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Abstract

In this work, we study the problem of monotone
non-submodular maximization with partition ma-
troid constraint. Although a generalization of this
problem has been studied in literature, our work fo-
cuses on leveraging properties of partition matroid
constraint to (1) propose algorithms with theoreti-
cal bound and efficient query complexity; and (2)
provide better analysis on theoretical performance
guarantee of some existing techniques. We further
investigate those algorithms’ performance in two
applications: Boosting Influence Spread and Video
Summarization. Experiments show our algorithms
return comparative results to the state-of-the-art al-
gorithms while taking much fewer queries.

1 Introduction

Maximizing classes of set functions, generalizing submod-
ular functions, has emerged recently due to its wide range
applications in real-world problems. Among those works, non-
submodular maximization subject to cardinality constraint
was studied the most extensively, including but not limited to
[Bian et al., 2017; Das and Kempe, 2011; Qian et al., 2018;
Kuhnle et al., 2018].

However, cardinality constraint may not be sufficient to
capture some natural requirements of various applications. For
example, in many viral marketing campaigns, it is important
to ensure the diversity and fairness among different ethnics
and genders. These applications aim to distribute budget to
feed information fairly among different groups of users while
guaranteeing to maximize the influence spread in the network.
Another example is data summarization. In many situations, a
large data may be formed by elements of various classes. The
problem, thus, aims to find a representative subset to cover
the dataset’s content as much as possible while imposing a
constraint that the subset should contain a number of members
of each class to guarantee diversity.

Motivated by those observation, we study the following
problem: Given a ground set V , a non-negative monotone
function f : 2V → R

≥; let V1, ..., Vk be a collection of
disjoint subsets forming V (i.e. V = V1

⊎

...
⊎

Vk), and
b1, ..., bk be k integers that 1 ≤ bi ≤ |Vi| ∀i ∈ [k]. The

problem asks for:

max
S⊆V

{f(S) : |S ∩ Vi| ≤ bi ∀i ∈ [k]} (MAXMP)

MAXMP is formally represented as monotone non-
submodular maximization with partition matroid constraint.
This constraint is a special case of matroid constraint and
generalizes cardinality constraint.

Non-submodular maximization beyond cardinality con-
straint has only received attention recently. The most re-
cent works are [Chen et al., 2018] and [Gatmiry and Gomez-
Rodriguez, 2018], in which they studied the performance
guarantee of GREEDY or RESIDUAL GREEDY (RESGREEDY)
[Buchbinder et al., 2014] on monotone non-submodular max-
imization subject to matroid constraint. However, those al-
gorithms requires O(nK) queries of f (K is a rank of a ma-
troid), which may not be desirable in practice. Researchers
[Mirzasoleiman et al., 2016; Badanidiyuru and Vondrák, 2014;
Kuhnle et al., 2018] have sought ways to speed up the GREEDY

algorithm. Unfortunately, these approaches were only for car-
dinality constraint; or relied upon the submodularity of f .

To our knowledge, there exists no specific work dedicating
for non-submodular maximization subject to partition matroid
constraint. That leaves us open questions on: (1) With parti-
tion matroid, does there exist an algorithm with a better ratio
or can we improve the ratio of the existing algorithms, whose
performance guarantees have been proven with a matroid con-
straint? (As partition matroid is a special case of matroid
constraint, perhaps we can get a tighter ratio if we only con-
sidered the partition matroid.) (2) Can we leverage partition
matroid properties to devise approximation algorithms with
more query-efficient?

In this work, we focus on answering the above two ques-
tions. First, to quantify the non-submodularity of a function,
we introduce Partition Matroid Curvature α and Partition Ma-
troid Diminishing-Return ratio γ. These two quantities are
derived from the same concept with the diminishing-return
ratio [Lehmann et al., 2006; Bogunovic et al., 2017] and gen-
eralized curvature [Bian et al., 2017; Conforti and Cornuéjols,
1984; Iyer et al., 2013] but have more relaxed requirements.

