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A B S T R A C T   

The accuracy of hydrologic and hydrodynamic models, used to study urban hydrology and predict urban 
flooding, depends on the availability of high-resolution terrain and infrastructure data. Unfortunately, cities 
often do not have or cannot release complete infrastructure data, and high-resolution terrain data products are 
not available everywhere. In this study, we quantify how the accuracy and precision of urban hydrologic- 
hydrodynamic models vary as a function of data completeness and model resolution. For this aim, we apply 
the one-dimensional (1D) and coupled one- and two-dimensional (1D-2D) versions of the U.S. Environmental 
Protection Agency’s Storm Water Management Model (SWMM) in an urban catchment in the city of Phoenix, 
Arizona. Here, we have collected detailed infrastructure data, a high-resolution 0.3-m LiDAR-based digital 
elevation model, and catchment properties data. We tested several model configurations assuming different 
levels of (i) availability of stormwater infrastructure data (ranging from 5% to 75% of attribute-values missing) 
and (ii) terrain aggregation (i.e., 4.6 m and 9.7 m). These configurations were generated through random Monte 
Carlo sampling for SWMM 1D and selective sampling with four cases for SWMM 1D-2D. We ran simulations 
under the 50-year return period design storm and compared simulated flood metrics assuming the highest- 
resolution and complete data model configuration as a reference. The study found that the model may over or 
underestimate flood volume and duration with different levels of missing data depending on the parameters — 
roughness, diameter or depth, and that model performance is more sensitive to missing data that is downstream 
and closer to the outfall as opposed to missing data upstream. Errors in flood depth, area and volume estimation 
are functions of both the data completeness and model resolution. Missing feature data leads to overestimation of 
flood depth, while lower model resolution results in underestimating flood depth and overestimating flood extent 
and volume.   

1. Introduction 

Urban flooding is a natural hazard impacting public health, envi
ronmental quality and the economy (Rahmati et al., 2020). Although the 
national-level economic and social costs of urban flooding in the U.S. are 
not routinely recorded, past flood events have resulted in significant 
property damage and casualties (The National Academy Press, 2019; 
University of Maryland and Texas A&M University, 2018). For example, 
urban flooding in Cook County, Illinois resulted in flood losses at a cost 
of $660 million between 2007 and 2011 (Festing et al., 2014). Addi
tionally, a 1000-year rainfall event in Ellicott City, Maryland in May 
2018 caused over one billion dollars in damages, and heavy rainfall in 
the metropolitan Detroit area in August 2014 resulted in over $1.8 
billion in damages (University of Maryland and Texas A&M University, 

2018). Damages of urban flooding have been also documented outside of 
U.S., including in Copenhagen, Denmark in July 2011; Catania, Italy in 
October 2018 (Prokić et al., 2019); Chennai, India in November and 
December 2015 (Nithila Devi et al., 2019); Ho Chi Minh, Vietnam in 
November 2018 (Leitold et al., 2021); Beijing, China in July 2012 (Jiang 
et al., 2018); and Nagoya City, Japan in Autumn 2020 (Tanaka et al., 
2020). 

Unfortunately, the risk of urban flooding will likely increase world
wide because of intense urbanization and climate change. Urban growth 
results in a conversion of natural land into impervious areas, which in 
turn increases runoff and reduces infiltration if proper drainage systems 
are not put in place. Global warming will likely lead to more intense and 
frequent extreme precipitation (Farris et al., 2021; Jung et al., 2011; 
Moftakhari et al., 2015; Wehner et al., 2017; Zhang et al., 2018). Climate 

* Corresponding author. 
E-mail address: ashres15@asu.edu (A. Shrestha).  

Contents lists available at ScienceDirect 

Journal of Hydrology 

journal homepage: www.elsevier.com/locate/jhydrol 

https://doi.org/10.1016/j.jhydrol.2022.127498 
Received 28 July 2021; Received in revised form 2 December 2021; Accepted 17 January 2022   

mailto:ashres15@asu.edu
www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2022.127498
https://doi.org/10.1016/j.jhydrol.2022.127498
https://doi.org/10.1016/j.jhydrol.2022.127498
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2022.127498&domain=pdf


Journal of Hydrology 607 (2022) 127498

2

projections for the U.S. estimate that the intensity of the heaviest 1% of 
precipitation events will likely rise across most regions under both in
termediate and worst-case climate change scenarios of Representative 
Concentration Pathway (RCP) 4.5 and RCP 8.5, with the highest pro
jected increase of 40% by 2100 (compared to 1986–2015) under RCP 
8.5 in Midwest and Northeast (The National Academy Press, 2019). 

One of the major flood-generating mechanisms in cities is pluvial 
flooding, which occurs when the precipitation intensity exceeds infil
tration rate and drainage capacity (Rosenzweig et al., 2018). Pluvial 
flooding is particularly impactful in urban areas because of the lower 
threshold for runoff generation and the shorter time of concentration. 
This flood mechanism has received less attention compared to fluvial or 
coastal flooding (Rosenzweig et al., 2018). For example, the Federal 
Emergency Management Agency’s (FEMA’s) flood hazard analysis and 
mapping focus only on riverine and coastal flooding (The National 
Academy Press, 2019). In a study by the First Street Foundation (2020), 
which included pluvial flooding among other flooding mechanisms, the 
number of properties across the U.S. with substantial flood risk (defined 
as inundation>1 cm during 1 in 100 year flood) was found to be 1.7 
times FEMA’s estimate, confirming the importance of pluvial flooding. 
In the U.K., it has been estimated that damages from urban pluvial 
flooding in 2008 exceeded $0.36 billion, which is a lower cost than the 
$0.8–$2.8 billion calculated for fluvial and coastal flooding; however, 
future projections indicate that losses due to urban flooding will become 
similar to or higher than those of other flooding types by 2080 (Dawson 
et al., 2008; Hall et al., 2005). 

The simulation of pluvial flooding requires capturing a range of 
hydrologic and hydraulic processes, including rainfall-runoff trans
formation, overland flow routing, and pipe flows. For this aim, hydro
logic models with different levels of sophistication have been coupled to 
hydraulic models simulating water flow in the drainage networks and on 
the land surface (Guo et al., 2020; Leandro et al., 2009; Noh et al., 2018; 
Seyoum et al., 2012; Vojinovic and Tutulic, 2009). A key requirement to 
increase the predictive skill of these coupled hydrologic-hydraulic 
models is to incorporate small-scale heterogeneities of terrain and 
stormwater infrastructure into the simulations (Fewtrell et al., 2008; 
Gallegos et al., 2009). This is because the impacts of pluvial flooding 
vary significantly at small spatial scales. For example, six inches of 
moving floodwater can knock down a pedestrian and cause vehicles to 
loose traction (National Weather Service [NWS], n.d.); in urban areas, 
where topography is highly heterogeneous, such changes in elevation 
can happen over short distances. While recent advances have been made 
towards model improvement and coupling (Cantone and Schmidt, 2011; 
Chang et al., 2015; Henonin et al., 2013; Leandro and Martins, 2016; 
Nanía et al., 2015; Wu et al., 2018), the sources of errors in simulations 
of urban flooding have not yet been fully explored because of uncer
tainty and limited availability of geospatial data (terrain, soil, land 
cover, and infrastructure) and high-resolution precipitation forcing 
required to setup and run the simulations. 

Of particular importance to increase accuracy of pluvial flooding 
prediction is the integration of infrastructure and high-resolution terrain 
data (Association of State Floodplain Managers [ASFPM], 2020). Infra
structure data includes all components of built stormwater systems, such 
as catch basins, manholes, conduits, detention and storage basins, dry
wells and outfalls, whereas terrain data includes urban features such as 
buildings, street curbs, overpasses and bridges. Unfortunately, these 
datasets are often incomplete or of poor quality and data collection ef
forts are resource intensive. Important characteristics of such spatial 
data quality are completeness, accuracy, consistency and current-ness 
(Fox et al., 1994; Veregin, 1999). Data completeness as defined by Fox 
et al. (1994) is the degree to which a data collection has values for all the 
attributes of all the features. Guptill and Morrison (1995) and Veregin 
(1999) further characterize data completeness as feature completeness, 
attribute completeness and value completeness. For example, in a 
stormwater database, features include components like conduits, catch 
basins, and manholes; each feature has attributes, such as material or 

diameter for conduits; and attributes have numerical or categorical 
values. In a complete stormwater database, all the system components as 
features; and its attributes and values are present. 

