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Abstract

We study a category of Whittaker modules over a complex semisimple Lie algebra by
realizing it as a category of twisted D-modules on the associated flag variety using
Beilinson—-Bernstein localization. The main result of this paper is the development of a
geometric algorithm for computing the composition multiplicities of standard Whittaker
modules. This algorithm establishes that these multiplicities are determined by a collec-
tion of polynomials we refer to as Whittaker Kazhdan—Lusztig polynomials. In the case
of trivial nilpotent character, this algorithm specializes to the usual algorithm for com-
puting multiplicities of composition factors of Verma modules using Kazhdan-Lusztig
polynomials.
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1 Introduction

A fundamental goal in representation theory is to understand all representations of complex
semisimple Lie algebras. However, the category of all modules for a given Lie algebra is
so large that a full classification has only been obtained for the simplest example, the Lie
algebra sl(2, C) [3]. In light of this, one way to approach this goal is to study well-behaved
categories of representations subject to certain restrictions, then relax the restrictions to
expand the categories and observe what aspects of the structure carry over into the larger cat-
egory. A classic example of such a well-behaved category is Bernstein-Gelfand—Gelfand’s
category O, which has been studied extensively in the past 40 years and found to display
deep connections across representation theory. The category N of Whittaker modules intro-
duced by Mili¢ié-Soergel in [16] is a generalization of category O which also contains
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a collection of nondegenerate Whittaker modules introduced by Kostant [10]. In category
O, characters of simple modules are determined by Kazhdan-Lusztig polynomials. In this
paper, we show that the same is true in the category of Whittaker modules, and we develop
an algorithm for computing these characters. The main result of this paper is the following
theorem.

Theorem 1 (Theorem 11, Corollary 4, Eq. 33) For any irreducible Whittaker module L
and standard Whittaker module M with the same regular integral infinitesimal character,
there exists a polynomial Q 1, € qZ[q] U {1} such that the multiplicity of L in the compo-
sition series of M is given by Q p1(—1). Moreover, the polynomials Q y11 can be computed
through a combinatorial recursive algorithm.

Our approach to studying Whittaker modules is to use the localization of Beilinson—
Bernstein [2] to relate A to a certain category of holonomic D-modules (so-called twisted
Harish-Chandra sheaves) on the associated flag variety. This geometric approach gives us
access to powerful tools such as the decomposition theorem for arbitrary holonomic D-
modules [18] which are essential in the development of the algorithm for computing the
polynomials of Theorem 1.

The four main contributions of this paper to the existing literature on Whittaker modules
are the following. First, we develop a theory of formal characters for Whittaker mod-
ules which generalizes the theory of formal characters of highest weight modules and
distinguishes isomorphism classes of objects in the Grothendieck group of the category
(Section 2.2). Second, we give a detailed description of the structure of the category of
twisted Harish-Chandra sheaves (Section 3). Irreducible objects in this category were clas-
sified in [17], but this paper includes a collection of new results describing the action of
intertwining functors on certain costandard sheaves, which were originally introduced by
Mili¢i¢-Soergel in [17]. The third and most significant contribution of the current paper is
the development of an algorithm for computing the composition multiplicities of standard
Whittaker modules, which establishes that the formal characters of simple Whittaker mod-
ules are given by a collection of polynomials that we refer to as Whittaker Kazhdan-Lusztig
polynomials (Section 5). Finally, we give a comparison of the Whittaker Kazhdan—Lusztig
polynomials which arise in our algorithm to other types of Kazhdan—Lusztig polynomials
in the existing literature (Section 6). This places Theorem 1 in the context of the Kazhdan—
Lusztig combinatorics of the Hecke algebra and establishes a connection between Whittaker
modules and other representation theoretic objects such as generalized Verma modules.

We will spend the rest of the introduction describing the main results of this paper in
more detail. Let U/(g) be the universal enveloping algebra of a semisimple Lie algebra g
over C and Z(g) the center of I/ (g). Let b be a fixed Borel subalgebra of g with nilpotent
radical n = [b, b] and f C b a Cartan subalgebra. The category A of Whittaker modules
consists of all U (g)-modules which are finitely generated, Z(g)-finite, and U (n)-finite. For
a choice of A € h* and a Lie algebra morphism n : n — C, McDowell [12] constructed a
standard Whittaker module M (X, n) (Definition 2), which has a unique irreducible quotient
L (A, n), and showed that all irreducible Whittaker modules appear as such quotients. When
n =0, the M (X, 0) are Verma modules and the L (X, 0) are simple highest weight modules.
When 7 acts non-trivially on all root subspaces of g corresponding to simple roots (we say
such n are nondegenerate), the M (X, n) are the irreducible modules studied by Kostant in
[10].

