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Abstract
We study a category of Whittaker modules over a complex semisimple Lie algebra by
realizing it as a category of twisted D-modules on the associated flag variety using
Beilinson–Bernstein localization. The main result of this paper is the development of a
geometric algorithm for computing the composition multiplicities of standard Whittaker
modules. This algorithm establishes that these multiplicities are determined by a collec-
tion of polynomials we refer to as Whittaker Kazhdan–Lusztig polynomials. In the case
of trivial nilpotent character, this algorithm specializes to the usual algorithm for com-
puting multiplicities of composition factors of Verma modules using Kazhdan–Lusztig
polynomials.

Keywords Whittaker modules · D-modules · Localization of representations ·
Kazhdan–Lusztig polynomials
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1 Introduction

A fundamental goal in representation theory is to understand all representations of complex
semisimple Lie algebras. However, the category of all modules for a given Lie algebra is
so large that a full classification has only been obtained for the simplest example, the Lie
algebra sl(2,C) [3]. In light of this, one way to approach this goal is to study well-behaved
categories of representations subject to certain restrictions, then relax the restrictions to
expand the categories and observe what aspects of the structure carry over into the larger cat-
egory. A classic example of such a well-behaved category is Bernstein-Gelfand–Gelfand’s
category O, which has been studied extensively in the past 40 years and found to display
deep connections across representation theory. The category N of Whittaker modules intro-
duced by Miličić–Soergel in [16] is a generalization of category O which also contains
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a collection of nondegenerate Whittaker modules introduced by Kostant [10]. In category
O, characters of simple modules are determined by Kazhdan–Lusztig polynomials. In this
paper, we show that the same is true in the category of Whittaker modules, and we develop
an algorithm for computing these characters. The main result of this paper is the following
theorem.

Theorem 1 (Theorem 11, Corollary 4, Eq. 33) For any irreducible Whittaker module L

and standard Whittaker module M with the same regular integral infinitesimal character,
there exists a polynomial QML ∈ qZ[q] ∪ {1} such that the multiplicity of L in the compo-
sition series of M is given by QML(−1). Moreover, the polynomials QML can be computed
through a combinatorial recursive algorithm.

Our approach to studying Whittaker modules is to use the localization of Beilinson–
Bernstein [2] to relate N to a certain category of holonomic D-modules (so-called twisted
Harish-Chandra sheaves) on the associated flag variety. This geometric approach gives us
access to powerful tools such as the decomposition theorem for arbitrary holonomic D-
modules [18] which are essential in the development of the algorithm for computing the
polynomials of Theorem 1.

The four main contributions of this paper to the existing literature on Whittaker modules
are the following. First, we develop a theory of formal characters for Whittaker mod-
ules which generalizes the theory of formal characters of highest weight modules and
distinguishes isomorphism classes of objects in the Grothendieck group of the category
(Section 2.2). Second, we give a detailed description of the structure of the category of
twisted Harish-Chandra sheaves (Section 3). Irreducible objects in this category were clas-
sified in [17], but this paper includes a collection of new results describing the action of
intertwining functors on certain costandard sheaves, which were originally introduced by
Miličić–Soergel in [17]. The third and most significant contribution of the current paper is
the development of an algorithm for computing the composition multiplicities of standard
Whittaker modules, which establishes that the formal characters of simple Whittaker mod-
ules are given by a collection of polynomials that we refer to as Whittaker Kazhdan–Lusztig
polynomials (Section 5). Finally, we give a comparison of the Whittaker Kazhdan–Lusztig
polynomials which arise in our algorithm to other types of Kazhdan–Lusztig polynomials
in the existing literature (Section 6). This places Theorem 1 in the context of the Kazhdan–
Lusztig combinatorics of the Hecke algebra and establishes a connection between Whittaker
modules and other representation theoretic objects such as generalized Verma modules.

We will spend the rest of the introduction describing the main results of this paper in
more detail. Let U(g) be the universal enveloping algebra of a semisimple Lie algebra g

over C and Z(g) the center of U(g). Let b be a fixed Borel subalgebra of g with nilpotent
radical n = [b, b] and h ⊂ b a Cartan subalgebra. The category N of Whittaker modules
consists of all U(g)-modules which are finitely generated, Z(g)-finite, and U(n)-finite. For
a choice of λ ∈ h∗ and a Lie algebra morphism η : n → C, McDowell [12] constructed a
standard Whittaker module M(λ, η) (Definition 2), which has a unique irreducible quotient
L(λ, η), and showed that all irreducible Whittaker modules appear as such quotients. When
η = 0, the M(λ, 0) are Verma modules and the L(λ, 0) are simple highest weight modules.
When η acts non-trivially on all root subspaces of g corresponding to simple roots (we say
such η are nondegenerate), the M(λ, η) are the irreducible modules studied by Kostant in
[10].

Unlike highest weight modules, Whittaker modules don’t decompose into generalized
h-weight spaces. However, in blocks of N where the nilpotent radical n acts by a specific
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character η, Whittaker modules do decompose into generalized weight spaces for a cer-
tain subalgebra h� ⊂ h, which is the center of a Levi subalgebra of g determined by the
character η (Section 2.1). In contrast to the generalized h-weight spaces of category O, the
generalized h�-weight spaces in this decomposition are not finite-dimensional, but they are
of finite length in the category of modules over the specified Levi subalgebra. We can cap-
ture the structure of this h�-weight space decomposition by defining the formal character
(Definition 3) of a Whittaker module in a way that generalizes the formal character of high-
est weight modules. Then a natural problem in understanding the structure of the category
of Whittaker modules is to compute the formal characters of irreducible modules in N ,
which reduces to computing the multiplicities of the irreducible constituents of a standard
Whittaker module.

These multiplicities were first determined for integral λ by Miličić and Soergel in [16]
and for arbitrary λ by Backelin in [1] by relating subcategories of Whittaker modules to
certain blocks of category O and using the classical Kazhdan–Lusztig algorithm for Verma
modules. The current paper provides a more efficient procedure for calculating these mul-
tiplicities by using a geometric realization of Whittaker modules as twisted sheaves of
D-modules on the flag variety. This geometric perspective allows us to relate the multiplic-
ities to combinatorial data extracted from the associated Hecke algebra, providing a direct
link between Whittaker modules and Kazhdan–Lusztig polynomials.

The first step in studying Whittaker modules geometrically is to realize N as a cate-
gory of twisted Harish-Chandra modules. Let N be the unipotent subgroup of Int g such
that LieN = n. For a Lie algebra morphism η : n → C, the category of η-twisted
Harish-Chandra modules consists of g-modules which admit an algebraic action of N whose
differential differs from the restricted g-action by η. We denote the category of such modules
with infinitesimal character corresponding to a Weyl-group orbit θ ⊂ h∗ (via the Harish-
Chandra homomorphism) by Mfg(Uθ , N, η). In [17], Miličić and Soergel established a
categorical equivalence between certain blocks of N and the categories Mfg(Uθ , N, η).

This description allows us to use the localization theory of Beilinson–Bernstein to study
Whittaker modules. For each λ ∈ h∗, Beilinson and Bernstein [2] constructed a sheaf of
twisted differential operators Dλ on the flag variety X of g whose global sections �(X,Dλ)

are equal to Uθ , where θ is the Weyl group orbit of λ in h∗ and Uθ is the quotient of U(g)

by the corresponding ideal in Z(g). Applying the localization functor �λ = Dλ ⊗Uθ − to
the category Mfg(Uθ , N, η), we obtain a geometric category Mcoh(Dλ,N, η) of η-twisted
Harish-Chandra sheaves (Section 3), which are N -equivariant Dλ-modules satisfying a
compatibility condition determined by η. This category consists of holonomic Dλ-modules,
so its objects have finite length and there is a well-defined duality in the category. The
morphism η determines a parabolic subgroup W� of the Weyl group W of g, and from the
parameters η : n → C, C ∈ W�\W , and λ ∈ h∗, we construct a standard sheaf I(wC, λ, η),
costandard sheaf M(wC, λ, η), and irreducible sheaf L(wC, λ, η) (Section 3). Here wC is
the longest element in the coset C. The precise relationship between the algebraic category
N and the geometric category Mcoh(Dλ,N, η) is given by the following theorem, which
we prove in Section 4.

Theorem 2 (Theorem 9, Theorem 10) Let λ ∈ h∗, η : n → C a Lie algebra morphism, and
C ∈ W�\W . LetM(wC, λ, η) be the corresponding costandard η-twisted Harish-Chandra
sheaf and M(wCλ, η) the corresponding standard Whittaker module. Then

(i) if λ is antidominant,

�(X,M(wC, λ, η)) = M(wCλ, η), and
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(ii) if λ is also regular, then

�(X,L(wC, λ, η)) = L(wCλ, η).

Hence to compute the composition multiplicities of standard Whittaker modules
M(λ, η), it suffices to compute the composition multiplicities of the costandard η-twisted
Harish-Chandra sheaves M(wC, λ, η) in the category Mcoh(Dλ,N, η). In the case of reg-
ular integral λ ∈ h∗, the structure of this category is completely determined by the parameter
η, so we may further restrict our attention to the case λ = −ρ, where ρ is the half-sum of
positive roots. In this setting, Dλ = DX is the sheaf of differential operators on X (with-
out a twist). One way to better understand the structure of the irreducible DX-modules
L(wC,−ρ, η) (or indeed any DX-module in this category) is to utilize the stratification of
the flag variety and to restrict them to Bruhat cells contained in their support. The result-
ing restricted D-modules are easy to understand: the N -equivariance guarantees that they
decompose into a direct sum of copies of the structure sheaf on the corresponding Bruhat
cell. By keeping track of how many copies appear in the direct sum corresponding to each
Bruhat cell (we refer to this integer as the “O-dimension,” denoted dimO), we can con-
struct a combinatorial object which captures all important structural information of each
irreducible DX-module in the category Mcoh(DX,N, η). For each coset D ∈ W�\W , let
δD be a formal variable parameterized by D, and let H� be the free Z[q, q−1]-module with
basis {δD , D ∈ W�\W }. Let iwD : C(wD) → X be the inclusion of the corresponding
Bruhat cell into the flag variety. We define a map ν : Mcoh(DX,N, η) → H� by

ν(F) =
∑

D∈W�\W

∑

m∈Z
dimO(Rmi!

wD(F))qmδD .

Here, Rmi!
wD are the right derived functors of the DX-module extraordinary inverse image

functor (Section A.2).
We use ν to develop our desired Kazhdan–Lusztig algorithm for Whittaker modules. Let

� be the root system of g and � ⊂ � the set of simple roots determined by our fixed b.
Let � ⊂ � be the subset of simple roots picked out by η ∈ ch n, and let W� ⊂ W be the
corresponding parabolic subgroup of the Weyl group. For any α ∈ �, we define a certain
Z[q, q−1]-module endomorphism Tα : H� → H� (Section 5). The main result of this
paper is the following theorem.

Theorem 3 (Theorem 11, Proposition 9) The function ϕ : W�\W → H� given by ϕ(C) =
ν(L(wC, −ρ, η)) is the unique function satisfying the following properties.

(i) For C ∈ W�\W ,
ϕ(C) = δC +

∑

D<C

PCDδD,

where PCD ∈ qZ[q].
(ii) For α ∈ � and C ∈ W�\W such that Csα < C, there exist cD ∈ Z such that

Tα(ϕ(Csα)) =
∑

D≤C

cDϕ(D).

The existence and uniqueness of a function satisfying equivalent conditions to (i) and
(ii) was shown combinatorially by Soergel in [19].1 By realizing the function ϕ explicitly in

1The formulation in [19] is in terms of the antispherical module of the Hecke algebra. We prove in Section 6.3
that this formulation is equivalent to conditions (i) and (ii) in Theorem 3.
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terms of the category Mcoh(Dλ, N, η), Theorem 3 relates the Hecke algebra combinatorics
established in [19] to the category of Whittaker modules, which is the main accomplishment
of this paper. Theorem 3 determines a family {PCD} of polynomials in qZ[q] parameter-
ized by pairs of cosets C,D ∈ W�\W . We refer to these as Whittaker Kazhdan–Lusztig
polynomials. In Section 6 we describe their relationship to other types of Kazhdan–Lusztig
polynomials appearing in the literature. These polynomials determine the composition mul-
tiplicities of standard Whittaker modules. More precisely, if (μCD)C,D∈W�\W is the inverse
of the lower-triangular matrix (PCD(−1))C,D∈W�\W , then we have the following corollary
to Theorem 3.

Corollary 1 (Corollary 3, Corollary 4) Let λ ∈ h∗ be regular, integral, and antidominant.
Then the multiplicity of the irreducible Whittaker module L(wD(λ − ρ), η) in the standard
Whittaker module M(wC(λ − ρ), η) is μCD .

This paper is organized in the following way. We start by describing the structure of
the algebraic category of Whittaker modules in Section 2, following [12]. In this section
we recall McDowell’s construction of standard and simple Whittaker modules and develop
a new theory of formal characters for Whittaker modules. In Section 3, we describe the
category of twisted Harish-Chandra sheaves, following [17]. We recall Miličić–Soergel’s
construction of standard and simple objects in this category, then introduce a class of costan-
dard objects. These costandard objects were mentioned in [17] but not explicitly defined or
studied. We prove some results about the action of intertwining functors on these costan-
dard objects which are necessary for our arguments in Section 4. We dedicate Section 4 to
explicitly relating the category N of Whittaker modules and the category Mcoh(Dλ,N, η)

of twisted Harish-Chandra sheaves by proving that the global sections of costandard twisted
Harish-Chandra sheaves are standard Whittaker modules. This result sets us up to work
completely in the geometric category. Section 5 contains the proof of Theorem 3, which is
the main result of this paper. In Section 6 we determine the relationship between Whittaker
Kazhdan–Lusztig polynomials and Kazhdan–Lusztig polynomials, and we describe a com-
binatorial duality between the Kazhdan–Lusztig algorithm for generalized Verma modules
found in [14] and the Kazhdan–Lusztig algorithm for Whittaker modules established in this
paper. In Appendix A, we record our geometric conventions and include some fundamental
facts about modules over twisted sheaves of differential operators.

2 A Category of Whittaker Modules

In this section, we introduce the category of representations which is the main focus of this
paper and describe some key aspects of its structure. Let g be a complex semisimple Lie
algebra, U(g) its universal enveloping algebra, and Z(g) the center of U(g). Let b be a
Borel subalgebra with nilpotent radical n = [b, b] and h the (abstract) Cartan subalgebra of
g [15, §2]. Let � ⊂ �+ ⊂ � ⊂ h∗ be the corresponding set of simple roots and positive
roots, respectively, inside the root system of g. Let W be the Weyl group of g, and denote
by ρ ∈ h∗ the half-sum of positive roots.

We begin by recalling some standard terminology. For a W -orbit θ ⊂ h∗, there is a
unique maximal ideal Jθ ⊂ Z(g), which can be obtained as the kernel of the Lie algebra
morphism χλ : Z(g) → C defined by z 	→ (λ − ρ)(γ (z)), where γ : Z(g) → U(h) is the
untwisted Harish-Chandra homomorphism and λ is an element of the W -orbit θ [8, Ch. 1
§9]. All λ ∈ θ result in the same homomorphism χλ. We call such a Lie algebra morphism
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χλ an infinitesimal character. We say a g-module V has infinitesimal character if it has
the property that there exists an infinitesimal character χλ such that for any z ∈ Z(g) and
v ∈ V , zv = χλ(z)v, or, equivalently, if it is annihilated by the ideal Jθ . We say a g-
module has generalized infinitesimal character if there exists an infinitesimal character χλ

and k ∈ N such that for all v ∈ V and z ∈ Z(g), (z − χλ(z))
kv = 0, or, equivalently, if it is

annihilated by a power of the ideal Jθ .
We are interested in the following category of g-modules, which was originally intro-

duced by Miličić and Soergel in [16].

Definition 1 Let N be the category of g-modules which are

(i) finitely generated as U(g)-modules,
(ii) Z(g)-finite, and

(iii) U(n)-finite.

We refer to objects in this category as Whittaker modules.

Remark 1 In Kostant’s original paper [10] the term Whittaker module is used to describe
any g-module that is cyclically generated by a Whittaker vector. (These are vectors where
n acts by a nondegenerate Lie algebra morphism η : n → C.) We note that Definition 1
differs from Kostant’s original terminology, though all irreducible Whittaker modules (in
the sense of Kostant) are contained in N .

McDowell showed that all objects in N have finite length [12] (a fact which follows
immediately from their description as holonomic D-modules in [17]). This category is a
natural generalization of Bernstein–Gelfand–Gelfand’s category O. Indeed, if condition (ii)
is replaced by the stronger condition that h acts semisimply on the module, the resulting
category is exactly category O [8], so O is a full subcategory of N . A key difference
between N and O is that when the h-semisimplicity condition is relaxed to Z(g)-finiteness,
the existence of weight space decompositions is lost. However, the finiteness conditions (ii)
and (iii) provide us with other useful decompositions of N which lead to structural results
reminiscent of those in category O. In particular, we have two categorical decompositions
[17, §2 Lem. 2.1, Lem. 2.2]:

N =
⊕

θ∈W\h∗
N

θ̂
and N =

⊕

η∈n∗
Nη.

Here N
θ̂

is the full subcategory of N consisting of modules with generalized infinitesimal
character χλ for λ ∈ θ , and Nη is the full subcategory of N consisting of modules where
for any X ∈ n, X − η(X) acts locally nilpotently on V . The only elements η ∈ n∗ for
which Nη 
= 0 are Lie algebra morphisms [4, Ch. VII §1.3 Prop. 9(iii)]. We call such a Lie
algebra morphism η : n → C an n-character and say that modules in Nη have generalized
n-character η. We denote by ch n ⊂ n∗ the set of n-characters.

Let Nθ be the full subcategory of N consisting of modules with infinitesimal character
χλ for λ ∈ θ , and let Nθ,η be the intersection Nθ ∩ Nη. Any irreducible Whittaker module
lies in Nθ,η for some Weyl group orbit θ and some η ∈ ch n, so we will often restrict our
attention to this full subcategory Nθ,η.

The category Nθ,η is equivalent to a certain category of η-twisted Harish-Chandra mod-
ules, which is easier to relate to the geometric categories which appear later in this paper. We
describe this equivalence now. Let N be the unipotent subgroup of Int g such that LieN = n.
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Because N acts on the flag variety X of g with finitely many orbits, the pair (g, N) is a
Harish-Chandra pair in the sense of [17, §1]. For a fixed n-character η ∈ ch n, denote by
Mfg(g, N, η) the category of triples (π, ν, V ) such that:

(i) (π, V ) is a finitely generated U(g)-module,
(ii) (ν, V ) is an algebraic representation of N , and

(iii) the differential of the N -action on V induces a U(n)-module structure on V such that
for any ξ ∈ n,

π(ξ) = dν(ξ) + η(ξ).

