phase 2, is reduced by 6.2%.

In a second experiment, we train Phase 1 with K-FAC
and Phase 2 with Fused-LAMB. Table 4 b reports the con-
verged cases with the fewest steps in each phase. In the best
case, the number of steps is reduced by 14.7% and 23.2% for
Phases 1 and 2, respectively, and overall training time is
reduced by 9.0%.

Finally, we train both phases with K-FAC. Table 4c
reports the results. K-FAC efficiently reduces the training
steps to 5000 for Phase 1, but takes 1400 steps to converge in
Phase 2. The overall training time is reduced by 4.7%.

6.3.4 K-FAC Configuration

Key to efficient training with second-order methods is reduc-
ing the frequency at which second-order information is com-
puted. In K-FAC, less frequent K-FAC updates reduce
computation and communication but increase the staleness of
the second-order information, so understanding this tradeoff
is necessary to optimally apply K-FAC.

We train ResNet-50, ResNet-101, and ResNet-152 with
K-FAC for 55 epochs and K-FAC update intervals of {100,
500, 1000}. The Top-1 validation accuracy from training on
64 V100 GPUs is presented in Table 5 and Fig. 6. All update
frequencies except 1000 converge to theMLPerf baseline with
ResNet-50, so we choose 500 to be the optimal K-FAC update
intervals with 64 V100 GPUs for the scaling experiments in
Section 6.4. There are no recognized baselines for ResNet-101
nor ResNet-152 so we use the 76.4% and 76.6% baselines of
our prior work for ResNet-101 and ResNet-152, respectively
[21]. While we observe a 0.2% validation accuracy drop with
K-FAC compared to SGD with ResNet-101 and ResNet-152,
our K-FAC results are better than the general baselines.

Fig. 4. Validation accuracy comparison of ResNet-32 on CIFAR-10 with
KFAC and SGD [21].

Fig. 5. ResNet-50 validation accuracy and Mask R-CNN validation bounding box and segmentation mean average precision (mAP) comparison
between K-FAC and SGD. ResNet-50 is run on 64 V100 GPUs and Mask R-CNN is run on 32 V100 GPUs.

TABLE 3
SQuAD V1.1 F1 Score With Varying Numbers of Phase 2 Steps

Phase 1 Phase 2 F1
Optimizer Steps Optimizer Steps

LAMB 7038 LAMB 1563 90.1%
LAMB 7038 LAMB 1400 89:94%*

LAMB 7038 LAMB 1200 89:87%*

LAMB is short for Fused-LAMB. * highlights the diverged cases.

PAULOSKI ET AL.: DEEP NEURAL NETWORK TRAINING WITH DISTRIBUTED K-FAC 3623

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 16,2022 at 22:53:33 UTC from IEEE Xplore. Restrictions apply.

We repeat a similar study to find a good update interval
for BERT. On average, each BERT K-FAC step takes 25 sec-
onds longer than a Fused-LAMB step with 16 A100 GPUs.
With 7038 steps in Phase 1, a K-FAC update interval of 100
steps reduces the training time by 1750 seconds compared
to an interval of 50 steps. This only reduced training time
for Phase 1 by 1.58% (total training time is 111,059 seconds
with 16 A100 GPUs) which is not significant. On the other
hand, decreasing the K-FAC update interval to 25 steps will
introduce an overhead of 3500 seconds, thus we find 50
steps to be an appropriate middle ground for the K-FAC
update interval in Phase 1 and Phase 2.

6.4 Scalability
We evaluate the scalability of our distributed K-FAC algo-
rithm on ResNet, Mask R-CNN, and BERT.

6.4.1 ResNet Scalability

We measure the time-to-solution (time to reach the MLPerf
baseline validation accuracy) on {16, 32, 64, 128, 256} V100
GPUs. The average time per epoch is measured over 10
epochs and then projected to 55 epochs for K-FAC and 90
epochs for SGD. The K-FAC update interval is scaled
inversely to the global batch size to maintain a constant
number of K-FAC updates per epoch. In Section 6.3.4, the
ideal interval was determined to be 500 for 64 V100 GPUs,
so we use intervals of {2000, 1000, 500, 250, 125} for {16, 32,
64, 128, 256} V100 GPUs, respectively. All other hyper-
parameters are the same as described in Section 6.3.1.