Model development is also challenged by the limited availability of 
high-resolution spatial data (e.g., 1-m digital elevation models or 
DEMs), and the need to balance computational cost with accuracy re
quirements. The resolutions of commonly available DEMs (e.g., 10 m in 
U.S. (United States Geological Survey [USGS], n.d.)) do not sufficiently 
capture fine details of urban infrastructure features such as walls, curbs, 
steps and storm drains, thus preventing the simulation of overland flow 
in complex urban environments (Fewtrell et al., 2008; Krebs et al., 2014; 
Leitão et al., 2016; Sampson et al., 2012). Past studies have cautioned 
that the ideal spatial resolution is between 2 and 5 m for the effective 
representation of urban features (Arrighi and Campo, 2019; Dottori 
et al., 2013). The advent of airborne Light Detection and Ranging 
(LiDAR) has increased the availability of high-resolution (less than 1 m) 
topographic data that would allow incorporating small-scale heteroge
neities found in urban basins into hydrologic models (Bates et al., 2003; 
Bermúdez and Zischg, 2018; Fewtrell et al., 2011; Noh et al., 2018; 
Sampson et al., 2012). Despite this promising capability, LiDAR prod
ucts are available at limited sites, are expensive to acquire, and require 
significant computational resources to be processed and used in nu
merical models. More insight is then needed to weigh costs and benefits 
of investment in LiDAR for urban flood modeling. 

Previous studies have evaluated the impacts of simplifying the model 
representation of certain elements (Krebs et al., 2014), and prior 
research demonstrates that select aggregation may have limited impacts 
on model results. For example, Elliot et al. (2009) assessed different 
aggregations of detention tanks and bioretention, as well as their asso
ciated catchment areas, finding that there is little effect on predictions of 
mean flow, baseflow and water quality at the outlet. However, while 
aggregation of stormwater control features allows modeling water bal
ance or outflow hydrograph at a lower computational cost, this 
approach provides limited information on location, duration, and extent 
of the flood, which is crucial when modeling the impacts of pluvial 
flooding. Thus, additional research is needed to assess the feasibility of 
aggregation for spatially distributed street flooding estimation. 

As hydrologic-hydraulic models for urban flood modeling are critical 
to flood prediction, infrastructure design, and adaptation planning, it is 
crucial to also understand the impact of different sources of error and 
uncertainty (Pathak et al., 2015). For engineers and planners developing 
asset management plans (Harvey et al., 2017), designing flood mitiga
tion infrastructure (Kabisch et al., 2017; Kuriqi and Hysa, 2021) or 
rehabilitating drainage structures (Martínez et al., 2018), accurate hy
draulic information of the drainage system as well as communication of 
output uncertainty is vital. Several past studies on different catchment 
scales focused on, (1) quantifying the rainfall error uncertainty on hy
drologic model outputs arising from temporal resolution (Lyu et al., 
2018), data products such as satellite rainfall (Bitew and Gebremichael, 
2011) or radar rainfall error propagation (Hjelmstad et al., 2021; Sharif 
et al., 2002); (2) quantifying effect of DEM resolution on urban flood 
modeling (Leitão et al., 2009; Leitão and de Sousa, 2018). However, 
little is known about modeling errors arising from missing infrastructure 
data (e.g., missing features or components) or properties of these fea
tures (e.g., missing attributes), and standard approaches on how to deal 
with data gaps are nonexistent. Further, the effect of DEM and model 
resolution in conjugation with completeness of infrastructure features in 
coupled 1D-2D model is not fully understood or quantified. 

This study aims at addressing two research questions motivated by 
the challenges in pluvial urban flood modeling described above, 
including: (1) How do the proportion and spatial distribution of infra
structure data gaps impact model performance? and (2) How does the 
spatial resolution of the terrain data interact with infrastructure data 
gaps to impact the model performance? Model performance is defined as 
accuracy and precision in modeling flood flow rate, volume, duration, 
and extent. To examine these research questions, we simulated pluvial 
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flooding in an urban catchment in the city of Phoenix, Arizona using a 
semi-distributed, coupled hydrological-hydraulic model based on the U. 
S. Environmental Protection Agency’s (EPA) Storm Water Management 
Model. We first explored the effect of missing data (i.e., attribute–value 
of parameters) using the one-dimensional rainfall-runoff and pipe flow 
model (SWMM 1D). We then examined the combined effect of model 
resolution (i.e., high and low model resolution) and data completeness 
(i.e., missing stormwater features) using the coupled 1D-2D model 
version (SWMM 1D-2D). In sum, our objectives are to assess model error, 
bias and uncertainty arising from missing infrastructure attribute data; 
and to investigate the combined effect of infrastructure feature data gaps 
and coarsening model resolution. 

2. Study area, data collection and processing 

To answer our research questions, we focus on an urban catchment in 
the city of Phoenix, Arizona, since the city faces periodic pluvial floods 
and the required infrastructure data are complete and accessible 
(Fig. 1a). Phoenix is the capital of the state and the main city of one of 
the largest metropolitan regions in the U.S., with a population of 
approximately 4.5 million people. It is in central Arizona and the 
northeastern Sonoran Desert, downstream of the confluence between 
the Salt and Verde Rivers. According to the Köppen classification, the 
climate is hot desert or arid (BWh) with extreme hot summers and mild 
short winters. The average yearly precipitation is 204 mm, while the 
mean temperature is 24 ◦C (Mascaro, 2017). Climate is characterized by 

two main seasons that influence the rainfall regime. The first includes a 
summer period from July to September that is dominated by the North 
American Monsoon, when convective activity leads to diurnally modu
lated, localized thunderstorms with short durations (less than 1h) and 
high rain intensity (Balling and Brazel, 1986). The second season, which 
ranges from late October through March, is dry and occasionally inter
rupted by cold fronts, causing widespread storm systems with low-to- 
moderate rainfall intensity and relatively longer durations of up to a 
few days (Sheppard et al., 2002). Monsoonal thunderstorms cause se
vere flash flood events in the region, though other storm types can also 
trigger flooding. For example, in September 2014 the remnants of 
Hurricane Norbert triggered pluvial flooding, inundating major road
ways throughout the valley (NWS, 2014). 

In central Arizona, the spatial variability of annual, seasonal and 
extreme rainfall is moderately to significantly controlled by terrain, 
which varies from 220 to 2,325 m above mean sea level (MSL) (Mascaro, 
2020, 2018, 2017). The topography of Phoenix is generally flat. The 
urban form is characterized by a street pattern running in precise grids, 
and such is the stormwater infrastructure layout. Our study catchment 
has a total area of 2.4 km2. The catchment runoff drains to the south of 
the main outfall into the Salt River (Fig. 1b). The soil type distribution in 
the study catchment is presented in Table S1. The weighted average 
imperviousness relative to the discretized sub-catchments’ area is 
71.24% while maximum is 99% (Table S2). 

The summary of data used in this study is shown in Table 1 and 
Fig. 2. Table 1 classifies data as vector, raster, or point cloud. These data 

Fig. 1. (a) Location of the City of Phoenix and (b) study catchment with complete stormwater infrastructure data (referred to as the ground truth data set).  
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are either raw, processed by the authors for this study or secondary data 
obtained from the noted source. Fig. 2 shows the layers of spatial data 
required to build SWMM 1D-2D models. SWMM 1D model also utilizes 
the same layers without terrain data layers, namely building and mesh 
grids. 

Stormwater infrastructure data with complete features and attribute- 
values is critical to build the hydrologic-hydraulic model and simulate 
catchment behavior. The geodatabase for the infrastructure components 
in Phoenix is stored and updated at irregular intervals by the Phoenix 
Public Works Department. We obtained the infrastructure data, which is 
not publicly available, from the Public Works Department in 2019. To 
ensure that there are no missing data or inconsistencies in the GIS 
database, we verified through field visits that surface infrastructure 
features were properly located. The stormwater infrastructure data for 
the study catchment includes 430 catch basins to collect stormwater 
runoff; 613 manholes and other nodes which connect upstream and 
downstream conduits; 1,091 conduits with attributes of material, year 
built, depth, slope, shape and size; 26 drywells which infiltrate storm
water and are usually present in flat topography; and 1 major outfall 
where stormwater drains to the Salt River. The details of stormwater 
components in our study catchment are shown in Figs. 1b and 2a. 

Following the definition of data completeness by Guptill and Mor
rison (1995) and Veregin (1999), in this study we characterize data 

Table 1 
Data used in this study.  