Our main contribution is to introduce a novel approxima-
tion algorithm, named PROB, with approximation ratio of
(1/γ′ − 1 + α′)(1 − 1/Θ(maxi∈[k] |Vi|)) + 1 where γ′ and

α′ are non-trivial and obtainable bounds of γ and α. PROB’s
novelty lies in a random process of selecting a new element, in

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4807



which the algorithm introduces a new probability distribution
among non-selected elements. That probability distribution is
a key for PROB to obtain its ratio. Furthermore, by utilizing
a sampling technique to reduce searching space, we propose
FASTPROB, an algorithm improving from PROB with efficient

query complexity of O(n ln2
∑

i∈[k] bi).

Furthermore, we re-investigate theoretical performance
guarantees of two existing techniques, GREEDY and THRESH-
OLD GREEDY (THRGREEDY). We proved that: with par-
tition matroid constraint, GREEDY can obtain a ratio of
min

(

α/(1 − (1 − αγ/
∑

i∈[k] bi)
mini∈[k] bi), (1 + γα)/γ

)

,

which - in comparing with existing work of [Friedrich et al.,
2019] in matroid constraint - has its own advantage in some
certain range of non-submodular quantification parameters.

Finally, we investigate our algorithms’ performance on
two applications of MAXMP: Boosting Influence Spread and
Video Summarization. We provide bounds on the objective
functions’ partition matroid curvature and diminishing ratio
to have a better insight on theoretical guarantees of our al-
gorithms. Experimental results show our algorithms return
comparable solutions to the state-of-the-art techniques while
totally outperform them in the number of queries.

2 Related Work

2.1 Quantifying Non-Submodularity

To bound how close a function to submodularity, three most
popular quantities in literature are: (1) weakly submodular
ratio; (2) diminishing return ratio; and (3) generalized cur-
vature. Weakly submodular ratio, denoted as γs, was first
introduced by [Das and Kempe, 2011] and further used by
[Elenberg et al., 2017; Qian et al., 2015; Chen et al., 2018].
γs is defined as the maximum value in range [0, 1] such
that f(S ∪ T ) − f(S) ≤ 1

γs

∑

e∈T\S(f(S ∪ {e}) − f(S))

for all S, T ⊆ V . Diminishing-return (DR) ratio γd [Bo-
gunovic et al., 2018; Lehmann et al., 2006; Qian et al., 2018;
Kuhnle et al., 2018] is defined as the largest value in range
[0, 1] that guarantees f(T ∪{e})− f(T ) ≤ 1

γd
(f(S ∪{e})−

f(S)) for all S ⊆ T ⊆ V and e ̸∈ T . γd was proven to be
at most the value of γs [Kuhnle et al., 2018]. General cur-
vature αc [Bian et al., 2017; Conforti and Cornuéjols, 1984;
Iyer et al., 2013], on another hand, is the smallest number in
[0, 1] that f(T ∪{e})−f(T ) ≥ (1−αc)(f(S∪{e})−f(S)).

In this work, we adapt DR-ratio and curvature but with more
relaxed requirements. To be specific, instead of requiring those
quantities to be applicable for all sets, we narrow down the
collection of subsets S ⊆ T that need to satisfy those proper-
ties to |(T \ S) ∩ Vi| ≤ bi for all i ∈ [k]. If considering size
constraint, this relaxation is corresponding to the definition
of Greedy DR-ratio and Greedy Curvature [Bian et al., 2017;
Kuhnle et al., 2018]. Not only this relaxation is sufficient
to bound our approximation ratios; but it also helps us ob-
tain meaningful bounds of those quantities in the MAXMP’s
applications in our experiments.

2.2 Beyond Cardinality Constraint

Non-submodular maximization beyond cardinality constraint
has received attention recently. [Chen et al., 2018] was the first

one who brought up the concept of non-submodular maximiza-
tion subject to matroid constraint. In this work, the authors
proved that RESGREEDY can obtain the ratio of (1 + 1

γs
)2.

[Gatmiry and Gomez-Rodriguez, 2018] then proved GREEDY

is able to obtain a ratio of
√
γsK+1
0.4γ2

s
and 1 + 1/γd.

In submodular maximization, the study beyond cardinality
constraint is too extensive to give a comprehensive overview.
Due to space limit, we only go over representative works; and
refer readers to a comprehensive discussion in [Calinescu et
al., 2011; Buchbinder et al., 2019; Friedrich et al., 2019].