Weuse the basic ResNet training implementation provided
by Horovod [27] which contains no additional optimizations
for improved training or scaling efficiency. While this means
that the end-to-end training time for our SGD baseline is not

close to state-of-the-art results for this hardware configuration,
we choose a simple implementation to showcase that K-FAC
can improve training time and scaling without needing addi-
tional complex optimizations. In contrast, Mask R-CNN and
BERT training is performed using the optimized NVIDIA ref-
erence implementations [52].

Here we compare our distribution strategy, referred to as
K-FAC-opt, to that used in prior work [6], referred to as K-
FAC-lw. We use the eigen decomposition K-FAC update pro-
cedure (Equations (11)–(13)) for both variants such that this
experiment specifically compares how work is distributed
among workers and where communication occurs. The lw in
K-FAC-lw stands for the layer-wise distribution scheme [6].
Each worker computes the entire K-FAC update, that is, the
eigen decompositions of the factors and the preconditioned
gradient, for a single layer and communicates the final pre-
conditioned gradient for that layer to all other workers. K-
FAC-opt is our optimized strategy described in Section 4. The
optimized strategy reduces the frequency of communication
by decoupling eigen decompositions from gradient precondi-
tioning. All K-FAC-lw and K-FAC-opt experiments converge
to the same 76.2%, 77.7%, and 78.0% validation accuracies for
ResNet-50, ResNet-101, and ResNet-152, respectively, within
55 epochs.

Across GPU and model scales, K-FAC-lw outperforms
SGD by 2.8-19.1%, and K-FAC-opt outperforms SGD by 17.7-
25.2%, as seen in Fig. 8. The scaling efficiency of K-FAC-opt
is 71.8%, a 9.4% improvement over the 62.4% efficiency of
K-FAC-lw, and also higher than SGD’s 68.6% scaling effi-
ciency. We attribute the better scaling of K-FAC-opt to its
reduced communication frequency compared to K-FAC-lw.
While the scaling efficiency at 256 GPUs is below 50% for all
three cases, K-FAC-lw achieves 2.8% improved performance
over SGD whereas K-FAC-opt yields an 18.3% improvement.

To further understand why K-FAC-opt achieves better
scaling efficiency than K-FAC-lw, we measure the average
time spent in each stage of a call to K-FAC.step() for ResNet-
50 on 64 V100 GPUs. As seen in Fig. 7, the factor

TABLE 4
SQuAD V1.1 F1 Score With Varying Numbers of Phase 1 and Phase 2 Steps

LAMB is short for Fused-LAMB. * indicates the diverged cases.

TABLE 5
ResNet-50, ResNet-101, and ResNet-152 Validation Accuracy

Versus K-FAC Update Interval With 64 GPUs [21]

K-FAC Update Freq.

Model SGD 100 500 1000

ResNet-50
Val Accuracy 76.2% 76.2% 76.1% 75.5%

Train Time (min) 178 152 128 124

ResNet-101
Val Accuracy 78.0% 77.7% 77.7% 77.3%

Train Time (min) 244 227 197 195

ResNet-152
Val Accuracy 78.2% 78.0% 78.0% 77.8%

Train Time (min) 345 369 310 300

K-FAC update interval with 64 GPUs [21].

Fig. 6. ResNet-50 validation accuracy of the last 10 epochs with K-FAC
update intervals of {10, 100, 500, 1000} iterations. The MLPerf baseline
is 75.9%.

3624 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 16,2022 at 22:53:33 UTC from IEEE Xplore. Restrictions apply.

computation and allreduce, eigen decomposition, and pre-
conditioned gradient scaling stages take similar time
between the two methods (within 2%). The biggest differ-
ences are in the eigen decomposition broadcast and gradi-
ent broadcast stages because K-FAC-lw does not need to
broadcast eigen decompositions and K-FAC-opt does not
need to broadcast gradients. The eigen decomposition
broadcast in K-FAC-opt takes 3:4(longer than the gradient
broadcast in K-FAC-lw; however, eigen decomposition
broadcast is only performed every 500 iterations while the
gradient broadcast is required every iteration. The effect is
that the additional cost to communicate and cache all of
the eigen decompositions locally in K-FAC-lw yields a
valuable reduction in average iteration time for iterations
where eigen decompositions are not updated. K-FAC-opt
also has a longer gradient preconditioning stage because
every worker preconditions all gradients locally, but this
cost is much lower than the alternative in K-FAC-lw where
gradient broadcast is required.