Data Data type Source 

Stormwater 
infrastructure data 

Vector 
(Secondary 
data) 

Phoenix Public Works Department and 
Flood Control District of Maricopa 
County 

LiDAR point cloud 
data 

Point cloud 
(Raw data) 

USGS 3D Elevation Program (USGS, n. 
d.) and Arizona State University (ASU) 
Geo Spatial hub database 

Digital Elevation 
Model (DEM) 

Raster 
(Processed 
data) 

LiDAR point cloud dataset (ASU, 2018) 

Digital Surface 
Model (DSM) 

Raster 
(Processed 
data) 

LiDAR point cloud data (ASU, 2018) 

Soil types and 
parameters 

Vector 
(Secondary 
data) 

United States Department of Agriculture 
– Natural Resources Conservation 
Service, Web Soil Survey database ( 
USDA-NRCS, n.d.); Arizona Department 
of Transportation, Highway Drainage 
Design Manual (ADOT, 2014) 

Urban 
imperviousness 
data 

Raster 
(Secondary 
data) 

National Land Cover Database, Multi- 
Resolution Land Characteristics 
Consortium (MRLC, n.d.)  

Fig. 2. Spatial data sets used to develop the SWMM 1D-2D model, (a) Stormwater infrastructure data, (b) ground-based DEM, (c) 2D mesh grid, (d) building layer, (e) 
soil types, and (f) imperviousness. 
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completeness as feature completeness, which refers to the known presence 
and location of all stormwater infrastructure components, and attrib
ute–value completeness, which refers to known attributes and values of 
each component. Accuracy can also be assessed for both features and 
attribute-values. Feature accuracy refers to whether the feature type and 
location are correct, while attribute–value accuracy refers to whether 
infrastructure attributes (e.g., diameter) are correct. This study uses the 
single most current (and thus consistent) infrastructure dataset; there
fore, this analysis does not focus on data consistency nor current-ness. 
Here, we assume that our field-verified infrastructure data set is both 
complete and accurate. We then refer to this infrastructure dataset as the 
ground truth and the corresponding model built as the ground truth 
model. 

Point cloud LiDAR data were available as a terrain data with 0.3 m 
spacing for the City of Phoenix (ASU, 2018). Only the point cloud data 
with return points excluding buildings and vegetations were selected 
(using the LAS filter and create LAS dataset geoprocessing tool in ArcGIS 
Pro) to create a ground-based DEM (Fig. 2b) that includes the details of 
street level and curbs. Since the use of the 0.3-m resolution DEM is 
computationally too intensive for 2D overland flow computations, a 4.6- 
m resolution DEM was also generated to create the 2D model (Fig. 2c). In 
addition to the DEMs, we created a 0.3-m Digital Surface Model (DSM) 
that includes buildings (Fig. 2d) but not trees (as trees do not impede 
water flow throughout their full canopy area) in order to delineate the 
watershed. The buildings act as an impermeable obstruction layer in 
SWMM 1D-2D model. 

Data on the catchment soil types and properties (e.g., suction head, 
saturated hydraulic conductivity; Fig. 2e) were obtained from the Ari
zona Department of Transportation (ADOT, 2014). Urban impervious
ness data from 2016 with a resolution of 30 m was used as seen in Fig. 2f 
(MRLC, n.d.). The time series of design storm for a 1/50 annual ex
ceedance probability with 45-min duration and 5-min intervals was 
created from National Oceanic and Atmospheric Administration 
(NOAA) Atlas 14 point precipitation frequency estimates (NOAA/NWS, 
n.d.) using an alternating block method (Chow et al., 1998). This study 
primarily focuses on extreme flood estimation rather than infrastructure 
design; thus, a higher return period was chosen. This design storm was 
used as the input for all simulations. We selected a storm duration of 45 
min equivalent to the time of concentration for the catchment. 

3. Methodology 

In the following sections we describe the development of the semi- 
distributed hydrologic-hydraulic model using 1D and coupled 1D-2D 
approaches. We then present the algorithm to fill attribute–value data 
gaps and the Monte Carlo sampling approach for attribute–value 
completeness. Lastly, we describe the selective sampling approach to 
assess the combined effect of feature completeness and model 
resolution. 

3.1. Hydrologic-hydraulic model 

We used the U.S. EPA’s SWMM version 5.1 (1D model) and 
Computational Hydraulics International (CHI’s) PCSWMM version 
7.3.3095 (coupled 1D-2D model). To execute the model and facilitate 
Monte Carlo sampling, we used the R package ‘swmmr’ version 0.9.1 
(Leutnant et al., 2019). SWMM is a hydrologic-hydraulic modeling tool 
that simulates rainfall-runoff and routing processes for single precipi
tation events or in a continuous fashion in urban or rural catchments. It 
estimates two main processes: i) runoff, which is computed on a 
collection of discretized sub-catchments that generate runoff and pol
lutants due to precipitation; and ii) routing, which is the transport of 
runoff across an underground network of conduits, overland channels 
and other components. SWMM is a semi-distributed model, and it ac
counts for various hydrologic processes such as time-varying rainfall, 
evaporation from standing water, rainfall interception in depression 

storage, infiltration into unsaturated soil layers, percolation into 
groundwater layers, interflow between groundwater and the drainage 
system, non-linear reservoir routing of overland flow and stormwater 
capture by low impact development. The details about theoretical 
background, equations, variables, features and capabilities of SWMM 
can be found in Rossman (2017) and James et al. (2010). 

In this study, we apply two implementations of SWMM: 1) a one- 
dimensional drainage model (SWMM 1D) and 2) a coupled 1D-2D 
model (SWMM 1D-2D) that adds two-dimensional routing of overland 
flow of floodwaters. We used SWMM 1D to test the effect of infra
structure data attribute–value completeness. The 1D model was chosen 
for its faster computation time compared to the coupled 1D-2D model 
and the ability to execute the model from the source code, which enables 
Monte Carlo sampling. SWMM 1D-2D was used to assess the combined 
effects of data feature completeness and model resolution. In practice, a 
large spatial infrastructure data set is rarely 100 percent complete due to 
manual data entry error, compilation error and antiquated data as new 
construction or rehabilitation takes place. However, for this study we 
assume that the data we acquired from the Phoenix Public Works 
Department and verified by walk-through surveys are 100 percent 
complete and accurate. We define this data as the ground truth, where 
all the required features and attribute-values are complete and accurate. 
The ground truth model, built from this data and the highest feasible 
resolution of DEM, serves as the basis for comparing simulations 
described in the next section. 

The hydrologic component of SWMM simulates the rainfall-runoff 
transformation, after accounting for losses, through a non-linear reser
voir model, where the reservoir capacity is maximum depression stor
age. In this model, the study area catchment is discretized into sub- 
catchments to reflect the spatial heterogeneity in topography, 
drainage pathway, land cover and soil characteristics that impact 
rainfall-runoff. We utilized the 0.3-m DSM, consisting of street profiles, 
buildings and general topography, to delineate the watershed and dis
cretize it into smaller sub-catchments with an average area of 2,428 m2 

using the watershed delineation tools of PCSWMM. The hydrologic 
model input is precipitation, and the output from each sub-catchment 
are surface runoff and losses due to infiltration and evaporation. Sur
face runoff is defined as the excess volume above the depression storage, 
which considers the initial abstraction such as surface ponding, inter
ception by flat roofs, vegetation and surface wetting, which eventually 
evaporates or infiltrates following the storm. Depression storages of 
1.25 mm for impervious surfaces and 2.5 mm for pervious surfaces, as 
suggested by the American Society of Civil Engineers (1992), were 
assigned for each sub-catchment. To calculate losses due to infiltration, 
we selected the Green-Ampt infiltration model implemented in SWMM 
with parameters derived from soil types (ADOT, 2014) which are pre
sented in Table S1. Here, discrete event simulation for the 50-year return 
period, 45-min design storm for downtown Phoenix (NOAA/NWS, n.d.) 
is applied to force all of the models. We assumed a constant evaporation 
rate of 0.76 cm/day (Western Regional Climate Center [WRCC], n.d.) 
corresponding to the average during monsoon season. The parameters 
used for the stormwater system are summarized in Table S3. The gov
erning equations and additional details for the hydrologic processes as 
employed in the SWMM can be found in Rossman (2017) and James 
et al. (2010). 