This is the category of η-twisted Harish-Chandra modules for the Harish-Chandra pair
(g, N). Let Mfg(Uθ , N, η) be the full subcategory of Mfg(g, N, η) consisting of modules
which are also Uθ = U(g)/(U(g)Jθ )-modules; that is, modules V ∈ Mfg(g, N, η) which
are annihilated by Jθ . In [17, §2 Lem. 2.3], Miličić and Soergel show that the categories
Nθ,η and Mfg(Uθ , N, η) are equivalent. This association lets us use the localization func-
tor of Beilinson and Bernstein (Section A.3) to study the category of Whittaker modules
geometrically. In particular, by localizing objects in Mfg(U�,N, η) one obtains a cate-
gory of η-twisted holonomic D-modules which are equivariant for the action of N . We will
discuss the details of this construction in Section 3.

2.1 Standard and Simple Modules

In this section we briefly review McDowell’s construction of standard Whittaker modules,
which are a class of induced modules in N that generalize the Verma modules in cate-
gory O. For a choice of λ ∈ h∗ and η ∈ ch n, we construct a standard Whittaker module
M(λ, η). When η = 0, these modules are Verma modules, and when η is nondegener-
ate, these modules are the irreducible modules studied by Kostant in [10]. For partially
degenerate η, these modules share some structural properties with Verma modules and
some structural properties with Kostant’s nondegenerate modules. In particular, McDow-
ell showed that the M(λ, η) decompose into h�-weight spaces for the action of a certain
subalgebra h� ⊂ h depending on η. When η = 0, this subalgebra is equal to h and McDow-
ell’s decomposition is the decomposition of a Verma module into finite-dimensional weight
spaces. When η is nondegenerate, this subalgebra is trivial, so the entire module is a single
infinite-dimensional weight space. After reviewing the construction of M(λ, η), we gen-
eralize McDowell’s result and show that all modules in Nη admit generalized h�-weight
space decompositions. We also show that these h�-weight spaces are themselves Whittaker
modules for a Levi subalgebra determined by η. This extra structure enables us to develop a
new theory of formal characters for N in Section 2.2 which generalizes the theory of formal
characters of highest weight modules (as described in [8, §1.15]).

For the remainder of this subsection, fix an n-character η ∈ ch n. For α ∈ �, let gα be
the root space corresponding to α. Then η determines a subset � ⊂ � of the simple roots
in the following way:

� = {α ∈ � : η|gα 
= 0}.
If � = �, we say that η is nondegenerate. We call a Whittaker module V ∈ Nη for
η nondegenerate a nondegenerate Whittaker module. The cyclically generated Whittaker
modules studied by Kostant in [10] are examples of nondegenerate Whittaker modules in
our terminology.

Let �� ⊂ � be the root subsystem generated by �, and �+
� = �+ ∩ �� the corre-

sponding set of positive roots. Let W� be the Weyl group of ��, and ρ� = 1
2

∑
α∈�+

�
α.
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Let

n� =
⊕

α∈�+
�

gα, u� =
⊕

α∈�+−�+
�

gα, n̄� =
⊕

α∈−�+
�

gα, and ū� =
⊕

α∈−�+−(−�+
�)

gα .

In this way, the character η determines a reductive subalgebra l� = n̄� ⊕ h ⊕ n� of g and
a parabolic subalgebra p� = l� ⊕ u�. The reductive Lie subalgebra l� decomposes into
the direct sum of a semisimple subalgebra s� and its center z�. The semisimple subalgebra
s� in this decomposition is the derived subalgebra [l�, l�], and it is easy to check that the
center z� is the subalgebra h� = {H ∈ h | α(H) = 0, α ∈ �} ⊂ h.

Let γ� : Z(l�) → U(h) be the untwisted Harish-Chandra homomorphism of Z(l�)

[8, Ch. 1 §7]. Fix λ ∈ h∗, and define ϕ�,λ : U(h) −→ C to be the homomorphism sending
H ∈ h to (λ − ρ�)(H) ∈ C. The homomorphism

��,λ = ϕ�,λ ◦ γ� : Z(l�) −→ C (1)

is an infinitesimal character of Z(l�). This gives us a map associating elements of h∗ to
maximal ideals in Z(l�):

ξ� : h∗ −→ MaxZ(l�)

λ 	→ ker(��,λ).

From the data (λ, η) ∈ h∗ × ch n, we construct an l�-module

Y (λ, η) = (U(l�)/ξ�(λ)U(l�)) ⊗U(n�) Cη.

Here Cη is the one-dimensional U(n�)-module where n� acts by η. This induced module
Y (λ, η) is an irreducible l�-module [12, §2 Prop. 2.3].

Definition 2 The standard Whittaker module in N associated to λ ∈ h∗ and the character
η ∈ ch n is the g-module

M(λ, η) = U(g) ⊗U(p�) Y (λ − ρ + ρ�, η).

Here Y (λ−ρ +ρ�, η) is viewed as a U(p�)-module by letting u� act trivially and M(λ, η)

is a g-module by left multiplication on the first factor.

To get a sense for this construction, it is useful to examine particular values of η. If η = 0,
then � is empty, and M(λ, 0) = U(g) ⊗U(b) Y (λ − ρ, 0) is a Verma module of highest
weight λ − ρ. If η is nondegenerate, then M(λ, η) = Y (λ, η) is an irreducible Whittaker
module, as in [10].

Two such modules M(λ, η) and M(μ, η) are isomorphic if and only if λ and μ are in the
same W�-orbit in h∗. McDowell showed that each standard Whittaker module M(λ, η) has
a unique irreducible quotient L(λ, η), and all irreducible Whittaker modules appear as such
quotients [12, §2 Thm. 2.9]. Clearly both M(λ, η) and L(λ, η) have infinitesimal character
χλ and generalized n-character η, so they both lie in Nθ,η.

McDowell showed that the center h� of l� acts semisimply on M(λ, η) [12, §2 Prop.
2.4(e)]. This decomposition will be necessary in the theory of formal characters established
in the following section, so we briefly review it here. For any ν ∈ h∗, we use bold to denote
the restriction of ν to h�∗; that is, ν = ν|h� ∈ h�∗. There is a natural partial order on h�∗
[12, §1 Prop. 1.8(a)]. Let �−� = {α1, α2, · · · , αp}. Then {α1, · · · ,αp} is a basis for h�∗.
For α, β ∈ h�∗, say that α ≤ β if

β − α = c1α1 + c2α2 + · · · + cpαp
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for ci ∈ Z≥0. For a module V in Nη and linear functional μ ∈ h�∗, let Vμ = {v ∈
V |Xv = μ(X)v for all X ∈ h�} be the corresponding h�-weight space, and V μ = {v ∈
V | for all X ∈ h�, (X − μ(X))kv = 0 for some k ∈ N} the corresponding generalized
h�-weight space. If V μ 
= 0, we say μ is a h�-weight of V . Then we have the following
decomposition:

M(λ, η) =
⊕

ν≤λ−ρ

M(λ, η)ν .

Furthermore, M(λ, η)λ−ρ = Y (λ−ρ+ρ�), and M(λ, η)ν = U(ū�)μ ⊗CY (λ−ρ+ρ�, η)

for μ ≤ 0 in h�∗. (Here, we are using the fact that h� acts semisimply on U(ū�) [12, §2
Lem. 2.2(a)].)

The h�-weight spaces of M(λ, η) have a richer structure than just that of h�-modules,
as the following proposition shows. Given an l�-module V , we denote by V the s�-module
induced by the inclusion of s� ⊂ l�. Since s� is semisimple, standard semisimplicity
results apply to V . Let N (s�) be the category of s�-Whittaker modules.

Proposition 1 Let M(λ, η) = ⊕
ν≤λ−ρ M(λ, η)ν be the decomposition of a standard

Whittaker module inNη into h�-weight spaces. For each ν ∈ h�∗,

(i) M(λ, η)ν is a finite length l�-module, and
(ii) M(λ, η)ν is an object inN (s�).

Proof If η = 0, then h� = h and s� = 0. In this setting, the assertion is trivially true,
so we assume η 
= 0. The action of l� commutes with the action of h�, so the h�-weight
spaces of M(λ, η) are l�-stable. This proves that M(λ, η)ν are l�-modules. The vector
space U(ū�)μ is finite dimensional because there are only finitely many ways that we can
express a given μ ≤ 0 in h�∗ as a negative sum of roots in �−�. This implies that M(λ, η)ν
is the tensor product of a finite dimensional l�-module with an irreducible Whittaker mod-
ule. Such modules are of finite length and have composition factors which are irreducible
Whittaker modules (for η|n� ) by [10, §4 Thm. 4.6]. Because categories of Whittaker mod-
ules are closed under extensions [16, §1], this in turn implies that M(λ, η)ν is an object in
N (s�).

The h�-weight space structure of M(λ, η) described in proposition 1 is also inherited by
its unique irreducible quotient L(λ, η). Moreover, because the unique maximal submodule
N ⊂ M(λ, η) has h�-weights which are strictly less than λ − ρ, L(λ, η) has a unique
maximal h�-weight, λ − ρ, with respect to the partial order on h�∗, and all other weights
of L(λ, η) lie in a cone below this “highest” weight. The highest h�-weight space of a
standard module in N and the highest h�-weight space of its unique irreducible quotient
are both isomorphic to an irreducible l�-Whittaker module: M(λ, η)λ−ρ = L(λ, η)λ−ρ =
Y (λ − ρ + ρ�, η).

We finish this section by showing that all modules in Nη decompose into generalized
h�-weight spaces, and these weight spaces are modules in N (s�).

Theorem 4 Any object V inNη admits a decomposition

V =
⊕

μ∈h�∗
V μ
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where the generalized h�-weight spaces V μ are finite length l�-modules. Moreover, if we
restrict the l�-action to the semisimple subalgebra s� ⊂ l� and denote the resulting s�-
module by V μ, the generalized h�-weight spaces V μ of V are objects inN (s�).

Proof It is enough to consider V ∈ Nθ,η. By [16, §1], these categories are stable under
subquotients and extensions. The h�-semisimplicity of irreducible modules in Nθ,η implies
that all modules in Nθ,η are U(h�)-finite. Because objects in N are finite length and
exact sequences of g-modules in Nθ,η descend to exact sequences of h�-weight spaces, the
assertion follows from induction in the length of V .

2.2 Character Theory

In this section, we use the decomposition of a module in Nη into generalized h�-weight
spaces to develop a theory of formal characters in the category of Whittaker modules which
generalizes the theory of formal characters of highest weight modules [8, Ch. 1 §13]. This
character theory is new to the literature, though an alternate version of a character theory
for Whittaker modules appeared in unpublished work [11]. The main result of this section
is that the formal character of a module V in Nη completely determines its class in the
Grothendieck group KNη.

Fix an n-character η ∈ ch n, and let KN (s�) be the Grothendieck group of the category
N (s�). For an object V ∈ N (s�), we refer to the corresponding isomorphism class in
KN (s�) by [V ].

Definition 3 Let V be an object in Nη. For η 
= 0, the formal character of V is

ch V =
∑

μ∈h�∗
[V μ]eμ

where V μ is the restriction of the l�-module V μ to the semisimple subalgebra s� ⊂ l�,
[V μ] is the class of V μ in the Grothendieck group KN (s�), and eμ is a formal variable
parameterized by μ ∈ h�∗. For η = 0 and V ∈ N0 we define ch V = [V ] ∈ KN .

A standard Whittaker module is completely determined by its formal character.

Proposition 2 The following are equivalent.

(i) ch M(λ, η) = ch M(ν, η).
(ii) M(λ, η) = M(ν, η).

Proof It is clear that (ii) implies (i). Assume that ch M(λ, η) = ch M(ν, η). Then M(λ, η)

and M(ν, η) have the same h�-weights, and [M(λ, η)μ] = [M(ν, η)μ] for any such h�-
weight μ. This implies that λ − ρ is an h�-weight of M(ν, η), so λ − ρ ≤ ν − ρ. But also,
ν − ρ is an h�-weight of M(λ, η), so ν − ρ ≤ λ − ρ and thus λ − ρ = ν − ρ. Because
M(λ, η)λ−ρ = Y (λ − ρ + ρ�, η) and M(ν, η)ν−ρ = Y (ν − ρ + ρ�, η), we have

[Y (λ − ρ + ρ�, η)] = [Y (ν − ρ + ρ�, η)] ∈ KN (s�).

Because the s�-modules Y (λ − ρ + ρ�) and Y (ν − ρ + ρ�) are irreducible objects in
N (s�), the equality [Y (λ − ρ + ρ�, η)] = [Y (ν − ρ + ρ�, η)] of isomorphism classes

90



A Kazhdan-Lusztig Algorithm for Whittaker Modules

in the Grothendieck group implies that Y (λ − ρ + ρ�, η) = Y (ν − ρ + ρ�, η) as s�-
modules. Irreducible nondegenerate Whittaker modules are completely determined by their
infinitesimal character [10, §3 Thm. 3.6.1], so both modules have infinitesimal character
��,λ−ρ+ρ� . This is only possible if W� · λ = W� · ν, which implies that M(λ, η) =
M(ν, η).

Because any module V in Nθ,η has infinitesimal character χλ for λ ∈ θ , there are only
finitely many irreducible modules in the category Nθ,η. Let {L(λ1, η), . . . , L(λm, η)} be
the distinct irreducible modules in Nθ,η, and let S0 = {λ1 − ρ, . . . , λm − ρ} ⊂ h�∗ be
the collection of their highest h�-weights. Any module V in Nθ,η must have composition
factors on this list, so by Theorem 4, the h�-weights μ of V that show up in the character
must be of the form μ = λi − ρ − ∑p

j=1 mjαj for 1 ≤ i ≤ m and mj ∈ Z≥0.
Let KNθ,η be the Grothendieck group of the category Nθ,η. If V and W are isomorphic

objects in Nθ,η, then ch V = ch W , and since character is additive on short exact sequences,
we have a well-defined homomorphism

ch : KNθ,η −→
∏

μ≤S0

KN (s�)eμ

given by ch[V ] = ch V . Here μ ≤ S0 means that μ ≤ λi − ρ for some λi − ρ ∈ S0. Our
main result of this section is the following.

Theorem 5 ch : KNθ,η −→ ∏
μ≤S0

KN (s�)eμ is an injective homomorphism.

Proof To show that ch is injective, it is enough to show that the set of characters
{ch[L(λ1, η)], . . . , ch[L(λm, η)]} is linearly independent. Consider a non-trivial linear
combination

b1 ch[L(λ1, η)] + · · · + bm ch[L(λm, η)] = 0.

As before let S0 = {λ1 − ρ, . . . , λm − ρ} ⊂ h�∗ be the collection of the highest h�-
weights of the irreducible objects in Nθ,η. Note that the elements {λi}mi=1 ⊂ h∗ are distinct,
but it is possible that when restricted to h�, λi = λj for some i 
= j , so S0 might have
repeated elements. Choose a maximal element of this set, λj − ρ. Then λj − ρ can only
appear as a highest weight of modules in {L(λ1, η), . . . , L(λm, η)}.

Because the linear combination of irreducible characters vanishes, the coefficient of
eλj −ρ must vanish as well. That coefficient is

bi1 [L(λi1 , η)λj −ρ] + · · · + bin [L(λin , η)λj −ρ],
where {λi1 , . . . , λin} ⊂ {λ1, . . . , λm} are the elements of h∗ so that λi1 − ρ = · · · =
λin − ρ = λj − ρ. Because the highest h�-weight space of an irreducible module in N
is an irreducible Whittaker module for s�, we have a vanishing linear combination of
isomorphism classes of irreducible objects in KN (s�):

bi1 [Y (λi1 − ρ + ρ�, η)] + · · · + bin [Y (λin − ρ + ρ�, η)] = 0

Each of the classes in the above sum must be distinct because the corresponding irreducible
modules are non-isomorphic, so we conclude that bi1 = · · · = bin = 0, and ch must be
injective.

This immediately implies the following corollary.

Corollary 2 Let V and W be objects inNθ,η. Then the following are equivalent:
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(i) ch V = ch W .
(ii) V and W have the same composition factors.

We complete this section with an explicit calculation of the formal character of a stan-
dard Whittaker module, which we will use in Section 4. Let M(λ, η) be the standard
Whittaker module determined by λ ∈ h∗ and η ∈ ch n. Note that as an l�-module,
M(λ, η) = U(ū�) ⊗C Y (λ − ρ + ρ�, η). The Cartan subalgebra h acts semisimply on
U(ū�), and the collection of h-weights of U(ū�) are

Q =

⎧
⎪⎨

⎪⎩
−

∑

α∈�+\�+
�

mαα : mα ∈ Z≥0

⎫
⎪⎬

⎪⎭
.

As described in Section 2.1, M(λ, η) decomposes into h�-weight spaces of the form

M(λ, η)ν = U(ū�)μ ⊗C Y (λ − ρ + ρ�, η)

for μ ≤ 0 in h�∗. The h�-weight space of U(ū�) corresponding to a h�-weight μ ≤ 0 is
the sum of the h-weight spaces of U(ū�) corresponding to h-weights that restrict to μ on
h�; that is, for μ ∈ h�,

U(ū�)μ =
∑

κ∈Q,κ|
h�=μ

U(ū�)κ .

We define a function p : Q → N by p(κ) = dimU(ū�)κ . This function can be interpreted
combinatorially as counting the number of distinct ways that ν ∈ h∗ can be expressed as a
sum of roots in �+\�+

� . When � = ∅, this is Kostant’s partition function.
By [12, §2 Lem. 2.2(b)], each U(ū�)μ is a finite-dimensional l�-module, so the s�-

module M(λ, η)ν is the direct sum of a finite-dimensional s�-module and an irreducible
s�-module. This allow us to apply [10, §4 Thm. 4.6] and conclude that n� acts on M(λ, η)ν
by the nondegenerate character η|n� , and that M(λ, η)ν has composition series length

equal to dimU(ū�)μ =
∑

κ∈Q,κ|
h�=μ

p(κ). Furthermore, [10, §4 Thm. 4.6] implies that the

composition factors of M(λ, η)ν are

{Y (λ − ρ + ρ� + κ, η) | κ ∈ Q and κ = μ}.
This implies that in the Grothendieck group KN (s�),

[M(λ, η)ν] =
∑

κ∈Q,κ|
h�=μ

p(κ)[Y (λ − ρ + ρ� + κ, η)].

Therefore,

ch M(λ, η) =
∑

ν∈h�∗
[M(λ, η)ν)]eν =

∑

κ∈Q

p(κ)[Y (λ − ρ + ρ� + ν, η)]eλ−ρ+κ . (2)

3 A Category of Twisted Sheaves

In this section, we introduce the geometric objects that correspond to Whittaker modules
under Beilinson–Bernstein localization. Let X be the flag variety of g, and for λ ∈ h∗, let
Dλ be the corresponding twisted sheaf of differential operators on X. (See Appendix A.3
for more details on this construction.) The geometric category that emerges as an analogue
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to the category Nθ,η is a certain subcategory of the category Mqc(Dλ) of quasi-coherent
Dλ-modules which is equivariant under the action of the Lie group N = Int n. We start by
describing this category of twisted Harish-Chandra sheaves2 for a general Harish-Chandra
pair (g,K) to establish a parameterization of simple objects and to define standard and
costandard objects. Then we specialize to the Harish-Chandra pair (g, N) which describes
our setting of Whittaker modules. The classification of simple η-twisted Harish-Chandra
sheaves for an arbitrary Harish-Chandra pair (g,K) appeared in [17], as did the idea of using
holonomic duality to define costandard η-twisted Harish-Chandra sheaves. The results on
costandard η-twisted Harish-Chandra sheaves in this section are new to the literature.