6.4.2 Mask R-CNN Scalability

The Mask R-CNN training exploits early stopping, that is,
the training automatically stops if the validation metrics
reach the baseline target. With a different number of V100
GPUs, the global batch size changes proportionally, and the
required steps to converge also varies. Such results can be
observed from MLPerf v0.6 [55]. Table 6 summarizes the

number of steps to converge for K-FAC and SGD at the scale
of 32, 64, and 128 V100 GPUs.

Fig. 9a illustrates the training time at each scale for K-
FAC and SGD. All three K-FAC cases converge above base-
line. With 32 and 64 GPUs, K-FAC takes 14.9% and 18.1%
less time than SGD to converge, respectively. That reduction
drops to 3.0% with 128 GPUs. Even though the number of
steps does not decrease with more GPUs, the scaling effi-
ciency is 74.4%.

6.4.3 BERT Scalability

In the experiments reported in Section 6.3.3, we use differ-
ent local batch sizes for BERT to minimize the training time
for K-FAC and Fused-LAMB cases. Here, we instead fix the
local batch size in order to measure K-FAC’s improvement
on training time assuming no limitation on memory size.
Fig. 9 shows the projected training time of both BERT
phases across {8, 16, 32, 64, 128} A100 GPUs with a fixed
local batch of 60 per GPU for Phase 1 and 12 for Phase 2.
With 128 A100 GPUs, the scaling efficiencies are 78.9% for
Phase 1 and 78.3% for Phase 2. We do not complete full
end-to-end training at scales larger than 16 GPUs due to
limited node hours on ThetaGPU. However, as all experi-
ments are trained with a global batch of 64K and 32K for
Phase 1 and Phase 2, respectively, we expect similar conver-
gence to 16 GPUs for larger scales. The projected overall
training time with K-FAC is 16.1%–16.9% less than with
Fused-LAMB.

Fig. 8. Time-to-solution comparison of ResNet models [21].

Fig. 7. Average time (ms) for each stage within a call to KFAC.step()
measured using ResNet-50 on 64 V100 GPUs.

TABLE 6
Iterations Required to Converge for K-FAC and SGD

at Different Scales for Mask R-CNN

Optimizer 32 GPUs 64 GPUs 128 GPUs

K-FAC 21000 12000 6800
SGD 25640 15000 7320

Fig. 9. Time-to-solution comparison for Mask R-CNN and BERT-Large across scales.

PAULOSKI ET AL.: DEEP NEURAL NETWORK TRAINING WITH DISTRIBUTED K-FAC 3625

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 16,2022 at 22:53:33 UTC from IEEE Xplore. Restrictions apply.

7 CONCLUSION

We have presented a distributed K-FAC preconditioner that
incorporates a layer-wise distribution scheme to perform K-
FAC computations efficiently at scale.We evaluate techniques
such as inverse-free second-order gradient preconditioning to
maintain convergence across batch sizes and K-FAC approxi-
mation update decoupling for reduced time per iteration. We
design the preconditioner to be incorporated easily into exist-
ing training scripts and implement it in the widely adopted
PyTorch framework. Our code is open source and available
under the permissive MIT license. We evaluate convergence
and scalability empirically with standard DL benchmarks
representing a diverse set ofmodel architectures. Our precon-
ditioner enables 18–25% faster convergence to 75.9% MLPerf
ResNet-50 baseline validation accuracy on up to 256 NVIDIA
V100 GPUs. K-FAC reduces time-to-convergence with Mask
R-CNN and BERT by 3.0%–14.9% and 9.0%–16.9%, respec-
tively, while maintaining good scaling on up to 128 NVIDIA
A100GPUs.

REFERENCES

[1] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer,
“ImageNet training in minutes,” in Proc. 47th InterNat. Conf. Paral-
lel Process.. ACM, 2018, pp. 1–10.

[2] V. Codreanu, D. Podareanu, and V. Saletore, “Scale out for
large minibatch SGD: Residual network training on ImageNet-1K
with improved accuracy and reduced time to train,” 2017,
arXiv:1711.04291.

