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1. Introduction

In this paper we classify contravariant bilinear pairings between standard Whittaker
modules and Verma modules. We use these pairings to adapt several classical proofs for
Verma modules and category O to the setting of Whittaker modules. We begin with
some context.

Let g be a semisimple Lie algebra over C.! A contravariant form on a g-module V is
a bilinear form on V such that for v,w € V and X € g, (X -v,w) = (v, 7(X) - w), where
7 is the transpose antiautomorphism. If the linear dual V* = Home (V,C) is given the
structure of a g-module via the action

for X € g, f € V*, v € V, then the space of contravariant forms on V is canonically
isomorphic to

Homgy(V, V™).

A classical result of Shapovalov shows that if V' is a Verma module, this space is
1-dimensional [22]. In [5], the authors generalize Shapovalov’s results by classifying con-
travariant forms on standard Whittaker modules. However, unlike for Verma modules,
the space of contravariant forms on a standard Whittaker module is no longer guaranteed
to be 1-dimensional. This feature of standard Whittaker modules presents an obstacle
in generalizing several constructions for category O to Whittaker modules. We provide
a brief example of this obstacle below.

In [18], Mili¢i¢-Soergel introduced a category N of g-modules which interpolates
between category O and the category of non-degenerate Whittaker modules (Defini-
tion 2.2). Category N contains category O as a full subcategory, and can be viewed as a
natural generalization of it. Standard Whittaker modules, which are cyclically generated
by a vector on which the nilpotent radical n of a Borel subalgebra of g acts by a character
n € n*, play the role of Verma modules in category N. One of the celebrated features
of category O is that its blocks have the structure of highest weight categories [8], with
costandard modules defined as the n-finite vectors in the linear dual of a Verma module.
It is natural to ask if this structure extends to /. While it is known that blocks of cat-
egory N with regular integral infinitesimal character are highest weight categories (this
follows by reducing the problem to a singular block of category O [18]), the results of
[5] show that the straight-forward generalization of the above definition of costandard
modules does not yield the same result for A/: defining costandard modules to be spaces
of n-twisted n-finite vectors in the linear dual of a standard Whittaker module does not

L The results in this paper hold more generally for reductive Lie algebras. However, since many of our
references assume semisimplicity, we chose to continue working under this assumption.
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give blocks of A the structure of highest weight categories. The problem is the surplus
of contravariant forms.

In this paper, we address these disparities by giving an alternate generalization of
Shapovalov’s results. Our main contribution is the classification of contravariant pairings
(Definition 5.1) between standard Whittaker modules and Verma modules.

Theorem (Theorem 5.2). Assume A+ p € b* is reqular. Let M (X, n) be a standard Whit-
taker module (Definition 2.4) and M(u) be a Verma module with highest weight 1 € h*.
Let W,, be the subgroup of the Weyl group of g determined by n € n* (Section 2.2). Then

Hommg (M(A, 1), M(s)") = {C et
0 else.

Unlike contravariant forms on standard Whittaker modules, these contravariant pair-
ings are unique up to scaling, a feature which more closely resembles the case of Verma
modules. With this generalization, we extend well-known arguments for Verma modules
directly to standard Whittaker modules. We give 5 examples.

(1) We define a costandard module in N to be the space of n-twisted n-finite vectors in
the linear dual of a Verma module (Definition 6.2). With this definition, contravariant
pairings between standard Whittaker modules and Verma modules induce canonical
maps between standard and costandard modules in N (Lemma 6.4).

(2) We show that costandard modules have unique irreducible submodules and share the
same composition factors as the corresponding standard Whittaker modules, and
that these properties uniquely define the costandard modules up to isomorphism
(Theorem 6.9).

(3) We prove that costandard modules align under Beilinson—Bernstein localization
with costandard n-twisted Harish-Chandra sheaves on the associated flag variety
(Lemma 7.3).

(4) We prove that our definitions give blocks of category N the structure of highest
weight categories (Corollary 7.4).

(5) We prove a Beilinson-Gelfand-Gelfand reciprocity theorem for category A (Theo-
rem 8.2).

Using contravariant pairings, we are able to generalize the proofs of these classical results
for category O in a way that clearly follows the structure of the original arguments. In
each of the above cases, when we set 7 = 0, we recover a traditional proof for category O.

Remark 1.1. In [18], certain equivalences between blocks of category N with regular
integral infinitesimal characters and singular blocks of category O are established. One
could alternatively define costandard modules as those corresponding to dual Verma
modules under these equivalences. Using this approach, results analogous to (2), (3),
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(4), and (5) above could be deduced directly from the corresponding results in category
O. Our main results about contravariant pairings described above do not follow from
these equivalences.

This paper is organized as follows. In Section 2, we define category A and estab-
lish algebraic background, including a classification of standard and simple modules,
the construction of Whittaker functors [1], and a review of Lie algebra (co)homology.
In Section 3, we define the category of twisted Harish-Chandra sheaves and establish
geometric preliminaries, including classification simple objects, some necessary results
about Beilinson—Bernstein localization, and a method for computing Lie algebra ho-
mology geometrically. In Section 4, we compute the Lie algebra homology of standard
Whittaker modules (Theorem 4.3) both algebraically and geometrically, which provides
our main tool when classifying contravariant pairings in Section 5. In Section 5, we de-
fine and classify contravariant pairings between standard Whittaker modules and Verma
modules (Theorem 5.2). We then give an explicit construction of these contravariant
pairings (Theorem 5.7). In Section 6, we define costandard modules in category N (Def-
inition 6.2). We give a set of universal properties for costandard modules (Theorem 6.9),
and show that contravariant pairings induce morphisms from standard modules to co-
standard modules in N. In Section 7, we give a geometric proof that blocks of A/ are
highest weight categories (Theorem 7.2, Corollary 7.4). We conclude with Section 8,
which uses our results to prove a Bernstein—Gelfand—Gelfand reciprocity formula for A
(Theorem 8.2).
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o U(a) universal enveloping algebra of o« W, C W Weyl group of 11,
Lie algebra a o [, = h@@aezn go Levi subalgebra of
e Z(a) centre of U(a) g determined by n € chn

o p:Z(g) = U(h) Harish-Chandra ho-
momorphism [10, Ch. 1 §7]

e x*:Z(g) = C;2z — Aop(z) infinites-
imal character for A € h*

o £:h* = Max Z(g), £(A) = ker x*

« 1y =D, ext 9o nilradical of [,

oy = EBaez; Yo

o 0= @aGZJrfE# Ya

e p, = [,®n" parabolic subalgebra con-

echn = {n : n — C | taining L,

n is a Lie algebra homomorphism} * Py Z(ly) — U(bh) Harish-Chandra
e IL, := {a € IT | n|y, # O} set of sim- homomorphism for Z(1,)

ple roots determined by n € chn . X1>7‘ 1 Z(ly) = Ciz = Aopy(2) in-
o 11, C Z;“ C Xy C b* root system gen- finitesimal character for A € h*

erated by II, o &b = Max Z(l,), &,(\) = kerxf‘]

2. Algebraic preliminaries

Our algebraic setting is a category A of g-modules introduced by Mili¢ié-Soergel in
[18]. Each simple module in NV is a Whittaker module, and A contains all highest weight
modules. In particular, A contains Bernstein—Gelfand-Gelfand’s category O [2] as a full
subcategory. In this section, we define the Mili¢i¢-Soergel category N and list some of
its basic properties.

2.1. A category of Whittaker modules

Fix a Cartan subalgebra § of g contained in a Borel subalgebra b, and let g = n@®héEn
be the corresponding triangular decomposition, with n = [b, b]. We denote by chn the
set of Lie algebra homomorphisms 7 : n — C. For any Lie algebra a, we denote by U(a)
its universal enveloping algebra and Z(a) the centre of U(a). Denote by Max Z(a) the
set of maximal ideals in Z(a). Any character n € chn can be extended to an algebra
homomorphism 7 : U(n) — C which we will call by the same name. We denote by
kern C U(n) the kernel of the algebra homomorphism.

Definition 2.1. A Whittaker vector of type n € chn in a U(g)-module V is a vector w € V
such that u-w = n(u)w for all w € U(n). An n- Whittaker module is a U(g)-module which
is cyclically generated by a Whittaker vector of type 7.

In [18, §1], Mili¢ié—Soergel introduced a category N whose simple objects are irre-
ducible Whittaker modules.

Definition 2.2. Let A be the category of U(g)-modules which are

(1) finitely generated,



150 A. Brown, A. Romanov / Journal of Algebra 609 (2022) 145-179

(2) locally U(n)-finite, and
(3) locally Z(g)-finite.

Proposition 2.3. [19, Lem. 2.1, Lem. 2.2] The category N decomposes into

N= @ D N(Tn).