For decades, GREEDY- with ratio of 2 [Cornnejols et al.,
1977] - has been considered as the best algorithm for mono-
tone submodular maximization subject to matroid constraint.
This was up until [Calinescu et al., 2011] introduced a concept
of multilinear extension of submodular functions to devise a
1/(1 − 1/e) algorithm. However, their expensive complex-
ity remains a significant bottleneck to make the algorithm
be applicable; and improving it is still an intriguing open
question for future research. The newest breakthrough is of
[Buchbinder et al., 2019], who devised an algorithm, namely

SPLITGROW, with a ratio of 1/0.5008 and Õ(nK2 + KT )
complexity - where T is the complexity to find a maximum
weight perfect matching in a bipartite graph with 2K vertices.

The most recent work on partition matroid, to our
knowledge, is of [Friedrich et al., 2019], in which the
authors proved GREEDY is able to obtain a ratio of

αc/
(

1 − exp
[

− αc
mini∈[k] bi∑

i∈[k] bi

])

. We generalizes this work

to non-submodular objective function by providing analy-
sis that GREEDY can obtain a ratio of min

(

α/(1 − (1 −

αγ/
∑

i∈[k] bi)
mini∈[k] bi), 1/γ + α

)

. If only considering sub-

modular objective function, our ratio has an advantage that it
is bounded by 1/γ + α. Therefore, its ratio does not degrade
when the input is formed by many partitions.

We also provide approximation ratio of THRGREEDY.
THRGREEDY has been studied by [Kuhnle et al., 2018] for
the problem of monotone non-submodular maximization with
cardinality constraint. Since partition matroid generalizes car-
dinality constraint, our analysis techniques are totally different
to [Kuhnle et al., 2018]. If projecting our ratio to cardinality
constraint, our ratio is better than the one of [Kuhnle et al.,
2018], which is 1/(1 − e−γdγs(1−ϵ) − ϵ). The keys help us
obtain a better ratio are (1) γs is not necessary to bound in-
equality between obtained solutions and the optimal solution;
and (2) we utilizes the general curvature to tighten the inequal-
ity equations, thus our ratio becomes better if the curvature
moves away from the trivial value 1.

3 Definitions and Notations

Given a set function f , a set S and e ̸∈ S, denote ∆ef(S) :=
f(S ∪ {e})− f(S).

Given the partition matroid constraint of MAXMP, includ-
ing V = V1

⊎

...
⊎

Vk and b1, ..., bk, denote b =
∑

i∈[k] bi;

n = |V |; ni = |Vi| ∀i ∈ [k]. Let n̄ = maxi∈[k] ni and

b̂ = mini∈[k] bi. A set S ⊆ V is called a maximal set to the

constraint iff |S ∩ Vi| = bi ∀i ∈ [k].

Definition 1. Given an instance of MAXMP, including
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Algorithm 1 PROB

Input V = V1

⊎

...
⊎

Vk; b1, ..., bk; f, γ
′, α′

1: I = [k];S0 = ∅; t = 0
2: while I ̸= ∅ do
3: for each i ∈ I do
4: a = ⌈ |Vi\St|+1

1−γ′(1−α′)⌉ − 1

5: et = select from Vi \ St with probability
(∆et

f(St))
a

∑
u∈Vi\St

(∆uf(St))a

6: St+1 = St ∪ {et}; t = t+ 1
7: if |St ∩ Vi| ≥ bi then I = I \ {i}

Return Sb

V = V1

⊎

...
⊎

Vk; {b1, ..., bk} and f . The Partition Matroid
(PM) Diminishing Return ratio γ of the objective function
f is defined as the maximum value in [0, 1] that guarantees
∆ef(T ) ≤ 1

γ
∆ef(S) for any S ⊆ T that |(T \ S) ∩ Vi| ≤

bi ∀i ∈ [k] and e ∈ V \ T .

Definition 2. Given an instance of MAXMP, including V =
V1

⊎

...
⊎

Vk; {b1, ..., bk} and f . The Partition Matroid (PM)
Curvature α of the objective function f is defined as the mini-
mum value in [0, 1] that guarantees ∆ef(T ) ≥ (1−α)∆ef(S)
for any S ⊆ T that |(T \S)∩Vi| ≤ bi ∀i ∈ [k] and e ∈ V \T .