[3] T. Akiba, S. Suzuki, and K. Fukuda, “Extremely large minibatch
SGD: Training ResNet-50 on ImageNet in 15 minutes,” 2017,
arXiv:1711.04325.

[4] C. Ying, S. Kumar, D. Chen, T. Wang, and Y. Cheng, “Image
classification at supercomputer scale,” 2018, arXiv:1811.06992.

[5] H. Mikami et al., “Massively distributed SGD: ImageNet/ResNet-
50 training in a flash,” 2018, arXiv:1811.05233.

[6] K. Osawa, Y. Tsuji, Y. Ueno, A. Naruse, R. Yokota, and S. Mat-
suoka, “Large-scale distributed second-order optimization using
Kronecker-factored approximate curvature for deep convolu-
tional neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2019, pp. 12359–12367.

[7] H. Lee, M. Turilli, S. Jha, D. Bhowmik, H. Ma, and A. Ramana-
than, “DeepDriveMD: Deep-learning driven adaptive molecular
simulations for protein folding,” in Proc. IEEE/ACM 3rd Workshop
Deep Learn. Super Comput., 2019, pp. 12–19.

[8] J. Carrasquilla and R. G. Melko, “Machine learning phases of
matter,” Nat. Phys., vol. 13, pp. 431–434, 2017.

[9] J. Kates-Harbeck , A. Svyatkovskiy, and W. Tang, “Predicting dis-
ruptive instabilities in controlled fusion plasmas through deep
learning,” Nature, vol. 568, no. 7753, pp. 526–531, 2019.

[10] S. McCandlish, J. Kaplan, D. Amodei, and the OpenAI Data
Team, “An empirical model of large-batch training,” 2018,
arXiv:1812.06162.

[11] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for
large-scalemachine learning,” SIAMRev., vol. 60, no. 2, pp. 223–311,
2018.

[12] Y. You, J. Hseu, C. Ying, J. Demmel, K. Keutzer, and C.-J. Hsieh,
“Large-batch training for LSTM and beyond,” in Proc. Int. Conf.
High Perform. Comput., Netw., Storage Anal., 2019, pp. 1–16.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:
Pre-training of deep bidirectional transformers for language
understanding,” 2018, arXiv:1810.04805.

[15] J. Martens and R. Grosse, “Optimizing neural networks with Kro-
necker-factored approximate curvature,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 2408–2417.

[16] L. Ma et al., “Inefficiency of K-FAC for large batch size training,”
in Proc. AAAI Conf. Artif. Intell., 2019, pp. 5053–5060.

[17] MLPerf, 2019. [Online]. Available: https://www.mlperf.org/

[18] D. C. Liu and J. Nocedal, “On the limited memory BFGS method
for large scale optimization,” Math. Prog., vol. 45, no. 1/3,
pp. 503–528, 1989.

[19] A. Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” in Proc. Adv. Neural Informat. Process. Syst.,
2019, pp. 8024–8035.

[20] K. He, G. Gkioxari, P. Doll!ar, and R. Girshick, “Mask R-CNN,”
in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 2961–2969.

[21] J. G. Pauloski, Z. Zhang, L. Huang, W. Xu, and I. T. Foster,
“Convolutional neural network training with distributed K-FAC,”
in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2020,
pp. 1–12.

[22] J. G. Pauloski et al., “KAISA: An adaptive second-order optimizer
framework for deep neural networks,” in Proc. Int. Conf. High
Perform. Comput., Netw., Storage Anal., 2021, pp. 1–14.

[23] Y. Huang et al., “GPipe: Efficient training of giant neural networks
using pipeline parallelism,” in Proc. 33rd Int. Conf. Neural Informat.
Process. Syst., 2019, pp. 103–112.

[24] Gloo: Collective communications library with various primitives
for multi-machine training, 2019. [Online]. Available: https://
github.com/facebookincubator/gloo

[25] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of col-
lective communication operations in MPICH,” Int. J. High Perform.
Comput. Appl., vol. 19, no. 1, pp. 49–66, 2005.

[26] Intel, “Intel machine learning scaling library,” 2019. [Online].
Available: https://github.com/intel/MLSL

[27] A. Sergeev and M. D. Balso, “Horovod: Fast and easy distributed
deep learning in TensorFlow,” 2018, arXiv:1802.05799.