3.1 Twisted Harish-Chandra Sheaves

In this section we describe the category of twisted Harish-Chandra sheaves, following [17].
For details on our choice of notation and geometric conventions, see Appendix A. Fix a
Harish-Chandra pair (g,K) and linear form λ ∈ h∗. Let k be the Lie algebra of K , and let
η : k → C be a Lie algebra morphism. We say that V is a (Dλ, K, η)-module if

(i) V is a coherent Dλ-module,
(ii) V is a K-equivariant OX-module, and

(iii) in EndV , π(ξ) = μ(ξ) + η(ξ) for all ξ ∈ k, and the morphism

Dλ ⊗ V → V

is K-equivariant. Here π is induced by the Dλ-action and μ is the differential of the
K-action.

We denote by Mcoh(Dλ,K, η) the category of (Dλ,K, η)-modules, and we refer to the
objects in this category as η-twisted Harish-Chandra sheaves. This category of twisted
Harish-Chandra sheaves carries much of the same structure as the non-twisted category
described in [14, Ch. 4]. In particular, any η-twisted Harish-Chandra sheaf is holonomic
[17, Lem. 1.1] so all η-twisted Harish-Chandra sheaves have finite length [17, Cor. 1.2].

Irreducible η-twisted Harish-Chandra sheaves were classified in [17, §3]. An irreducible
sheaf in Mcoh(Dλ,K, η) is uniquely determined by a pair (Q, τ) of a K-orbit Q ⊂ X

and an irreducible η-twisted connection τ on Q. All irreducible η-twisted Harish-Chandra
sheaves L(Q, τ) occur as unique irreducible subsheaves of standard η-twisted Harish-
Chandra sheaves, which are defined as follows. Fix x ∈ Q, and let bx be the corresponding
Borel subalgebra of g. Let Sx denote the stabilizer in K of x. Then the Lie algebra of Sx is
k ∩ bx . Let c be a Cartan subalgebra in g contained in bx , and s : h∗ → c∗ the specializa-
tion at x [15, §2]. Let μ denote the restriction of the specialization of λ + ρ to k ∩ bx and
i : Q → X the inclusion of Q into X. Then in the notation of Appendix A, (Dλ)

i = DQ,μ

[7, App. A].

Definition 4 Let Q be a K-orbit in X, i : Q → X be the natural inclusion, and τ an
irreducible M(DQ,μ, K, η)-module. Then I(Q, τ) = i+(τ ) is a holonomic (Dλ,K, η)-
module. We call I(Q, τ) the standard η-twisted Harish-Chandra sheaf attached to (Q, τ).

2When η = 0, the twist disappears and this category is exactly the category of Harish-Chandra sheaves in
[14, Ch. 4, §3].
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Let us now see how holonomic duality can be used to define costandard objects in the
category Mcoh(Dλ,K, η). For our fixed λ ∈ h∗ let θ ⊂ h∗ be the Weyl group orbit of λ.
Let Db

coh(M(Dλ)) be the derived category of bounded complexes of coherent Dλ-modules.
We have a duality functor

D : Db
coh(M(Dλ)) → Db

coh(M(D−λ))
op

given by the formula
D(V ·) = RHomDλ(V ·,Dλ)[dim X],

for V · ∈ Db
coh(M(Dλ)).

In the case of holonomic Dλ-modules, we can use this duality on derived categories
to define a notion of duality on modules. Let Mhol(Dλ) be the thick subcategory of
Mcoh(Dλ) consisting of holonomic Dλ-modules. If V is an object in Mhol(Dλ), then D(V)

is a complex in Db
coh(M(D−λ)) with holonomic cohomology and Hp(D(V)) = 0 for

p 
= 0. Therefore, we can define a functor
∗ : Mhol(Dλ) → Mhol(D−λ)

op

by
V∗ = H 0(D(V)).

This is the holonomic duality functor. We have the following result.

Theorem 6 (i) The functor V 	→ V∗ from Mhol(Dλ) to Mhol(D−λ)
op is an antiequiv-

alence of categories.
(ii) The functor V 	→ (V∗)∗ is isomorphic to the identity functor onMhol(Dλ).

We use the holonomic duality functor to construct costandard objects in the category
Mcoh(Dλ,K, η) as follows. Let Q be a K-orbit in X and τ an irreducible M(DQ,μ,K, η)-
module. Let L(Q, τ) be the corresponding irreducible η-twisted Harish-Chandra sheaf, and
I(Q, τ) the corresponding standard η-twisted Harish-Chandra sheaf. Then L(Q, τ) is an
irreducible holonomic Dλ-module supported on the closure of the orbit Q. Therefore, by
Theorem 6, L(Q, τ)∗ is an irreducible holonomic D−λ-module whose support is contained
in the closure of Q.

Lemma 1
L(Q, τ ∗)∗ = L(Q, τ).

Proof Let ∂Q = Q − Q and X′ = X − ∂Q. Then j : Q → X′ is a closed immersion, and
k : X′ → X is an open immersion. We have an exact sequence of η-twisted Harish-Chandra
sheaves

0 → L(Q, τ) → I(Q, τ) → Q → 0,

where Q = I(Q, τ)/L(Q, τ). One can show that Q is supported on ∂Q [17, §3]. Because
k is an open immersion, k+ is exact, and for any Dλ-module V , k+(V) = V |X′ . Therefore,
by restricting to X′ we see that L(Q, τ)|X′ = I(Q, τ)|X′ . Because duality is local, we have

L(Q, τ)∗|X′ = (L(Q, τ)|X′)∗ = (I(Q, τ)|X′)∗ = j+(τ )∗.

Moreover, by Kashiwara’s equivalence of categories (Theorem 15), j+ commutes with
duality, so we have

L(Q, τ)∗|X′ = j+(τ ∗).

94



A Kazhdan-Lusztig Algorithm for Whittaker Modules

On the other hand, τ ∗ is an irreducible η-twisted K-equivariant connection on Q compatible
with (−λ + ρ, η). Hence,

L(Q, τ)∗|X′ = j+(τ ∗) = L(Q, τ ∗)|X′ ,

and we see that
L(Q, τ)∗ = L(Q, τ ∗).

Dualizing, we obtain the desired result.

This leads us to our definition of costandard objects in the category Mcoh(Dλ,K, η).

Definition 5 Let Q be a K-orbit in X, i : Q → X be the natural inclusion, and τ

an irreducible M(DQ,μ,K, η)-module. The η-twisted Harish-Chandra sheaf M(Q, τ) =
I(Q, τ ∗)∗ is the costandard η-twisted Harish-Chandra sheaf attached to the geometric data
(Q, τ).

There is a natural inclusion L(Q, τ ∗) → I(Q, τ ∗). By dualizing, we get a natural
epimorphism M(Q, τ) → L(Q, τ), so L(Q, τ) is a quotient of M(Q, τ). The main
properties of costandard η-twisted Harish-Chandra sheaves are the following.

Proposition 3 (i) The length ofM(Q, τ) is equal to the length of I(Q, τ).
(ii) The irreducible η-twisted Harish-Chandra sheaf L(Q, τ) is the unique irreducible

quotient ofM(Q, τ). The kernel of this projection is supported on ∂Q.

Proof Duality preserves irreducibility and L(Q′, τ ′∗)∗ = L(Q′, τ ′) for any irreducible
η-twisted Harish-Chandra sheaf L(Q′, τ ′), so by Lemma 1, the composition factors of
M(Q, τ) must be equal to those of I(Q, τ). This proves (i). Furthermore, we have a short
exact sequence of D−λ-modules

0 → L(Q, τ ∗) → I(Q, τ ∗) → Q → 0,

where Q is a holonomic D−λ-module supported in ∂Q. Applying holonomic duality to this,
we get a short exact sequence of Dλ-modules

0 → Q∗ → M(Q, τ) → L(Q, τ) → 0.

Because L(Q, τ ∗) is the unique irreducible submodule of I(Q, τ ∗) and duality preserves
support, this implies that the kernel Q∗ of the projection map M(Q, τ) → L(Q, τ)

is the unique maximal submodule of M(Q, τ) and is supported in ∂Q. This proves the
proposition.

We complete this section with a proposition (Proposition 4) which will be of use in
computing global sections of η-twisted Harish-Chandra sheaves in Section 4. The proof of
the proposition uses the following three lemmas.

Lemma 2 If V is a object in Mcoh(Dλ,K, η) such that [V] = [I(Q, τ)] in the
Grothendieck group KMcoh(Dλ, K, η), then there exists a nontrivial morphism from V
into I(Q, τ).

Proof Let i : Q → X be the natural inclusion. As in the proof of Lemma 1, we can write i

as the composition of a closed immersion j : Q → X′ := X − ∂Q and an open immersion
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k : X′ → X. Because the quotient Q := I(Q, τ)/L(Q, τ) is supported on ∂Q and the
restriction functor k+ = |X′ is exact, we have

I(Q, τ)|X′ = L(Q, τ)|X′ .

In KMcoh(Dλ, K, η), [V] − [L(Q, τ)] = [Q], so all other composition factors of V must
be supported in ∂Q. Hence

V |X′ = L(Q, τ)|X′

as well. Since k+ is right adjoint to |X′ , we have

Hom(V,I(Q, τ)) = Hom(V |X′ , j+(τ )) = Hom(L(Q, τ)|X′ ,L(Q, τ)|X′) 
= 0.

This proves the lemma.

Lemma 3 If V is an object in Mcoh(Dλ, K, η) such that [V] = [M(Q, τ)] in the
Grothendieck group KMcoh(Dλ,K, η), then there exists a nontrivial morphism from
M(Q, τ) into V .

Proof By dualizing the morphism in Lemma 2, we know that if [V∗] = [M(Q, τ ∗)]
in KMcoh(D−λ,K, η), then there exists a nontrivial morphism from M(Q, τ ∗) into V∗.
Applying this fact to V∗ proves the lemma.

Lemma 4 If V is an object in Mcoh(Dλ,K, η) such that [V] = [M(Q, τ)] and V has
L(Q, τ) as a unique irreducible quotient, then V � M(Q, τ).

Proof By Lemma 3, there is a nontrivial morphism f : M(Q, τ) → V . Because L(Q, τ)

is the unique irreducible quotient of M(Q, τ) (Proposition 3), the image of f has L(Q, τ)

as a composition factor. If the image of f is not all of V , then it is contained in the unique
maximal submodule of V . But then the image of f cannot have L(Q, τ) as a composition
factor. Hence f must be surjective. The objects V and M(Q, τ) have the same length, so
the kernel of f is zero. We conclude that f is an isomorphism.

We can use the preceding lemmas to relate global sections of η-twisted Harish-Chandra
sheaves to η-twisted Harish-Chandra modules. For a regular W -orbit θ ⊂ h∗ and Lie algebra
morphism η : k → C, let Mfg(Uθ ,K, η) be the category of η-twisted Harish-Chandra
modules, as in [17][§1].3

Proposition 4 Let λ ∈ θ ⊂ h∗ be antidominant and regular, and {M(Q, τ)} ⊂
Mcoh(Dλ,K, η) the set of costandard η-twisted Harish-Chandra sheaves. Let {M(Q, τ)}
be a family of modules inMfg(Uθ ,K, η) parameterized by the pairs (Q, τ) such that

(i) each M(Q, τ) has a unique irreducible quotient L(Q, τ), and
(ii) in KMfg(Uθ ,K, η), [�(X,M(Q, τ))] = [M(Q, τ)].
Then �(X,L(Q, τ)) = L(Q, τ) and �(X,M(Q, τ)) = M(Q, τ).

3The definition in Section 2 is a special case of this category for K = N .
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Proof We prove the proposition by induction on the dimension of Q. Assume that Q is of
minimal dimension. Then M(Q, τ) is irreducible. Because λ is antidominant and regular,
�(X,M(Q, τ)) must be irreducible. The modules �(X,M(Q, τ)) and M(Q, τ) have the
same composition factors because they have the same class in the Grothendieck group, so
�(X,M(Q, τ)) = M(Q, τ). Because M(Q, τ) = L(Q, τ), this proves the proposition in
the base case.

Let Q be of dimension n, and assume that (i) and (ii) hold for all Q′ of dimension less
than or equal to n. Because M(Q, τ) has L(Q, τ) as its unique irreducible quotient, all
other composition factors of M(Q, τ) are of the form L(Q′, τ ′) for orbits Q′ which are
contained in ∂Q. By the induction assumption, the composition factors of �(X,M(Q, τ))

are �(X,L(Q′, τ ′)) = L(Q′, τ ′) and �(X,L(Q, τ)). But L(Q, τ) 
= L(Q′, τ ′) for Q 
=
Q′, so �(X,L(Q, τ)) 
= L(Q′, τ ′). Since M(Q, τ) has L(Q, τ) as a unique irreducible
quotient and [M(Q, τ)] = [�(X,M(Q, τ))] in the Grothendieck group, we must have that
�(X,L(Q, τ)) = L(Q, τ). This proves the first statement.

It follows that �λ(M(Q, τ)) has unique irreducible quotient �λ(L(Q, τ)) = L(Q, τ).
Therefore, by Lemma 4, �λ(M(Q, τ)) � M(Q, τ). This completes the proof.

3.2 The Harish-Chandra Pair (g, N )

Now we specialize to the setting of Whittaker modules. Let K = N = Int n. Let b be the
unique Borel subalgebra of g containing n = LieN . The pair (g, N) is a Harish-Chandra
pair. By the discussion in Section 3.1, standard objects in Mcoh(Dλ, N, η) are parameter-
ized by pairs (Q, τ), where Q is an N -orbit and τ is an irreducible N -equivariant connection
in Mcoh(DQ,μ,N, η). In the setting of the Harish-Chandra pair (g, N), we can describe
these pairs more explicitly.

The N -orbits on X are Bruhat cells C(w), w ∈ W . Our fixed character η ∈ ch n
determines a parabolic subgroup P� ⊂ G such that LieP� = p� as in Section 2.1. The
P�-orbits on X are unions of Bruhat cells [14, Ch. 6 §1 Lem. 1.9], and for each P�-orbit,
there is a unique Bruhat cell which is open in that orbit. There is a bijection between the
P�-orbits in X and the cosets W�\W , and the partial order on orbits determined by clo-
sure corresponds to the partial order on W�\W inherited from the Bruhat order on longest
coset representatives [14, Ch. 6 §1 Prop. 1.10, Prop 1.11]. Furthermore, the Weyl group
element w parameterizing the unique open Bruhat cell in a P�-orbit is the unique longest
coset representative wC in the corresponding coset C. In [17, §4], Miličić and Soergel
established that the only N -orbits admitting compatible connections4 are Bruhat cells C(w)

that are open in some P�-orbit. They also established that the only irreducible η-twisted
N -equivariant OC(w)-modules on such Bruhat cells are OC(w). Therefore, our standard,
simple, and costandard objects in the category Mcoh(Dλ,N, η) are the following.

Definition 6 For the parameters C ∈ W�\W , λ ∈ h∗ and η ∈ ch n, we define I(wC, λ, η)

to be the standard η-twisted Harish-Chandra sheaf corresponding to the N -orbit C(wC)

and the compatible connection OC(wC) on C(wC). (Here wC is the unique longest coset
representative of C.) We refer to the corresponding irreducible η-twisted Harish-Chandra
sheaf by L(wC, λ, η) and the corresponding costandard η-twisted Harish-Chandra sheaf by
M(wC, λ, η).

4That is, the only orbits on which there exist nontrivial irreducible (DQ,μ,N, η)-modules
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Remark 2 The parameter λ ∈ h∗ in this definition emerges in the direct image functor,
i+ : M(DQ,μ) → M(Dλ), whose construction depends on λ. (See Appendix A.2 for more
details.)

It is clear that the global sections of irreducible η-twisted Harish-Chandra sheaves for
the Harish-Chandra pair (g, N) are η-twisted Harish-Chandra modules for the same Harish-
Chandra pair. Under the equivalence of the categories Mfg(Uθ , N, η) and Nθ,η [17, §2
Lem. 2.3], these irreducible η-twisted Harish-Chandra modules correspond to irreducible
Whittaker modules. Recall that the goal of this paper is to develop an algorithm for com-
puting composition multiplicities of standard Whittaker modules. From the arguments
above, we see that converting this multiplicity question to the geometric setting of twisted
Harish-Chandra sheaves amounts to showing that the global sections of either costandard
or standard η-twisted Harish-Chandra sheaves are standard Whittaker modules. We will do
this in Section 4, but first we establish some useful results on the action of intertwining
functors on costandard η-twisted Harish-Chandra sheaves.

3.3 Intertwining Functors and U-Functors

For λ ∈ h∗ and w ∈ W , one can construct an “intertwining functor” which sends Dλ-
modules to Dwλ-modules. These functors play a crucial role in our geometric arguments
in Section 5, so we use this section to record some of their key properties. Detailed
development of these properties can be found in [14, Ch. 3 §3].

The orbits of the diagonal action of G = Int(g) on X × X are smooth subvarieties, and
can be parameterized in the following way. Given x, y in X and corresponding Borel subal-
gebras bx, by , we can choose a Cartan subalgebra c contained in bx ∩ by . Let nx = [bx, bx]
and ny = [by, by]. Then bx and by determine specializations [15, §2] of (h∗, �, �+) into
(c∗, R, R+

x ), and (c∗, R,R+
y ), respectively, where R is the root system of (g, c), R+

x ⊂ R is
the collection of positive roots determined by nx , and R+

y ⊂ R is the collection of positive
roots determined by ny . The positive root systems R+

x and R+
y are related by w(R+

x ) = R+
y

for some Weyl group element w ∈ W , and this w does not depend on choice of Cartan sub-
algebra in bx ∩ by . We say that by is in relative position w with respect to bx . It is clear that
bx is in relative position w−1 with respect to by . For w ∈ W , let

Zw = {(x, y) ∈ X × X|by is in relative position w with respect to bx}. (3)

This gives us a parameterization of G-orbits in X × X.

Lemma 5 [14, Ch. 3 §3 Lem. 3.1]

(i) Sets Zw for w ∈ W are smooth subvarieties of X × X.
(ii) The map w 	→ Zw is a bijection of W onto the set of G-orbits in X × X.

Denote by p1 and p2 the projections of Zw onto the first and second factors of X × X,
respectively. Then pi for i = 1, 2 are locally trivial fibrations with fibers isomorphic to
affine spaces of dimension �(w). Moreover, they are affine morphisms [14, Ch. 3 §3 Lem.
3.2]. Let ωZw |X be the invertible OZw -module of top degree relative differential forms for
the projection p1 : Zw → X and let Tw be its inverse sheaf. Then Tw = p∗

1(O(ρ − wρ)),
and there is a natural isomorphism [14, Ch. 3 §3 Lem. 3.3]

(Dwλ)
p1 = (Dp2

λ )Tw .
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The morphism p2 : Zw → X is a surjective submersion, so the inverse image functor

p+
2 : M(Dλ) → M(Dp2

λ )

is exact. Because twisting by an invertible sheaf is also an exact functor, we can define a
functor

LIw : Db(M(Dλ)) → Db(M(Dwλ))

by the formula
LIw(V ·) = p1+(Tw ⊗OZw

p+
2 (V ·))

for V · ∈ Db(M(Dλ)). This is the left derived functor of the functor

Iw : M(Dλ) → M(Dwλ),

where for V ∈ M(Dλ),

Iw(V) = H 0p1+(Tw ⊗OZw
p+

2 (V)).