IeMazZ(g) n€chn

where N (f, 77) is the full subcategory of N consisting of objects M € N satisfying the
following two conditions:

(i) M is annihilated by a power of I € Max Z(g);
(ii) M is locally annihilated by a power of ker 7.

Let N (I,n) be the subcategory of N (f, 7]) consisting of modules annihilated by I.
Each irreducible Whittaker module lies in some N (I, 7).

2.2. Standard and simple Whittaker modules

Let I ¢ ¥ C ¥ C b* be the simple and positive roots in the root system of g
determined by our choice of b, and let (W, S) be the associated Coxeter system. For a
root @ € X, we denote by go = {x € g | [h, 2] = a(h)z} the corresponding root space.
With this notation, we have n = @ .5+ ga-

A character 1 € chn determines a subset of simple roots:

II,, := {a € II | n|q, # 0}.

Let X, C b* be the root system generated by II,, and W, the corresponding Weyl group.
From 7 we obtain several Lie subalgebras of g. In particular, we name

[n:h@@gm nn:@gaa ﬁn:@gaa n’l = @ Ja, Py =l 0’

aely, aesF aEeSy, aexst—xF

Let p, : Z(I,) — U(bh) be the Harish-Chandra homomorphism of U([,). For each
A € b*, denote by x; : Z(I;) = C, z = (Ao py)(z) the corresponding infinitesimal
character. We have Xf‘, = x4 if and only if p € W, - A. Let &, : b* — Max Z (1),
A+ ker Xf{ the map associating elements of h* to maximal ideals in Z([,).

From the data (\,n) € h* x chn, we construct a U([,)-module

Y(/\, 77) = U([”]) ®Z([n)®U("n) (Cxﬁ,n' (21)
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Here C,» ,, is the one-dimensional Z (;) ® U(ny)-module with action

u@ -z = XA (wn(e)z

forue Z(l,), x € U(n,), z € C. By construction, we have Y'(\,n) = Y (u,n) if and only if
p € Wy, - A. Here - denotes the “dot action”: for w € W and A € b*, w- A = w(A+p) —p,
where p = 33 v+ a. For any A € b*, Y(X\,n) is an irreducible nondegenerate 7-
Whittaker module for U([,) [14, §2 Prop. 2.3].

Standard objects in the category A are constructed by parabolically inducing the
irreducible U (l,)-modules Y (X, ).

Definition 2.4. For (A, n) € h* x chn, define the U(g)-module

M(An) :=U(g) ®u(p,) Y (A n).

Here Y (A, n) (2.1) is viewed as a U(p,)-module via the natural morphism p, — [,,. We
call the modules M (A, n) standard Whittaker modules.

Proposition 2.5. /14, Prop. 2.4, Thm. 2.5, Thm. 2.9] The standard Whittaker module
M(A\,n) satisfies the following properties.

(i) Let & : b* — Max Z(g) be the map associating A € h* to the kernel of the corre-
sponding infinitesimal character x*. Then M(\,n) € N'(£(\),n).

(ii) Two modules M (X, n) and M(u,n) are isomorphic if and only if € Wy, - .

(iii) The module M(\,n) is an n-Whittaker module generated by the Whittaker vector
w=1®1®1.

(iv) The centre 3 of the reductive Lie algebra 1, is 3 = {h € b | a(h) = 0, € II,)}. For
A € b*, we denote by \; the restriction of A to 3. There is a natural partial order
on 3* obtained from the partial order on h*. The Lie algebra 3 acts semisimply on
M(X\,n), and M(\,n) decomposes into 3-weight spaces

M()\ﬂ?) = @ M()"n)w'

v;<A;

Each 3-weight space M (X, 1)y, is a U(l,)-module. Furthermore, as U(l,)-modules,
M), 2Y(\n) and M(\,n),, 2U[W"),, ®c Y (N n), where v; = p; + \; and
py <0 is a 3-weight of U(n').

(v) M(\,n) has a unique irreducible quotient, denoted L(X\,n). All irreducible objects
in N appear as such quotients.

Remark 2.6. If A + p is regular, there is a unique element p € W, - A such that p 4+ p is
dominant with respect to ¥} that is, o (u 4 p) > 0 for all o € X;F. For the remainder
of the paper, unless otherwise stated, we assume that p is chosen to be this unique
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dominant element when we write M (u,n). (Proposition 2.5(ii) guarantees that such a
choice can be made.)

Definition 2.7. We say that a character n € chn is nondegenerate if 1I,, = II. We say a
Whittaker module is nondegenerate if it is an n-Whittaker module for a nondegenerate
character 7.

Remark 2.8. If n = 0, then [,, = h and M (), n) is the Verma module of highest weight A

(which we denote by M ())). If n is nondegenerate, then [,, = g and M (X, n) =Y (A, n) is
irreducible.

2.8. Whittaker functors

Given a U(g)-module X, let (X), denote the space of n-twisted U(n)-finite vectors
in X:

(X)y ={reX:Yuen I kst (u—nu)rz=0} (2.2)
For a U(g)-module X in category O,% denote by X the formal completion; i.e. if
X = D)cp- Xn, then X = [Iaep- X Denote by T,(X) = (X),. In [1, §3] it is shown
that T, defines an exact functor
Ty Ox = N(E(N),m)
for any A € h*. We refer to fn as a Whittaker functor.
Proposition 2.9 (/1, Prop. 6.9]). Let A € h*. For each w € W,
T, (M(w - ) = M(\, ).

2.4. Twisted and untwisted Lie algebra (co)homology

Our arguments in upcoming sections will make use of (twisted) Lie algebra (co)ho-
mology.

Definition 2.10. Let X be a left U(g)-module. The n-homology of X is

Hi(1, X) == Torl ™W(C, X),

2 Category O is the category of U(g)-modules which are finitely generated, h-semisimple, and locally U (n)-
finite. For A € h*, denote by O, the subcategory of O consisting of modules whose composition factors are
isomorphic to L(w - X) for w € W. Here for u € h*, L(u) denotes the unique irreducible quotient of M ()
and Wy is the integral Weyl group of A.
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where C is the trivial right U(n)-module. We are primarily interested in the degree zero
n-homology:

Hy(n,X)=C QU (a) X
=X/nX

We refer to Hy(n, X) as the n-coinvariants of X.

The vector space X/nX has a natural structure of an h-module, so degree zero n-
homology defines a right exact covariant functor

Hy(n,—) : U(g)-mod — U(h)-mod.

Definition 2.11. Let X be a left U(n)-module and 7 € chn. The n-twisted n-cohomology
of X is defined to be

HF(n, X) := Extfy () (Cp, X).

The n-twisted n-cohomology of X in degree 0 is the subspace of Whittaker vectors
in X:

H)(n,X) = Homy 4)(Cp, X)
={zxeX:(u—nu))z=0 YueU(n)}.

When 1 = 0, we refer to n-twisted n-cohomology as just n-cohomology and drop 7 from
our notation:

H*(n, X) := Hf(n, X) = Extfj,y (C, X).
Here C is the trivial representation of U(n).
3. Geometric preliminaries

Our geometric setting is a category of twisted equivariant D-modules on the flag vari-
ety of g, which we refer to as twisted Harish-Chandra sheaves. In [19, §1], Mili¢i¢-Soergel
establish that these twisted sheaves correspond to blocks of category N under Beilinson—
Bernstein localization. In this section, we introduce this geometric category and list some
basic properties of twisted Harish-Chandra sheaves.

3.1. Twisted Harish-Chandra sheaves

Fix A € h* and n € chn. Let X be the flag variety of g and D) the A-twisted sheaf
of differential operators on X [16, Ch. 1, §2]. Let £ : W — N be the length function on
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the Weyl group of g. The action of the group N = Intn stratifies X into Bruhat cells
C(w) = A*™) parameterized by elements w € W.

Definition 3.1. ([19, §1]. See also [9, App. B] and [17, §4].) An n-twisted Harish-Chandra
sheaf for the Harish-Chandra pair (g, N) is a coherent Dy-module V satisfying the fol-
lowing conditions:

(i) V is N-equivariant as an Ox-module [20, Ch. 1 §3 Def. 1.6];
(ii) the action morphism Dy ®o, V — V is a morphism of N-equivariant Ox-modules;
(iii) the actions of Dy and N differ by n; i.e. for all z € n

where 7 is the action on V induced by the map n — U(g) — D, and p is the
differential of the N-action.