The hydraulic component of SWMM uses the dynamic wave routine 
that solves unsteady flow through the network of conduits and nodes, 
using the conservation of mass and momentum equations. Dynamic 
wave routing solves the complete one-dimensional Saint-Venant flow 
equations, whose details can be found in Rossman (2006), which ac
count for channel storage, backwater effects, entrance/exit losses and 
pressurized flow. Flooding in the system occurs when the hydraulic 
grade line at a node exceeds the threshold of available depth (i.e., rim 
elevation). The flooded water in SWMM 1D is accounted as flooding 
losses which will not re-enter the drainage network unless ponding is 
allowed. The surcharge depth for manholes was assigned as 0.4 m which 
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is equivalent to the resistance of manhole lid cover weight. The pa
rameters for the sub-catchments and infrastructure are extracted 
directly from the attribute-values in the infrastructure database, soil 
data or DEM. These parameters include rim elevation, invert elevation 
and depth for catch basin and manholes junctions or nodes; roughness, 
length, diameter, cross-section and slope for conduits; invert elevation 
for outfalls and drywells nodes; and area, slope, imperviousness and 
Green-Ampt parameters for sub-catchments. The relevant outputs from 
the hydraulic component include: (1) time series of flooding and flow at 
all nodes and conduits respectively, (2) flood loss time series (i.e., flow 
exiting the drainage system when the hydraulic grade line reaches the 
surface) at all nodes and in aggregate (hereafter, referred to as system 
flooding), and (3) duration of flooding and surcharge at all nodes. The 
duration of node flooding is the length of time when the hydraulic grade 
line is above the rim elevation for a particular node. To maintain nu
merical stability and remove continuity error, a time step of 1 s was 
selected for both SWMM 1D and 1D-2D models. 

For 1D-2D coupled modeling we used PCSWMM due to its additional 
capability to simulate overland flood routing and associated flood 
extent, depth, and duration in two dimensions. This model extends the 
fully dynamic 1D approach in EPA’s SWMM5 to 2D free surface flow 
using a non-uniform mesh that captures the topography, geometry and 
built structures. SWMM 2D domain solves SWMM5 dynamic wave 
routing with or without inertial terms; ignoring inertial terms creates 
diffusive wave routing, which is virtually indistinguishable from full- 
term dynamic wave solution (Finney et al., 2012; James et al., 2013). 
In the 2D domain, the overland surface is discretized into a square mesh 
and represents each 2D cell with a 2D node or a junction, where invert 
elevation for these nodes is assigned the ground surface elevation or rim 
elevation of adjacent coupled 1D nodes (Finney et al., 2012; James et al., 
2013). In the 2D domain of 1D-2D coupled model, grid cells require 
slope and roughness parameters. SWMM 1D-2D uses the same sub- 
catchment delineation and catchment properties, as well as hydraulic 
network and hydrologic properties, as described above for SWMM 1D. 
The catch basin nodes are coupled with 2D mesh cells using orifices in 
1D-2D integrated model, such that the volume of water exiting an 
orifice, when flooding occurs, is routed over the 2D mesh cells. This 
excess flow can pond on the overland grid cells and re-enter the drainage 
network when the hydraulic grade subsides below ground elevation. 

3.2. Random sampling of infrastructure data 

First, we tested the significance of infrastructure data completeness 
on the model. A one-at-a-time sensitivity analysis was conducted to 
identify the important infrastructure parameters using a built-in tool 
available in PCSWMM (Finney and Gharabaghi, 2011). Sensitivity 
analysis assesses the rate of change in response of the model with respect 
to changes in the model input parameter and the relative importance of 
parameters to have more accurate values, as measured by the sensitivity 
gradients (James, 2003). Details of sensitivity analysis are presented in 
Section S3 of the supplementary material. We selected five 
infrastructure-related parameters from stormwater components: conduit 
diameter, node depth (i.e., maximum distance from invert elevation to 
rim elevation), conduit roughness, inlet offset (i.e., the distance from a 
conduit’s inlet end to the connected node invert elevation), and outlet 
offset (i.e., the distance from a conduit’s outlet end to the connected 
node invert elevation). All parameters are sampled uniformly within 
lower to higher parameter values given by an uncertainty level of 50% as 
described in Section S3. Out of the five parameters tested, we found that 
the three most sensitive parameters are conduit roughness, conduit 
diameter and node depth (hereafter, referred to as roughness, diameter 
and depth), as shown in Table 2 where larger absolute values of the 
sensitivity gradient indicates more sensitive parameters. 

To test the impact of missing attribute–value data on the model, we 
developed an algorithm to randomly sample conduits and nodes, 
remove values of roughness, diameter and depth in these selected 

features, and estimate these missing attribute-values using the remain
ing data and design standards. The algorithm enables us to test many 
combinations of missing attribute-values using Monte Carlo sampling. 
The replacement component of the algorithm is essential as a SWMM 
model cannot be run without specifying all parameter values. The 
replacement criteria for missing attribute-value is implemented in 
accordance with the available design standards and modeling practice. 
The detailed process algorithm is described below, and the overall 
method for random sampling is illustrated in Fig. 3. 

The algorithm to sample roughness, diameter and depth, illustrated 
in Fig. 3, develops and runs a new SWMM 1D model for each iteration N 
= 100 times by randomly removing a specified percentage of each of the 
three parameters identified above, then filling these gaps based on the 
remaining information available. The process can be summarized into 
three main steps:  

1. Randomly select the number of conduits and nodes corresponding 
with the percent of missing attribute-values specified (i.e., m number 
of features to be sampled per parameter). For the selected sample, 
delete existing roughness, diameter, or depth.  

2. Replace deleted attribute-values with an informed estimate. The 
estimation algorithm is specific to the parameter:  
a. Roughness: identify the upstream pipe and apply its roughness. If 

the upstream roughness attribute is missing, then use the down
stream roughness. If both upstream and downstream roughness 
are missing, randomly sample an empirical distribution function 
(EDF) of roughness from available information (i.e., conduits with 
known roughness). The empirical distribution of roughness in the 
ground truth model is presented in Fig. S2 of the supplementary 
material (Section S5).  

b. Diameter: identify the upstream pipe and apply its diameter. If the 
upstream diameter attribute is missing, then use the downstream 
diameter. If both upstream and downstream diameters are 
missing, then use the mean diameter of all conduits in the dataset 
with known diameters. 

c. Depth: identify the upstream node and apply its depth. If up
stream depth is missing, then use the depth of downstream 
feature. If both upstream and downstream depths are missing, 
assume a minimum cover of ~ 0.91 m as per the Arizona drainage 
design manual (ADOT, 2014). The node depth information is 
shared by both connected node (or junction) and conduits. Note 
that there are a few conduits with ~ 0% slope in the ground truth 
and randomly sampled models, particularly for shorter length 
conduits, but the overall slope is positive. In addition, elevation of 
the street surface and the rim elevations gradually slope down
ward from upstream to downstream nodes, thus in this particular 
catchment the negative slopes are avoided when sampling depth.  

3. Run SWMM 1D and extract the time series of system flooding and 
duration of flooding (if present) at each node. 

Model accuracy is defined relative to the ground truth model output 
and is quantified by the mean absolute error (MAE) and percent bias 
(PBIAS). The MAE and PBIAS for system flooding (SF in subscript) are 
defined as: 

Table 2 
Sensitivity analysis of infrastructure related parameters.  

Parameter Initial parameter value Mean sensitivity gradient 

Diameter ground truth  −0.270 
Depth ground truth  −0.197 
Roughness ground truth  0.109 
Outlet offset 5 cm  −0.001 
Inlet offset 5 cm  0.000  
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where, yt,j is the simulated flow at each time steps t (t = 1, …, T) for 
the j-th (j = 1, …, N) iterations (where N = 100), and xt is the value 
simulated by the ground truth model. Both MAESF and PBIASSF were first 
computed as the comparison of hydrographs obtained from sampled and 
ground truth models, and then averaged across all 100 iterations. 

For the duration of node flooding, MAE and PBIAS (FD in subscript) 
were computed from the mean and maximum durations of node flooding 
in 100 iterations compared to the ground truth, which is defined as: 

MAEFD =

∑N
j=1

⃒
⃒yj − xj

⃒
⃒

N
(3)  

PBIASFD =

∑N
j=1

(
yj − xj

)

∑N
j=1xj

× 100 (4) 

where, yj is mean (or maximum) duration of node flooding for each j 
= 1 to Nth iteration (where N = 100), xj is the mean (or maximum) 
duration of node flooding in the ground truth model. 

Model uncertainty describes the degree of variation in model output 
across sampled simulations and is quantified by the relative interquartile 
range (RIQR), which is defined as: 

RIQR =
q0.75 − q0.25

q0.5
× 100 (5) 

where, q0.75, q0.25, and q0.5 represent upper quartile, lower quartile, 
and median, respectively, for the empirical distributions of either 
maximum system flooding (i.e., peak flow) or duration of flooding 
averaged (or maximum) across all nodes. Precision is referred to as the 
inverse of uncertainty. 