It is unknown in the literature on how hard it is to obtain
exact values of quantities quantifying non-submodularity. γ
and α are not exceptional either. Fortunately, for some appli-
cations, we can obtain non-trivial bounds of γ and α, which
can help assess approximation ratios of our algorithms. We
denote γ′ as a lower bound of γ, e.g. γ ≥ γ′ ≥ 0; and α′ as a
upper bound of α, e.g. α ≤ α′ ≤ 1.

W.l.o.g, we assume the objective function f is normalized,
i.e. f(∅) = 0, and bi ≤ ni for all i ∈ [k]. In our algorithms’
analysis, we denote S∗ as an optimal solution, i.e f(S∗) =
maxS:|S∩Vi|≤bi f(S).

4 PROB and FASTPROB Algorithms

4.1 PROB Algorithm

PROB is a randomized algorithm with approximation ratio
of (1/γ′ − 1 + α′)

(

1− 1/O(n̄)
)

+ 1. Pseudocode of PROB

is presented by Alg. 1. In general, PROB works in rounds,
and at each round, one member of a group Vi is added to
the obtained solution S if |S ∩ Vi| < bi. The key for PROB

to obtain efficient performance guarantee lies in a random
process, which introduces a probability distribution, defined
locally for each group, to select a new element of each group
to add into the obtained solution (line 6 Alg. 1). This random
process allows us to construct a sequence of maximal sets in
order to form a recursive relationship among changes on the
f ’s values of the obtained solutions, which is critical to bound
PROB’s approximation ratio.

Theorem 1. PROB obtains a
(

1
γ′ + α′ − 1

)(

1 − 1
n̄+2

)

+

1-approximation solution and has query complexity of
O(

∑

i∈[k] nibi).

Proof. Denote β =
(

1
γ′ + α′ − 1

)(

1− 1
n̄+2

)

and S1, ..., Sb

as a sequence of obtained solution by PROB. We prove the
approximation ratio of PROB by constructing a sequence of
maximal sets S∗

0 , ..., S
∗
b that satisfies the following properties:

(1) S∗
0 = S∗ and S∗

b = Sb; (2) St ⊂ S∗
t for all t = 0, ..., b− 1

and Sb = S∗
b ; (3) f(S∗

t )−f(S∗
t+1) ≤ β E

[

f(St+1)−f(St)
]

for t = 0 → b− 1. Then, we have:

f(S∗) =
b−1
∑

t=0

(

f(S∗
t )− f(S∗

t+1)
)

+ f(S∗
b )

≤ β
b−1
∑

t=0

E[f(St+1)− f(St)] + f(Sb) ≤ (β + 1)E[f(Sb)]

To construct the sequence, starting with S∗
0 = S∗, for each

t = 1, ..., b− 1, S∗
t+1 is formed from S∗

t , St and et as follows:
Let i be the index being considered at the for loop (line 3
Alg. 1); and et will be added into St. Since St ⊂ S∗

t and
|St ∩ Vi| < bi, (S

∗
t \ St) ∩ Vi ̸= ∅. Let e′ be any arbitrary

element in (S∗
t \ St) ∩ Vi. S

∗
t+1 is set as follows:

• If et ∈ (S∗
t \ St) ∩ Vi, S

∗
t+1 := S∗

t .
• Otherwise, let S∗

t+1 := S∗
t \ {e′} ∪ {et}.

Denote ρe = ∆ef(St) and Pre =
ρa
e∑

v∈Vi\St
ρa
v

(i.e. Pre is

probability e is selected). We have:

E
[

f(S∗
t )− f(S∗

t+1)
]

(1)

=
∑

u∈Vi\S∗
t

[

f(S∗
t )− f(S∗

t \ {e′} ∪ {u})
]

× Pru (2)

=
∑

u∈Vi\S∗
t

[

∆e′f(S
∗
t \ {e′})−∆uf(S

∗
t \ {e′})

]

× Pru

(3)

≤
∑

u∈Vi\S∗
t

[ 1

γ
ρe′ − (1− α)ρu

]

× Pru (4)

=
1

γ

∑

u∈Vi\S∗
t

ρe′ρ
a
u

∑

v∈Vi\St
ρav

− (1− α)
∑

u∈Vi\S∗
t

ρuPru (5)

≤
1

γ(a+ 1)

∑

u∈Vi\S∗
t

ρa+1
e′ + aρa+1

u
∑

v∈Vi\St
ρav

(6)

− (1− α)
∑

u∈Vi\S∗
t

ρuPru (7)

=
|Vi \ S

∗
t |

γ(a+ 1)
ρe′Pre′ +

( 1

γ

a

a+ 1
+ α− 1

)

∑

u∈Vi\S∗
t

ρuPru

(8)

where Equ. (4) is from properties of γ and α; while Equ. (7)
is from AM-GM inequality.