Unlike highest weight modules, Whittaker modules don’t decompose into generalized
h-weight spaces. However, in blocks of A/ where the nilpotent radical n acts by a specific
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character n, Whittaker modules do decompose into generalized weight spaces for a cer-
tain subalgebra h® C b, which is the center of a Levi subalgebra of g determined by the
character 7 (Section 2.1). In contrast to the generalized h-weight spaces of category O, the
generalized h©-weight spaces in this decomposition are not finite-dimensional, but they are
of finite length in the category of modules over the specified Levi subalgebra. We can cap-
ture the structure of this h©-weight space decomposition by defining the formal character
(Definition 3) of a Whittaker module in a way that generalizes the formal character of high-
est weight modules. Then a natural problem in understanding the structure of the category
of Whittaker modules is to compute the formal characters of irreducible modules in N,
which reduces to computing the multiplicities of the irreducible constituents of a standard
Whittaker module.

These multiplicities were first determined for integral A by Mili¢i¢ and Soergel in [16]
and for arbitrary A by Backelin in [1] by relating subcategories of Whittaker modules to
certain blocks of category O and using the classical Kazhdan—Lusztig algorithm for Verma
modules. The current paper provides a more efficient procedure for calculating these mul-
tiplicities by using a geometric realization of Whittaker modules as twisted sheaves of
‘D-modules on the flag variety. This geometric perspective allows us to relate the multiplic-
ities to combinatorial data extracted from the associated Hecke algebra, providing a direct
link between Whittaker modules and Kazhdan—Lusztig polynomials.

The first step in studying Whittaker modules geometrically is to realize A as a cate-
gory of twisted Harish-Chandra modules. Let N be the unipotent subgroup of Intg such
that LieN = n. For a Lie algebra morphism n : n — C, the category of n-twisted
Harish-Chandra modules consists of g-modules which admit an algebraic action of N whose
differential differs from the restricted g-action by 1. We denote the category of such modules
with infinitesimal character corresponding to a Weyl-group orbit 6 C b* (via the Harish-
Chandra homomorphism) by M s, (Us, N, n). In [17], Mili¢i¢ and Soergel established a
categorical equivalence between certain blocks of A and the categories M s, Uy, N, 1).

This description allows us to use the localization theory of Beilinson—-Bernstein to study
Whittaker modules. For each A € h*, Beilinson and Bernstein [2] constructed a sheaf of
twisted differential operators D, on the flag variety X of g whose global sections I'(X, D,)
are equal to Uy, where 6 is the Weyl group orbit of A in h* and Uy is the quotient of U/ (g)
by the corresponding ideal in Z(g). Applying the localization functor A; = D) ®yy, — to
the category M o (Us, N, 1), we obtain a geometric category Mo, (Dy, N, n) of n-twisted
Harish-Chandra sheaves (Section 3), which are N-equivariant D,-modules satisfying a
compatibility condition determined by 7. This category consists of holonomic D, -modules,
so its objects have finite length and there is a well-defined duality in the category. The
morphism 7 determines a parabolic subgroup Wg of the Weyl group W of g, and from the
parameters n : n — C,C € Wg\W,and A € h*, we construct a standard sheaf Z(w€, A, n),
costandard sheaf M (w€, A, n), and irreducible sheaf £L(w€, X, ) (Section 3). Here w¢ is
the longest element in the coset C. The precise relationship between the algebraic category
N and the geometric category Mon(D;., N, n) is given by the following theorem, which
we prove in Section 4.

Theorem 2 (Theorem 9, Theorem 10) Let A € b*, n : n — C a Lie algebra morphism, and
C € Wo\W. Let M(w€, A, n) be the corresponding costandard n-twisted Harish-Chandra
sheaf and M(w€ A, 1)) the corresponding standard Whittaker module. Then

(i) if X is antidominant,

L(X, MW, x,n) =MwEr,n), and
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(ii) if X is also regular, then

(X, L, 1, ) = LwCA, n).