The significance of missing data was tested in terms of the level and 

location of missing data. For different levels of missing data (5%, 25%, 
50% and 75%), the number of features sampled, m is the corresponding 
percentage of missing data multiplied by the total number of relevant 
features (i.e., conduits or nodes). Then, to assess the impact of the 
location of missing data, we assumed that 50% of data is missing and 
divided the catchment into two regions, the upstream and downstream. 
The 50% missing data level was selected because, as shown later in the 
results, model error increased consistently across parameters with 
increasing missing data until 50% when sampling the full catchment; 
beyond 50% the pattern was mixed. The upstream and downstream 
features were identified by conditional selection of features that are 
above or below the median distance from the main outfall for the up
stream or downstream region, respectively. To test the influence of the 
location of missing data, the random sampling method described above 
with the same N = 100 iterations was repeated with the removed 
attribute-values limited to the upstream and then downstream regions of 
the network. For random sampling, only the SWMM 1D model was used 
since the computation time of SWMM 1D-2D is too long to perform many 
runs. The SWMM 1D-2D model was reserved for selective sampling, as 
described next. 

3.3. Selective sampling 

We applied selective sampling of SWMM 1D-2D models to assess the 
impact of different combinations of feature data completeness and 
model resolution on model performance. Model resolution for the semi- 
distributed model is defined in terms of the resolutions of the 2D mesh 
grid and the DEM utilized to create such a grid. Four selective sampling 
models were created (Table 3). 

In the low-resolution models (HDLM and LDLM), slopes for the dis
cretized sub-catchments were assigned from the coarser-resolution, 9.7- 
m DEM to account for the fact that high-resolution terrain could not be 
available in all places and that the most commonly available DEM res
olution from USGS is 1/3rd arc second (~10 m). Although two of the 
selective sampling models (LDLM and LDHM) have missing features or 
incomplete infrastructure data, the attribute-values for all remaining 

Fig. 3. Overview of the random sampling process.  
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features are the same as the ground truth. The selective sampling results 
were compared in terms of flood depth, volume and extent. Flood depth 
refers to the maximum water level observed in the 2D mesh cells at the 
time of peak flooding. Flood volume refers to the sum of all flooding 
fluxes from 1D nodes to 2D grid cells through orifices integrated over the 
whole flood period. Flood extent refers to the sum of the areas of 2D 
mesh cells with floodwater > 0 mm at the time of peak flooding. 

4. Results and discussion 

This section first presents simulation results from Monte Carlo 
sampling of SWMM 1D model recounting the effects of different levels 
and locations of incomplete data on modeled peak flood flow and 
duration. Then, we present SWMM 1D-2D modeling results for four se
lective sampling models characterized by combinations of complete or 
incomplete infrastructure data and high or low model resolution, 
particularly focusing on flood depth, extent and volume. 

4.1. Evaluation of random sampling 

The impacts of missing attribute-values for the three selected model 
parameters on the simulated flooding conditions and metrics are sum
marized in Figs. 4 and 5. Specifically, Fig. 4 shows the distribution of 
simulated flood duration at all nodes for the three sampled parameters 
in 100 Monte Carlo sampling and the ground truth model at different 
percentages of missing attribute-values. Fig. 5 presents boxplots of 100 
Monte Carlo sampling for maximum system flooding (Fig. 5a-c), 
maximum flooding duration (Fig. 5d-f), and average flooding duration 
(Fig. 5g-i) as a function of percent of missing data (hereafter, PMD). 
Table 4 reports error and uncertainty metrics as defined in Section 3.2. 
For the clarity of exposition, these figures and table are discussed in the 
following three sub-sections focusing separately on sampling roughness, 
diameter, and depth. Finally, in the last subsection, we illustrate the 
effect of missing attribute-values at upstream and downstream portions 
of the basin for PMD = 50% for the three parameters. 

4.1.1. Effect of roughness 
We begin by discussing Fig. 4, where the distribution of flood 

duration simulated by the ground truth model is displayed by a red 
curve, whereas the ensemble simulations of 100 iterations for different 
levels of missing data are shown by grey curves. The ground truth model 
predicts that 564 nodes will be flooded for a varied duration from 0.01 to 
1.03 hr, or an overall average duration of 0.21 hr. The density plot for 
ground truth (Fig. 4) shows the number of flooded nodes decreases 
rapidly for durations up to 0.2 hr, rises slightly until 0.5 hr, and then 
decreases at a lower rate up to about 1 hr. When only 5% of the 
roughness data are missing, the ground truth distribution is well 
captured across the simulations (Fig. 4a). However, as PMD increases 
(Fig. 4b-d.), the Monte Carlo runs simulate slightly higher number of 
nodes that are flooded for 0.01 hr, and slight increase in uncertainty 
observed between 0.1 and 0.5 hr. 

Fig. 5a,d,g and Table 4 show that errors, bias and uncertainty of the 
simulated flood metrics increase only slightly as PMD of roughness in
creases. Bias and uncertainty are low but increase for higher PMD, as 
seen in the peak flooding flow rate (maximum PBIAS of −0.45%, max 
RIQR of 0.27%), maximum duration (maximum PBIAS of −1%, max 
RIQR of 2.94%) and average duration (maximum PBIAS of −1.2%, max 
RIQR of 1.53%). In other words, when the data available on pipe 
roughness decreases, our algorithm designed to replace missing data 
results in low error, bias and uncertainty. This is explained in part by 
algorithm skill and in part by the fact that in the ground truth data the 
majority (90%) of the conduits are concrete (including reinforced con
crete and rubber gasket reinforced concrete pipe, all of which have an 
average roughness of 0.015 sec/m1/3 as presented in the Fig. S2 of the 
supplementary material). Given the shape of this empirical distribution 
the probability of sampling the incorrect roughness is low. Acknowl
edging that other locations will present a greater challenge for sampling 
roughness, we investigated how the PMD for roughness would affect the 
model outputs if the distribution was not dominated by a single conduit 
material. For this we created a hypothetical set of conduits (using the 
same model and holding other parameters constant) where distribution 
of materials is 12% concrete, 51% corrugated metal pipe, and 37% 
smooth plastic (HDPE or PVC). This distribution is valid per the drainage 
design standards (City of Phoenix, 2013) (see Section S5 for details). In 
this hypothetical conduit distribution, we found that error, bias and 
uncertainty are higher but remain moderate at 50% PMD or lower 
(PBIAS less than 5%, RIQR less than 10%, Figs. S3-S4 and Table S4). The 
error associated with different PMD of roughness could be reduced with 
information on the relationship between pipe age, size and material, if 
available. 

4.1.2. Effect of diameter 
The effect of increasing the diameter PMD on the simulated distri

bution of flood duration is (Fig. 4e-h): (1) lower (higher) number of 
nodes for durations between 0.01 and 0.3 hr (0.6 and 0.9 hr), (2) equal 
likelihood of simulating higher or lower number of nodes flooded be
tween 0.3 and 0.5 hr. However, the uncertainty does not increase 
consistently with PMD. The boxplots of the three flood metrics related to 
missing diameter data exhibit a nonlinear behavior (Fig. 5b,e,h). The 
peak system flooding and mean flood duration are overestimated, while 
maximum flood duration is underestimated. This is because the 
maximum flood duration tends to occur at the peripheral nodes (con
nected to 0.3-m diameter pipes) in the network where sub-catchment 
runoff drains into the network, whose downstream conduit’s diameter 
are usually > 0.3 m. Thus, the current sampling algorithm un
derestimates peripheral node surcharge and flooding, and the majority 
of Monte Carlo simulations underestimate maximum flood duration. For 
all metrics, the largest MAE is obtained for PMD = 50%. The largest 
PBIAS for peak system flooding and mean flood duration is also obtained 
for PMD = 50%. The largest uncertainty for peak system flooding is 
obtained for PMD = 25%, for maximum flood duration is obtained for 
PMD = 5%, but for mean flood duration is obtained for PMD = 75% 
while uncertainty range is similar for PMD = 5% to 25% (Table 4). When 
sampling from PMD = 5% to 50%, error increased for all metrics, but 

Table 3 
Four selective sampling models. Note that HD/LD the first two letters refers to 
stormwater data (i.e., HD = high data or complete data, LD = low data or 
incomplete data) and HM/LM refers to model resolution (i.e., HM = high model 
resolution, LM = Low model resolution).  