Note that condition (i) involves extra data on the Dy-module and conditions (ii)
and (iii) are assumptions. A morphism of n-twisted Harish-Chandra sheaves is a Dj-
module morphism which is also a morphism of N-equivariant Ox-modules. We denote
by Mecon(Da, N, 1) the category of n-twisted Harish-Chandra sheaves. Because N is
connected, any Ox-module can only have one possible N-equivariant structure, so we
can consider the category Mcon(Dy, N,n) as a full subcategory of the category of Dj-
modules.

3.2. Standard and simple twisted Harish-Chandra sheaves

Within the category Mcon(Da, N, n) there are standard, costandard, and simple ob-
jects parameterized by W, \W. They are constructed as follows. (See [19, §3] and [21,
§3.1] for more details.) For a coset C' € W, \W, let w® be the unique longest element of
C [16, Ch. 6, §1], and 4,,c : C(w®) — X be the inclusion of the Bruhat cell C(w®) into
the flag variety. There is a unique irreducible connection on C(w®) satisfying the com-
patibility condition (iii) in Definition 3.1; we denote it by O¢(,c) - As an N-equivariant
Ox-module, O¢ (), is isomorphic to Ox, but the Dy-module structure is twisted by 7.

Definition 3.2. For each coset C € W, \W, we define the corresponding standard® n-
twisted Harish-Chandra sheaf

M(wcv A, ’7) = iwc!(OC(wc),n)v

3 Note that the terminology here differs from [19,21], where the !-pushforward is called costandard and
the +-pushforward standard. We chose the opposite terminology in this paper so that the global sections
of (co)standard n-twisted Harish-Chandra sheaves are (co)standard Whittaker modules, which seems to us
more natural.
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and costandard n-twisted Harish-Chandra sheaf

I(wcv An) = Z.wc-‘r((90(11)0),7/)'

The !-pushforward functor ¢,,c, is defined by pre- and post-composing %,,c, with holo-
nomic duality (see [21, Def. 5] and more generally [21, App. A.2] for conventions with
D-module functors).

The sheaf M(w®, \,n) has a unique irreducible quotient, which we denote by
L(w®, \,n) [21, Prop. 3]. The sheaf £(w®, \,n) is isomorphic to the unique irreducible
submodule of Z(w®, \,n). All simple objects in Mcon(Dx, N,n) occur in this way [19,

§3).

Remark 3.3. The n-twisted connection O¢(,c),, can also be described in terms of expo-
nential D-modules. Let G, = A! be the additive group. The exponential D-module on
G, is

exp = DGQ/DGE (8 — 1)7

where Dg, denotes global differential operators on A! (the Weyl algebra), generated
by 0 and z. Corresponding to a Lie algebra character n : n — C is a group character
n : N — G, which we call by the same name. For certain Bruhat cells, we can use
7 to construct an exponential D-module on the Bruhat cell. In particular, if C'(w) has
the property that n|stapy. = 1 for all z € C(w), then n factors through the quotient
N/stabyzx = C(w),

n

N T N/stabyz —> G,

so we can define a D-module 77'exp on C(w). It turns out that 1lsap, . = 1 for € C(w)
if and only if w = w® is the longest coset representative for some coset C € W,\W (see
proof of Lemma 4.1 in [19]). The D¢ (,)-modules constructed in this way are exactly the
n-twisted connections O¢(y),, for A = —p.

The relationship between standard, costandard, and simple twisted Harish-Chandra
sheaves can be described in terms of six functor formalism on derived categories of D-
modules. Let D := D?(Mg.(Dy)) be the bounded derived category of quasi-coherent
Dy-modules on X, and Do := D*(My.(D5*)) be the bounded derived category of
quasi-coherent Diwc—modules on C(w®). (Here Df\wc is the twisted sheaf of differential
operators on C(w®) obtained by pulling back Dy via i,.c, see [16, Ch. 1 §1]. These are
A-twisted differential operators on the Bruhat cell C(w).) The !-pushforward functor
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iywor : Dye — D
is a left adjoint to the restriction functor
ine D — Dye.
Hence
Homp (M (w, A, 1), Z(w, X, 1)) = Homp (4,100 st + Oc(wey )
= Homp (Oc(we) s Tayctwe + Ocwey,n)

= Homec (Oc(wc),m Oc(wc)m))
=C.

(Here we are writing D-modules as objects in the derived category by considering them as
complexes concentrated in degree 0.) This guarantees that there is a canonical morphism

/\/l(wc,/\,n) —>I(wc,)\717) (3.1)

in Mcon(Da, N, 7). The image of this morphism is the irreducible module £(w, \,n) C
Z(w, A n).

3.8. Beilinson—Bernstein localization

The category of n-twisted Harish-Chandra sheaves is related to the category A via
Beilinson—Bernstein localization. More precisely, for A € h* such that A\ + p is regu-
lar’ and antidominant® the Beilinson-Bernstein localization functor Ay, (defined by
Axip(V) = Dayp Qu(gyecnu(e) V for a U(g)/E(A)U(g)-module V) provides an equiva-
lence of categories:

A/\-i-p : N(f()\), 77) = Mcoh(IDk-i-P? N, 77) (3'2)

The inverse functor is given by global sections. The global sections of standard (resp.
irreducible) n-twisted Harish-Chandra sheaves are standard (resp. irreducible) Whittaker
modules.

Proposition 3.4 (/21, Thm. 9, Thm. 10]). Recall that for a coset C € W,\W, we denote
by w® € C the longest element. For X € b* such that A + p is antidominant,

(X, M(w, XA+ p,n)) = M(w® - \,n).

4 We say u € b* is regular if oV (u) # 0 for all « € 3.
5 We say pu € b* is antidominant if oV (u) ¢ Z~o for all a € X.
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If X+ p € b* is also regular,
D(X, L(w, X+ p,n)) = L(w - A,7).

Moreover, the localizations of standard Whittaker modules are standard n-twisted
Harish-Chandra sheaves. We will need the following special case of this in the computa-
tions of Section 4.

Proposition 3.5. Let A € h*, p € W - A, n € chn nondegenerate, and wy € W the longest
element of the Weyl group. Then

A p(M(A, ) = M(wo, 1+ p,m).

Proof. Using the adjunction (A,4,,T"), [21, Prop. 7], and Proposition 2.5(ii), we compute

Hom ., (03,8, (Bptp (M (A, 1)), M(wo, p + p,m))
= Homps(e(x),n) (M (A, n), T'(X, M(wo, 1+ p, 1))
= Homys(g(x),m) (M (A, 1), M (wo - g, )
= HomN(g(A),n) (M(X,n), M(\,m))
=C.

The category Mcon(Dx, N, n) is semisimple with one irreducible object, M (wg, p+ p, )
[19, Theorem 5.5], so we conclude that

At p(M(A,m)) = M(wo, p+ p,m). O
3.4. Geometric fibres and Lie algebra homology
For an Ox-module F on X, we denote by T, (F) its geometric fibre; i.e.
To(F) = Fo/moFa,

where m, is the maximal ideal corresponding to z € X. This defines a right exact
covariant functor

T, : M(Ox) — Vectc .
We can use the geometric fibre functor to compute Lie algebra in the following way.

Proposition 3.6. Let A + p € b* be reqular, wy be the longest element of W, and V' be a
g-module with infinitesimal character x*. Then
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Te(Axtp(V)) = Ho(8, V)ug 2,
for each x € C(wo) C X.
Proof. This follows from [16, Ch. 3 §2 Cor. 2.6]. O

4. Lie algebra homology of standard Whittaker modules

In this section we give an algebraic and geometric calculation of the n-coinvariants
(Definition 2.10) of standard Whittaker modules (Theorem 4.3). We begin with several
preliminary algebraic results.

Let R, S be rings. We say that a (R, S)-bimodule M is a free (R, .S)-bimodule of rank
n if M is a free R® S°P-module of rank n. The following lemma is well-known; we include
a standard proof which is adapted from [19, Lem. 5.7].

Lemma 4.1. U(g) is a free (U(n), Z(g) ® U(n))-bimodule of rank |W|.

Proof. Let {Up,(g);p € Z>o} denote the filtration of U(g) induced from the degree fil-
tration of Poincare-Birkhoff-Witt basis elements. Let F,U(g) be the linear filtration of
U(g) defined by

F,U(g) = U(n) ®c Up(h) @c U(n).

The F, filtration of U(g) induces a filtration (which we again denote by F,) on Z(g) ®
U(n):

Fp(Z(g) @ U(n)) == (Up(g) N Z(g)) © U(n).

The F, filtration of Z(g) ® U(n) preserves the ring structure of Z(g) ® U(n), i.e. if
u € Fp(Z(g)@U(n)) and v’ € Fy(Z(g)®U(n)), then wu' € Fpiy(Z(g)@U(n)). Therefore,
the corresponding graded object gr(Z(g) ® U(n)) is a ring. Moreover, as rings,

gr(Z(g) @ U(n)) = grZ(g) @ U(n),

where grZ(g) denotes the graded ring associated to the filtration U,(g) N Z(g) of Z(g).
It is well-known that the Harish-Chandra homomorphism « preserves the filtrations of
Z(g) and S(b), and induces an isomorphism gry from grZ(g) to S(h)".