Hence to compute the composition multiplicities of standard Whittaker modules
M (A, n), it suffices to compute the composition multiplicities of the costandard n-twisted
Harish-Chandra sheaves M(w€, A, n) in the category Mo, (D, N, n). In the case of reg-
ular integral A € h*, the structure of this category is completely determined by the parameter
1, so we may further restrict our attention to the case A = —p, where p is the half-sum of
positive roots. In this setting, D, = Dy is the sheaf of differential operators on X (with-
out a twist). One way to better understand the structure of the irreducible Dy-modules
LwC€, —p, n) (or indeed any Dy-module in this category) is to utilize the stratification of
the flag variety and to restrict them to Bruhat cells contained in their support. The result-
ing restricted D-modules are easy to understand: the N-equivariance guarantees that they
decompose into a direct sum of copies of the structure sheaf on the corresponding Bruhat
cell. By keeping track of how many copies appear in the direct sum corresponding to each
Bruhat cell (we refer to this integer as the “(O-dimension,” denoted dimg), we can con-
struct a combinatorial object which captures all important structural information of each
irreducible Dx-module in the category M., (Dx, N, n). For each coset D € Wg\W, let
8p be a formal variable parameterized by D, and let Hg be the free Z[q, ¢ ~']-module with
basis {§p, D € We\W}. Leti,p : C(w?) — X be the inclusion of the corresponding
Bruhat cell into the flag variety. We define a map v : Mo, (Dx, N,n) — He by

v(F)= Y Y dimo(R™i ,(F)g"p.

DeWe\W meZ

Here, R'"i:v p are the right derived functors of the Dx-module extraordinary inverse image
functor (Section A.2).

We use v to develop our desired Kazhdan—Lusztig algorithm for Whittaker modules. Let
% be the root system of g and [T C X the set of simple roots determined by our fixed b.
Let ® C IT be the subset of simple roots picked out by n € chn, and let Wg C W be the
corresponding parabolic subgroup of the Weyl group. For any « € I1, we define a certain
Zlgq, q_l]—module endomorphism Ty, : He — He (Section 5). The main result of this
paper is the following theorem.

Theorem 3 (Theorem 11, Proposition 9) The function ¢ : Wo\W — He given by ¢(C) =
v(L(wC, —p, n)) is the unique function satisfying the following properties.
(i) ForC € We\W,

¢(C) =8¢+ Y_ Pepép.

D<C
where Pcp € qZ[q].

(i) Fora € Il and C € Wo\W such that Cs, < C, there exist cp € 7 such that
Tu(9(Csa)) = ) cpg(D).

D<C

The existence and uniqueness of a function satisfying equivalent conditions to (i) and
(i1) was shown combinatorially by Soergel in [19].! By realizing the function ¢ explicitly in

IThe formulation in [19] is in terms of the antispherical module of the Hecke algebra. We prove in Section 6.3
that this formulation is equivalent to conditions (i) and (ii) in Theorem 3.
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terms of the category M., (D5, N, ), Theorem 3 relates the Hecke algebra combinatorics
established in [19] to the category of Whittaker modules, which is the main accomplishment
of this paper. Theorem 3 determines a family {Pcp} of polynomials in gZ[q] parameter-
ized by pairs of cosets C, D € Wg\W. We refer to these as Whittaker Kazhdan—Lusztig
polynomials. In Section 6 we describe their relationship to other types of Kazhdan—Lusztig
polynomials appearing in the literature. These polynomials determine the composition mul-
tiplicities of standard Whittaker modules. More precisely, if (itcp)c, pewe\w is the inverse
of the lower-triangular matrix (Pcp(—1))c, pewe\w, then we have the following corollary
to Theorem 3.

Corollary 1 (Corollary 3, Corollary 4) Let » € h* be regular, integral, and antidominant.
Then the multiplicity of the irreducible Whittaker module L(wP (A — p), n) in the standard
Whittaker module M(w€ (A — p), n) is pcp.