Sampling model Details on infrastructure DEM 
resolution 
(m) 

2D mesh cell 
resolution 
(m) 

High infrastructure 
data completeness 
and high model 
resolution (HDHM) 

ground truth  0.3  4.6 

High infrastructure 
data completeness 
and low model 
resolution (HDLM) 

ground truth  9.7  9.7 

Low infrastructure 
data completeness 
and low model 
resolution (LDLM) 

Incomplete 
infrastructure model 
where ~ 50% of the 
upstream components 
(features) were missing 
from the ground truth 
model (Fig. S1)  

9.7  9.7 

Low infrastructure 
data completeness 
and high model 
resolution (LDHM) 

Incomplete 
infrastructure model 
where ~ 50% of the 
upstream components 
(features) were missing 
from the ground truth 
model (Fig. S1)  

0.3  4.6  
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uncertainty decreased for peak system flooding and maximum flood 
duration or remained stable for mean flood duration. At PMD = 75%, 
sampling results showed slight improvement in accuracy as shown by 
MAE and observed in Fig. 5b,e,h. These outcomes are a consequence of 
the algorithm adopted to replace missing diameter data. As PMD rises, 
there are more chances that missing diameters are assigned the average 
diameter of the stormwater system (see Fig. 3), so that several peripheral 
pipes (trunk pipes) in the network are oversized (undersized). In the 
ground truth model, 68.7% of conduits are circular 0.3-m pipes, but the 
average is 0.46 m. The average and median diameter are similar in this 
case, and both result in the selection of the same standard conduit size 
(0.46 m or 18 in.). Overestimating small pipes reduces the risk of 
stormwater capacity constraints and surcharge in the periphery of the 
network, which explains decrease in maximum system flooding and 
duration of flooding. In contrast, underestimating large pipes leads to 
increased probability of surcharge along the main conduit, which can 
also lead to surcharge in upstream peripheral conduits. It is also 
important to note that maximum flooding duration does not signify 

maximum flood flow rate or volume, just the longest duration. 

4.1.3. Effect of depth 
The effect of missing depth on the simulated distribution of flood 

duration is that when PMD = 5%, the model simulated more flooded 
nodes between 0.01 and 0.1 hr but lower between 0.2 and 0.5 hr 
(Fig. 4i). While at PMD = 25%, the model is equally likely to simulate 
higher or lower number of nodes that will be flooding between 0.01 and 
0.1 hr, while it mostly simulates lower number of nodes flooded between 
0.2 and 0.7 hr (Fig. 4j). When PMD = 50% or 75%, the model simulates 
lower number of nodes flooded between 0.01 and 0.1 hr, it is equally 
likely to simulate higher or lower number of nodes flooded between 0.1 
and 0.5 hr, but more likely the model simulates higher number of nodes 
flooded between 0.5 and 0.9 hr (Fig. 4k-l). Error in estimating peak 
system flooding and average duration of nodes flooding (as shown by 
MAE and PBIAS) increases monotonically with increasing PMD, with the 
largest error occurring at PMD = 75% (Fig. 5c,i). Lowest precision (or 
highest uncertainty) occurs at different PMD for different metrics 

Fig. 4. Monte Carlo sampling results showing distribution of flood duration at all nodes with observed flooding while sampling (a-d) roughness, (e-h) diameter and 
(i-l) depth at different levels of missing attribute-values. One hundred iterations (grey) are compared with the ground truth model (red). Note: Density plots 
(Wickham, 2009) are smoothed version of frequency polygon based on kernel smoothers useful to compare shape of the distributions; here, default bandwidth 
adjustment of 1 and gaussian kernel was selected. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Fig. 5. Monte Carlo sampling results showing (a-c) maximum system flooding, (d-f) maximum duration of nodes flooding, and (g-i) average duration of nodes 
flooding with different percentages of missing sampling roughness, diameter or depth data. Boxes represent the 25th, 50th and 75th percentiles and whiskers represent 
± 1.5 × IQR of the 25th and 75th percentiles. Horizontal red dash lines represent the values simulated by the ground truth model. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
System flooding metrics of average of MAE and PBIAS (from ensemble simulations vs. ground truth) and RIQR of peak system flooding; and flood duration metrics of 
MAE and PBIAS (from the maximum and mean duration of flooding in ensemble simulations vs. ground truth) and RIQR of maximum and mean duration of nodes 
flooded for random sampling with different percentages of missing attribute-values.  

Sampling System flooding Flood duration (Maximum) Flood duration (Mean) 

Attribute Missing percent (%) MAE (m3/s) PBIAS (%) RIQR (%) MAE (hr) PBIAS (%) RIQR (%) MAE (hr) PBIAS (%) RIQR (%) 

Roughness 5  0.34  −0.00  0.01  0.00  −0.40  0.97  0.00  −0.30  0.74 
25  0.85  −0.04  0.03  0.01  −0.10  0.97  0.00  −0.70  1.08 
50  1.69  −0.15  0.13  0.01  −0.30  1.94  0.00  −0.90  1.50 
75  3.62  −0.45  0.27  0.02  −1.00  2.94  0.00  −1.20  1.53 

Diameter 5  20.48  3.00  1.79  0.15  −9.10  22.73  0.01  4.60  4.00 
25  55.28  9.00  2.26  0.17  −8.80  22.38  0.03  13.20  4.11 
50  62.06  10.14  1.00  0.18  −11.70  11.76  0.03  14.60  4.16 
75  60.84  9.82  0.85  0.16  −15.80  8.43  0.02  11.30  4.46 

Depth 5  1.93  0.24  0.13  0.05  4.00  0.97  0.00  −2.00  3.11 
25  9.76  1.54  0.30  0.21  20.60  5.74  0.01  −3.60  4.93 
50  18.76  2.92  0.61  0.18  18.00  1.65  0.01  5.10  4.89 
75  20.79  3.26  0.44  0.21  20.70  4.76  0.02  10.80  5.87  
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(Table 4). There was an increase in precision for estimating peak system 
flooding when PMD increased to 75% from 50%, and for estimating 
maximum flood duration when PMD increased to 50% from 25% 
(Table 4 and Fig. 5 c,f). At PMD = 5%, the model response does not 
significantly change in terms of peak system flooding (Fig. 5c) or 
maximum duration of nodes flooded (Fig. 5f), except the outliers for 
highest duration of nodes flooded are from few significant nodes being 
assigned average depth whose upstream and downstream depth are 
missing. As PMD increased from 50% to 75% for the peak system 
flooding and from 25% to 75% for maximum duration of node flooding, 
the model accuracy didn’t change much as shown by MAE and PBIAS 
(Table 4). The model simulates lower mean duration of nodes flooded 
when PMD is 5% or 25%, and higher when PMD is 50% or 75% (Fig. 5i). 
This is because when PMD is 5% or 25% it is more likely that upstream 
or downstream depth is present which either increases the depth or 
creates uniform slopes, thus improving the capacity of the network 
causing less surcharge. In contrast when PMD is 50% or 75% it is more 
likely that both the upstream and downstream depth are missing, thus 
minimum depths are assigned creating non-homogenous depth. Thus, 
modelers should be cautious in estimating missing depth. 

In sum, this analysis demonstrates how the missing infrastructure 
attribute-values affects estimation of pluvial flooding under reasonable 
assumptions for filling missing roughness, diameter and depth based on 
available information and design standards (as shown in Fig. 3). While 
estimation could be improved by carefully examining each instance of 
missing data individually, this is often not feasible due to resource 
constraints. This estimation method can quickly estimate many missing 
attribute-values and the specific algorithms can be adjusted to fit local 
design standards and available information. 

4.1.4. Effect of location of missing data 
We also examined how model performance is affected by the location 

of missing data, by assuming PMD = 50% either in the upstream or 
downstream portion of the network, as described in the methodology. 
Fig. 6 shows boxplots of flood metrics derived from N = 100 Monte Carlo 
sampling, while metrics values are reported in Table 5. Figure S5 and 
Table S5 in the supplementary material (Section S5) shows the effect of 
missing roughness in hypothetical conduit distribution. It is apparent 
that lack of information in the downstream section leads to higher error, 
bias, and uncertainty. This means that when missing data is in the 

Fig. 6. Monte Carlo sampling results showing, (a-c) maximum system flooding, (d-f) maximum duration of nodes flooding, and (g-i) average duration of nodes 
flooding while sampling roughness, diameter and depth at 50% PMD from upstream versus downstream locations. Boxes represent the 25th, 50th and 75th percentiles 
and whiskers represent ± 1.5 × IQR of the 25th and 75th percentiles. Horizontal red dash lines represent the ground truth model. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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downstream region of the catchment, the approximation to fill missing 
data that works for upstream attributes may be insufficient. It also es
tablishes the relative importance of a feature’s distance from the outfall, 
indicating that distance from the outfall might be an important input 
into a more sophisticated estimation algorithm. 

Monte Carlo sampling for the three parameters showed varied de
grees of relative importance. Out of the three attributes, missing diam
eter had the most effect in downstream sampling, as it could lead to the 
highest error in system flooding and average duration of nodes flooding. 
Missing diameter in the downstream section led to the lowest model 
precision, as indicated by a RIQR of 0.8% for system flooding and a RIQR 
of 14% (and 4%) for maximum (and mean) duration of nodes flooding 

(Fig. 6 and Table 5). 