Suppose z € F,(Z(g)). Then the Harish-Chandra homomorphism implies z — v(z) €
Up—1(g)n and v(z) € U,(h). Viewing U(g) as a right Z(g) ® U(n)-module, we have

Uqg(h) - 2 C Uqg(h)7(2) + Ug(h)Up—1(g)n
- Uqup(h) + Uq+p71(g)n
C Ugsp(h) + Foip—1U(g) C FyipUl(g),
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because Ugip—1(9) C Fyyp—1U(g) and n € FyU(g). This implies that (U(g), F,) is a
filtered right (Z(g) ® U(n), F,)-module. Suppose u € U(n). Then

u-F,U(g) Cu- (Ulm) ®@c Up(h) ®c U(n))
C F,U(g).

Therefore, the left action of U(n) on U(g) preserves the F,U(g) filtration of U(g). Al-
together, we have shown that U(g) is a filtered (U(n), Z(g) ® U(n))-bimodule with the
F,-filtration on U(g) and Z(g) ® U(n), and the trivial filtration on U(n).

Let grU(g) denote the graded (U(n),grZ(g) ® U(n))-bimodule corresponding to the
F,U(g) filtration of U(g). We have that

grU(g) = U(n) @c U(h) @c U(n),

where U(n) acts by left multiplication, grZ(g) = S(h)"W acts on the U(h) factor, and
U(n) acts by right multiplication. It is well-known that U(h) is a free S(h)"-module of
rank |W|. Moreover, as C[WW]-modules,

U(h) = CW]ec Sh)"W.

Therefore, grU(g) is a free (U(n), grZ(g)@U (n))-bimodule of rank |[W|. Let {5, : w € W}
be the canonical vector space basis for C[W], and identify each d,, with an element b,
of U(h) using the above isomorphism. Then

{1®b,®1eUM) @cUh)@cUn):we W}

is a basis of grU(g) as a free (U(n),grZ(g) ® U(n))-bimodule. The multiplication map
from the free (U(n), Z(g) ®U (n))-bimodule generated by {by }wew to U(g) is bijective by
[4, Ch. 3, §2, No. 8, Cor. 3]. In other words, U(g) is a free (U(n), Z(g) ® U(n))-bimodule
of rank |W|, with basis given by {b,}. O

Lemma 4.2. Let A + p € b* be reqular® and £()\) = ker x* € Max Z(g) the mazimal
ideal corresponding to \. Define V* := U(h)/p(6(A\)U(h), where p : Z(g) — U(h) is the
Harish-Chandra homomorphism. Then, as U(h)-modules,

VA= P Cua.

weW

Proof. We adapt the proof of [16, Ch. 3 §2 Lem. 2.2] to fit our setting. It follows from
standard properties of the Harish-Chandra isomorphism that dim V* = |W| and

5 Here, and in what follows, we assume regularity only to simplify statements and proofs of the results;
we expect analogous statements to hold more generally, without much additional difficulty.
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p(E(N)U(h) Ckerp <= pe W - A,
where ker i is the kernel of p : U(h) — C. Therefore, the quotient map
q:V* = C, =U(h)/kerp

is well defined and nonzero for each u € W - A. For h € b, multiplication by h — u(h)
defines a map m : V* — V. Clearly, g o m = 0. Because ¢ is nonzero, m must not be
surjective. Because V* is finite-dimensional and m is not surjective, we conclude that
kerm # 0. Therefore, p(h) is an eigenvalue of the operator h € h on V> if € W -\
By symmetry, each eigenvalue has the same multiplicity. Because A + p is regular, each
eigenvalue is distinct, and the result follows. 0O

Theorem 4.3. Let A\ + p be regular. As U(h)-modules,

Ho(t, M(A\,n) = @ Cua.

weW,

We include both an algebraic and geometric proof of this theorem.
Algebraic proof. First, using the Poincare-Birkhoff-Witt basis of U(g), we have:
Ug) =n"U(g) © Ulpy)-
Therefore, as U(h)-modules, we have

Ho(n, M(X\,n)) = C @5 U(g) @y, Yi,(An)
=C s (n"U(g) & U(py)) @y, Y1,(A1)
=C ®ﬁ,,, 1/[7, ()\777>
= Ho (1, Y1, (A, m)).
The character n|,, € chn, is nondegenerate, and Yi, (A, 7) is a nondegenerate Whit-

taker module. Hence it suffices to prove the result for n nondegenerate. In this setting,
M(A,n) =Y (\ n), and we have a surjective U(h)-module morphism

U(h) — Ho(n,Y (A1) = C@a U(g) ®z(g)ou(m) Cxr
H—19H®L1.
By the Casselman—Osborne Lemma [7, Lem. 2.5], if z € £(\), then p(z) annihilates

Ho(n,Y (A, n)). Therefore, the above surjective homomorphism of U(fh)-modules factors
through V* = U(b)/p(£(M)U (b):
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Ulh) ———  Ho(m, Y (A, n))

o~

Moreover, by Lemma 4.2
VA= P Cpn.
w

Because U(g) is a free (U(n), Z(g) ® U(n))-bimodule of rank |[W| (Lemma 4.1), we have
that

dim Ho(n, Y (A, m)) = |W].

Therefore, the surjective map V\ — Hy(n, Y (\,n)) is an isomorphism of U (h)-modules,
and the theorem follows. 0O

Geometric proof. We include a geometric proof for the case when 7 is nondegenerate,
which, by the Poincare-Birkhoff-Witt theorem and the initial argument of the algebraic
proof, implies the general result.

Assume 7 € chn is nondegenerate. By [16, Cor. 2.4], the only possible h-weights of
Ho(m,M(\,n)) are p € W - A. For p € W - A, we will compute Ho(®, M(\,n)) using
Proposition 3.6 and Proposition 3.5. Indeed, for z € C'(wp), we have

Tx(Awgﬂ—i-p(M()‘a 77)))
=T (M(w07w0 A+t p, ))

Because M (wo, wo - ft + p, ) := Gwet (Oc(wo)n)s

dim Ty, (M(wo, wo - 1+ p, 1)) = 1.
This implies the result. O
5. Contravariant pairings of standard Whittaker modules

In this section, we define and classify contravariant pairings between standard Whit-
taker modules and Verma modules. Contravariant pairings play an analogous role for A/
as contravariant forms for category 0. We prove that contravariant pairings are unique
up to scalar multiple, and that M (X, n) admits a nonzero contravariant pairing with a
Verma module of highest weight u if and only if u € W, - \. We give an explicit con-
struction of a contravariant pairing between M (A, 7) and M (w - \) for each w € W,
This construction degenerates to the Shapovalov form on a Verma module when 1 = 0.
We finish by describing properties of the (left) radical of a contravariant pairing.
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Let {Ya, Tataes+ U {ha}acn be a Chevalley basis of g with 24 € ga, Yo € §—o and
ha € b such that [z4, Ya] = ha. Let 7: U(g) — U(g) be the transpose antiautomorphism
defined by 7(x4) = Yo and 7(hy) = hq. Let M (1) be the Verma module of highest weight
€ b* and M(A,n) the standard Whittaker module (Definition 2.4) corresponding to
(A\,m) € h* x chn.

Definition 5.1. A contravariant pairing between g-modules V and W is a bilinear pairing
() VxW—=C

such that
(wv,w) = (v, 7(w)w)

forall u € U(g), v €V, and w € W.

Theorem 5.2. Assume A+ p € b* is reqular. There exists a nonzero contravariant pairing
between M (X, n) and M(u) if and only if p € Wy, - X. Moreover, a contravariant pairing
between M (A, n) and M(u) is unique up to scalar multiple.

Proof. Let ¥ be the space of contravariant pairings between M (A,n) and M (u). We
have the following canonical isomorphism

U — Homg (M (p), M(A,7)*)
() = )() = (. y).

Moreover,

Homg (M (p), M(A,n)*) = Hom(C,,, M (X, 1)")
= H(n, M(\,1)"),,
= Ho(ﬁ7M()\777))Z.