Replacing a = ⌈ |Vi\St|+1
1−γ′(1−α′)⌉ − 1, we have

|Vi \ S
∗
t |

γ(a+ 1)
≤

|Vi \ St|

γ(|Vi \ St|+ 1)/(1− γ′(1− α′))
(9)

≤
( 1

γ′ + α′ − 1
)(

1−
1

n̄+ 1

)

(10)
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1

γ

a

a+ 1
+ α− 1 ≤

1

γ

(

1−
1− γ′(1− α′)

|Vi \ St|+ 2

)

+ α− 1

(11)

≤
( 1

γ′ + α′ − 1
)(

1−
1

n̄+ 2

)

(12)

Therefore, combining Equ. (10), (12) to (8), we have:

(8) ≤
( 1

γ′ + α′ − 1
)(

1−
1

n̄+ 2

)

E
[

f(St+1)− f(St)
]

The query complexity of PROB can be trivially inferred from
the algorithm’s pseudocode.

Due to differences in definition of the quantities quantify-
ing non-submodularity and how algorithms’ ratios depend on
them, it is no clear way to compare their ratios. For exam-
ple, RESGREEDY obtains (1 + 1

γs
)2-ratio [Chen et al., 2018].

Although γs ≥ γ ≥ γ′, it is unclear how this ratio is com-
pared with PROB’s ratio. However, PROB has a better query
complexity than RESGREEDY (O(nb)).

When f is submodular (γ = 1), PROB can obtain a ratio of
1+α′(1− 1

n̄+2 ). Although PROB’s ratio is still not comparable

to the best ratio (1 − 1/e) of [Calinescu et al., 2011], their
expensive complexity O(n8) remains a significant bottleneck
to make their algorithm be applicable in practice. In compare
with the most recent work [Buchbinder et al., 2019], PROB

can reach a better ratio than SPLITGROW ( 1
0.5008 ) with appro-

priate values of α′ and n̄; and PROB has much better query
complexity than SPLITGROW (O(nb2)).

4.2 FASTPROB Algorithm

PROB’s query complexity can be improved by observing that
the proof of Theorem 2 can non-trivially go through if et is
selected from a set that overlaps with (S∗

t \ St) ∩ Vi for all
t = 1, ..., b. This always works in Alg. 1 since et is selected
from Vi \ St. Therefore, we can use sampling to reduce the
space of selecting et as in Alg. 2.

We call Alg. 2 FASTPROB. The condition which helps
FASTPROB has the same ratio as PROB with probability at
least 1− δ, is guaranteed as stated in the following lemma.

Lemma 1. (S∗
t \ St) ∩ Rt ̸= ∅ for all t = 0, ..., b − 1 with

probability at least 1− δ

Proof. We prove for each t = 0, ..., b−1, Pr
[

(S∗
t \St)∩Rt =

∅
]

≤ δ
b
. Then using union bound, (S∗

t \ St) ∩Rt ̸= ∅ for all

t = 0, ..., b−1 with probability at least 1− δ. This probability

is trivial if Rt = Vi \ St. If |Rt| =
ni−|St∩Vi|
bi−|St∩Vi| ln

b
δ
, since

St ⊆ S∗
t , |(S∗

t \ St) ∩ Vi| = bi − |St ∩ Vi|. We have:

Pr
[

(S∗
t \ St) ∩Rt = ∅

]

≤
( |Vi \ S

∗
t |

|Vi \ St|

)|Rt|

=
(

1−
|(S∗

t \ St) ∩ Vi|

|Vi \ St|

)|Rt|
≤ e

−|Rt| bi−|St∩Vi|

ni−|St∩Vi| ≤
δ

b

which completes the proof.