We call the right exact functor Iw the intertwining functor attached to w ∈ W .
In the case where w is a simple root, we can define a related collection of U-functors,

which have desirable semisimplicity properties. Let α ∈ � be a simple root, and denote
by Xα the variety of parabolic subalgebras of type α. Let pα be the natural projection of X

onto Xα , and let Yα = X ×Xα X be the fiber product of X with X relative to the morphism
pα . Denote by q1 and q2 the projections of Yα onto the first and second factors, respectively.
Then we have the following commutative diagram:

Yα X

X Xα .

q2

q1 pα

pα

There is a natural embedding of Yα into X × X that identifies Yα with the closed subva-
riety Z1 ∪ Zsα of X × X. Under this identification, Z1 is a closed subvariety of Yα , and Zsα

is an open, dense, affinely embedded subvariety of Yα [14, Ch. 3 §8 Lem. 8.1].
Let λ ∈ h∗ be such that p = −α∨(λ) is an integer. Let L be the invertible OYα -module

on Yα given by

L = q∗
1 (O((−p + 1)sαρ + α)) ⊗OYα

q∗
2 (O((−p + 1)ρ))−1.

This allows us to define functors

Uj : Mqc(Dλ) → Mqc(Dsαλ)

by the formula
Uj (V) = Hjq1+(q+

2 (V) ⊗OYα
L)

for V ∈ Mqc(Dλ) [14, Ch. 3 §8, Lem. 8.2]. These functors first appeared in [14] as geo-
metric analogues to the Uα functors in [20], and they play a critical role in the algorithm of
Section 5 for their semisimplicity properties. Because the fibers of q1 are one-dimensional,
Uj = 0 for j 
= −1, 0, 1. If V is irreducible, the relationship between Uj (V) and Isα (V) is
captured in the following theorem.

Theorem 7 [14, Ch. 3 §8 Thm. 8.4] Let λ ∈ h∗ be such that p = −α∨(λ) is an integer, and
V ∈ Mqc(Dλ) an irreducible Dλ-module. Then either

(i) U−1(V) = U1(V) = V(pα) and U0(V) = 0, and in this case Isα (V) = 0 and
L−1Isα (V) = V(pα); or
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(ii) U−1(V) = U1(V) = 0, and in this case L−1Isα (V) = 0 and there exists a natural
exact sequence

0 → U0(V) → Isα (V) → V(pα) → 0.

The module U0(V) is the largest proper quasicoherent Dsαλ-submodule of Isα (V).

3.4 Intertwining Functors on Standard and Costandard Sheaves

In this section we examine the action of intertwining functors on standard and costandard
η-twisted Harish-Chandra sheaves in the category Mcoh(Dλ, N, η). These results will be
critical in establishing the relationship between Nθ,η and Mcoh(Dλ, N, η), and are new to
the literature. Let α ∈ �, w ∈ W , and pi for i = 1, 2 the projections of Zsα (3) onto the first
and second coordinates, respectively. As in Section 3.2, let b be the unique Borel subalgebra
of g containing n = LieN . We start with a useful lemma.

Lemma 6 The projection p1 : Zsα → X induces an immersion of p−1
2 (C(w)) into X, and

its image is equal to C(wsα).

Proof If y ∈ C(w), then bx is in relative position sα with respect to by if and only if
x ∈ C(wsα). Therefore, p−1

2 (C(w)) = C(wsα) × C(w), which implies the result.

Our first result is the following proposition.

Proposition 5 Let C ∈ W�\W and α ∈ � be such that Csα > C, and let λ ∈ h∗ be
arbitrary. Then

LIsα (I(wC, λ, η)) = I(wCsα, sαλ, η).

Proof The diagram

p−1
2 (C(wC)) Zsα

C(wC) X

j

pr2 p2

i
wC

commutes. Furthermore, p2 and pr2 = p2|p−1
2 (C(wC))

are surjective submersions and j and

iwC are affine immersions, so p+
2 , pr+

2 , iwC+, and j+ are all exact. Thus,

p+
2 (I(wC, λ, η)) = p+

2 (iwC+(OC(wC))) (4)

= j+(pr+
2 (OC(wC))) (5)

= j+(O
p−1

2 (C(wC))
). (6)

Here Eq. 4 is the definition of I(wC, λ, η), Eq. 5 is base change, and Eq. 6 follows from
the fact that dimZsα − dimX = dimp−1

2 (C(wC)) − dimC(wC).
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Applying the projection formula of Proposition 11 to the morphism p1, the line bundle
L = O(ρ − sαρ), and the twisted sheaf of differential operators Dλ on X, we obtain the
following commutative diagram:

M(Dp1
λ ) M(Dλ)

M((DL
λ )p1) M(DL

λ ).

p1+

p∗
1 (L)⊗OZα

− L⊗OX
−

p1+

We compute

LIsα (I(wC, λ, η)) = p1+(Tsα ⊗OZsα
p+

2 (I(wC, λ, η))) (7)

= p1+(Tsα ⊗OZsα
j+(O

p−1
2 (C(wC))

)) (8)

= p1+(p∗
1(O(ρ − sαρ)) ⊗OZsα

j+(O
p−1

2 (C(wC))
)) (9)

= O(ρ − sαρ) ⊗OX
p1+(j+(O

p−1
2 (C(wC))

)). (10)

Here Eq. 7 follows from the definition of intertwining functors, Eq. 8 from the Eqs. 4–6
above, Eq. 9 from the fact that Tsα = p∗

1(O(ρ − sαρ)), and Eq. 10 from the projection
formula diagram.

By Lemma 6, we have a commutative diagram

p−1
2 (C(wC)) Zsα

C(wCsα) X.

j

pr1 p1

i
wCsα

where pr1 = p1|C(w).
Picking up our previous computation, this lets us further conclude that

(10) = O(ρ − sαρ) ⊗OX
iwCsα+(pr1+(O

p−1
2 (C(wC))

)) (11)

= O(ρ − sαρ) ⊗OX
iwCsα+(OC(wCsα)) (12)

= I(wCsα, sαλ, η). (13)

In this final computation, Eq. 11 follows from the commutative diagram immediately pre-
ceding it, Eq. 12 from Lemma 6, and Eq. 13 from the definition of I(wCsα, sαλ, η) and
[14, Ch.2 §2].

For C ∈ W�\W , let M(wC, λ, η) be the corresponding costandard η-twisted Harish-
Chandra sheaf in the category Mcoh(Dλ, N, η). Our second result is the following.

Proposition 6 Let C ∈ W�\W and α ∈ � be such that Csα < C, and let λ ∈ h∗ be
arbitrary. Then

Isα (M(wC, λ, η)) = M(wCsα, sαλ, η),

and
LpIsα (M(wC, λ, η)) = 0 for p 
= 0.

Proof By Proposition 5 applied to the coset Csα and linear form −λ ∈ h∗, we have

I(wC, −λ, η) = LIsα (I(wCsα,−sαλ, η)).
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Applying holonomic duality, we get

M(wC, λ, η) = D(LIsα (I(wCsα, −sαλ, η)))

= (D ◦ LIsα ◦ D)(M(wCsα, sαλ, η))

By [14, Ch. 3 §4 Thm. 4.4], D ◦ LIsα ◦ D is the quasi-inverse of the intertwining functor
LIsα , so applying LIsα to both sides of the above equation proves the proposition.

Combined with [14, Ch. 3 §3 Cor. 3.22], this implies the following result.

Theorem 8 If λ ∈ h∗ is α-antidominant, and C ∈ W�\W is such that Csα < C, we have

Hp(X,M(wC, λ, η)) = Hp(X,M(wCsα, sαλ, η))

for any p ∈ Z+.

The final result of this section is a technical lemma which uses Proposition 6 to relate
costandard η-twisted Harish-Chandra sheaves supported on arbitrary P�-orbits to costan-
dard η-twisted Harish-Chandra sheaves supported on the unique closed P�-orbit. This
lemma will be critical in the arguments of Section 4. Recall that every coset C ∈ W�\W
has a unique longest coset representative wC and unique shortest coset representative wC

[14, Ch. 6 §1 Thm. 1.4]. If w� ∈ W� is the longest element, then by [14, Ch. 6 §1 Thm. 1.2
Thm. 1.4], we have w�wC = wC , and �(w�wC) = �(w�) + �(wC) = �(wC).

Lemma 7 Let λ ∈ h∗ be arbitrary. For any C ∈ W�\W ,

IwC
(M(wC, λ, η)) = M(w�,wCλ, η),

and
LpIwC

(M(wC, λ, η)) = 0 for p 
= 0.

Proof We proceed by induction in �(wC). If �(wC) = 0, then C = W�, and the assertion
is trivially true. If �(wC) = 1, then wC is a simple reflection sα for α ∈ � − �. Then
�(w�sα) = �(w�) + 1 and W�sα > W�. By Proposition 6,

Isα (M(w�sα, λ, η)) = M(w�, sαλ, η),

and
LpIsα (M(w�sα, λ, η)) = 0 for p 
= 0.

Now let C ∈ W�\W be arbitrary and assume that

IwC
(M(wC, λ, η)) = M(w�, wCλ, η) and LpIwC

(M(wC, λ, η)) = 0 for p 
= 0.

Let α ∈ � be such that Csα > C. By [14, Ch. 6 §1 Prop. 1.6], the shortest element wCsα in
Csα is wCsα . Thus,

IwCsα (M(wCsα, λ, η)) = IwC
(Isα (M(wCsα, λ, η)))

= IwC
(M(wC, sαλ, η))

= M(w�,wCsαλ, η).

Here the first equality follows from the “product formula” for intertwining functors [14, Ch.
3 §3 Cor. 3.8] and the second equality from Proposition 6. This completes the proof of the
lemma by induction.
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4 Geometric Description of Whittaker Modules

In this section we establish the connection between the category of Whittaker modules
and the category of twisted Harish-Chandra sheaves by proving that global sections of
costandard twisted Harish-Chandra sheaves are standard Whittaker modules. The theorem is
proven in three steps: first, we establish the result for costandard sheaves where the param-
eter η ∈ ch n is nondegenerate; then, we prove that the formal characters align properly
for costandard sheaves corresponding to the smallest P�-orbit (where the parameter η is
allowed to be arbitrary); finally, we extend the result to all costandard sheaves. This proof is
new to the literature, though an alternate proof of this relationship was given in the unpub-
lished work [11]. This allows us to use geometric arguments to draw conclusions about our
algebraic category of Whittaker modules, which will be essential in the interpretation of
the algorithm developed in Section 5. Our main tool in this section is the theory of formal
characters developed in Section 2.2.

We begin by examining the nondegenerate case. Let w0 be the longest element of the
Weyl group W of g.

Proposition 7 Let η ∈ ch n be nondegenerate and λ ∈ h∗. Then
�(X,M(w0, λ, η)) = M(w0λ, η).

Proof If η is nondegenerate, then W = W�, so by [17, Thm. 5.1], there exists a unique
irreducible object L(w0, λ, η) = I(w0, λ, η) = M(w0, λ, η) = Dλ ⊗U(n) Cη in
Mcoh(Dλ,N, η). Assume λ is antidominant, and let θ ⊂ h∗ be the W -orbit of λ. Then by
[17, Thm. 5.2],

�(X,M(w0, λ, η)) = Uθ ⊗U(n) Cη = M(w0λ, η).

Now, in order to deal with general λ ∈ h∗, let w ∈ W be arbitrary. By the preceding
argument (first equality) and [14, Ch. 3 §3 Thm 3.23] (second equality), we have

M(w0λ, η) = R�(M(w0, λ, η)) = R�(LIw(M(w0, λ, η))) = R�(C·),
where C· is a complex in Db(Dwλ) such that for any i ∈ Z, Ci is a finite sum of copies of
the unique irreducible object M(w0, wλ, η). (The last equality follows from [17, §5 Thm.
5.6].) Because the image of M(w0λ, η) in the derived category is a complex with a single
irreducible object in degree zero and zeros elsewhere and R� is an equivalence of derived
categories, the equality above implies that

LIw(M(w0, λ, η)) = M(w0, wλ, η).

Therefore,
�(X,M(w0, wλ, η)) = M(w0λ, η) = M(w0wλ, η).

This completes the proof of the proposition.

Proposition 8 Let η ∈ ch n be arbitrary, λ ∈ h∗, and θ ⊂ h∗ the Weyl group orbit of λ. In
the Grothendieck group KMfg(Uθ , N, η),

[�(X,M(w�, λ, η))] = [M(w�λ, η)].

Here w� is the longest element in the Weyl group W� determined by �. We will prove
the proposition in a series of steps. Our first step is to realize the standard sheaf correspond-
ing to the smallest P�-orbit as the direct image of a twisted Harish-Chandra sheaf for the
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flag variety of l�. Let P(w�) be the P�-orbit with open Bruhat cell C(w�) ⊂ P(w�).
Because w� is minimal in the set of longest coset representatives [14, Ch. 6 §1 Lem. 1.7],
P(w�) is a closed subvariety of X. Because P(w�) is an orbit of an algebraic group action
it is also a smooth subvariety of X. In fact, P(w�) is isomorphic to the flag variety of
l�. In particular, by [14, Ch. 6, §1, Lem. 1.9], we have the following orbit decomposition
P(w�) = ⋃

t∈W�
C(tw�) = ⋃

w∈W�
C(w). Let

iw� : C(w�) → P(w�), j : P(w�) → X, and i : C(w�) → X

be the natural inclusions, so i = j ◦ iw� is the composition of an open immersion and a
closed immersion. By definition, I(w�, λ, η) = j+(F), where F = iw�+(OC(w�)), and
OC(W�) is the N -equivariant connection in Mcoh(Di

λ, N, η) described in Section 3.2.

Lemma 8 The sheaf F is the standard object I(w�, λ + ρ − ρ�, η|n�) in the category
Mcoh(DP(w�),λ+ρ,N�, η|n�) corresponding to the open Bruhat cell C(w�) ⊂ P(w�).

Proof As described above, we can view P(w�) as the flag variety for l�, and the character
η|n� is nondegenerate on l�. The irreducible N -equivariant connection OC(w�) is compat-
ible with (λ, η) ∈ h∗ × ch n by construction. We can restrict the N -action to N� ⊂ N , and
consider OC(w�) as an irreducible N�-equivariant connection compatible with (λ, η|n�) ∈
h∗ × n∗

�. This allows us to interpret F = iw�+(OC(w�)) as the standard sheaf on the flag
variety of l� induced from the irreducible N�-equivariant connection OC(w�) on C(w�)

in Mcoh((Dj
λ)i , N�, η|n�). (Note that because η|n� is nondegenerate, this is the only stan-

dard η|n� -twisted Harish-Chandra sheaf in the category Mcoh(Dj
λ, N�, η|n�) by [17, Thm.

5.1].) Because
Dj

λ = (DX,λ+ρ)j = DP(w�),λ+ρ = Dλ+ρ−ρ�,

we have that
F = I(w�, λ + ρ − ρ�, η|n�).

This completes the proof.

Our next step is to use the normal degree filtration (Appendix A.2) to analyze the
global sections of the standard sheaf I(w�, λ, η). We will do so using the theory of for-
mal characters established in Section 2.2. By Lemma 8, we can express our standard sheaf
I(w�, λ, η) = j+(F), where F = I(w�, λ + ρ − ρ�, η|n�). Because j : P(w�) → X

is a closed immersion, this implies that I(w�, λ, η) has a filtration by normal degree,
FnI(w�, λ, η). Let GrI(w�, λ, η) be the associated graded sheaf. Let ch : Nθ,η −→∏

μ≤S0
KN ([l�, l�])eμ be the formal character function described in Section 2.2.

Lemma 9 ch�(X,GrI(w�, λ, η)) = ch�(X,I(w�, λ, η)).

Proof By construction, we have

�(X,I(w�, λ, η)) = lim−→ �(X,FnI(w�, λ, η)).

For each n ∈ Z+, we have an exact sequence

0 → Fn−1I(w�, λ, η) → FnI(w�, λ, η) → GrnI(w�, λ, η) → 0.

We claim that Hp(X,GrnI(w�, λ, η)) = 0 for p > 0. To see this, note that by con-
struction, GrnI(w�, λ, η) is the sheaf-theoretic direct image of a sheaf on P(w�) which
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has a finite filtration such that the graded pieces are standard η|n� -twisted Harish-Chandra
sheaves on the flag variety P(w�) of l�. These have vanishing cohomologies by the proof
of Proposition 7, which implies the claim. The short exact sequence above gives rise to a
long exact sequence

0 → �(X,Fn−1I(w�, λ, η)) → �(X,FnI(w�, λ, η)) → �(X,GrnI(w�, λ, η)) →
→ H 1(X, Fn−1I(w�, λ, η)) → H 1(X, FnI(w�, λ, η)) → 0 → · · ·

Using induction on n and the preceding paragraph, we see that Hp(X,FnI(w�, λ, η)) = 0
for p > 0, and therefore Hp(X,I(w�, λ, η)) = 0 for p > 0. This implies that for each
n ∈ Z+, we have a short exact sequence

0 → �(X,Fn−1I(w�, λ, η)) → �(X,FnI(w�, λ, η)) → �(X,GrnI(w�, λ, η)) → 0.

Note that if λ ∈ h∗ is antidominant, the existence of this short exact sequence follows from
the exactness of �, but this argument above holds for arbitrary λ ∈ h∗. This gives us a
filtration of �(X,I(w�, λ, η)), with associated graded module

�(X,GrI(w�, λ, η)) =
⊕

�(X,GrnI(w�, λ, η))

=
⊕

�(X,FnI(w�, λ, η))/�(X, Fn−1I(w�, λ, η)).

Because the formal character sums over short exact sequences, we have

ch�(X,GrnI(w�, λ, η)) = ch�(X, FnI(w�, λ, η)) − ch�(X, Fn−1I(w�, λ, η)).

Now we compute the formal character, using the fact that it distributes through direct sums.

ch�(X,GrI(w�, λ, η)) = ch
⊕

n∈Z+
�(X,GrnI(w�, λ, η))

=
∑

n∈Z+
(ch�(X,FnI(w�, λ, η)) − ch�(X, Fn−1I(w�, λ, η)))

= ch�(X,I(w�, λ, η)).

This completes the proof.

This reduces our calculation of the formal character of �(X,I(w�, λ, η)) to the calcu-
lation of the formal character of �(X,GrI(w�, λ, η)). Before completing this calculation,
we need a few more supporting lemmas.