The last equality above follows from tensor-hom adjunction and the g-module structure
on X* (which accounts for the duality between n and n), where we identify H°(n, X*)
as Hom, (C, Home (X, C)) and Hp(n, X) as X ®z C, see Definition 2.10 and 2.11. The
result then follows from Theorem 4.3. O

We will now give an explicit construction of a nonzero contravariant pairing between
M\, n) and M(w - X) for w € W, which generalizes the Shapovalov form on Verma
modules. We start with some preparatory results.
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Lemma 5.3. Let kern) be the kernel of n: U(n) — C. There is a direct sum decomposition
U(g) = U(b) & (nU(g) + U(g) kern).
Denote by m, : U(g) — U(h) projection onto the first coordinate in this decomposition.
Proof. Choose an order on the set of roots so that
{y' Wl =yl oy LRl ke |, o ke € 20}
is a Poincaré-Birkhoff-Witt basis of U(g). Here I = (i1,...,%n), J = (J1,---,Jr),

and K = (ki,...,k,) are multi-indices, I = (Gns--si1), and ¥ = (Yay s> Yas )
h=(has- ha), = (Ta,--Ta,). We can write z/h’/zX as

y'h7 2" =y (2" — (™) + (=" )y n.
The terms y!h” (2K — n(z%)) and (2 )y h’ are elements in U(h) +aU (g) + U(g) ker 7.
By extending linearly, we can write any element of U(g) as a sum of a vector in U(h), a
vector in nU(g) and a vector in U(g) ker . The intersection
U(h) N (aU(g) + U(g) kern) =0,

so the sum is direct. O

Lemma 5.4. Let p be a parabolic subalgebra of g and | the corresponding reductive Levi
subalgebra. The Lie algebra p decomposes as p = [ & n for a nilpotent subalgebra n of p.
Let N be a U(l)-module and M the U(g)-module parabolically induced from N,

M = U(g) ®U(p) N

where N is considered as a U(p)-module via the natural projection map p — . Forx € N
andv=1®x € M,

Annggyv = U(g)n+ U(g) Anng () .
Proof. By definition of M, we have
U(g)n +U(g) Anng(y x € Anngg) v.

We will prove the reverse inclusion. Let u € Anng gy v. Then u ® = 0, so u = v'a for
u' € U(g) and @ € Annyp) z; i.e.

Anng gy v € U(g) Anngp) 2.
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Since n acts trivially on N and we have a PBW decomposition U(p) = U(I) @ U(n),
Annypy x = U(p)n + U(p) Anny(y 2.
Hence the reverse inclusion holds. O

Proposition 5.5 ([12, Thm. 3.1]). Let £(\) = ker x» € Max Z(g), n € chn be nondegen-
erate, and w € Y (\,n) be a nonzero Whittaker vector. Then

Anny gy w = U(g)€(A) + U(g) kern,
where kern is the kernel of the map n: U(n) — C.

Corollary 5.6. Let ) € chn be arbitrary and recall the map &, : b* — Max Z([,). Let
v=1®@le Mw-A) andw=101® 1€ M(\n). We have

Anng gy v =U(g)n+ U(g) ker(w - \), and

Anng g w = U(g) kern + U(g)&,(N).

Proof. For the first equality, we apply Lemma 5.4 to the vector v = 1® 1 € M(w -
A) = U(g) ®p Cy.x. By definition of C,,.x, we have Anny ) x = kerw - A. Therefore,
Anng gy v = U(g)n + U(g) ker(w - A).

For the second equality, we apply Lemma 5.4 tow = 1®1®1 € M (A, n). By Lemma 5.4
and Proposition 5.5, we have

Anny g w = U(gn” +U(g)(U(1y) ker77|nn + U(1;),(N)).

Clearly, U(g)U(l,) ker n|,, = U(g) kernl|,, and U(g)U(L,)&,(N) = U(g)&, (). Moreover,
U(g)n" + U(g) kern|s, = U(g) ker 7. Therefore,

Anng gy w = U(g) kern+ U(g)&,(N). O

Letw=1®1®1e M\ n) andv=1®1e M(w-\). For w € W,, define a bilinear
pairing between M (\,n) and M(w - \) by

(@, Y)w = ((w- A) o my) (7(u)u), (5.1)

where u,u’ € U(g) are such that + = uw and y = vw'v, and 7, is the projection map
defined in Lemma 5.3. (Note that the choices of u,u’ are not necessarily unique.)

Theorem 5.7. The bilinear pairing (-, )y : M(X\,n) X M(w - X) = C of equation (5.1) is
well-defined, nonzero, and contravariant. When n =0, (-, ), is the Shapovalov form.



A. Brown, A. Romanov / Journal of Algebra 609 (2022) 145-179 165

Proof. The bilinear pairing (-, -),, is contravariant by construction. Moreover, (w, v),, = 1
forw=1®1e M(A\,n)and v=1® 1€ M(w- ). Therefore, the pairings are nonzero.
When n =0, W,, =1, and (-,-)1 : M(X) x M(X) — C is the contravariant form defined
by (uv,u'v); = X o p(r(u')u), where p is the Harish-Chandra homomorphism. This is
exactly the Shapovalov form [22, Eq. (5)].

We now prove the result for 7 # 0. Recall the map , : U(g) — U(h) is given by pro-
jection onto the first coordinate in the decomposition U(g) = U (h) @ (nU(g)+U(g) ker ).
To show that the pairing is well-defined, we must prove that (x,y),, is independent of
the choice of u,u’ € U(g) such that z = uw and y = «w'v. Choose @, %’ € U(g) so that
y = v'v = @v and © = uww = dw. To establish that (-,-),, is well-defined, we need to
check that

(w-A)omy(r(u' — @' )u) =0 and (w- A) om,(7(u')(u—a)) = 0.

As (v —a")u = 7(7(u)(u' —a')) € T(Anny gy v) and 7(u')(u— @) € Anny () w, it suffices
to show that

((w - X) omy)(T(Anng gy v)) = 0, and ((w - A) o 7)) (Anny gy w) = 0.

Using Corollary 5.6, this reduces to showing

((w- A) o my)(nU(g)

((w - A) o mp) (ker(w - A)U(g)
((w - A) omy)(U(g) kern
((w - A) o)) (U(g)€n ()

Equalities (5.2) and (5.4) are obvious. Recall that p, : U(l;) — U(h) is the Harish-
Chandra homomorphism of U(l,); i.e. projection onto the first coordinate in the decom-
position U(L,) = U(h) @ (n,U(1,) + U(l;)n,). To establish (5.5), we first note that

)

(
(

0 (
0; (
0; (
0 (

)
)
)
)

Tp(€n(N) = pp(&n(N)) C kerw - A

for w € W,. The first equality follows from the fact that &,(\) C Z(l,) and m, and
pn agree on Z(ly). (Indeed, let z € Z(I,). By the Poincaré-Birkhoff-Witt theorem,
z € U(h) ® n,U(l,), so we can express z as z = h + zu for h € U(h),z € n,, and
u € U(l,), and the element h € U(h) in this decomposition is uniquely determined by
z. As zu € nU(g) + U(g) kern, we have m,(z) = h = p,(2).) The inclusion follows from
well-known properties of the Harish-Chandra homomorphism for Z(1,,).

Using the decomposition U(g) = U(l,) @ (n"U(g) + U(g)n"), we have that

Ty (U(8)€(A)) = 7y (U ()&, (A)) + 70, (U (8)n7, (A))-
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By [14, Lem. 1.7], [;,n"] C n". This implies that [U(l,),n”] C U(l,;)n", hence
[£n(N),n"] C U(g) ker n. From this we conclude that 7, (U(g)n"¢,(\)) = 0.
An application of Lemma 5.3 to [, yields the decomposition

U(l,) =U(b) @ (n,U(L,) + U(ly) ker |y (n,))-

Because £,(A\) commutes with kern|y(,, ), we can use this decomposition to conclude
that

T (U(1;)&,(A)) = my (U(5)&,(N))-
Finally, because Z(l,,)) C U(l))o = {u € U(l,) : [h,u] = 0 for all h € b}, we have

T (U(H)Ey(N) = U(b)m,(&y(N)) C kerw - A

This proves (5.5).
It remains to show (5.3). Because m, is the identity on kerw - A, we have

my(kerw - \) C kerw - A

Moreover, because [h,n] C n, we have m,(ker(w - \)nU(g)) = 0. Using the decomposition
in Lemma 5.3, we conclude that

my (ker(w - MU (g)) = my (ker(w - MU (b)) = m, (U (h) ker(w - A)).
Again, because U(h) C U(g)o, we have
T (U(b) kerw - X) = U(h)m,(kerw - X) C kerw - A.

This proves (5.3), and the proposition. O

Combining Theorem 5.2 and Theorem 5.7, we see that if (-, -) is a nonzero contravariant
pairing between M (A,n) and M (u), then (-, -) is a scalar multiple the pairing (-, ),, for
some w € W,,.
Corollary 5.8. Assume A+ p € b* is reqular. Any contravariant pairing (-,-) : M(\,n) X
M(u) — C is uniquely determined by (w,v), where w and v are the generating Whittaker

vectors in M (A, n) and M(u), respectively.