4.2. Evaluation of selective sampling 

The following section describes the impact of model resolution and 
infrastructure feature completeness on modeled flood depth, volume 
and extent. Four cases were modeled, each containing either high (0.3-m 
DEM and 4.6-m 2D mesh, HM) or low (9.7-m DEM and 9.7-m 2D mesh, 
LM) resolution and either high (complete information, HD) or low (50% 
of upstream features missing, LD) infrastructure data (see Table 3). To 
visualize differences across the domains, changes in DEM resolution 
resulted in changes in the slope of discretized catchments, as shown in 

Table 5 
System flooding metrics of the average MAE and PBIAS (from ensemble simulations vs. ground truth) and RIQR of peak system flooding; and flood duration metrics of 
MAE and PBIAS (from the mean and maximum durations of flooding in ensemble simulations vs. ground truth) and RIQR of mean and maximum durations of nodes 
flooded for random sampling of missing locations of attribute-values.  

Sampling System flooding Flood duration (Maximum) Flood duration (Mean) 

Attribute Location of missing data MAE (m3/s) PBIAS (%) RIQR (%) MAE (hr) PBIAS (%) RIQR (%) MAE (hr) PBIAS (%) RIQR (%) 

Roughness Upstream  0.87  0.00  0.00  0.00  0.00  0.00  0.00  −0.40  1.20 
Downstream  1.73  −0.10  0.10  0.01  −0.40  1.00  0.00  −0.50  1.10 

Diameter Upstream  7.73  −0.60  0.60  0.2  −19.50  3.70  0.00  1.20  2.70 
Downstream  83.95  10.40  0.80  0.1  −5.50  14.00  0.03  14.50  4.00 

Depth Upstream  5.23  −0.40  0.30  0.3  29.70  6.70  0.00  −1.60  2.60 
Downstream  24.21  2.80  0.40  0.2  18.40  2.50  0.02  8.10  4.00  

Fig. 7. Slope distributions of (a) high-resolution (0.3-m) DEM, (b) low-resolution (9.7-m) DEM and (c) sub catchments in high- and low-resolution models.  
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Fig. 7. It is notable that the slopes of low-resolution models (LDLM and 
HDLM) are much flatter than high-resolution models (LDHM and 
HDHM), which include details of street profile and curbs (Fig. 7c). This 
means that the heterogeneity of surface topography is well-captured by 
high-resolution models, whereas low-resolution models suffer a loss of 
terrain information (Fig. 7a, b). 

Fig. 8 illustrates boxplots of maximum flood depth at each cell in the 
four sampling domains. HDLM has a narrower distribution, while LDHM 
has a wider distribution. The distributions for all four models are posi
tively skewed. All interquartile ranges including maxima showed the 
similar pattern. LDHM resulted in the highest maximum flood depth 
(0.48 m), which is closest to the ground truth (i.e., HDHM) value of 0.45 
m. Low-resolution models LDLM and HDLM underestimated maximum 
flood depth compared to the ground truth at 0.3 m and 0.28 m, 
respectively. Underestimation was most profound when the infrastruc
ture data is complete, but model resolution is coarse (HDLM). 

Fig. 9 illustrates the pluvial flooding fluxes in the four selective 
sampling models for all orifices that connect the coupled SWMM 1D’s 
node with SWMM 2D’s mesh grid cells. The flooding flux is the aggre
gate of all spatially distributed flood fluxes occurring at each timestep. 
All three tested model configurations overestimated the total flooding 
volume compared to the ground truth (HDHM). The overestimation of 
peak flooding flux was observed when there is incomplete data (LDHM 
and LDLM). This makes sense, as features such as inlets and conduits that 
would otherwise collect and convey stormwater are absent from these 
models. However, in the high-resolution model LDHM, the exchange of 
flood water between overland flow and underground drainage was more 
efficient compared to LDLM. Thus, compared with HDHM, LDHM may 
have incomplete data, but its higher resolution results in lower error 
than with LDLM in term of total flood volume. 

The spatial flooding pattern of maximum grid cell flood depth for the 
four selective sampling models is shown in Fig. 10. The high flood 
depths occurred in HM models as highlighted in Box [I] (Fig. 10a,d), 
with the maximum occurring in LDHM (Fig. 10d), and the minimum 
occurred in HDLM (Fig. 10b). However, large flood extent occurred in 
LM models as highlighted in Box [II] (Fig. 10b,c), with the maximum 
occurring in HDLM, as compared to other two HM models. In the case of 
incomplete stormwater infrastructure data, missing features, particu
larly catch basins, preclude a realistic estimate of localized flooding and 
result in overestimates of flood volume, depth and extent. For example, 
as highlighted with Box [III] some of the areas flooded when infra
structure data is incomplete (LDLM and LDHM; Fig. 10c-d), remain dry 
when complete data is available (HDHM and HDLM; Fig. 10a-b). This is 
because in SWMM 1D-2D, overland flow drains to the underground 

drainage system through catch basins and can re-enter the drainage 
system after surcharge condition recedes. Note that this is a key 
distinction between SWMM 1D and SWMM 1D-2D. In SWMM 1D-2D, the 
exchange of flood water takes place between the surface and subsurface 
as the flux in flood volume changes, whereas in SWMM 1D, the water 
leaving the catch basins is counted as flooding and cannot reenter the 
drainage system. For this reason, the maximum system flooding simu
lated in the ground truth SWMM 1D model (89.6 m3/s) is higher than in 
the two-dimensional HDHM model (73 m3/s). Also due to the limitations 
of the general 1D-2D modeling approach as employed in this study, 
where a larger portion of infrastructure data is missing such as an area 
highlighted in Box [IV], LD models will not estimate surface flooding, as 
all catchment areas must be linked to a catch basin. 

Model resolution also plays a role, as overland flood water is more 
effective at re-entering the drainage system in higher-resolution models. 
The maximum depth out of the four selective sampling models was 
observed in the high-resolution models. However, the maximum flooded 
area and flood volume were observed in the low-resolution models, as 
local depressions are smoothed in the coarser DEM and the flood water 
spreads more readily to surrounding grid cells (Fig. 10). The error in 
flood depth, area and volume is the function of both the data 
completeness and model resolution. All surcharged flow spills onto the 
overland surface, represented by the mesh grid, and flows both on the 
surface in 2D and in through the pipe network in 1D. In the high- 
resolution models, higher heterogeneity in elevation allows de
pressions to be better represented, so that there are chances for the 
surface flow to re-enter into the 1D components. This results in lower 
pluvial flood volume compared to the low-resolution models. It is crucial 
for mesh grids in SWMM 1D-2D to represent true topographic features at 
the scale of flooding hazards in order to model the physical process 
accurately. The use of 9.7 m DEM and 9.7 m mesh grids underestimates 
heterogeneity in surface elevation and topographic features relevant to 
pedestrian and vehicle flood hazards. 

Fig. 11 summarizes the hydrological and hydraulic output for each 
scenario. In terms of hydrology, when the model resolution was coarse, 
infiltration and evaporation were slightly overestimated, and runoff was 
underestimated due to the flatter slopes and loss of terrain detail 
(Fig. 11). In term of hydraulics, in the 1D component of SWMM 1D-2D, 
the relative comparison of the total surcharged nodes showed higher 
number of nodes are surcharged in lower resolution model, this is 
because the rim elevation for nodes in HM and LM models are extracted 
from 0.3-m DEM with heterogeneous slope and 9.7-m DEM with flatter 
slope. 

Our results agree with prior work by Ozdemir et al. (2013), which 
found an increase in maximum water depth and decrease in inundation 
extent with increasing DEM resolution. Prior work on DEM properties 
and flood inundation in natural stream reaches by Saksena and Merwade 
(2015) also found that coarser DEM resolution overpredicts the flood 
extent. Further, Hossain Anni et al (2020) used the 1D-2D coupled MIKE 
FLOOD model and found that the absence of detailed stormwater 
infrastructure data significantly overestimated flood water volume. Our 
work aligns with these results but extends this area of research to 
investigate how DEM resolution and data gaps interact (Fig. 11). 

4.3. Research implications and limitations 

Spatial data quality as defined by accuracy, current-ness, complete
ness, consistency (Fox et al., 1994), has been widely recognized to be of 
significant value in research and practice. This is especially true when 
electronic databases are produced, integrated and updated by multiple 
private and public sectors, and the reliance on secondary data sources 
increases for decision-support tools. As the effect of data completeness 
on urban flood modeling has not been fully understood, this study aimed 
to understand the effect of stormwater infrastructure data completeness 
on urban flood modeling. For the producers of these datasets, it is 
necessary to understand how incomplete data and errors propagate to 

Fig. 8. Boxplots for distributions of maximum flooded depth in 2D grid cells. 
Note: Boxes represent the 25th, 50th and 75th percentiles and whiskers repre
sent ± 1.5 × IQR of the 25th and 75th percentiles. 
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model performance. As per Veregin (1999) data incompleteness occurs 
due to the errors of omission (i.e., infrastructure components not being 
recorded) and error of commission (i.e., assignment of incorrect data). 
For consumers of these datasets, this study cautions careful evaluation of 
data quality before analysis and decision making. The study also high
lights the absence of a consistent approach to filling missing stormwater 
infrastructure data for modeling applications. 