The adjoint action of the Borel b on u� extends to an action of b on the universal
enveloping algebra U(u�). The h-weights of this action are

Q =

⎧
⎪⎨

⎪⎩
−

∑

α∈�+\�+
�

mαα

∣∣∣∣∣∣∣
mα ∈ Z≥0

⎫
⎪⎬

⎪⎭
.

Let NX|P(w�) = j∗(TX)/TP(w�) be the normal sheaf of P(w�) in X and S(NX|P(w�)) the
corresponding sheaf of symmetric algebras.

Lemma 10 AsOP(w�)-modules,

S(NX|P(w�)) =
⊕

μ∈Q

O(μ).
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Proof For any x ∈ P(w�), there is an equivalence of categories between the category
Mqc(OP(w�), P�) of quasicoherent P�-equivariant OP(w�)-modules and the category of
algebraic representations of Bx = stabP�{x} given by taking the geometric fiber of a sheaf
F in Mqc(OP(w�), P�). Under this correspondence, the one-dimensional representation
Cμ of weight μ corresponds to the sheaf OP(w�)(μ).

Let x0 ∈ X be the point corresponding to B. The P�-orbit of x0 in X is the unique
closed P�-orbit, so it must be equal to P(w�). In particular, x0 ∈ P(w�), so we have an
equivalence of the category Mqc(OP(w�), P�) with the category of algebraic representa-
tions of B. Under this equivalence, the normal sheaf NX|P(w�) corresponds to the Adjoint
representation of B on u�, or, equivalently, the adjoint representation of b on u�.

Therefore to analyze the OP(w�)-module S(NX|P(w�)), we can examine the symmetric
algebra S(u�), viewed as a b-module under the inherited action of the adjoint representation
of b on u�. The universal enveloping algebra U(u�) has a PBW filtration such that the asso-
ciated graded module GrU(u�) is isomorphic to S(u�). Under the adjoint action, U(u�)

decomposes into h-weight spaces corresponding to weights in Q. Therefore, the b-module
S(u�) decomposes into h-weight spaces corresponding to the same weights in Q.

For k ∈ Z≥0, consider V = Sk(u�). There is a b-invariant filtration

0 = F0V ⊂ F1V ⊂ · · · ⊂ FnV = V

such that FiV/Fi−1V = Cμ, where μ ∈ Q is an h-weight of Sk(u�). This induces a
filtration of V = Sk(NX|P(w�))

0 = F0V ⊂ F1V ⊂ · · · ⊂ FnV = V
where each FiV is a P�-equivariant subsheaf and FiV/Fi+1V = OP(w�)(μ). This proves
the result.

Lemma 11 For λ, μ ∈ h∗,
I(w�, λ, η|n�) ⊗OP (w�)

O(μ) = I(w�, λ + μ, η|n�).

Proof This follows immediately from the definition of I(w�, λ + μ, η|n�) (Definition 4)
and the projection formula (Proposition 11).

Lemma 12 As a left Dλ-module, the graded sheaf

GrI(w�, λ, η) = j•(F ⊗OP (w�)
S(NX|P(w�)) ⊗OP(w�)

O(2ρ� − 2ρ)).

Proof Recall the left Dj
λ-module F of Lemma 8. By an application of Eq. 38 to the right

Dj
λ-module F ⊗OP(w�)

ωP(w�), we see that as a right Dλ-module,

GrI(w�, λ, η) = j•(F ⊗OP (w�)
S(NX|P(w�)) ⊗OP(w�)

ωP(w�)).

Twisting by ωX gives us the left Dλ-module structure

GrI(w�, λ, η) = j•(F ⊗OP (w�)
S(NX|P(w�)) ⊗OP(w�)

ωP(w�)|X),

where ωP(w�)|X = ωP(w�) ⊗OP (w�)
j∗(ω−1

X ) is the invertible OP(w�)-module of top degree
relative differential forms for the morphism j . The result then follows from the fact that
ωP(w�)|X = O(2ρ� − 2ρ).

Now we are ready to prove Proposition 8.
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Proof of Proposition 8 Using the preceding lemmas and the computation of the character
of standard Whittaker modules from Section 2.2, we can show that the formal character
of �(X,I(w�, λ, η)) is equal to the formal character of M(w�λ, η). By Corollary 2, this
implies our result. Here λ ∈ h∗ and η ∈ ch n are arbitrary. We compute:

ch�(X,I(w�, λ, η)) = ch�(X,GrI(w�, λ, η)) (14)

= ch�(X, j•(F ⊗OP (w�)
S(NX|P(w�)) ⊗OP(w�)

O(2ρ� − 2ρ))) (15)

= ch�(P (w�),F⊗OP (w�)
S(NX|P(w�)) ⊗OP(w�)

O(2ρ�−2ρ)) (16)

= ch�(P (w�),F ⊗OP (w�)

⊕

μ∈Q

O(μ) ⊗OP(w�)
O(2ρ� − 2ρ)) (17)

= ch�(P (w�),
⊕

μ∈Q

I(w�, λ + ρ − ρ� + μ + 2ρ�−2ρ, η|n�)) (18)

= ch
⊕

μ∈Q

Y(λ − ρ + ρ� + μ, η|n�) (19)

=
∑

μ∈Q

[Y (λ − ρ + ρ� + μ, η)]eλ−ρ+μ (20)

= chM(λ, η) = chM(w�λ, η). (21)

Here, Eq. 14 follows from Lemma 9, Eq. 15 from Lemma 12, Eq. 16 from Kashiwara’s
theorem, Eq. 17 from Lemma 10, Eq. 18 from Lemma 8, Eq. 19 from Proposition 7, Eq. 20
from Definition 3, and Eq. 21 from Eq. 2 and the fact that two standard Whittaker modules
are isomorphic if their h∗ parameters are in the same W�-orbit.

Because I(w�, λ, η) = M(w�, λ, η), we conclude using Corollary 2 that in
KMfg(Uθ , N, η),

[�(X,M(w�, λ, η))] = [M(w�λ, η)].
This completes the proof of Proposition 8.

Before stating and proving the main result of this section, we record one final fact about
tensor products of standard Whittaker modules with finite-dimensional g-modules. This
lemma will be used in the proof of Theorem 9 to deal with the case of singular λ ∈ h∗.

Let λ ∈ h∗ be antidominant and μ ∈ P(�) be antidominant and regular. Then λ + μ is
antidominant and regular. Let Q(�) be the root lattice. Let

Wλ = {w ∈ W | wλ − λ ∈ Q(�)} ⊂ W

be the integral Weyl group of λ, which is the Weyl group of the root subsystem

�λ = {α ∈ � | α∨(λ) ∈ Z} ⊂ �.

For any g-module V , denote by V[λ] the generalized Z(g)-eigenspace of V corresponding
to the infinitesimal character χλ.

Lemma 13 Let F be the finite-dimensional g-module of highest weight −μ. For w ∈ W ,

(M(w(λ + μ), η) ⊗C F)[λ] = M(wλ, η).

Proof By [16, Lem. 5.12], T := M(w(λ + μ), η) ⊗C F has a filtration by g-submodules

0 = T0 ⊂ T1 ⊂ · · · ⊂ Tn = T
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such that the associated graded module GrT is isomorphic to the direct sum
⊕

ν∈P(F)

M(w(λ + μ) + ν, η),

where P(F) is the set of weights of F , counted with multiplicity. We claim that there is
exactly one standard Whittaker module appearing in this sum with infinitesimal character
χλ, and it is equal to M(wλ, η). Indeed, assume that for some v ∈ W and ν ∈ P(F),

w(λ + μ) + ν = vλ.

Then λ+μ+w−1ν = w−1vλ, so w−1vλ−λ = w−1ν−(−μ) ∈ Q(�). On one hand, since
λ is antidominant, w−1vλ − λ must be a positive sum of positive roots in �λ. On the other
hand, since −μ is the highest weight of F and w−1ν ∈ P(F), w−1ν − (−μ) is a negative
sum of positive roots in �λ. Hence

w−1vλ − λ = μ + w−1ν = 0.

This implies that ν = −wμ. The weight ν = −wμ is an extremal weight of F , so it
must occur with multiplicity 1. Therefore, there is exactly one standard Whittaker module
in the direct sum decomposition above with infinitesimal character χλ, and it is equal to
M(wλ, η).

The generalized Z(g)-eigenspace corresponding to χλ is the submodule

T[λ] = {t ∈ T | (ker χλ)
k · t = 0 for some k ∈ Z} ⊂ T .

Since M(wλ, η) appears exactly once in GrT , there is some index 1 ≤ i ≤ n such that

Ti/Ti−1 � M(wλ, η),

and the quotient T/Ti is annihilated by a power of
∏n

j=i+1 ker χw(λ+μ)+νj
with

χw(λ+μ)+νj

= χλ. This implies that T/Ti is a direct sum of submodules with generalized

infinitesimal characters different from χλ. It follows that T[λ] ⊂ Ti .
Since Ti is annihilated by a power of

∏i
j=1 ker χw(λ+μ)+νj

, Ti splits into a direct sum
of submodules with generalized infinitesimal characters χw(λ+μ)+νj

for 1 ≤ j ≤ i. Since
Ti−1 is not annihilated by any power of ker χλ, it follows that T[λ] is a direct complement of
Ti−1 in Ti . Hence T[λ] � M(wλ, η).

Finally, we are ready to prove our desired result.

Theorem 9 Let λ ∈ h∗ be antidominant, C ∈ W�\W , and η ∈ ch n be arbitrary. Then

�(X,M(wC, λ, η)) = M(wCλ, η).

Proof Lemma 7 implies that for C ∈ W�\W ,

LIwC
(M(wC, λ, η)) = M(w�,wCλ, η)

and
R�(LIwC

(M(wC, λ, η)) = R�(M(w�,wCλ, η)).

If λ ∈ h∗ is antidominant, then by [14, Ch. 3 §3 Thm. 3.23],

R�(M(wC, λ, η)) = R�(M(w�,wCλ, η)),

and
Hp(X,M(wC, λ, η)) = 0 for p > 0.
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Therefore, by Proposition 8,

[�(X,M(wC, λ, η))] = [�(X,M(w�, wCλ, η))] = [M(wCλ, η)].
Assume furthermore that λ ∈ h∗ is regular. Because M(wCλ, η) has a unique irreducible
quotient and λ ∈ h∗ is antidominant and regular, Proposition 4 implies our result.

Now assume that λ ∈ h∗ is antidominant but not necessarily regular. We extend the
result above to this setting using the Zuckerman translation functors of [14, Ch. 2 §2]. Let
μ ∈ P(�) be antidominant and regular, so λ+μ is antidominant and regular. By definition,
for any coset C ∈ W�\W , I(wC, λ, η) = I(wC, λ + μ, η)(−μ), and by dualizing, the
analogous statement is also true for costandard η-twisted Harish-Chandra sheaves. Let F be
the finite-dimensional irreducible g-module of highest weight −μ. Let F = OX ⊗C F . The
sheaf F naturally has the structure of an U◦ := OX ⊗C U(g)-module. For any U◦-module
V , we denote by V[λ] the generalized Z(g)-eigensheaf corresponding to λ. (For more details
on this construction, see [14, Ch. 2 §2].) Then, using the fact that λ+μ is antidominant and
regular, we compute

�(X,M(wC, λ, η)) = �(X,M(wC, λ + μ, η)(−μ))

= �(X, (M(wC, λ + μ, η) ⊗OX
F)[λ])

= �(X,M(wC, λ + μ, η) ⊗OX
F)[λ]

= (�(X,M(wC, λ + μ, η)) ⊗C F)[λ]
= (M(wC(λ + μ), η) ⊗C F)[λ]
= M(wCλ, η).

Here the second equality follows from [14, Ch. 2 §2 Lem. 2.1] and the final equality follows
from Lemma 13. This completes the proof of Theorem 9.

It is now straightforward to calculate the global sections of irreducible modules.

Theorem 10 Let λ ∈ h∗ be regular antidominant. Then, for any C ∈ W�\W , we have

�(X,L(wC, λ, η)) = L(wCλ, η).

Proof Because λ is regular antidominant, the global sections functor �(X,−) is an
equivalence of categories. Therefore, by Theorem 9, the unique irreducible quotient
L(wC, λ, η) of M(wC, λ, η) must be mapped to the unique irreducible quotient L(wCλ, η)

of M(wCλ, η) by �(X,−).

These results explicitly establish the connection between the category of Whittaker mod-
ules and the category of twisted Harish-Chandra sheaves and prepare us to describe the
algorithm in the following section.

5 A Kazhdan–Lusztig Algorithm

This section provides an algorithm for computing composition multiplicities of standard
Whittaker modules with regular integral infinitesimal character. These multiplicities are
given by Whittaker Kazhdan–Lusztig polynomials which are constructed geometrically
using twisted Harish-Chandra sheaves. This algorithm is the main result of this paper, and
was inspired by the Kazhdan–Lusztig algorithm for Verma modules in [14, Ch. 5 §2].
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To state the theorem containing the algorithm, we return to the combinatorial setting of
the introduction. Let W be the Weyl group of a reduced root system � with simple roots
� ⊂ �, and let S ⊂ W be the corresponding set of simple reflections. For a subset of
simple roots � ⊂ � with Weyl group W� ⊂ W , let H� be the free Z[q, q−1]-module with
basis δC , C ∈ W�\W . For α ∈ �, we define a Z[q, q−1]-module endomorphism by

Tα(δC) =
⎧
⎨

⎩

0 if Csα = C;
qδC + δCsα if Csα > C;
q−1δC + δCsα if Csα < C.

The order relation on cosets is the Bruhat order on longest coset representatives. This is
a partial order [14, Ch. 6 §1]. The formula for Tα is inspired by formulas related to the
antispherical module for the Hecke algebra appearing in [19]. We will describe explicitly
the relationship between our setting and the setting of [19] in Section 6. The algorithm is
given in the following theorem.

Theorem 11 There exists a unique function ϕ : W�\W → H� satisfying the following
properties.

(i) For C ∈ W�\W ,

ϕ(C) = δC +
∑

D<C

PCDδD,

where PCD ∈ qZ[q].
(ii) For α ∈ � and C ∈ W�\W such that Csα < C, there exist cD ∈ Z such that

Tα(ϕ(Csα)) =
∑

D≤C

cDϕ(D).

The function ϕ determines a family of polynomials PCD parameterized by pairs of
cosets in W�\W . We refer to these polynomials as Whittaker Kazhdan–Lusztig polynomi-
als, because, as we will see in Section 5.1, they determine composition multiplicities of
standard Whittaker modules.

First we will prove uniqueness of the function ϕ : W�\W → H� in Theorem
11 using a straightforward combinatorial argument. Next, we prove existence of ϕ by
appealing to geometry. Defining ϕ geometrically provides the critical link between the
Whittaker Kazhdan–Lusztig polynomials PCD of Theorem 11 and Whittaker modules. This
is explained in detail in Section 5.1.

We begin by proving uniqueness of ϕ in a slightly stronger form. Denote by W�\W≤k

the set of cosets C ∈ W�\W such that �(wC) ≤ k.

Lemma 14 Let k ∈ N. Then there exists at most one function ϕ : W�\W≤k −→ H� such
that the following properties are satisfied.

(i) For C ∈ W�\W≤k ,

ϕ(C) = δC +
∑

D<C

PCDδD,

where PCD ∈ qZ[q].
(ii) For α ∈ � and C ∈ W�\W≤k such that Csα < C, there exist cD ∈ Z such that

Tα(ϕ(Csα)) =
∑

D≤C

cDϕ(D).
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Proof We proceed by induction in k. By [14, Ch. 6 §1 Lem. 1.7], the unique minimal
element in the coset order is W�, so the base case is k = �(w�), where w� is the longest
element in W�. In this case, W�\W≤k = {W�}. The only possible function ϕ : W�\W −→
H� which satisfies (i) is ϕ(W�) = δW� , and (ii) is void.

Assume that for k > �(w�), there exists ϕ : W�\W≤k −→ H� which satisfies (i) and
(ii). Our induction assumption is that ϕ|W�\W≤k−1 is unique. By [14, Ch. 6 §1 Prop. 1.6],
there is a coset C ∈ W�\W≤k such that �(wC) = k. Then by [14, Ch. 6 §1 Lem. 1.7], there
exists α ∈ � such that Csα < C. By (ii),

Tα(ϕ(Csα)) =
∑

D≤C

cDϕ(D).

Evaluating at q = 0 and using (i), we have

Tα(ϕ(Csα))(0) =
∑

D≤C

cD

(
δD +

∑

E<D

PDE(0)δC

)
=

∑

D≤C

cDδD .

Because �(wCsα ) = k − 1, the induction assumption implies that the coefficients cD in
this sum are uniquely determined. On the other hand, using the definition of ϕ and Tα , we
compute

Tα(ϕ(Csα)) = Tα(δCsα ) +
∑

D<Csα

PCsαDTα(δD)

= qδCsα + δC +
∑

D<Csα

PCsαDTα(δD).

Because all cosets D appearing in the sum are less than Csα in the coset order, �(wD) <

k − 1 for any such D. In particular, δC does not show up in this sum. Evaluating at zero and
setting this equal to our first computation, we conclude that cC = 1. Therefore,

ϕ(C) = T (ϕ(Csα)) −
∑

D<C

cDϕ(D).

This shows that the Lemma holds for W�\W≤k , and we are done by induction.

The uniqueness of Theorem 11 follows immediately from Lemma 14. Next we establish a
parity condition on solutions of Lemma 14 which will be critical in upcoming computations.

We define additive involutions i on Z[q, q−1] and ι on H� by

i(qm) = (−1)mqm, for m ∈ Z, and

ι(qmδC) = (−1)m+�(wC)qmδC, for m ∈ Z and C ∈ W�\W .

A simple calculation shows that ιTαι = −Tα .

Lemma 15 Let k ∈ N. Let ϕ : W�\W≤k −→ H� be a function satisfying properties (i)
and (ii) of Lemma 14. Then

PCD = q�(wC)−�(wD)QCD,

where QCD ∈ Z[q2, q−2].
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Proof Define a function ψ : W�\W≤k → H� by ψ(C) = (−1)�(w
C)ι(ϕ(C)). Then

ψ(C) = δC +
∑

D<C

(−1)�(w
C)−�(wD)i(PCD)δD .

The polynomials (−1)�(w
C)−�(wD)i(PCD) are in qZ[q], so ψ satisfies (i). We will show that

ψ also satisfies (ii), then use Lemma 14 to conclude that ψ = ϕ. Let C ∈ W�\W≤k and
α ∈ � such that Csα < C. Then

Tα(ψ(Csα)) = (−1)�(w
C) (−Tα(ι(ϕ(Csα))))

= (−1)�(w
C)ιTαι(ι(ϕ(Csα)))

= (−1)�(w
C)ι

⎛

⎝
∑

D≤C

cDϕ(D)

⎞

⎠

= (−1)�(w
C)

∑

D≤C

cDι(ϕ(D))

=
∑

D≤C

(−1)�(w
C)−�(wD)cDψ(D).

This shows that ψ satisfies (ii), so Lemma 14 implies that ϕ = ψ ; that is, that

PCD = (−1)�(w
C)−�(wD)i(PCD).

This relationship implies the result.