Proposition 5.9. Let A € h* and (-,-),, be the contravariant pairing between M (X, n) and
M(w - X\) defined by equation (5.1), for w e W,.

(1) ]fy,’)/ 63*; V#’% LS M()‘vn)vi andy € M(wA)’W then (x,y)w = O
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(2) The left radical Rad™(-,-)s = {v € M(\,n) : (v, M(w - \))y = 0} is the mazimal
proper submodule of M (X, n).

Proof. The proof of (1) is identical to the standard category O proof, which is as follows.
Suppose x € M(\,n), and y € M(w - \)y, with v # v as characters of 3. By the
contravariance of the bilinear pairing, for each z € 3 (recall that 7(z) = z), we have

v(2)(@, Y)w = (22, Y)w = (T, 2Y)w = V()T Y)w-

Therefore, (x,y), = 0.

We will now prove (2). If n is nondegenerate, or, more generally, if M(\,n) is irre-
ducible, then RadL(-, Y = 0. Assume that 7 is degenerate (i.e. n vanishes on at least one
simple root space) and M (A, n) is reducible. Let N be the maximal proper submodule of
M(X,n) and z a nonzero 3-weight vector in N with weight p. By [14, Thm. 2.5], u # A
as characters of 3. The generating Whittaker vector (i.e. the highest weight vector) v
of M(w - \) has 3-weight w - A. Moreover, because w € W,, we have that w- A = A
as characters of 3 (recall that M(w - \,n) = M(A,n) for each w € W,). Therefore, (1)
implies

(x,v)w = 0.

Because 3 acts semisimply on N and the pairing is bilinear, we have (N, v),, = 0.
If y € M(w - \), then there exists u € U(g) such that y = wv. Therefore, for any
z €N,

<xay>w = <x»uv>w = <T(u)x’v>w =0,

because 7(u)z € N. Therefore, N C Rad”(:,-),,. The result then follows from the fact
that the pairing (-,-),, is nonzero and the left radical of the pairing is a submodule of
M\ n). O

Remark 5.10. In [13, §3.2], Matumoto uses the Shapovalov form to define a contravari-
ant pairing between an irreducible module in category O and its completion. A similar
construction applies to Verma modules: because weight spaces of M (w-\) are orthogonal
with respect to the Shapovalov form, the Shapovalov form extends to a contravariant
pairing between the completed Verma module M (w - A) and M (w - A). The Whittaker
functors of Section 2.3 identify standard Whittaker modules with a subspace of the
completion of a Verma module. Therefore, we can restrict the above pairing to define
a contravariant pairing between (M (w - A)), = I'y(M(w - A)) and M (w - \). By Propo-
sition 2.9, T))(M(w - \)) = M(\,n) when w € W,,. Therefore, for each w € W,), this
construction yields a contravariant pairing between M (A, 7n) and M (w - \). However (in
the setting where X\ 4 p is regular and integral), unless w is the longest element of W,
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the pairing constructed in this way is trivial (i.e. the zero pairing). Therefore, this con-
struction yields exactly one of the contravariant pairings (-,-),, of Theorem 5.2. Tt is
interesting that the other contravariant pairings are not obtained in this way.

6. Costandard modules

In this section we define costandard modules in the category A/ (Definition 6) and
show that each contravariant pairing induces a g-morphism from standard to costandard
modules (Lemma 6.4). These g-morphisms are the algebraic analogues to the canonical
maps between standard and costandard twisted Harish-Chandra sheaves introduced in
Section 3.2. Our costandard modules share many of the fundamental properties of dual
Verma modules: each has a unique irreducible submodule and the same set of compo-
sition factors as the corresponding standard module (Theorem 6.5). In fact, these two
conditions provide a set of universal properties for costandard modules (Theorem 6.9).

Given a U(n)-module V, recall from equation (2.2) that (V'), denotes the space of
n-twisted U (n)-finite vectors in V:

(V) ={veV:VuecU), I kst (u—n(u)v=0}.

Lemma 6.1 (/12, Lem. 4.2.1]). For any U(g)-module V', the subspace (V'), is a U(g)-
submodule.

Proof. Because the action map g ®c V — V is a g-module morphism, for any X € n,
Yeg ve (V),,and n € Z>q we have

G0y oo =3 (1) @)Y (X - g0t o
k=0

The adjoint action of n on g is nilpotent, so there exists £ € Z such that (ad X)‘Y = 0.
Because v € (V),, there exists m € Z such that (X —n(X))™ - v = 0. Hence for any
XenYeg, ve (V),, we can choose n large enough so that every term in the sum is
zero. For such an n, (X —n(X))”-Y -v=0,and thus Y -v € (V),. O

For a U(g)-module V, denote by V* := Homc (V,C) the full linear dual of V. The
space V* becomes a U(g)-module via the action u - f(=) = f(r(u) - =) for u € U(g),
fev*

Definition 6.2. For A € h*, n € chn, and w € W,,, define the U(g)-module
My (Nn) = (M(w-A)), .

We call MY (\,n) the w-costandard module corresponding to the standard module
M (X, m).
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We will later show, in Corollary 6.10, that M, (X,1) = M, (A,n) for each w,y € W,,.
Hence, up to isomorphism, the definition of w-costandard modules does not depend on
the choice of w € W,. However, we will retain notation which reflects the choice of
w € W, until Corollary 6.10.

Remark 6.3. We can describe the construction in Definition 6.2 in terms of coinduction,
similarly to a dual Verma module. Indeed, M, (\,n) is the g-submodule of 7-twisted
U (n)-finite vectors in

Homc (U(g) ®u(p) Ca, C) = Homy (5)(U(g),Cx) = COindgEﬁng

Lemma 6.4. For any A € b*, n € chn, and w € W,, the w-costandard module
MY (X, n) is an object in the category N (£(N\),n). Moreover, the contravariant pairing
(-, Vw : M(A\ym) x M(w-X) = C defined in (5.1) induces a g-morphism

w : M(X\,n) = My (A n).

Proof. Recalling the definitions of Section 2.3, the formal completion of the dual Verma
module MY (w - \) is canonically isomorphic to the linear dual of a Verma module (see

1, §3)):
MY (w-A) = (MY (w- A))yo)”
> M(w - N)*.

Therefore, the Whittaker functor I' applied to a dual Verma module is isomorphic to a
costandard module:

Ly(MY (w- X)) = (M(w-\)"),
= M;j(/\vn)

Because Ty, is a functor from O to N(£(A),7), the w-costandard module M, (), 7) is an
object in N (E(N),n).

Each contravariant pairing (-, -),, induces a g-morphism
Ow M N) = M(w- )", v (U, ).

Because ¢ is a g-morphism, the image of ¢ is contained in (M (w - A)*),. Therefore each
contravariant pairing (-, -),, defines a g-morphism

w : M(A, 1) = My(A,n), v (v,)p. O

Theorem 6.5. Let A € b*, n € chn, and w € W,,. Then
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(1) [M(Am)] =My n)] in KN(E(A),n), and
(2) MY (X, n) contains a unique irreducible submodule, which is isomorphic to L(\,n).

Proof. In the proof of Lemma 6.4 it was shown that
Ty (MY (w- X)) = My (A, 7).

Because T, is exact, we have a homomorphism of Grothendieck groups: I',, : KO — KN

Because M (XA, n) =T, (M(w-\)) [1, Prop. 6.9] and [M(w-\)] = [MY(w-\)] in KO, we
conclude that

[M(X,n)] = Ty ([M (w - N)])
=T, ([MY (w - N)])
= [My (X, n)).

This proves (1).
Again, by Lemma 6.4, each contravariant pairing (-, -),, defines a g-morphism

Pw * M(>\777) - M;;/(A’U)a v = <U7'>w~

The kernel of this morphism is the left radical of the form, Rad”(-,-),,. By Proposi-
tion 5.9, Rad”(.,-),, is the unique maximal proper submodule of M(\, 7). Hence the
image of ¢, is isomorphic to L(\,n).

We will now show that im ¢,, is the unique irreducible submodule of MY (A, n7). Because
M(w - A) is a free rank 1 left U(n)-module, we have that

Hg(na MJ(/\’U)) = HS(‘BM(U} ) )‘)*)
~ Ho(h, M(w - \)*
= (C)\a

where the isomorphism is as 3-modules.
Suppose that X is an irreducible submodule of M) (), 7). Then

0 0 v ~

Hn(naX) C Hn(na Mw()‘vn)) =C.
Any irreducible object in N must contain a Whittaker vector (Proposition 2.5(v)), so
H)(n,X) # 0. Therefore, H)(n, X) = HY(n, My (X, 7)) and X Nim(.,-),, # 0. By irre-

ducibility, X =im(-,-),,. O

The remaining results of this section, concluding with Theorem 6.9, show that costan-
dard Whittaker modules satisfy a universal property.
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Lemma 6.6. Assume X+ p € b* is reqular. Let V€ N(§(N\),n) be a module such that

Ho(n, V) #0,
for some w € W,. Then there exists a nonzero g-morphism from V to M} (X, n).