Algorithm 2 FASTPROB

Input V = V1

⊎

...
⊎

Vk; f, γ
′, α′; b1, ..., bk; δ ∈ [0, 1]

1: I = [k];S0 = ∅; t = 0
2: while I ̸= ∅ do
3: for each i ∈ I do
4: Rt = pick min

(

ni−|St∩Vi|
bi−|St∩Vi| ln

b
δ
, |Vi \ St|

)

random elements from Vi \ St

5: a = ⌈ |Rt|+1
1−γ′(1−α′)⌉ − 1

6: et = select from Rt with probability
(∆et

f(St))
a

∑
u∈Rt

(∆uf(St))a

7: St+1 = St ∪ {et}; t = t+ 1
8: if |St ∩ Vi| ≥ bi then I = I \ {i}

Return Sb

Theorem 2. FASTPROB obtains a
(

1
γ′+α′−1

)(

1− 1
n̄+2

)

+1-

approximation solution with probability at least 1− δ and has
query complexity of O(n ln b ln b

δ
).

Proof. The method to prove FASTPROB’s approximation ratio
is similar to the proof of PROB. Due to space limit and for the
sake of completeness, we provide the proof of FASTPROB’s
ratio in Appendix [Nguyen and Thai, 2022].

In term of query complexity, it is trivial that the number of

queries of FASTPROB is
∑b−1

t=0 |Rt|. We have:

b−1
∑

t=0

|Rt| ≤
∑

i∈[k]

bi−1
∑

j=0

ni − j

bi − j
ln

b

δ
(13)

= ln
b

δ

(

∑

i∈[k]

bi + (ni − bi)

bi−1
∑

j=0

1

bi − j

)

(14)

≤ b ln
b

δ
+ ln

b

δ

∑

i∈[k]

(ni − bi) ln bi ≤ O(ln
b

δ

∑

i∈[k]

ni ln bi)

(15)

≤ O(n ln
b

δ
ln

∑

i∈[k]

nibi
n

) ≤ O(n ln b ln
b

δ
) (16)

where Equ. (16) is from the fact that log x is a concave
function, so

∑

i αi log xi ≤ logαixi if
∑

i αi = 1; and
∑

i∈[k]
nibi
n

≤
∑

i∈[k]
ni

n

∑

i∈[k] bi = b.

5 GREEDY-like Algorithms

We re-study the theoretical performance guarantee of two al-
gorithms, GREEDY and THRGREEDY. Our analysis provides
better ratios of GREEDY than existing works on matroid con-
straint [Gatmiry and Gomez-Rodriguez, 2018] or submodular
objective function [Friedrich et al., 2019].

In general, GREEDY works in round and at each round, an
element of maximal marginal gain, whose addition does not
violate partition matroid constraint, is added to the obtained
solution. The algorithm terminates when the obtained solution
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Algorithm 3 GREEDY

Input V = V1

⊎

...
⊎

Vk; f ; b1, ..., bk

1: I = [k];S0 = ∅; t = 0
2: while I ̸= ∅ do
3: e, i = argmaxe∈Vi\St;i∈I∆ef(St)

4: St+1 = St ∪ {e}; t = t+ 1
5: if |St ∩ Vi| ≥ bi then I = I \ {i}

Return Sb

is maximal. THRGREEDY, on the other hand, works by always
keeping a threshold τ , which bounds the maximum marginal
gain to the objective by any non-selected elements. The al-
gorithm runs in rounds; at each round, any element with a
marginal gain at least τ will be added to the solution if it does
not violate the partition matroid constraint. After each round,
τ is decreased by a factor 1 − ϵ in order to guarantee new
elements can be added to the solution at successive rounds.
The algorithm continues until the obtained solution becoming
a maximal set or the threshold is below a value defined by
ϵ and b. GREEDY’s pseudocode is presented by Alg. 3 and
THRGREEDY’s is Alg. 4.

Theorem 3. GREEDY obtains a min( 1

r
(g)
1

, 1

r
(g)
2

)-

approximation solution, where

r
(g)
1 =

γ

1 + γα
r
(g)
2 =

1

α

[

1−
(

1−
αγ

b

)b̂]

and has a query complexity of O(n b).

Theorem 4. THRGREEDY obtains a min( 1

r
(t)
1

, 1

r
(t)
2

)-

approximation solution, where

r
(t)
1 =

γ(1− ϵ)2

1 + γα(1− ϵ)
r
(t)
2 =

1

α

[

1−
(

1−
αγ(1− ϵ)

b

)b̂]

and has a query complexity of O(n
ϵ
ln b).