[28] M. Abadi et al., “TensorFlow: A system for large-scale machine
learning,” in Proc. 12th USENIX Symp. Oper. Syst. Des. Implementa-
tion, 2016, pp. 265–283.

[29] NVIDIA Apex (a PyTorch extension), 2018. [Online]. Available:
https://github.com/NVIDIA/apex

[30] Y. You, I. Gitman, and B. Ginsburg, “Large batch training of con-
volutional networks,” 2017, arXiv:1708.03888.

[31] B. Recht, C. Re, S. Wright, and F. Niu, “HOGWILD: A lock-free
approach to parallelizing stochastic gradient descent,” in Proc.
Adv. Neural Informat. Process. Syst., 2011, pp. 693–701.

[32] S. Zhang, A. E. Choromanska, and Y. LeCun , “Deep learning with
elastic averaging SGD,” in Proc. Adv. Neural Informat. Process. Syst.,
2015, pp. 685–693.

[33] P. H. Jin, Q. Yuan, F. Iandola, and K. Keutzer, “How to scale dis-
tributed deep learning?,” 2016, arXiv:1611.04581.

[34] I. Mitliagkas, C. Zhang, S. Hadjis, and C. R!e, “Asynchrony
begets momentum, with an application to deep learning,”
in Proc. 54th Annu. Allerton Conf. Commun., Control, Comput., 2016,
pp. 997–1004.

[35] M. Li et al., “Scaling distributed machine learning with the param-
eter server,” in Proc. 11th USENIX Symp. Oper. Syst. Des. Implemen-
tation, 2014, pp. 583–598.

[36] D. Alistarh, C. De Sa, and N. Konstantinov, “The convergence of
stochastic gradient descent in asynchronous shared memory,”
in Proc. ACM Symp. Princ. Distrib. Comput., 2018, pp. 169–178.

[37] R. Grosse and J. Martens, “A Kronecker-factored approximate
Fishermatrix for convolution layers,” 2016, arXiv:1602.01407.

[38] T. Chen et al., “MXNet: A flexible and efficientmachine learning library
for heterogeneousdistributed systems,” 2015, arXiv:1512.01274.

[39] N. Keskar, J. Nocedal, P. Tang, D. Mudigere, and M. Smelyanskiy,
“On large-batch training for deep learning: Generalization gap
and sharp minima,” in Proc. 5th Int. Conf. Learn. Representations,
2017, pp. 1–16.

[40] P. Goyal et al., “Accurate, large minibatch SGD: Training Image-
Net in 1 hour,” 2017, arXiv:1706.02677.

[41] J. Ba, R. B. Grosse, and J. Martens, “Distributed second-order opti-
mization using Kronecker-factored approximations,” in Proc. Int.
Conf. Learn. Representations, 2017, pp. 1–17.

[42] J. Martens, J. Ba, and M. Johnson, “Kronecker-factored curvature
approximations for recurrent neural networks,” in Proc. Int. Conf.
Learn. Representations, 2018, pp. 1–25.

[43] Y. Ueno, K. Osawa, Y. Tsuji, A. Naruse, and R. Yokota, “Rich infor-
mation is affordable: A systematic performance analysis of second-
order optimization using K-FAC,” in Proc. 26th ACM SIGKDD Int.
Conf. Knowl. Discov. DataMining, 2020, pp. 2145–2153.

[44] K. Osawa, Y. Tsuji, Y. Ueno, A. Naruse, C.-S. Foo, and R. Yokota,
“Scalable and practical natural gradient for large-scale deep
learning,” IEEE Trans. Pattern Anal.Mach. Intell., vol. 44, pp. 404–415,
Jan. 2022.

3626 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 16,2022 at 22:53:33 UTC from IEEE Xplore. Restrictions apply.

https://www.mlperf.org/
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
https://github.com/intel/MLSL
https://github.com/NVIDIA/apex

[45] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “DeepSpeed: Sys-
tem optimizations enable training deep learning models with
over 100 billion parameters,” in Proc. 26th ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2020, pp. 3505–3506.

[46] P. Micikevicius et al., “Mixed precision training,” in Proc. 6th Int.
Conf. Learn. Representations, 2018, pp. 1–12.