Proof. We begin the proof by showing that dim Hy(n,V) < oo. By Theorem 4.3,
Ho(n, M(p,n)) is finite-dimensional for each p € W, - A. Because each simple module
L(p,m) € N(€(N), n) is the quotient of a standard module and C ®z — = Hy(n, —) is right
exact, Ho(n, L(1,m)) is finite dimensional for each simple module L(p,n) € N(£(N\),n).
Because V is finite length, Hy(n, V') is finite dimensional.

Therefore, if Hyo(n, V)y.x # 0, then (Ho(n, V)*)y.x # 0. By tensor-hom adjunction,

Hy(n,V)* = Homg (C ®5 V, C) = Hom, (C, Homc (V, C)) = H(n, V*).

We have shown that if Ho(n,V),.x # 0, then H(n, V*),,.x # 0. Therefore, there exists
a nonzero g-morphism

e:Mw-A) = V"
The morphism ¢ determines a g-morphism
@V = Mw-N)*
given by ¢(v)(z) := @(x)(v) for v € V and x € M(w - A). We confirm that ¢ is a g-

morphism with the following simple calculation. For v € g, v € V, and « € M(w- \), we
have

Here 7 : U(g) — U(g) is the transpose antiautomorphism (Section 5). Because ¢ is
nonzero, there exists € M(w - A) and v € V such that ¢(x)(v) # 0. Therefore, $(v) #
0 and ¢ is nonzero. Because V € N(£()),n), the image of ¢ must be contained in
M(w - \); = MY (\n). O

The following proposition involves categories of [,-modules as well as categories of
g-modules, and will require some additional notation. For A\ € h* and n € chn, let
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—

Ny (§ ()\)777) be the category of g-modules which are finitely generated, locally U(n)-
finite, locally Z(g)-finite, annihilated by a power of £()\), and locally annihilated by a
power of kern (see Proposition 2.3). Recall that, for p € b*, &,(n) is a maximal ideal

in Z(l,)) (see Section 2.2). Let N, (5;(\;0,77) be the category of [,-modules which are
finitely generated, locally U(n,)-finite, locally Z(I,)-finite, annihilated by a power of

&y(1), and locally annihilated by a power of ker 7|y (4, ). For a module X € N (5()\), 77)7

let (X),, denote the generalized 3-weight space corresponding to the weight u € h* C 3
(where 3 is the centre of [,, see Proposition 2.5).

Proposition 6.7 ([0, Prop. 2.2.2.]). The projection from a module X € Ny (@, 77) onto

a generalized 3-weight space (X),, defines an exact functor

(s + Mo (EQ)m) = M, (€,G0)m) -

Lemma 6.8. Assume A+ p € b* is reqular. Let V € N(E(N),n). If [V] = [M(X,n)] in the
Grothendieck group KN, then Ho(n,V)y.n # 0 for each w € W,,.

Proof. By Proposition 2.5, M(X,7),, = 0 for each p > A, where > denotes the partial
order on 3* induced by ¥ — Eﬁ (see [14, §1]). Hence by Proposition 6.7, V},, = 0 for
each u > A. By [14, Prop. 5],

MV, C PV,

v<p

Therefore, (n"V)y, = 0. (If not, then there must exist u > A such that V,, # 0, a
contradiction.) This implies that (nV)x; C (n, V), because projection onto a generalized
weight space is linear and nV' = nV +n, V. Moreover, because 3 commutes with n,, the
action of n, preserves 3-weights, and (n,V)x, = n,V),. This shows that if v € V) and
v ¢ n,Vy, then v ¢ nV. In other words, the map Ho(n,,Vy,) — Ho(n,V) induced by
inclusion is injective.

By Proposition 2.5, M(X\,n)x, = Yi,(\,n) as [,-modules. Because [V] = [M(X,n)],
Proposition 6.7 then implies that V) = Y| (\,n) as well. An application of The-
orem 4.3 to the [;-module Yi (\,7) lets us conclude that Ho(n,, Vy )wr # 0 for
each w € W,. Therefore, Hy(n,V),.n # 0 for each w € W, by the injectivity of
Ho(f, Va,) = Ho(i,V). O

Theorem 6.9. Assume X\ + p € b* is reqular. Suppose V€ N is a module such that

(1) [V] =M\ n)] in KN, and
(2) V contains a unique irreducible submodule which is isomorphic to L(A,n).

Then V = My (X, n) for each w € W,,.
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Proof. By Lemma 6.8, [V] = [M(\,n)] implies that Ho(n, V)y,.x # 0 for each w € W,,.
Therefore, we can apply Lemma 6.6 to get a nonzero g-morphism ¢,, : V. — M. (\,n)
for each w € W,,.

Recall that, by Theorem 6.5, M,/ (), n) contains a unique irreducible submodule which
is isomorphic to L(\,n). Because ¢,, is nonzero, im ¢,, must contain the unique irre-
ducible submodule of MY (A, 7).

Let K = ker ¢,,. The assumption that [V] = [M(X,n)] implies (by Proposition 2.5
and Proposition 6.7) that M,/ (\,7)x, and V), are irreducible [,-modules. Let (¢u)x, :
Vi, = M) (\n) A, be the restriction of ¢, to the generalized 3-weight space of weight
A. By irreducibility of the I,-modules and Dixmier’s lemma, either (¢,,)x, = 0 or (¢u)a,
is an isomorphism. Because the unique irreducible g-submodule of MY (\,n) contains
the weight space M, (X, n) A, and im ¢,, contains the unique irreducible g-submodule, we
conclude that M,/ (X, 7)x, C im ¢,,. Therefore, (¢y,)x, is an isomorphism and Ky, = 0.

Because ¢,, is a g-morphism, K is a g-submodule of V. Moreover, K is finite length
and must have an irreducible submodule I C K. Because K, = 0, I\, = 0, hence
I 22 L(\,n). Therefore K = 0 by uniqueness of irreducible g-submodules of V.

Because K = 0, the map ¢ is injective. The assumption that [V] = [M (), n)] implies
that ¢,, is surjective, hence an isomorphism. 0O

Theorem 6.9 immediately implies that all w-costandard modules corresponding to a
standard module M (\,n) are isomorphic.

Corollary 6.10. Assume A+ p € b* is regular. Then
\% ~ \%
Mw ()‘7 77) = My (>‘a 77)
for allw,y € W,,.

Remark 6.11. Now that we have determined that M, (), n) = M,/(\,n) for any w,y €
W,, we will omit the subscript and refer to the g-module MY(\,n) as a costandard
module.

7. Whittaker modules form a highest weight category

In this section we prove that the category N (£()), n) is a highest weight category. To
do so we work in the geometric category Meon (D, N, 7).

Definition 7.1. Fix a field k£ and let A be a k-linear category. We say that A is a highest
weight category” if there exists a finite poset A so that A and A satisfy the following
conditions:

7 This definition aligns with [3, §3.2], and differs slightly from the original definition of highest weight
categories in [8].
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(1) A is finite-length.

(2) The set of simple objects (up to equivalence) in A is finite and parameterized by A.
Denote by L) € A the simple object corresponding to A € A.

(3) For each A € A, there exists a standard object M) and costandard object Iy in A
and morphisms M) — Ly and Ly — I.

(4) For any simple object Ly € A, End(L)) = k.

(5) T C Ais closed (i.e. if uw < Xand A € T, then p € T) and X\ € T is maximal,
My — Ly (resp. Ly — I) is a projective cover® (resp. injective hull) in the Serre
subcategory Ar C A generated by the simple objects Ly for A\ € T

(6) For A € A, the kernel of My — Ly is in A<, as is the cokernel of Ly — I.

(7) For all X\, u € A, Ext?(My,I,) = 0.

Theorem 7.2. The category M con(Dx, N,n) is a highest weight category.

Proof. Denote the category Meon(Dx, N,n) by A. The Bruhat order on longest coset
representatives defines a partial order on the finite set W, \W. We will show that the
pair (A, W, \W) satisfies the seven conditions of a highest weight category.