This paper is organized in the following way. We start by describing the structure of
the algebraic category of Whittaker modules in Section 2, following [12]. In this section
we recall McDowell’s construction of standard and simple Whittaker modules and develop
a new theory of formal characters for Whittaker modules. In Section 3, we describe the
category of twisted Harish-Chandra sheaves, following [17]. We recall Mili¢i¢-Soergel’s
construction of standard and simple objects in this category, then introduce a class of costan-
dard objects. These costandard objects were mentioned in [17] but not explicitly defined or
studied. We prove some results about the action of intertwining functors on these costan-
dard objects which are necessary for our arguments in Section 4. We dedicate Section 4 to
explicitly relating the category N of Whittaker modules and the category Mo, (Ds, N, )
of twisted Harish-Chandra sheaves by proving that the global sections of costandard twisted
Harish-Chandra sheaves are standard Whittaker modules. This result sets us up to work
completely in the geometric category. Section 5 contains the proof of Theorem 3, which is
the main result of this paper. In Section 6 we determine the relationship between Whittaker
Kazhdan-Lusztig polynomials and Kazhdan-Lusztig polynomials, and we describe a com-
binatorial duality between the Kazhdan—Lusztig algorithm for generalized Verma modules
found in [14] and the Kazhdan—Lusztig algorithm for Whittaker modules established in this
paper. In Appendix A, we record our geometric conventions and include some fundamental
facts about modules over twisted sheaves of differential operators.

2 A Category of Whittaker Modules

In this section, we introduce the category of representations which is the main focus of this
paper and describe some key aspects of its structure. Let g be a complex semisimple Lie
algebra, U(g) its universal enveloping algebra, and Z(g) the center of U/(g). Let b be a
Borel subalgebra with nilpotent radical n = [b, b] and b the (abstract) Cartan subalgebra of
g [15,§2]. Let 1 € ¥+ C ¥ C h* be the corresponding set of simple roots and positive
roots, respectively, inside the root system of g. Let W be the Weyl group of g, and denote
by p € bh* the half-sum of positive roots.

We begin by recalling some standard terminology. For a W-orbit 6 C b*, there is a
unique maximal ideal Jy C Z(g), which can be obtained as the kernel of the Lie algebra
morphism yx; : Z(g) — C defined by z — (A — p)(y(2)), where y : Z(g) — U(h) is the
untwisted Harish-Chandra homomorphism and A is an element of the W-orbit 6 [8, Ch. 1
§9]. All A € 6 result in the same homomorphism ;. We call such a Lie algebra morphism
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X an infinitesimal character. We say a g-module V has infinitesimal character if it has
the property that there exists an infinitesimal character x, such that for any z € Z(g) and
v € V,zv = x,(2)v, or, equivalently, if it is annihilated by the ideal Jo. We say a g-
module has generalized infinitesimal character if there exists an infinitesimal character x;
and k € N such that forall v € V and z € Z(g), (z — x,\(z))kv = 0, or, equivalently, if it is
annihilated by a power of the ideal Jy.

We are interested in the following category of g-modules, which was originally intro-
duced by Milici¢ and Soergel in [16].

Definition 1 Let A/ be the category of g-modules which are

(i) finitely generated as U (g)-modules,
(i) Z(g)-finite, and
(iii) U (n)-finite.

We refer to objects in this category as Whittaker modules.

Remark 1 In Kostant’s original paper [10] the term Whittaker module is used to describe
any g-module that is cyclically generated by a Whittaker vector. (These are vectors where
n acts by a nondegenerate Lie algebra morphism 1 : n — C.) We note that Definition 1
differs from Kostant’s original terminology, though all irreducible Whittaker modules (in
the sense of Kostant) are contained in V.

McDowell showed that all objects in A have finite length [12] (a fact which follows
immediately from their description as holonomic D-modules in [17]). This category is a
natural generalization of Bernstein—Gelfand-Gelfand’s category O. Indeed, if condition (ii)
is replaced by the stronger condition that h acts semisimply on the module, the resulting
category is exactly category O [8], so O is a full subcategory of A/. A key difference
between A and O is that when the h-semisimplicity condition is relaxed to Z (g)-finiteness,
the existence of weight space decompositions is lost. However, the finiteness conditions (ii)
and (iii) provide us with other useful decompositions of A/ which lead to structural results
reminiscent of those in category (. In particular, we have two categorical decompositions
[17, 82 Lem. 2.1, Lem. 2.2]:

N= @ N;adN = PN,

0eW\bh* nen*

Here NV, ¢ s the full subcategory of N consisting of modules with generalized infinitesimal
character x; for A € 6, and N, is the full subcategory of N consisting of modules where
for any X € n, X — n(X) acts locally nilpotently on V. The only elements n € n* for
which NV, # 0 are Lie algebra morphisms [4, Ch. VII §1.3 Prop. 9(iii)]. We call such a Lie
algebra morphism 7 : n — C an n-character and say that modules in N,, have generalized
n-character n. We denote by chn C n* the set of n-characters.