Due to space limit, full proofs of Theorem 3 and 4 is pro-
vided in Appendix [Nguyen and Thai, 2022].

In case of submodular objective function, r
(g)
2 of GREEDY is

identical to the ratio obtained by [Friedrich et al., 2019]. With

cardinality constraint, r
(g)
2 matches with the ratio of [Bian et

al., 2017], which was also proven to be tight. However, with

b̂/b → 0 (e.g. the input is formed by many partitions), r
(g)
2

and r
(t)
2 approach 0 and become undesirable. In this case,

r
(g)
1 and r

(t)
1 should be a better bound on the performance of

GREEDY and THRGREEDY.

6 Applications and Experimental Results

In this section, we consider two applications of MAXMP:
Boosting Influence Spread and Video Summarization.

6.1 Applications’ Formulation and Bounded
Non-Submodularity Quantities

In Boosting Influence Spread, a social directed graph G =
(V,E) is given, where V represents a set of social network

Algorithm 4 THRGREEDY

Input V = V1

⊎

...
⊎

Vk; f ; b1, ..., bk; ϵ ∈ [0, 1]

1: I = [k];S0 = ∅; t = 0
2: τ = τ0 = maxe∈V ∆ef(S0)

3: while I ̸= ∅ and τ ≥ ϵ(1−ϵ)τ0
b

do
4: for each i ∈ I and e ∈ Vi \ St do
5: if ∆ef(St) ≥ τ then
6: St+1 = St ∪ {e}; t = t+ 1
7: if |St ∩ Vi| ≥ bi then I = I \ {i}

8: τ = τ(1− ϵ)

Return St

users; and E represents friendship between social users in
V . An information will start spreading at a set I ⊂ V of
users. The problem asks for a set S of users to strengthen the
influence spread in order to maximize the number of users
whom the information can reach to.

Boosting Influence Spread under size constraint has been
studied by [Lin et al., 2017]. In their model, each edge e =
(u, v) ∈ E is associated with two weight values p0e, p

1
e (p0e ≤

p1e ≤ 1). The probability v adopts the information from u is
p1e if v ∈ S; p0e otherwise. In this application, f(S) measures
expected number of users the information can reach if S is
selected. The authors has proven that f is monotone non-
submodular; but did not show how close f is to submodularity.
We provide the bound γ′, α′ of γ and α of f as in Lemma 2,
and full proof is provided in [Nguyen and Thai, 2022].

Lemma 2. Given a Boosting Influence Spread instance, let
∆ be the maximum in-degree of the input directed graph. For
any S ⊆ T that |(T \ S) ∩ Vi| ≤ bi ∀i ∈ [k] and u ∈ V \ T :

min
|E′|≤b∆

∏

e∈E′

1− p1e
1− p0e

≤
∆uf(S)

∆uf(T )
≤ max

|E′|≤b∆

∏

e∈E′

p1e
p0e

(17)

With Video Summarization, given a video, the problem
aims to pick a few representative frames from the video which
can contains as much content as possible. The video contains
n frames; each frame is represented by a p-dimensional vec-
tor. Let X ∈ R

n×n be the Gramian matrix of the n resulting
vectors and the Gaussian kernel; i.e. Xij is the value of the
Gaussian kernel between the i-th and j-th vectors. The objec-
tive function is defined as f(S) = det(I +XS), where XS is
the submatrix of X indexed by S; and I is a unit matrix.

f(S) was proved to be supermodular by [Bian et al., 2017],
thus its curvature α = 0. The authors also bounded the weakly
submodular ratio, which is not useful in our algorithms. We
bound the value of γ as in the following lemma, and full proof
is provided in Appendix [Nguyen and Thai, 2022].