[47] C. Wang, R. Grosse, S. Fidler, and G. Zhang, “EigenDamage:
Structured pruning in the Kronecker-factored eigenbasis,” in Proc.
36th Int. Conf. Mach. Learn., 2019, pp. 6566–6575. [Online]. Avail-
able: http://proceedings.mlr.press/v97/wang19g.html

[48] T. George, C. Laurent, X. Bouthillier, N. Ballas, and P. Vincent,
“Fast approximate natural gradient descent in a Kronecker-fac-
tored eigenbasis,” in Proc. 32nd Int. Conf. Neural Informat. Process.
Syst., 2018, pp. 9573–9583.

[49] A. Krizhevsky et al., “Learning multiple layers of features from
tiny images,” Univ. Toronto, Toronto, ON, Canada, Tech. Rep.
TR-2009, 2009.

[50] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei ,
“ImageNet: A large-scale hierarchical image database,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248–255.

[51] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Proc. Eur. Conf. Comput. Vis., 2014, pp. 740–755.

[52] NVIDIA deep learning examples, 2020. [Online]. Available:
https://github.com/NVIDIA/DeepLearningExamples

[53] Wikipedia, Wikipedia Corpus, 2020. [Online]. Available: https://
www.english-corpora.org/wiki/

[54] Y. Zhu et al., “Aligning books and movies: Towards story-like
visual explanations by watching movies and reading books,” in
Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 19–27.

[55] MLPerf, MLPerf Results v0.6, 2019. [Online]. Available: https://
mlperf.org/training-results-0-6

J. Gregory Pauloski received the BS degree in
computer science from the University of Texas at
Austin. He is currently working toward the PhD
degree in computer science with the University of
Chicago, advised by Kyle Chard and Ian Foster.
Prior to joining the University of Chicago, he worked
with the Texas Advanced Computing Center. His
research interests include distributed systems,
large-batch deep learning, and high-performance
computing.

Lei Huang received the PhD degree in chemistry
from the University of Texas at Aussstin. He is cur-
rently a research member with the Texas Adva-
nced Computing Center. He was a postdoctoral
fellow with Harvard University and later a research
assistant professor with the University of Chicago.
He has worked on diverse projects spanning from
material science to biophysics to high-performance
computing. His research interests include high-
performance computing and deep learning.

Weijia Xu received the PhD from the Computer
Science Department, UT Austin. He is currently a
research scientist and manager of the Scalable
Computational Intelligence group with the Texas
Advanced Computing Center. His group supports
large scale data driven analysis andmachine learn-
ing applications using computing resources with
TACC. His research interests include enabling
data-driven discoveries through developing new
computational methods and applications that facili-
tate the data-to-knowledge transfer process.

Kyle Chard received the PhD degree in computer
science from the Victoria University of Wellington,
Aotearoa New Zealand. He is currently a research
assistant professor with the Department of Com-
puter Science, the University of Chicago, and holds
a joint appointment with Argonne National Labora-
tory. He has received the IEEE TCHPC Award for
Excellence for Early Career Researchers and the
NewZealand TopAchiever Doctoral Scholarship.

Ian T. Foster received the BSc degree in com-
puter science from the University of Canterbury,
Aotearoa New Zealand, and the PhD degree in
computer science from Imperial College, U.K. He
is currently a senior scientist and distinguished
fellow, and director with the Data Science and
Learning Division, Argonne National Laboratory,
and the Arthur Holly Compton distinguished ser-
vice professor with Computer Science, the Uni-
versity of Chicago.

Zhao Zhang received the PhD degree in computer
science from the University of Chicago. He is cur-
rently a computer scientist with theTexasAdvanced
Computing Center. His research interests include
high-performance computing, distributed comput-
ing, and deep learning. Before joining TACC, he
was a postdoctoral with the AMP Lab and Berkeley
Institute for Data Science (BIDS), the University of
California, Berkeley.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

PAULOSKI ET AL.: DEEP NEURAL NETWORK TRAINING WITH DISTRIBUTED K-FAC 3627

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 16,2022 at 22:53:33 UTC from IEEE Xplore. Restrictions apply.

http://proceedings.mlr.press/v97/wang19g.html
https://github.com/NVIDIA/DeepLearningExamples
https://www.english-corpora.org/wiki/
https://www.english-corpora.org/wiki/
https://mlperf.org/training-results-0-6
https://mlperf.org/training-results-0-6