Let NV be the full subcategory of A/ consisting of modules with infinitesimal character
X for A € 6, and let ./\/'@,,7 be the intersection Ny N N, »- Any irreducible Whittaker module
lies in Ny, for some Weyl group orbit & and some 1 € chn, so we will often restrict our
attention to this full subcategory N .

The category Ny, is equivalent to a certain category of n-twisted Harish-Chandra mod-
ules, which is easier to relate to the geometric categories which appear later in this paper. We
describe this equivalence now. Let N be the unipotent subgroup of Int g such that LieN = n.
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Because N acts on the flag variety X of g with finitely many orbits, the pair (g, N) is a
Harish-Chandra pair in the sense of [17, §1]. For a fixed n-character n € chn, denote by
/\/lfg (g, N, n) the category of triples (i, v, V) such that:

(i) (o, V) is a finitely generated I/ (g)-module,
(i) (v, V) is an algebraic representation of N, and
(iii) the differential of the N-action on V induces a I/ (n)-module structure on V such that
for any & € n,

7(§) = dv(&) +n().

This is the category of n-twisted Harish-Chandra modules for the Harish-Chandra pair
(g, N).Let M s (U, N, ) be the full subcategory of M 7, (g, N, ) consisting of modules
which are also Uy = U(g)/(U(g) Jg)-modules; that is, modules V € M (g, N, n) which
are annihilated by Jy. In [17, §2 Lem. 2.3], Milic¢i¢ and Soergel show that the categories
./\/'9,,, and M re(Up, N, n) are equivalent. This association lets us use the localization func-
tor of Beilinson and Bernstein (Section A.3) to study the category of Whittaker modules
geometrically. In particular, by localizing objects in M, (U, N, 1) one obtains a cate-
gory of n-twisted holonomic D-modules which are equivariant for the action of N. We will
discuss the details of this construction in Section 3.

2.1 Standard and Simple Modules

In this section we briefly review McDowell’s construction of standard Whittaker modules,
which are a class of induced modules in A that generalize the Verma modules in cate-
gory O. For a choice of » € h* and n € chn, we construct a standard Whittaker module
M(x,n). When n = 0, these modules are Verma modules, and when 7 is nondegener-
ate, these modules are the irreducible modules studied by Kostant in [10]. For partially
degenerate 7, these modules share some structural properties with Verma modules and
some structural properties with Kostant’s nondegenerate modules. In particular, McDow-
ell showed that the M (%, n) decompose into h-weight spaces for the action of a certain
subalgebra h® C b depending on 5. When 5 = 0, this subalgebra is equal to h and McDow-
ell’s decomposition is the decomposition of a Verma module into finite-dimensional weight
spaces. When 7 is nondegenerate, this subalgebra is trivial, so the entire module is a single
infinite-dimensional weight space. After reviewing the construction of M (A, n), we gen-
eralize McDowell’s result and show that all modules in ./\/,7 admit generalized h®-weight
space decompositions. We also show that these h®-weight spaces are themselves Whittaker
modules for a Levi subalgebra determined by 7. This extra structure enables us to develop a
new theory of formal characters for A/ in Section 2.2 which generalizes the theory of formal
characters of highest weight modules (as described in [8, §1.15]).

For the remainder of this subsection, fix an n-character € chn. For a € %, let g, be
the root space corresponding to «. Then n determines a subset ® C IT of the simple roots
in the following way:

O ={a €Il:nlg, #0}.

If ® = TII, we say that n is nondegenerate. We call a Whittaker module V € ./\/',7 for
n nondegenerate a nondegenerate Whittaker module. The cyclically generated Whittaker
modules studied by Kostant in [10] are examples of nondegenerate Whittaker modules in
our terminology.

Let £g C X be the root subsystem generated by ®, and £, = =+ N Zg the corre-
sponding set of positive roots. Let Wg be the Weyl group of Xg, and pg = % o exy @
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Let

e = @ Ja, U = @ Ja, o = @ go, and ug = @ Ja-

aexy aest-xf ae—3f ae—St—(-3f)

In this way, the character n determines a reductive subalgebra [g = ng @ h @ ng of g and
a parabolic subalgebra pg = lg @ ug. The reductive Lie subalgebra [g decomposes into
the direct sum of a semisimple subalgebra sg and its center 3¢. The semisimple subalgebra
5@ in this decomposition is the derived subalgebra [lg, [g], and it is easy to check that the
center 3@ is the subalgebra h® = (H e h | a(H) = 0,0 € ©} C .