The category A is a finite-length abelian category, so condition (1) is satisfied. Let
M = M, \,n), Zc == Z(w, \,n) and Lc = L(w®, \,n) be the standard, costan-
dard, and simple n-twisted Harish-Chandra sheaves in A (see Section 3.2). These are
parametrized by the poset W, \W. The Dy-module L appears as the unique irreducible
quotient of M and the unique irreducible subsheaf of Z [19, §3] [21, Prop. 3], so there
are projection and inclusion maps

Mc —» ﬁc and EC’ — Ic.

Moreover, all simple objects in A are of the form L for some C € W,,\W [19, §3]. Hence
conditions (2) and (3) are satisfied.

By Schur’s lemma, End(L¢) is a division algebra over C. Restriction to C(w®) gives
a nonzero algebra homomorphism

Q: End([,o) — End(OC(wC),n) =C.

Since End(L¢) is a division algebra, ¢ must be an isomorphism. (Indeed, the kernel of ¢
is an ideal in End(L¢), so it must be trivial, and ¢ is nonzero, so it must be surjective.)
This establishes (4).

Next we argue (5). For a fixed coset C' € W,\W, let

T={DeW,\W|D<C}.

8 A projective cover of an object M in a category C is a morphism P Iy M out of a projective object
P € C which is a superfluous epimorphism, meaning that every morphism N 4, P with the property that
f o g is an epimorphism is itself an epimorphism.
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Because the Bruhat order on longest coset representatives agrees with the closure order
on Bruhat cells [16, Ch. 6 §1], A is the category of n-twisted Harish-Chandra sheaves
supported on C'(w®). To establish the projectivity of M¢, we will show that the functor

Hom 4, (Mc,—) : Ar — Vect
is exact. Let j,c : C(w®) < C(w®) be inclusion. This is an open immersion, so the
functor j! o = jc is the restriction functor (see [21, App. A.2] for conventions on D-
module functors). In particular, jq!vc is exact. Denote by A¢ the category of n-twisted
Harish-Chandra sheaves on C(w®). For any V € Ar,

HOHI_AT (jwc!OC(wC)ma V) = HomAc (OC(wC),’mjv{uC V)

The category A¢ is semisimple, so there are no higher extensions. Hence the composition
Hom(O¢ ey, —) © jq!l,c is exact. This establishes that M is projective.

The category A is finite length and abelian, so it is Krull-Schmidt.” In a Krull-Schmidt
category, any indecomposable projective object which surjects onto a given object is a
projective cover, so to show that M — L¢ is a projective cover, it suffices to show that
M is indecomposable. We will do so by showing that its endomorphism ring is local.
Indeed, we compute:

End(MC) = Hom(.jwc!OC(wC),mij!OC(wC),n)
= Hom(Oc(wa,jwc!jwc!OC(wcm)
= Hom(Ocwey n, Oo(we) )
=C.
This shows that Mg — L¢ is a projective cover in Ar. By applying holonomic duality,
we obtain that Lo — Z¢ is an injective hull in A, establishing (5).
To establish (6), note that M¢, Zo, and Lo all restrict to the same object on the
biggest cell in their support, and the natural maps between them restrict to isomorphisms

on this cell. Hence the support of the kernel and cokernel is strictly smaller.
It remains to show (7). Let C, D € W,\W be cosets. We have

EXti,l (Mc,ID) = Home(A) (iMCgOC(wC)m, iwD+OC(wD)’n[2])

= Home(.AC)<OC(wC),n7 iiuciwD+OC(wD),n[2])~

By smooth base change [15, Thm. 10.2] applied to the fibre product diagram

9 Recall that a category is called Krull-Schmidt if every object decomposes into a finite direct sum of
indecomposable objects, which are characterized by the fact that their endomorphism rings are local.
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C(w®) xx C(wP) —— Cw%)

we have that i!wCiD-ﬁ-OC(wC),n =0if C ;é D.

If C = D, then iiuciwCJrOC(wC),n = Og(we),y (viewed as a complex concentrated in
degree 0 in D?(A¢)). Since the category A¢ is semisimple, there are no higher extensions,
hence

HOIHDb(AC)(Oc(wC)m, iiﬂciwc_,_oc(wcxnp]) = EXtilc (OC(wC)m, OC(wC)m) =0. O

We wish to use Theorem 7.2 to give N(£(X),n) the structure of a highest weight
category. It was established in [21, Thm. 9, Thm. 10] that the global sections of standard
(resp. simple) n-twisted Harish-Chandra sheaves are standard (resp. simple) Whittaker
modules (see Proposition 3.4). Moreover, using the universal property of costandard
modules established in Section 6 (Theorem 6.9), we can show that the global sections
of costandard n-twisted Harish-Chandra sheaves are the costandard modules defined in
Section 6. We do so in the following lemma.

Lemma 7.3. Let A+ p € h* be regular and antidominant. For each C € W,\W,
DX, Z(w% X+ p,n)) = MY (w® -\ n).
Proof. By Theorem 6.9, it is enough to show that:

(1) DX, Z(w A+ p,m)] = [M(w - A, )], and
(2) T(X,Z(w®, A + p,n)) contains a unique irreducible submodule which is isomorphic
to L(A\, 7).

We begin with a proof of (1). Let D*(My.(D,)) denote the bounded derived category
of quasi-coherent D,,-modules on X, and wy the regular action of W on h* (not the dot
action). For w € W and u € h*, let

LI, : Db(ch(DlL)) — Db(MQC(DwH))

be the corresponding intertwining functor (see [16, Ch. 3 §3] for a definition of LI,).
Let we € W denote the unique shortest element in a coset C' € W, \W. (Recall that we
denote the longest element of C' by w®.) Denote the W, -coset of the identity 1 € W by
©. Then the longest element in © = W, is w®. For every coset C' € W,\W, we have
w® = wPwe [16, Ch. 6 Thm. 1.4(iv)]. By [21, Prop. 5], for any u € b*,

LI, (Z(w®, p+ p,m) = T(w w5 (u + p),m)-
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Hence
RT o LI, +(Z(w®, i+ p,m)) = RO(Z(wC wg' (1 + p).1))-

If we choose p such that wg' (i + p) is antidominant, then by [16, Ch. 3, Thm. 3.23], we
have

RT(Z(w®, p+ p,m)) = ROZ(w, wg! (1 + p),m))-

It was shown in the proof of [21, Prop. 5] that for any u € h*,

DX Z(w®, ot pym)] = [M(w - pr, )]
in KN (&(p),n). Hence for X such that A + p is antidominant,

[F(X’I(wca A+ |2 77)] = [F(sz(w@awC()‘ + P)ﬂ?)]

= [M(w®wc - p,m)]

= [M(wc : Mvn)]v

which completes the proof of (1).

To prove (2), we recall that Z(w®,\ 4+ p,n) contains a unique irreducible sub-
sheaf, £(w®, X\ + p,n). By Proposition 3.4, when \ + p is regular and antidominant,
I'(X, L(w X+ p,m) = L(w® - \,n). Hence by the exactness of I' for antidominant
A+ p, T(X,Z(w®, X\ + p,n)) contains a unique irreducible submodule isomorphic to
L(w® -\ n). O

Corollary 7.4. Let A\+p be reqular and antidominant. The category N (£(N\),n) is a highest
weight category with standard objects M (w® -\, ), costandard objects MY (w®-\,n), and
simple objects L(w® - \,n), where C' ranges over all cosets in W,\W.

Proof. This follows immediately from the equivalence (3.2), Proposition 3.4, Theo-
rem 7.2, and Lemma 7.3. O

8. BGG reciprocity

In this section we give an application of the previous results by generalizing the
Bernstein-Gelfand—Gelfand reciprocity formulas to A (Theorem 8.2). We begin by re-
calling some well-known properties of highest weight categories. By Corollary 7.4 and
[3, Thm. 3.2.1], we conclude that N'(£(N\),n) has enough projective objects and enough
injective objects. Moreover, each projective object has a finite filtration with standard
subquotients (we refer to this filtration as the standard filtration) and each injective
object has a finite filtration with costandard subquotients.
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Remark 8.1. Corollary 7.4 also guarantees the existence of indecomposable tilting'® ob-

jects in N (E(N), 7).

Let P(\,n) be a projective cover of L(A,n), and

(P(X\,m) : M(p,m))

be the multiplicity of the standard Whittaker module M (p,n) in the standard filtration
of P(\,n). Let

(MY (p,m) = L(X, )]

be the multiplicity of the irreducible module L(A,7) in the Jordan—Holder filtration of
MY (pa,m).

Theorem 8.2 (BGG Reciprocity for N ).

(P(\,m) = M(p,m)) = [MY (u,m) = LA, n)].

Proof. The result follows from Corollary 7.4 and the proof of BGG reciprocity for cat-
egory O (and more generally for highest weight categories), see [11, Thm. 3.1] and [10,
Chap. 3]. O
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