Now we are ready to prove the existence statement of Theorem 11. Let F ∈
Mcoh(DX,N, η). For w ∈ W , let iw : C(w) −→ X be the canonical immersion of the
corresponding Bruhat cell into the flag variety. We note the following facts.

– For any k ∈ Z, L−ki+w (F) is an η-twisted N -equivariant connection on C(w), so
it is isomorphic to a direct sum of copies of OC(w). We refer to the number of
copies of OC(w) that appear in this decomposition as the O-dimension, and denote it
dimO(L−ki+w (F)).

– Because the dimension of C(w) is �(w), for any k ∈ Z,

Rn−�(w)−ki!w(F) = L−ki+w (F).

Here n = dim X.

We define a function ν : Mcoh(DX,N, η) −→ H� by

ν(F) =
∑

C∈W�\W

∑

m∈Z
dimO(Rmi!

wC (F))qmδC . (22)

For C ∈ W�\W , let IC := I(wC,−ρ, η) be the standard sheaf in Mcoh(DX,N, η)

corresponding to the coset C and LC := L(wC,−ρ, η) its unique irreducible subsheaf.

Proposition 9 Let ϕ(C) = ν(LC). Then ϕ satisfies conditions (i) and (ii) in Theorem 11.

Checking that ϕ satisfies 11 (i) is straightforward.
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Lemma 16 Let ϕ(C) = ν(LC). Then

ϕ(C) = δC +
∑

D<C

PCDδD,

where PCD ∈ qZ[q].

Proof We need to show three things:

(a) If D 
≤ C, dimO(Rmi!
wD(LC)) = 0 for all m ∈ Z,

(b) dimO(Rmi!
wC (LC)) =

{
1 if m = 0
0 otherwise

, and

(c) if D < C, dimO(Rmi!
wD(LC)) = 0 for all m ≤ 0.

Part (a) follows immediately from the fact that suppLC = C(wC) and D ≤ C in the coset
order if and only if C(wD) ⊂ C(wC) [14, Prop 1.11]. To see part (b), we first observe that

R0i!
wC (LC) = R0i!

wC (IC) = R0i!
wC (iwC+(OC(wC))) = OC(wC).

So dimO(R0i!
wC (LC)) = 1. Furthermore, for m 
= 0,

Rmi!
wC (LC) = Rmi!

wC (IC) = Rmi!
wC (iwC+(OC(wC))) = 0.

This proves (b). We end by showing (c). Let D ∈ W�\W be a coset so that D < C. Because
iwD is an immersion, i!

wD is a right derived functor, so for any m < 0, Rmi!
wD(V) = 0

for any D-module V on X. Thus all that remains is to show that R0i!
wD(LC) = 0. Let

X′ = X − ∂C(wD), and let jwD : C(wD) → X′ be the natural closed immersion, and
kwD : X′ → X the natural open immersion. Then we have a commutative diagram.

C(wD) X

X′
j
wD

i
wD

k
wD

Using the fact that dim X = dim X′, that kwD is an open immersion, and Kashiwara’s
Theorem, we compute

R0jwD+(R0i!
wD(LC)) = R0jwD+(R0j !

wD(R0k!
wD(LC)))

= R0jwD+(R0j !
wD(L0k+

wD(LC)))

= R0jwD+(R0j !
wD(LC |X′))

= R0�C(wD)(LC |X′).

From this calculation we see that R0jwD+(R0i!
wD(LC)) is the submodule of LC |X′ consist-

ing of sections supported on C(wD). However, because X′ is open, LC |X′ is irreducible,
so this submodule must be zero. We conclude that R0i!

wD(LD) = 0, which completes the
proof of the lemma.

Our final step in proving Theorem 11 is establishing that ϕ satisfies Theorem 11(ii).
Before we make this argument, we need to introduce a useful family of functors Uk

α :
Mqc(DX) → Mqc(DX) and examine their semisimplicity properties. We dedicate the
next page to doing so.
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Fix α ∈ �, and let pα : X −→ Xα be projection onto the flag variety of parabolic
subalgebras of type α. If Pα ⊂ G is the standard parabolic of type α, then Pα = B ∪BsαB.
Let C(v) be the Bruhat cell corresponding to v ∈ W . Then we have the following facts:

– The Bruhat cell C(v) � C
�(v), so iv : C(v) −→ X is an affine morphism.

– The image pα(C(v)) is an affine subvariety of Xα .
– The projection pα is locally trivial, so p−1

α (pα(C(v)) is a smooth, affinely embedded
subvariety of X.

We conclude that p−1
α (pα(C(v))) = C(v) ∪ C(vsα). One of these orbits is closed in

p−1
α (pα(C(v))) and the other is open and dense. We have two possible scenarios:

1. �(vsα) = �(v) + 1. Then dim(C(vsα)) > dim(C(v)), and so

– C(vsα) is open and dense in p−1
α (pα(C(v))),

– C(v) is closed in p−1
α (pα(C(v))), and

– pα : C(v) −→ pα(C(v)) is an isomorphism.

2. �(vsα) = �(v) − 1. Then dim(C(vsα)) < dim(C(v)), and so

– C(vsα) is closed in p−1
α (pα(C(v))),

– C(v) is open and dense in p−1
α (pα(C(v))), and

– pα : C(v) −→ pα(C(v)) is a fibration with fibers isomorphic to an affine line.

We define a family of functors Uk
α : Mqc(DX) −→ Mqc(DX) by

Uk
α(F) = p+

α (Hkpα+(F)).

Because the fibers of the projection map pα : X → Xα are one-dimensional, Uk
α can

be non-zero only for k ∈ {−1, 0, 1}. These functors are closely related to the U -functors
discussed in Section 3.3. (We will make this relationship explicit in the proof of Theorem
17.) Their main utility in our argument comes from their semisimplicity properties.

Lemma 17 Let C ∈ W�\W and α ∈ � be such that Csα < C. Then

(i) Uk
α(LCsα ) = 0 for all k 
= 0, and

(ii) U0
α(LCsα ) is a direct sum of LD for D ≤ C.

Proof By construction, U0
α(LCsα ) is a holonomic (DX,N, η)-module supported on C(wC),

so U0
α(LCsα ) has finite length, and its composition factors must be in the set {LD|D ∈

W�\W and D ≤ C}. Because pα is a locally trivial fibration with fibers isomorphic to P
1

(in particular, it is a projective morphism of smooth quasi-projective varieties), and LCsα is
a semisimple holonomic D-module, the decomposition theorem [18, §1 Thm. 1.4.1] implies
that Hkpα+(LCsα ) are semisimple. By the local triviality of pα , this in turn implies that
U0

α(LCsα ) are semisimple, which completes the proof of (ii).
To prove (i), we establish the connection between U0

α and the U-functors of Section 3.3.
Let Yα = X ×Xα X be the fiber product of X with itself relative to the morphism pα with
projections q1 and q2 onto the factors. By base change (Theorem 16),

Uk
α(LCsα ) = p+

α (Hkpα+(LCsα )) = Hkq1+(q+
2 (LCsα )).
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Because DX = D−ρ , we have that the twist Uk
α(LCsα )(α) = Uk(LCsα ), where Uk is the

functor from Section 3.3. To complete the proof, we need to show that we are in case (ii) of
Theorem 7; that is, that L−1Isα (LCsα ) = 0. Because Csα < C, we can apply Proposition 5
to the coset Csα and conclude that

LIsα (I(wCsα, λ, η)) = I(wC, sαλ, η).

In particular, this implies that L−1Isα (I(wcsα, λ, η)) = 0, and because LCsα is a submodule
of I(wcsα, λ, η), L−1Isα (LCsα ) = 0 as well.

We are working toward showing that ϕ(C) = ν(LC) satisfies (ii). We will do so by prov-
ing that for α ∈ � and C ∈ W�\W such that Csα < C, Tα(ϕ(Csα)) = ν(U0

α(LCsα )). This
relationship is useful because it allows us to use Lemma 17 to decompose ν(U0

α(LCsα )) and
obtain the desired sum in Theorem 11(ii). Before jumping into the argument, we must estab-
lish what happens if we pull back an irreducible module to a Bruhat cell which corresponds
to a Weyl group element which is not a longest representative in some coset C ∈ W�\W .
Lemma 18 will be critical in upcoming computations.

Lemma 18 Let v ∈ W be a Weyl group element such that v 
= wC is not a longest coset
element for any coset C ∈ W�\W . Let F ∈ Mcoh(DX, N, η) be irreducible. Then

Rki!v(F) = 0

for all k ∈ Z.

Proof Let X′ = X − ∂C(v), and express the canonical immersion iv as the composition of
a closed immersion and an open immersion in the following way.

C(v) X′ X
jv

iv

kv

Then, if F is an irreducible (DX, N, η)-module,

i!v(F) = j !
vk

!
v(F)

= i!vkv+jv+j !
vk

!
v(F)

= i!ckv+R�C(v)(k
!
v(F))

= i!vkv+R�C(v)(F |X′).

Here we are using Kashiwara’s theorem, the fact that dim X = dim X′, and the fact that kv

is an open immersion. Because X′ is open in X and F is irreducible, F |X′ is irreducible as
well. For all k ∈ Z, Rk�C(v)F |X′ is a submodule of F |X′ , so either Rk�C(v)F |X′ = 0, or
Rk�C(v)F |X′ = F |X′ . In the first case, the preceding calculation implies that Rki!v(F) = 0,
and we are done. In the second case, we have suppF |X′ = suppRk�C(v)F |X′ ⊆ C(v).
By [13, Ch. V §4 Cor. 4.2], F is the unique irreducible holonomic DX-module that
restricts to F |X′ , and suppF = suppF |X′ ⊆ C(v). There are no irreducible objects in
Mcoh(DX,N, η) with support equal to C(v) because v is not a longest coset element,
so we must have suppF ⊆ ∂C(v) = C(v) − C(v). But this implies that suppF |X′ =
suppRk�C(v)F |X′ = 0, so the second case cannot happen.
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Let C ∈ W�\W and α ∈ � be such that Csα < C. The rest of this section is spent
proving that Tα(ϕ(Csα)) = ν(U0

α(LCsα )). Our first step in relating these two quantities is to
establish the existence of a certain long exact sequence in cohomology which will be useful
in relating O-dimensions of modules which appear in the decomposition of ν(U0

α(LCsα )).

Let D ∈ W�\W be a coset such that D ≤ C, so �(wD) ≤ �(wC) and C(wD) ⊂ C(wC).
By [14, Ch. 6 §1 Prop 1.6], wCsα is the longest element of Csα , and �(wCsα) = �(w) − 1.
By assumption, C(wC) is open and dense in p−1

α (pα(C(wC))) = C(wC)∪C(wCsα), so the

closure p−1
α (pα(C(wC))) = C(wC). Because C(wD) ⊂ C(wC), the image pα(C(wD)) ⊂

pα(C(wC)), so

C(wD) ∪ C(wDsα) = p−1
α (pα(C(wD))) ⊂ p−1

α (pα(C(wC))) = C(wC).

We conclude that both wDsα ≤ wC and wD ≤ wC . Because both elements are less than or
equal to wC in the Bruhat order, we can assume without loss of generality that wDsα ≤ wD;
i.e. �(wDsα) = �(wD) − 1 and C(wD) is open in Zα := p−1

α (pα(C(wD))) = C(wD) ∪
C(wDsα).

Let j : Zα −→ X and jD : pα(C(wD)) −→ Xα be natural inclusions. Let qα :
Zα −→ pα(C(wD)) be the restriction of pα to Zα . Then we have the following fiber
product diagram:

Zα X

pα(C(wD)) Xα .

j

qα pα

jD

Note that because pα and qα are surjective submersions, p+
α and q+

α are exact, so they
both lift to functors on the respective derived categories Db(M(DX)) and Db(M(DZα )). In
the calculations below we denote both the functors on the derived category and the functors
on modules by the same name, either p+

α or q+
α . Let d be the codimension of Zα in X.

Note that the codimension of pα(C(wD)) = pα(Zα) in Xα is also d . Recall that for any
immersion i : Y → X of smooth algebraic varieties, the extraordinary inverse image and
the D-module inverse image are related by i![codim(Y )] = Li+. By this relationship, base
change (Theorem 16), and Lemma 17, we compute

Rkj !(U0
α(LCsα )) = Hk(j !p+

α pα+(LCsα ))

= Hk+d(Lj+(p+
α pα+(LCsα )))

= Hk+d(q+
α (Lj+

D (pα+(LCsα ))))

= Hk(q+
α j !

Dpα+(LCsα ))

= q+
α Hk(j !

Dpα+(LCsα ))

= q+
α Hk(qα+j !(LCsα )).
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Our next step is to analyze the complex j !(LCsα ). Denote by i : C(wD) −→ Zα and
i′ : C(wDsα) −→ Zα the canonical affine immersions. Note that i is an open immersion,
and i′ is a closed immersion. We have the following commutative diagram.

C(wD)

Zα X

C(wDsα)

i

i
wD

j

i′

i
wDsα

For any complex F · ∈ Db(M(DZα )), we have the following distinguished triangle
[13, Ch. IV §9]:

i′+i′!F · −→ F · −→ i+F ·|C(wD).

Applying this to F · = j !(LCsα ) and using the facts that j !(LCsα )|C(wD) = i+j !(LCsα ) =
i!j !(LCsα ) = i!

wD(LCsα ) because i is an open immersion and i′! ◦ j ! = i!
wDsα

, we obtain the
distinguished triangle

i′+i!
wDsα

(LCsα ) −→ j !(LCsα ) −→ i+i!
wD(LCsα ).

Applying the exact functor qα+ we get the following distinguished triangle in
Db(M(Dpα(C(wD)))):

(qα ◦ i′)+(i!
wDsα

(LCsα )) −→ qα+j !(LCsα ) −→ (qα ◦ i)+(i!
wD(LCsα )).

Because pα(C(wD)) is an N -orbit in Xα and all D-modules in the arguments above are N -
equivariant, the cohomologies of the complexes in this triangle are all direct sums of copies
of Opα(C(wD)). From this final distinguished triangle, we obtain a long exact sequence in
cohomology:

· · · → Hk−1((qα ◦ i)+(i!
wD(LCsα )) → Hk((qα ◦ i′)+(i!

wDsα
(LCsα ))) →

Hk(qα+(j !(LCsα )) → Hk((qα ◦ i)+(i!
wD(LCsα )) →

Hk+1((qα ◦ i′)+(i!
wDsα

(LCsα ))) → · · · .

This is a sequence of Dpα(C(wD))-modules which are direct sums of copies of Opα(C(wD)).
Note that the map

qα ◦ i′ : C(wDsα) −→ pα(C(wD))

is an isomorphism, and the map

qα ◦ i : C(wD) −→ pα(C(wD))

is a locally trivial projection with one-dimensional fibers. This implies that

dimOHk((qα ◦ i′)+(i!
wDsα

(LCsα ))) = dimORki!
wDsα

(LCsα ), and (23)

dimOHk((qα ◦ i)+(i!
wD(LCsα ))) = dimRk+1i!

wD(LCsα ). (24)

Now we are ready to prove that ϕ(C) = ν(LC) satisfies 11 (ii) by induction in the length
of wC . The base case is when wC = w� and C = W�. In this case, for any α ∈ �, either
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Csα = C, or Csα > C because w� is minimal length in the set of longest coset elements,
so 11(ii) is void.

Fix k ∈ N. Assume that ϕ(C) := ν(LC) satisfies 11 (ii) for C ∈ W�\W≤k . This is our
induction assumption. Under this assumption, we can reformulate the parity condition of
Lemma 15 in the following way. Since ϕ|W�\W satisfies conditions (i) and (ii) of Lemma

14 on W�\W≤k , if C ∈ W�\W≤k and D ∈ W�\W , then PCD = q�(wC)−�(wD)QCD , for
some QCD ∈ Z[q2, q−2].5 Because

PCD(q) =
∑

m∈Z
dimO(Rmi!

wD(LC))qm,

by the definition of ϕ, we conclude that for any C ∈ W�\W≤k and D ∈ W�\W , if m ≡
�(wC) − �(wD) − 1 (mod 2), then Rmi!

wD(LC) = 0. We refer to this as the inductive parity
condition.

Let C ∈ W�\W be a coset such that �(wC) = k + 1 and α ∈ � such that Csα < C. Let
D ∈ W�\W be such that D ≤ C. Then Csα ∈ W�\W≤k , so we can apply the inductive
parity condition to the cosets Csα and D. This yields

Rmi!
wD(LCsα ) = 0 for all m ∈ Z with m ≡ �(wC) − �(wD) (mod 2). (25)

Now since we’ve chosen D arbitrarily, there are two possible relationships between D and
α. Either Dsα = D or Dsα 
= D. In the first case, Lemma 18 implies that for all m ∈ Z,
Rmi!

wDsα
(LCsα ) = 0, since wDsα isn’t a longest coset representative. In the second case,

we can apply the inductive parity condition again to the cosets Csα and Dsα to see that

Rmi!
wDsα

(LCsα ) = 0 for all m ∈ Z with m ≡ �(wC) − �(wD) + 1 (mod 2). (26)

Combining Eqs. 25 and 26 with Eqs. 23 and 24, we see that for any D ≤ C and any
integer m such that m ≡ �(wC) − �(wD) + 1 (mod 2),

Hm((qα ◦ i)+(i!
wD(LCsα ))) = 0, and

Hm((qα ◦ i′)+(i!
wDsα

(LCsα ))) = 0.

Using the long exact sequence in cohomology from earlier, we conclude that for any integer
m such that m ≡ �(wC) − �(wD) + 1 (mod 2),

Hm(qα+j !(LCsα )) = 0.

The outcome of the this discussion is that the long exact sequence in cohomology associated
to the cosets C and D has the form

· · · → 0 → 0 → 0 → ∗ → ∗ → ∗ → 0 → 0 → 0 → ∗ → ∗ → ∗ → 0 → 0 → 0 → · · · ,

where the ∗’s represent possibly non-zero elements. Since O-dimension sums over short
exact sequences, we conclude after another application of Eqs. 23 and 24 that for any integer
m such that m ≡ �(wC) + �(wD) + 1 (mod 2),

dimOHm(qα+j !(LCsα )) = dimORmi!
wDsα

(LCsα ) + dimORm+1i!
wD(LCsα ).

By restricting this further to C(wD) and C(wDsα), we see that for any m ∈ Z,

dimORmi!
wD(U0

α(LCsα )) = dimORm+1i!
wD(LCsα )+dimORmi!

wDsα
(LCsα ), and (27)

dimORmi!
wDsα

(U0
α(LCsα )) = dimORmi!

wD(LCsα ) + dimORm−1i!
wDsα

(LCsα ). (28)

5Note that we are adopting the convention that for D 
≤ C, PCD = 0, and this statement is trivially true.
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In addition, if D ∈ W�\W has the property that Dsα = D, we can use Lemma 18 to
further reduce Eqs. 27 and 28. Indeed, by Lemma 18, if Dsα = D,

dimORm−1i!
wDsα

(LCsα ) = 0, and

dimORmi!
wDsα

(LCsα ) = 0

for all m ∈ Z+. By Lemma 17, U0
α(LCsα ) = ⊕

D≤C mCDLD for some mCD ∈ Z+, hence
Lemma 18 also implies that

dimORmi!
wDsα

(U0
α(LCsα )) = 0.