Lemma 3. Given a Video Summarization instance, let A =
I +X and λi(M) be the i-th eigenvalue of a positive definite
matrix M in a way that λ1(M) ≥ ... ≥ λrank(M)(M). For

any S ⊆ T that |(T \ S) ∩ Vi| ≤ bi ∀i ∈ [k] and e ∈ V \ T :

∆ef(S) ≥ ∆ef(T )×
λn(A)− 1

λ1(A)− 1

b
∏

i

1

λi(A)
(18)
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Figure 1: Performance in Boosting Influence Spread.
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Figure 2: Performance in Video Summarization

6.2 Settings and Compared Algorithms

With Boosting Influence Spread, we use Facebook dataset
from SNAP database [Leskovec and Krevl, 2014], an undi-
rected graph with 4,039 nodes and 88,234 edges. Since it is
undirected, we treat each edge as two directed edges. For each
edge e = (u, v), p0e = 1

dv
and p1e = 2

dv
where dv is in-degree

of v. Information starts spreading at a node of highest degree.
Due to lack of information, a user is randomly assigned to
a group Vi. The budget is distributed equally to each group,
i.e. b1 ≈ ... ≈ bk ≈ b

k
. The objective is estimated over 100

pre-sampled graph realizations of G.
With Video Summarization, we chose a video of roughly

3.5 minutes. The video is segmented to k equal-length parts;
and the algorithms will pick b

k
frames from each part.

With FASTPROB, we set δ = 0.001, which guarantees
FASTPROB to return solutions almost similar to PROB but be

much better in the number of queries. With THRGREEDY, we
set ϵ = 0.5. Results were averaged over 10 repetitions.

We varied values of b and k; and compare FASTPROB,
GREEDY and THRGREEDY with RESGREEDY [Chen et al.,
2018] and SPLITGROW [Buchbinder et al., 2019]. Although
SPLITGROW’s performance is unknown if f is submodular,
we used it as a heuristic to compare.

6.3 Numerical Results

Fig. 1 and 2 show experimental results of different algorithms
on Boosting Influence Spread and Video Summarization. With
experiments that we varied values of b, we fixed k = 2. With
the one that k is varied, we fixed b = 100 in Boosting Influence
Spread and b = 20 in Video Summarization.

In these experiments, FASTPROB, GREEDY and SPLIT-
GROW performed approximately equal in term of solution
quality while THRGREEDY was always the worst one. Espe-
cially, in Video Summarization, the supermodular objective
function made the marginal gain of non-included elements in-
crease with larger obtained solutions. Therefore, THRGREEDY

easily reached a maximal solution just by one or two iterations
of decreasing threshold. That explained why THRGREEDY

took very few number of queries but has undesirable returned
solution quality. In term of the number of queries, FASTPROB

outperformed GREEDY, RESGREEDY and SPLITGROW.
FASTPROB closed the gap or even surpassed THRGREEDY

to become the best algorithm in the number of queries in the
experiments with fixed b and varied k. In these experiments,
we can see that the number of queries of all algorithms, except
FASTPROB, almost did not change or just slightly decreased
with larger k. FASTPROB’s numbers, on the other hand, de-
creased significantly as k increased. This phenomenon is also
reflected on the theoretical bound of FASTPROB’s complex-
ity. In Equ. (15), FASTPROB’s complexity is bounded by
O(ln b

δ

∑

i∈[k] ni ln bi). With nis are roughly equal (the same

with bis), FASTPROB’s complexity becomes O(n ln b
k
ln b

δ
),

which decreases w.r.t k.

7 Discussion

We proposed PROB and later FASTPROB to solve monotone
non-submodular maximization with partition matroid con-
straint. The experimental results demonstrated that FASTPROB

can perform closely to the best algorithms in solution quality,
and outperform other algorithms (except THRGREEDY- the
worst in solution quality) in the number of queries. Although
there is no superior algorithm in general, FASTPROB should
be considered as the best algorithm in scenarios that scalability
issues are concerned, e.g. algorithms with fast runtime and
relatively high solution quality.

There is still an open question on what is the best algo-
rithm in approximation ratio? PROB’s ratio depends on γ′, α′ -
which can be undesirable in some settings of our experiments.
However, how hard to obtain exact value of γ, α or other
non-submodular quantities is unknown. And computing those
quantities by enumerating all possible S, T that T \S satisfies
partition matroid is too expensive. Therefore, the differences
between GREEDY, THRGREEDY, RESGREEDY and PROB’s
ratio are still remained open.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4812



Acknowledgements

This work was supported in part by the National Science Foun-
dation (NSF) grants IIS-1908594 and IIS-1939725. We’d like
to thank the anonymous reviewers for their helpful feedback.

References
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