The first experiment of this study assessed the impact of stormwater 
infrastructure attribute–value completeness on hydrologic and hydro
dynamic model performance by auto-filling data gaps using an algo
rithm based on available data and design standards. Note that there is no 
established way to fill missing data at scale, thus we have utilized design 
standards and available data that are readily available in practice and 
could be automated (as done here to facilitate Monte Carlo sampling) or 
executed manually (without the need for coding expertise). Therefore, 
the algorithm is appropriate to address a set of research questions closely 
linked to practice. Design standards vary locally, and the algorithms 
could be customized. For example, the minimum cover required for 
conduits differs regionally due to winter temperatures and risk of 
freezing. One limitation of this study is that the findings are specific to 
the city of Phoenix. The relationship between PMD, error and uncer
tainty might vary with the characteristics of the network and catchment. 
However, the method and algorithm could be readily adapted to other 
catchments to understand the effects of these characteristics. The error 
and precision resulting from missing data was in part a product of the 
algorithm used to estimate missing attribute-values. Further refinements 
to this algorithm could improve performance and reduce the error and 

uncertainty associated with attribute–value gaps. Additionally, a limi
tation in random sampling was that the features were complete in all the 
models and only attribute-values get removed and replaced in sampling. 
The random sampling algorithm does not consider missing features, 
since it would require auto model building or network generating pro
gramming. This is out of scope of the current analysis but assessing the 
combined impact of missing feature and attribute-values is an important 
line of future work. 

In addition to assessing the impact of missing attribute-values, the 
first experiment helps to prioritize data collection efforts. Results 
showed that missing attribute-values pertaining to the downstream re
gion of the drainage network lead to higher model error and uncertainty 
when compared to upstream data gaps (Fig. 6). This suggests that, if 
resources for field surveys are limited, prioritizing the downstream 
section of the network would yield greater improvements in accuracy. 
Results also show that model performance is particularly sensitive to 
missing diameter values as shown by MAE and PBIAS (Tables 4 and 5). 
This suggests that efforts to improve attribute–value estimation algo
rithms should focus on diameter. However, the results presented here 
are for one catchment; testing the impact of the location of missing data 
in other catchments with different network geometry and topography 
should be explored further. Although the Monte Carlo based sampling 
algorithm was developed to investigate the effect of PMD and location of 
missing data on model performance, this experiment confirms the utility 
of the approach to filling missing attribute data. For example, the results 
demonstrate that missing roughness data could be effectively estimated 
using an empirical distribution of available roughness information, in 

Fig. 9. Hyetograph and flooding (flux) hydrograph in the four selective sampling models. Negative flooding flux indicates net flow back into the drainage system. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

A. Shrestha et al.                                                                                                                                                                                                                                



Journal of Hydrology 607 (2022) 127498

15

Fig. 10. Flooded extent and depth in four selective sampling models, (a) HDHM, (b) HDLM, (c) LDLM and (d) LDHM. Note: i). Peak flood depths are 0.45 m, 0.28 m, 
0.3 m and 0.48 m for HDHM, HDLM, LDLM and LDHM, respectively, ii). Boxes [I - IV] are pointing to the differences in estimating depth and extent. 
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conjunction with information from adjacent conduits. Further im
provements in estimating minimum depth and diameter when upstream 
or downstream attributes are missing, can improve the accuracy and 
precision of the model. 

The second experiment of this study tested the effects of infrastruc
ture data completeness and model resolution on model performance. 
Model resolution is usually selected based on the desired level of 
simulation accuracy, time availability and resource availability. Further 
analysis is needed to compare the value of incremental changes in model 
resolution to the effort and resources required. However, even when 
data and computational resources are readily available, the appropriate 
model resolution critically depends on the core purpose of the model. 
For example, within urban flood modeling, the core purpose of esti
mating total flood volume, versus the location or duration of flood im
pacts, might suggest a different model resolution. Low-resolution 
models have the benefit of lower computation time, which may be 
critical for applications such as real time pluvial flood forecasting or 
quick flood estimation. In this study, the low-resolution model simula
tion took 9.5 min while the high-resolution model took 49 min (note, 
these computation times were based on the computer specification of 
64-bit i7 CPD @ 3.6 GHz processor used in this experiment). However, 
for infrastructure planning, including adaptation of existing stormwater 
infrastructure, model accuracy is more important than computation 
time. In pluvial flood estimation, the difference of a few inches of water 
could mean basement flooding, disruption of traffic and safety hazards. 
Further, the uncertainty from incomplete data and coarser model reso
lution selection is too high to optimize flood control measures such as 
green infrastructure, which have localized flood mitigation potential. 
We used 50 % missing features in the low data (incomplete infrastruc
ture data) models and further analysis using different levels of missing 
stormwater infrastructure features, in combination with different model 
resolutions on different types of catchments would be beneficial. While 

the key effects quantified here are specific to the study area some results 
are generalizable as there will be similar but varied degree of error, bias 
and uncertainty in simulating hydrologic-hydraulic variables due to 
missing attribute-values and features data of stormwater infrastructure, 
and improper selection of model resolution. 

5. Conclusions 

This study consists of a two-part experiment to investigate the effect 
of data completeness and model resolution on urban flood model per
formance by random sampling and selective sampling. An algorithm was 
built to randomly remove and replace attribute-values for the 
hydrologic-hydraulic stormwater model built using the EPA’s SWMM. 
Random sampling was done for attribute-values using the 1D model; 
then, selective sampling was applied to feature data completeness and 
model resolution using the computationally demanding 1D-2D model. 
Results demonstrated that the relationship between model uncertainty 
and PMD is dependent on the attribute or parameter in question. In 
contrast, accuracy consistently decreases with an increasing PMD, 
except for diameter. We also found that missing data in the downstream 
section of the catchment leads to greater uncertainty and lower accuracy 
compared to missing data upstream. This finding can inform the prior
itization of data collection and verification efforts where resources are 
limited. The total flood duration and extent may be over or under
estimated due to incomplete infrastructure data, depending on model 
resolution. In the SWMM 1D-2D selective sampling, the highest flood 
depth was simulated by the high-resolution models. In contrast, the 
highest flood extent and volume were simulated by the low-resolution 
models. In sum, both data completeness and model resolution deter
mine the accuracy of flood depth, extent and volume estimates. This 
emphasizes the importance of high-resolution modeling and complete 
data for urban flood estimation at the scale of pedestrian and vehicle 

Fig. 11. Significance of data completeness and model resolution in terms of modeling hydrologic and hydraulic processes.  
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flood hazards where accurate flood extent, volume and depth are 
critical. 

The risks of pluvial flooding are projected to grow in many cities as 
they experience more intense precipitation due to climate change and as 
urbanization decreases permeable area. Modeling can be an effective 
tool to understand pluvial flooding and make projections that enable 
effective adaptation and response. Understanding, quantifying and 
communicating error and uncertainties arising from various sources are 
essential for decision making. However, infrastructure data gaps are a 
common obstacle and prior research has not addressed the impact of 
these gaps on model performance. In addition, access to high-resolution 
LiDAR is limited globally. In this study we focused on infrastructure data 
gap and model resolution, which are key pieces to an accurate and 
precise model. This study shows that the error and uncertainty in 
simulating hydrologic-hydraulic variables due to prevalence of missing 
stormwater infrastructure data, and selection of improper model reso
lution could be significant and might affect the quality of the model 
application. Hydrologic-hydraulic models are increasingly being used in 
stormwater design, real time modeling of pluvial flooding, and impact or 
damage assessment. With the growing focus on the importance of 
pluvial flooding as well as increasing use of physically based models we 
need a cost-effective approach to overcome data gaps. This problem can 
be dissected into two sub parts: assessment and application. The Monte 
Carlo based sampling algorithm was developed as an assessment 
approach to quantify the effect of missing attribute–value. As presented 
here, the algorithm can also be used to fill missing attribute-values in 
large stormwater infrastructure datasets. It can be further developed to 
improve its accuracy and precision and to adapt it to different contexts. 
In sum, this work takes a first step to address an understudied challenge 
in urban stormwater modeling, developing tools and insights useful in 
both research and practice. 
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