Therefore, we conclude that for all cosets D ≤ C such that Dsα = D,

dimORmi!
wD(U0

α(LCsα )) = 0 (29)

for all m ∈ Z.
The Eqs. 27, 28, and 29 are what we need to show that Tα(ϕ(Csα)) = ν(U0

α(LCsα )). The
computation is as follows.

ν(U0
α(LCsα )) =

∑

D∈W�\W

∑

m∈Z
dimO(Rmi!

wD (U0
α(LCsα )))qmδD

=
∑

Dsα>D

∑

m∈Z
dimO(Rmi!

wD (U0
α(LCsα )))qmδD

+
∑

Dsα<D

∑

m∈Z
dimO(Rmi!

wD (U0
α(LCsα )))qmδD

+
∑

Dsα=D

∑

m∈Z
dimO(Rmi!

wD (U0
α(LCsα )))qmδD

=
∑

Dsα<D

∑

m∈Z
dimO(Rmi!

wDsα
(U0

α(LCsα )))qmδDsα

+
∑

Dsα<D

∑

m∈Z
dimO(Rmi!

wD (U0
α(LCsα )))qmδD

=
∑

Dsα<D

∑

m∈Z
(dimORmi!

wD (LCsα ) + dimORm−1i!
wDsα

(LCsα ))qmδDsα

+
∑

Dsα<D

∑

m∈Z
(dimORm+1i!

wD (LCsα ) + dimORmi!
wDsα

(LCsα ))qmδD

=
∑

Dsα<D

∑

m∈Z
(dimORm+1i!

wD (LCsα ) + dimORmi!
wDsα

(LCsα ))qm(δD + qδDsα )

=
∑

Dsα<D

∑

m∈Z
dimORm+1i!

wD (LCsα )qm+1(q−1δD + δDsα )

+
∑

Dsα>D

∑

m∈Z
dimORmi!

wD (LCsα ))qm(δDsα + qδD)

= Tα(ν(LCsα )) = Tα(ϕ(Csα)).

Therefore, for C ∈ W�\W≤k+1 and α ∈ � such that Csα < C,

Tα(ϕ(Csα)) = ν(U0
α(LCsα )) = ν(

⊕

D≤C

cDLD) =
∑

D≤C

cDν(LD) =
∑

D≤C

cDϕ(D),

i.e. Theorem 11 (ii) holds on W�\W≤k+1. By induction, this completes the proof of
Proposition 9, which in turn completes the proof of Theorem 11.
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5.1 CompositionMultiplicities of StandardWhittaker Modules

We are now ready to establish the connection between Whittaker Kazhdan–Lusztig polyno-
mials and multiplicities of irreducible Whittaker modules in standard Whittaker modules.
We start with two preliminary lemmas.

Lemma 19 The evaluation ν(−1) of the map ν at −1 factors through the
Grothendieck group K(Mcoh(DX,N, η)) ofMcoh(DX,N, η).

Proof For an object F in Mcoh(DX,N, η),

ν(F)(−1) =
∑

C∈W�\W

∑

m∈Z
(−1)m dimO(Rmi!

wC (F))δC .

If 0 → F1 → F2 → F3 → 0 is a short exact sequence in Mcoh(DX, N, η), then for each
C ∈ W�\W , we have a long exact sequence

· · · ∂m−1−−−→ Rmi!
wC (F1)

fm−→ Rmi!
wC (F2)

gm−→ Rmi!
wC (F3)

∂m−→ Rm+1i!
wC (F1) → · · ·

of N -equivariant η-twisted connections on C(wC). For each m ∈ Z, we have short exact
sequences

0 → ker fm → Rmi!
wC (F1) → im fm → 0,

0 → ker gm → Rmi!
wC (F2) → im gm → 0, and

0 → ker ∂m → Rmi!
wC (F3) → im ∂m → 0.

Since O-dimension sums over short exact sequences and ker fm = im ∂m−1, ker gm =
im fm, and ker ∂m = im gm, we have

∑

m∈Z
(−1)m dimO(Rmi!

wC (F2)) =
∑

m∈Z
(−1)m dimO(Rmi!

wC (F1))

−
∑

m∈Z
(−1)m dimO ker fm

+
∑

m∈Z
(−1)m dimO(Rmi!

wC (F3))

−
∑

m∈Z
(−1)m dimO ker ∂m

=
∑

m∈Z
(−1)m dimO(Rmi!

wC (F1))

+
∑

m∈Z
(−1)m dimO(Rmi!

wC (F3)).

This implies the result.

Lemma 20 ν(IC) = δC .

Proof By definition, IC = iwC+(OC(wC)). By Kashiwara’s theorem (Theorem 15),

R0i!
wC (IC) = R0i!

wC (iwC+(OC(wC))) = OC(wC),
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and for m 
= 0,
Rmi!

wC (IC) = Rmi!
wC (iwC+(OC(wC))) = 0.

Let D 
= C be another coset in W�\W . Then i−1
wD(C(wC)) = 0, so by base change

(Theorem 16),
Rmi!

wD(IC) = Rmi!
wD(iwC+(OC(wC))) = 0

for all m ∈ Z.

Let χ : Mcoh(DX,N, η) → K(Mcoh(DX,N, η)) be the natural map of the category
Mcoh(DX,N, η) into its Grothendieck group K(Mcoh(DX,N, η)).

Theorem 12 Let PCD , C, D ∈ W�\W be the polynomials in Theorem 11. Then

χ(LC) = χ(IC) +
∑

D<C

PCD(−1)χ(ID).

Proof By definition, χ(LC), C ∈ W�\W form a basis for the Grothendieck group
K(Mcoh(DX,N, η)). Because IC contains LC as a unique irreducible submodule, and the
other composition factors of IC are LD for D < C, we can see that χ(IC), C ∈ W�\W
form another basis for the Grothendieck group. Therefore, there exist λCD ∈ Z such that

χ(LC) =
∑

D≤C

λCDχ(ID).

By Lemma 19, ν(−1) factors through K(Mcoh(DX,N, η)) and by Lemma 20, ν(ID) =
δD , so by comparing coefficients and using the definition of ν, we have

ν(LC)(−1) =
∑

D≤C

λCDν(ID)(−1) =
∑

D≤C

λCDδD .

By construction, PCC = 1 for any C ∈ W�\W , so λCC = 1 and PCD(−1) = λCD . This
proves the theorem.

This theorem gives an algorithm for calculating the multiplicities of irreducible Whit-
taker modules in standard Whittaker modules. Pick a total order compatible with the partial
order on W�\W . With respect to this order, the matrix (λCD)C,D∈W�\W is lower triangu-
lar and has 1’s on the diagonal. Here λCD = PCD(−1) as in the proof of Theorem 12. Let
(μCD)C,D∈W�\W be the inverse matrix. From Theorem 12, we have

χ(IC) =
∑

D∈W�\W

∑

E∈W�\W
μCEλEDχ(ID)

=
∑

E∈W�\W
μCE

⎛

⎝
∑

D∈W�\W
λEDχ(ID)

⎞

⎠

=
∑

E∈W�\W
μCEχ(LE)

=
∑

E≤C

μCEχ(LE).

By Theorem 9 and Theorem 10, we have established the main result of this paper.

121



A. Romanov

Corollary 3 The multiplicity of the irreducible Whittaker module L(−wDρ, η) in the
standard Whittaker module M(−wCρ, η) is μCD .

We can get results analogous to Theorem 12 and Corollary 3 for integral λ ∈ h∗ by
twisting by a equivariant invertible OX-module.

Corollary 4 Let λ ∈ h∗ be regular, integral, and antidominant. Then the multiplicity
of the irreducible Whittaker module L(wD(λ − ρ), η) in the standard Whittaker module
M(wC(λ − ρ), η) is μCD .

Proof From Corollary 3, we know that in the Grothendieck group of
Mcoh(D−ρ,N, η),

[I(wC,−ρ, η)] = [M(wC,−ρ, η)] =
∑

D∈W�\W
μCD[L(wD,−ρ, η)].

Moreover, by the projection formula (Proposition 11), we have I(wC, −ρ, η)(λ) =
I(wC, λ − ρ, η), which in turn implies that L(wC,−ρ, η) = L(wC, λ − ρ, η) since the
twist functor −(λ) must send irreducible objects in Mcoh(D−ρ,N, η) to irreducible objects
in Mcoh(Dλ−ρ,N, η) and each standard η-twisted Harish-Chandra sheaf has a unique
irreducible subsheaf. By Theorem 9 this implies the result.

Establishing the same multiplicity results for standard Whittaker modules of arbitrary
infinitesimal character requires further analysis, which we will examine in future work. It
is of note that the proof of Theorem 11 immediately implies that the coefficients of the
Whittaker Kazhdan–Lusztig polynomials PCD are non-negative integers.

Corollary 5 The coefficients of the polynomials PCD from Theorem 11 are non-negative
integers.

Proof This follows immediately from Proposition 9 and the definition of ν.

6 Whittaker Kazhdan–Lusztig Polynomials

This section relates the Whittaker Kazhdan–Lusztig polynomials PCD of Theorem 11 to the
combinatorics of Kazhdan–Lusztig polynomials appearing in [19] and [14, Ch. 5 §2 §3].
We also describe a duality between the Kazhdan–Lusztig algorithm for Whittaker modules
established in Section 5 and the Kazhdan-Lusztig algorithm for generalized Verma modules
established in [14, Ch. 6 §3 Thm. 3.5], following the philosophy of dual Hecke algebra
modules laid out in [21, §12 §13]. To make these associations, we need to introduce the
Hecke algebra into our story.

6.1 The Hecke Algebra

Let (W, S) be a Coxeter system with length function � : W → N.

Definition 7 The Hecke algebra H = H(W, S) of the Coxeter system (W, S) is the
associative algebra over Z[q, q−1] with generators {Hs}s∈S satisfying the relations
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(i) (quadratic)
(Hs + q)(Hs − q−1) = 0 for all s ∈ S, and

(ii) (braid) for each pair s, t ∈ S,

HsHtHs · · · = HtHsHt · · ·
with mst elements on each side of the equality. (Here mst is the order of st in W .)

All Hs for s ∈ S are invertible with H−1
s = Hs + (q − q−1). For w ∈ W , we choose

a reduced expression rs · · · t of w and define Hw ∈ H by HrHs · · ·Ht . This element
is independent of choice of reduced expression. If �(w) + �(v) = �(wv), then we have
HwHv = Hwv . There is exactly one ring homomorphism

d : H → H
H 	→ H

such that q = q−1 and Hw = (Hw−1)−1. This is clearly an involution. We say that H ∈ H
is self-dual if H = H . For each s ∈ S, the element Cs := Hs + q is self-dual. Indeed,
Cs = (Hs)

−1 + q−1 = Hs + q = Cs .

6.2 H� is a Hecke Algebra Module

Now we return to the setting of Section 5. Let W be the Weyl group of a reduced root
system � with simple roots � ⊂ � and corresponding simple reflections S ⊂ W . Then
(W, S) is a Coxeter system. Let � ⊂ � be a fixed subset of simple roots and let H� =⊕

C∈W�\W Z[q, q−1]δC be the Z[q, q−1]-module from Theorem 11. Recall that for each

α ∈ � we defined a Z[q, q−1]-linear endomorphism Tα of H� by

Tα(δC) =
⎧
⎨

⎩

0 if Csα = C

qδC + δCsα if Csα > C

q−1δC + δCsα if Csα < C

.

Our first observation is that the operators {Tα}α∈� give an action of the Hecke algebra of
(W, S) on H�. Indeed, if we define Sα := Tα − q, then a computation shows that Sα

satisfies both the quadratic and braid relations of the Hecke algebra, thus the map ψ : H →
EndZ[q,q−1](H�) given by ψ(Hsα ) = Sα gives H� the structure of a left H-module. The
map ψ sends the self-dual basis element Csα ∈ H described in the previous section to the
endomorphism Tα .

This extra structure will allow us to relate Theorem 11 to the results in [19, §2 §3].
Our first step is to establish a relationship between H� and a certain induced right H-
module (the antispherical module for the Hecke algebra) in order to extend the duality in H
given by the involution d to a duality in H�. If S� ⊂ S is the subset of simple reflections
corresponding to � ⊂ �, then the subalgebra H� of H generated by {Hsα } for α ∈ � is
isomorphic to the Hecke algebra of the Coxeter system (W�, S�). The surjection H� �
Z[q, q−1] sending Hsα 	→ −q gives Z[q, q−1] the structure of a H�-bimodule, and with
this bimodule structure we can form the induced right H-module

N� := Z[q, q−1] ⊗H� H.

This is the antispherical module of the Hecke algebra H. Note that in the special case
� = ∅, N� is the Hecke-algebra H as a module over itself with the right regular action.
The set {Nw := 1 ⊗ Hw} for minimal coset representatives w ∈ C ∈ W�\W forms a basis
for N� as a Z[q, q−1]-module.
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Remark 3 By instead using the surjection H� � Z[q, q−1] given by Hsα 	→ q−1 to form
the H�-bimodule structure on Z[q, q−1], it is possible to construct another induced right
H-module M� := Z[q, q−1] ⊗H� H [19, §3]. This is the spherical module of the Hecke
algebra H. This module also has the property that M∅ = H. By an analogous argument to
the one below, one can show that the Kazhdan–Lusztig combinatorics of generalized Verma
modules (as described in [14, Ch. 6 §3]) is given by the spherical H-module.

One can compute [19] that the action of Cs on N� for s ∈ S is given by

NwCs =
⎧
⎨

⎩

0 if ws ∈ C

qNw + Nws if ws > w and ws 
∈ C

q−1Nw + Nws if ws < w and ws 
∈ C

.

Therefore, there is a Z[q, q−1]-module isomorphism

φ : H� → N�

δC 	→ Nw�wC

which intertwines the left H-action on H� with the right H-action on N�. That is, for
E ∈ H�, φ(CsαE) = φ(E)Csα . Here w� is the longest element in W�.

Note that in the special case � = ∅, this provides an Z[q, q−1]-module isomorphism
between H∅ and the Hecke algebra H.6 The benefit of relating H� to this induced module
is that it allows us to use the involution d of H to construct an involution of the induced
module, which we can then use to define self-duality in H�. There is a homomorphism of
additive groups

N� → N�

a ⊗ H 	→ a ⊗ H := a ⊗ H .

This homomorphism has the property that Ne = Ne and

NH = NH (30)

for all N ∈ N� and H ∈ H. We say that an element E ∈ H� is self-dual if the cor-
responding element in N� is fixed under this involution; that is, if φ(E) = φ(E). Since
φ(Tα(E)) = φ(E)Csα for any α ∈ � and E ∈ H� and Csα is self-dual in H, property (30)
implies that Tα preserves self-duality.

6.3 The Recursion Relation in Theorem 11 is Equivalent to Self-Duality

The main content of this section is a proof that condition (ii) in Theorem 11 is equivalent to
ϕ(C) being self-dual in the sense of the preceding section.

Theorem 13 Let ϕ : W�\W → H� be a function satisfying

ϕ(C) = δC +
∑

D<C

PCDδD for PCD ∈ qZ[q] (31)

for all C ∈ W�\W . Then the following are equivalent.

6This justifies the notational choice in [14, Ch. 5 §2], where the Z[q, q−1]-module H∅ is referred to as H.
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(i) If α ∈ � and C ∈ W�\W are such that Csα < C, then there exist mD ∈ Z such that

Tα(ϕ(Csα)) =
∑

D≤C

mDϕ(D).

(ii) All ϕ(C) are self-dual.

Proof Assume that (i) holds, and take C and α such that Csα < C. Using the definition of
Tα we compute

Tα(ϕ(Csα)) = Tα(δCsα +
∑

E<Csα

PCsαEδE)

= δC + qδCsα +
∑

E<Csα

PCsαETα(δE)

= δC +
∑

D<C

QCDδC

for some QCD ∈ Z[q]. Therefore, mC = 1. Thus, for any α ∈ � such that Csα < C,

ϕ(C) = Tα(ϕ(Csα)) −
∑

D<C

mDϕ(D). (32)

Now we show that all ϕ(C) are self-dual by induction in �(wC). If C = W�, then ϕ(W�) =
δW� is self-dual because φ(δW�) = 1 ⊗ He and He = He in H. Assume ϕ(D) is self-dual
for all D < C. Then because Tα preserves self-duality, Eq. 32 implies that ϕ(C) is self-dual.
We conclude that (i) implies (ii).

Now let ϕ : W�\W → H� be a function satisfying Eq. 31 and condition (ii). For
C ∈ W�\W , choose α ∈ � such that Csα < C. If no such α exists, then (i) is void and we
are done. If such an α does exist, we have

Tα(ϕ(Csα)) = δC +
∑

D<C

QCDδD

for appropriately chosen QCD ∈ Z[q]. Define

ϕ̃(C) := Tα(ϕ(Csα)) −
∑

D<C

QCD(0)ϕ(D).

The function ϕ̃ satisfies Eq. 31 and is self-dual by the fact that Tα preserves self-duality.
Next we argue that there is a unique function satisfying both Eq. 31 and condition (ii),
and thus ϕ̃ = ϕ. First, observe that for any E ∈ ∑

C∈W�\W qZ[q]δC , self-duality implies
E = 0. Indeed, if E = ∑

C∈W�\W RCδC and we let C be maximal such that RC 
= 0, then

φ(E) = φ(E) implies that RC = RC , which is impossible because RC ∈ qZ[q]. Therefore,
if ϕ′ : W�\W → H� and ϕ : W�\W → H� are two functions satisfying Eq. 31 and (ii),
then ϕ(C) − ϕ′(C) ∈ ∑

C∈W�\W qZ[q]δC is self-dual, so ϕ(C) = ϕ′(C).
We conclude that ϕ̃ = ϕ, and by rearranging we obtain

Tα(ϕ(Csα)) =
∑

D≤C

mDϕ(D) for mD =
{

QCD(0) if D < C

1 if D = C
.

Thus (ii) implies (i).

This establishes the relationship between the results in this paper and the results in [19,
§2 §3]. In particular, it establishes that Theorem 11 in this paper is equivalent to part 2
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of Theorem 3.1 in [19]. This allows us to explicitly compare Whittaker Kazhdan–Lusztig
polynomials PCD to polynomials that have shown up elsewhere in the literature under the
name “parabolic Kazhdan–Lusztig polynomials.” We list these relationships now.

Remark 4 1. The Whittaker Kazhdan–Lusztig polynomials PCD are equal to the polyno-
mials ny,x in [19] for x = w�wC and y = w�wD .

2. A normalization of PCD gives the parabolic Kazhdan–Lusztig polynomials in [5]. The
polynomials

(q�(w�wD) − q�(w�wC))PCD

are polynomials in the variable v := q−2, and they are precisely the polynomials
P I

(w�wD)−1,(w�wD)−1 in [5] for u = v and W� = WI .
3. In the special case where � = ∅, the polynomials

(q�(v) − q�(w))Pwv

are the Kazhdan–Lusztig polynomials as defined in [9].

6.4 Duality of Whittaker Modules and Generalized VermaModules

We conclude this paper by relating the Whittaker Kazhdan–Lusztig polynomials PCD to
the polynomials arising in the Kazhdan–Lusztig algorithm for generalized Verma mod-
ules established in [14, Ch. 6 §3]. Generalized Verma modules are a class of parabolically
induced highest weight modules for a Lie algebra. For details of their construction, see
[14, Ch. 6]. The main results of this section are Eq. 33 which relates the algorithm in The-
orem 11 to the algorithm in [14, Ch. 6 Thm. 3.5], and Proposition 10, which provides a
formula relating Whittaker Kazhdan–Lusztig polynomials to Kazhdan–Lusztig polynomi-
als. By Theorem 13, Proposition 10 is a special case of [19, Prop. 3.4], but our proof is new,
and independent of results in [19]. Equation 33 also recovers the Kazhdan–Lusztig inversion
formulas of [9] as a special case.

In [14, Ch. 6 §3], Miličić establishes a Kazhdan–Lusztig algorithm for generalized
Verma modules. We review his results here to establish their relationship with the Whit-
taker Kazhdan–Lusztig algorithm of this paper. Let H� = ⊕

C∈W�\W Z[q, q−1]δC be

the Z[q, q−1]-module from the preceding section. We can realize H� as a Z[q, q−1]-
submodule of the Z[q, q−1]-module H∅ = ⊕

w∈W Z[q, q−1]δw by setting

δC =
∑

v∈W�

q�(v)δvwC .

For α ∈ �, let T ∅
α : H∅ → H∅ be the endomorphism defined by

T ∅
α (δw) =

{
qδw + δwsα if wsα > w

q−1δw + δwsα if wsα < w
,

as in Section 6.2. We introduce ∅ into the notation here to emphasize that T ∅
α is an endo-

morphism of H∅. A computation shows that the endomorphism T ∅
α transforms δC in the

following way:

T ∅
α (δC) =

⎧
⎨

⎩

(q + q−1)δC if Csα = C;
qδC + δCsα if Csα < C;
q−1δC + δCsα if Csα > C.

It follows that H� is stable under T ∅
α , so H� is an H-submodule of H∅. In [14, Ch. 6 §3],

Miličić proves the following Kazhdan-Lusztig algorithm for generalized Verma modules.
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Theorem 14 [14, Ch. 6 §3 Thm. 3.5] There exists a unique function ϕ′ : W�\W → H�

satisfying the following.

(i) For C ∈ W�\W ,
ϕ′(C) = δC +

∑

D<C

P ′
CDδD

for P ′
CD ∈ qZ[q], and

(ii) for α ∈ � such that Csα < C, there exist integers m′
D such that

T ∅
α (ϕ′(Csα)) =

∑

D≤C

m′
Dϕ′(D).

Furthermore, the polynomials P ′
CD are given by the Kazhdan–Lusztig polynomials for

(W, S) by
P ′

CD = PwCwD .

Since Theorem 11 specializes to the Kazdhan–Lusztig algorithm for Verma modules
[14, Ch. 5 §2 Thm. 2.1] when � = ∅, one can see from Miličić’s proof of Theorem 14 that
the unique function ϕ′ : W�\W → H� satisfying Theorem 14 is the function ϕ′(D) :=
ϕ∅(wD), where ϕ∅ : W → H∅ is the unique function guaranteed by Theorem 11 in the
special case � = ∅. The Kazhdan–Lusztig polynomials P ′

CD of Theorem 14 describe the
multiplicities of irreducible highest weight modules in generalized Verma modules [14, Ch.
6 §3 Cor. 3.7].

For arbitrary � ⊂ �, the Whittaker Kazhdan–Lusztig polynomials are inverse to the
polynomials appearing in Theorem 14 in the following sense.

∑

E∈W�\W
(−1)�(w

E)+�(wC)P ′
Cw0Ew0

PDE =
{

1 if C = D

0 if C 
= D
. (33)

This relationship appears as Proposition 3.9 in [19], where it is originally attribued to
Douglass [6]. If we specialize to � = ∅, then W�\W = W , and Eq. 33 recovers the
Kazhdan–Lusztig inversion formulas.

∑

u∈W

(−1)�(u)+�(w)PwuPvw0uw0 =
{

1 if v = w

0 if v 
= w
. (34)

We complete this section by describing the relationship between the Whittaker Kazhdan–
Lusztig polynomials PCD and the Kazhdan–Lusztig polynomials in [14]. If � = ∅,
Theorem 11 specializes the algorithm in [14, Ch. 5 §2 Thm. 2.1], and the polynomials Pwv

are the Kazhdan–Lusztig polynomials as defined in [14]. Note that these polynomials dif-
fer in normalization from the Kazhdan–Lusztig polynomials appearing in [9]; see Remark
4. The following formula relates Whittaker Kazhdan–Lusztig polynomials for general � to
Kazhdan–Lusztig polynomials.

Proposition 10 For � ⊂ � arbitrary,

PCD =
∑

v∈W�

(−q)�(v)Pw�wCvw�wD .

Proof Fix an arbitrary � ⊂ �, and pick a total order compatible with the partial order on
W�\W . From Theorem 14 we see that P ′

CD = 0 for D > C and P ′
CD = 1 if C = D, so

the matrix P = (P ′
CD) of polynomials with respect to our total order is lower triangular
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with 1’s on the diagonal and coefficients in Z[q]. The inverse matrix Q = (QCD) is also
lower triangular with 1’s on the diagonal and coefficients in Z[q]. From Eq. 33 we see
that the coefficients QCD of the inverse matrix are related to Whittaker Kazhdan–Lusztig
polynomials in the following way:

QCD = (−1)�(w
C)+�(wD)PDw0Cw0 . (35)

Then, if ϕ∅ : W → H∅ is the unique function from Theorem 11 corresponding to the subset
� = ∅, we have

∑

D∈W�\W
QCDϕ∅(wD) =

∑

D∈W�\W
QCD

⎛

⎝
∑

E∈W�\W
P ′

DEδE

⎞

⎠

=
∑

E∈W�\W

⎛

⎝
∑

D∈W�\W
QCDP ′

DE

⎞

⎠ δE

= δC .

Here the polynomials QCD correspond to our arbitrary fixed �, and only the function ϕ∅ is
specific to the special case � = ∅. Now, if we specialize further to the case that our fixed
� is � = ∅, the computation above implies

∑

v∈W

Qwvϕ(v) = δw . (36)

Then, because

δC =
∑

v∈W�

q�(v)δvwC ,

we have the following relationship:
∑

D∈W�\W
QCDϕ(wD) =

∑

v∈W�

q�(v)δvwC

=
∑

v∈W�

q�(v)

(
∑

u∈W

QvwCuϕ(u)

)

=
∑

u∈W

⎛

⎝
∑

v∈W�

q�(v)QvwCu

⎞

⎠ϕ(u).

Here the second equality follows from Eq. 36. Since {ϕ(u) : u ∈ W } form a basis for H∅
by Theorem 11, this implies that

QCD =
∑

v∈W�

q�(v)QvwCwD .

Thus, since �(vwC) = �(wC)− �(v) for v ∈ W� by [14, Ch. 6 §1 Lem. 1.8], an application
of Eq. 35 for the special case � = ∅ results in the following formula:

QCD = (−1)�(w
C)+�(wD)

∑

v∈W�

(−1)�(v)q�(v)PwDw0vwCw0
. (37)
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The element wCw0 is the shortest element of the coset Cw0, so it is equal to w�wCw0 by
[14, Ch. 6 §1 Thm. 1.4]. The proposition then follows by combining Eq. 37 with Eq. 35.
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Appendix: Geometric Preliminaries

In this appendix we record some some fundamental results about functors between cate-
gories of modules over twisted sheaves of differential operators which play a critical role in
the arguments of Sections 4 and 5. For a detailed treatment of this subject, see [7, 14, 15].

A.1 Twisted Sheaves of Differential Operators

Let X be a smooth complex algebraic variety of dimension n. Denote by OX the structure
sheaf of X, DX the sheaf of differential operators on X, Tx the tangent sheaf on X, �X

the cotangent sheaf on X, and ωX the invertible OX-module of differential n-forms on X.
Denote by iX : OX → DX the natural inclusion. A twisted sheaf of differential operators
on X is a pair (D, i) of a sheaf D of associative C-algebras with identity on X and a homo-
morphism i : OX → D of sheaves of C-algebras with identity that is locally isomorphic to
the pair (DX, iX).

For f : Y → X a morphism of smooth algebraic varieties and D a twisted sheaf of
differential operators on X, we define

DY→X = OY ⊗f −1OX
f −1D.

Then DY→X is a left OY -module for left multiplication and a right f −1D-module for right
multiplication on the second factor. Denote by Df the sheaf of differential OY -module
endomorphisms of DY→X which are also f −1D-module endomorphisms. There is a natural
morphism of sheaves of algebras if : OY → Df , and the pair (Df , if ) is a twisted sheaf
of differential operators on Y .

Let D be a twisted sheaf of differential operators on X and L an invertible OX-module.
The twist of D by L is the sheaf DL of differential OX-module endomorphisms of L ⊗OX

D that commute with the right D-action. Because L ⊗OX
D is an OX-module for left

multiplication, there is a natural homomorphism iL : OX → DL, and (DL, iL) is a twisted
sheaf of differential operators on X. If f : Y → X is a morphism of smooth algebraic
varieties as above, (DL)f = (Df )f

∗(L).
If X is a homogeneous space for a group G with Lie algebra g, then a homogeneous

twisted sheaf of differential operators on X is a triple (D, γ, α), where D is a twisted sheaf
of differential operators on X, γ is the algebraic action of G on X, and α : U(g) → �(X,D)

is a morphism of algebras such that the following three conditions are satisfied:

(i) the multiplication in D is G-equivariant;
(ii) the differential of the G-action on D agrees with the action T 	→ [α(ξ), T ] for ξ ∈ g

and T ∈ D; and
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(iii) the map α : U(g) → �(X,D) is a morphism of G-modules.

For x ∈ X, denote by Bx the stabilizer of x in G and bx its Lie algebra. For each Bx-invariant
linear form λ ∈ b∗

x one can construct a homogeneous twisted sheaf of differential operators
DX,λ [7, App. A §1] and all homogeneous twisted sheaves of differential operators on X

occur in this occur in this way.
If A is a sheaf of C-algebras on X, we denote by A◦ the opposite sheaf of C-algebras on

X. Then if (D, i) is a twisted sheaf of differential operators on a smooth algebraic variety X,
(D◦, i) is also a twisted sheaf of differential operators on X. In particular, the pair (D◦

X, iX)

is a twisted sheaf of differential operators, and it is naturally isomorphic to (DωX

X , iωX
). If

X is a homogeneous space and δ is the Bx-invariant linear form which is the differential of
the representation of Bx on the top exterior power of the cotangent space at x, then (DX,λ)

◦
is naturally isomorphic to DX,−λ+δ .

A.2 Modules over Twisted Sheaves of Differential Operators

Let D be a twisted sheaf of differential operators on a smooth complex algebraic variety X.
For a category M(D) of D-modules, we denote Mqc(D) (resp. Mcoh(D)) the correspond-
ing category of quasicoherent (resp. coherent) D-modules. We can view left D-modules
as right right D◦-modules and vice-versa. In other words, the category ML

qc(D) of qua-

sicoherent left D-modules on X is isomorphic to the category the category MR
qc(D◦) of

quasicoherent right D◦-modules on X. This relationship allows us to freely use right or left
modules depending on the particular situation, and because of this, we frequently drop the
exponents ‘L’ and ‘R’ from our notation.

For a coherent D-module V , we can define the characteristic variety ChV of V in the
same way as the non-twisted case [13, Ch. III §3]. Because this construction is local, the
results in the non-twisted case carry over to our setting. In particular, we have the following
structure:

(i) ChV is a conical subvariety of the cotangent bungle T ∗(X).
(ii) dim(ChV) ≥ dim(X).

If dim(ChV) = dim(X), we say that V is a holonomic D-module. Holonomic D-modules
form a thick subcategory Mhol(D) of Mcoh(D). If V is coherent as an OX-module, we
call V a connection. Connections are locally free as OX-modules and their characteristic
variety is the zero section of T ∗(X), so they are holonomic.

For an invertible OX-module L and a twisted sheaf D of differential operators on X, we
define the twist functor from ML

qc(DL) by

V 	→ (L ⊗OX
D) ⊗D V

for V ∈ ML
qc(D). The twist functor is an equivalence of categories.

For an abelian category C, we use the notation D(C) and Db(C) to refer to the derived
category and bounded derived category of C, respectively. We identify C with its image in
D(C) (resp. Db(C)) under the natural embedding.

For a morphism f : Y → X of smooth algebraic varieties and a twisted sheaf D of dif-
ferential operators on X, we define the inverse image functor f + : ML

qc(D) → ML
qc(Df )

by

f +(V) = DY→X ⊗f −1D f −1V
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for V ∈ ML
qc(D). In general f + is right exact with left derived functor Lf +. If f is an open

immersion, then f + is exact and f +(V) = V |Y . If f is a submersion, then f + is exact. We
define the extraordinary inverse image functor f ! : Db(ML

qc(D)) → Db(ML
qc(Df )) by

f ! = Lf + ◦ [dimY − dimX].

If f is an immersion then f ! is the right derived functor of the left exact functor
Ldim Y−dim Xf + : ML

qc(D) → ML
qc(Df ). In this setting, we refer to the functor

Ldim Y−dim Xf + as f !, and for V ∈ Mqc(D), we refer to the kth-cohomology modules
Hkf !(V) as Rkf !(V).

We define the direct image functor f+ : Db(MR
qc(Df )) → Db(MR

qc(D)) by

f+(W ·) = Rf•(W · ⊗L
Df DY→X),

for W · ∈ Db(MR(Df )). Here Rf• is the right derived functor of the sheaf-theoretic direct
image functor f•. If f is an immersion, f+ is the right derived functor of the left exact
functor H 0 ◦ f+ ◦ D : MR

qc(Df ) → MR
qc(D), where D is the natural embedding of

MR
qc(Df ) into the derived category D(MR

qc(Df )). In this setting, we refer to H 0 ◦ f+ ◦D

by f+. If f is an open immersion, then f+ = Rf• is the sheaf-theoretic direct image. If f

is affine, then f+ is exact.
The relationship between the twist functor and the direct image functor is the following.

Proposition 11 (Projection Formula) Let f : Y → X be a morphism of smooth complex
algebraic varieties, D a twisted sheaf of differential operators on X, and L an invertible
OX-module. Then the following diagram commutes.

For a module V ∈ MR
qc(D), and a smooth subvariety Y ⊂ X, denote by �Y (V) the D-

module of local sections Y . The functor �Y : MR
qc(D) → MR

qc(D) is a left-exact functor,

and we denote by R�Y : Db(MR
qc(D)) → Db(MR

qc(D)) its right derived functor. The
following equivalence of categories is very useful in computations.

Theorem 15 (Kashiwara) If Y is a closed smooth subvariety of a smooth algebraic variety
X, i : Y → X the natural immersion, and D a twisted sheaf of differential operators on X,
then the functor

i+ : MR
qc(Di ) → MR

qc(D)

establishes an equivalence of categories between MR
qc(Di ) and the full subcategory

MR
qc,Y (D) of supported in Y . The quasiinverse of i+ is i!. In particular, if V is a quasico-

herent Di-module, then i!(i+(V)) = V , and if U is a Di-module, then i!(i+(V)) = V , and
if U is a quasicoherent D-module, then i+(i!(U)) = �Y (U).
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Let i : Y → X be the immersion of a closed subvariety. If JY is the ideal of OX

consisting of germs vanishing on Y , we can define an filtration of DY→X by (left Di , right
i−1OX)-modules by

FpDY→X = {T ∈ DY→X|T ϕ = 0 for ϕ ∈ (JY )p+1},
for p ∈ Z+. We call this filtration the filtration by normal degree. By Kashiwara’s theorem,
it induces a natural OX-module filtration on supported on Y . Namely, if W ∈ MR

qc(Di ),

Fpi+(W) = i•(W ⊗Di FpDY→X).

The associated graded module has the form

Gri+(W) = i•(W ⊗OY
S(NX|Y )), (38)

whereNX|Y = i∗(TX)/TY denotes the normal sheaf of Y , and S(NX|Y ) is the corresponding
sheaf of symmetric algebras [7, App. A §3.3].

The interaction between D-module functors and fiber products is captured by base
change.

Theorem 16 (Base Change Formula) Let f : X → Z and g : Y → Z be morphisms of
smooth complex algebraic varieties such that the fiber productX×ZY is a smooth algebraic
variety, and let D be a twisted sheaf of differential operators on Z. Then the commutative
diagram

determines an isomorphism
g! ◦ f+ = q+ ◦ p!

of functors from Db(M(Df )) to Db(M(Dg)).

A.3 Beilinson–Bernstein Localization

A key ingredient in this story is the localization theory of Beilinson and Bernstein, which we
briefly review here. Full details can be found in [2, 14]. For the remainder of this appendix,
let g be a complex reductive Lie algebra, h the abstract Cartan subalgebra of g [15, §2], and
X the flag variety of g. Fix λ ∈ h∗, and let θ be the Weyl group orbit of λ in h∗. In [2],
Beilinson and Bernstein construct a twisted sheaf of differential operators Dλ on X for each
λ ∈ h∗. (In the notation of Section Appendix A.1, Dλ = DX,λ+ρ .) They show that for any μ

in the Weyl group orbit θ of λ, the global sections �(X,Dμ) of Dμ are equal to Uθ , which
is the quotient of U(g) by the ideal in Z(g) corresponding to θ under the Harish-Chandra
homomorphism. This implies that the global sections functor � maps quasicoherent Dλ-
modules into U(g)-modules with infinitesimal character χλ; that is, there is a left exact
functor

� : Mqc(Dλ) → M(Uθ ).

Beilinson and Bernstein define a localization functor

�λ : M(Uθ ) → Mqc(Dλ)

by �λ(V ) = Dλ ⊗Uθ V for V ∈ M(Uθ ). The localization functor is right exact and is a left
adjoint to �. In [2] it is shown that for antidominant regular λ ∈ h∗, �λ is an equivalence of
categories, and its quasi-inverse is �.
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A.4 Translation Functors

Fix λ ∈ h∗, and let Dλ be the corresponding homogeneous twisted sheaf of differential
operators. Any μ in the weight lattice P(�) = {λ ∈ h∗|α∨(λ) ∈ Z for all α ∈ �} naturally
determines a G = Intg-equivariant invertible OX-module O(μ) on X. Twisting by O(μ)

defines a functor
−(μ) : M(Dλ) → M(Dλ+μ)

by V(μ) = O(μ) ⊗OX
V for V ∈ M(Dλ). We call this functor the geometric translation

functor. It is evidently an equivalence of categories, and it also induces an equivalence of
categories on Mqc(Dλ) (resp. Mcoh(Dλ)) with Mcoh(Dλ) (resp. Mcoh(Dλ+μ)).
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