Let yo : Z(lg) — U(b) be the untwisted Harish-Chandra homomorphism of Z(lg)
[8, Ch. 1 §7]. Fix A € b*, and define ¢g , : U(h) —> C to be the homomorphism sending
H e hto (A — pe)(H) € C. The homomorphism

Qo =9orove:Z(le) — C e9)

is an infinitesimal character of Z(lg). This gives us a map associating elements of h* to
maximal ideals in Z(lg):

£o 1 h* — MaxZ(lg)
A = ker(Re,3).

From the data (A, n) € b* x chn, we construct an [g-module

Y(h, ) = U(le)/Ee (MU (l)) Bline) Cp-

Here C, is the one-dimensional I/ (ng)-module where ng acts by 1. This induced module
Y (X, n) is an irreducible [g-module [12, §2 Prop. 2.3].

Definition 2 The standard Whittaker module in N associated to A € h* and the character
n € chnis the g-module

Mk, n) =U(Q) upe) Y (h — p + po, ).

Here Y (A — p + pe, 1) is viewed as a U (pe)-module by letting ug act trivially and M (A, n)
is a g-module by left multiplication on the first factor.

To get a sense for this construction, it is useful to examine particular values of 1. If n = 0,
then ® is empty, and M (1, 0) = U(g) Quw) Y (A — p,0) is a Verma module of highest
weight A — p. If 1 is nondegenerate, then M (X, n) = Y (A, n) is an irreducible Whittaker
module, as in [10].

Two such modules M (A, ) and M (i, n) are isomorphic if and only if A and u are in the
same Wg-orbit in h*. McDowell showed that each standard Whittaker module M (X, n) has
a unique irreducible quotient L(A, 1), and all irreducible Whittaker modules appear as such
quotients [12, §2 Thm. 2.9]. Clearly both M (A, n) and L(X, n) have infinitesimal character
x> and generalized n-character 7, so they both lie in /\/9,,,.

McDowell showed that the center F)@ of lg acts semisimply on M (A, n) [12, §2 Prop.
2.4(e)]. This decomposition will be necessary in the theory of formal characters established
in the following section, so we briefly review it here. For any v € h*, we use bold to denote
the restriction of v to h®*; that is, v = v[po € h®*. There is a natural partial order on h©*
[12, §1 Prop. 1.8(a)]. Let T — ® = {ay, a2, - - , ap}. Then {ay, - - - , &tp} is a basis for h(”)*.
Forea, B € b®*, say that ¢ < B if

B—a=ciag+cro+ - +cpap
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for ¢; € Zxp. For a module V in ./\/‘,7 and linear functional u € HhO*, let Ve = {v €
VIiXv = p(X)vforall X € h®} be the corresponding h@—weight space, and V* = {v €
Viforall X € h®, (X — p(X))*v = 0forsome k € N} the corresponding generalized
h®-weight space. If V# £ 0, we say p is a h®-weight of V. Then we have the following
decomposition:

MG,n) = @ MG, .

v<A—p

Furthermore, M (A, mMx—p = Y(A —p+po), and M (X, n)y = U(llg)p ®c Y (A — p+ po, 1)
for o < 0 in h®*. (Here, we are using the fact that h® acts semisimply on U (iig) [12, §2
Lem. 2.2(a)].)

The h®-weight spaces of M (X, ) have a richer structure than just that of h®-modules,
as the following proposition shows. Given an [g-module V, we denote by V the sg-module
induced by the inclusion of sg C [g. Since sg is semisimple, standard semisimplicity
results apply to V. Let M (sp) be the category of sg-Whittaker modules.

Proposition 1 Let M(\,n) = @vﬁ_ o M (A, n)y be the decomposition of a standard
Whittaker module in ./\/,, into K®-weight spaces. For each v € H%%,

(i) M, n)y is a finite length lg-module, and
(i) M, n)y is an object in N (sg).

Proof If n = 0, then [j(") = b and s = 0. In this setting, the assertion is trivially true,
so we assume 1 # 0. The action of lg commutes with the action of h®, so the h®-weight
spaces of M (A, n) are lg-stable. This proves that M (A, n), are [g-modules. The vector
space U (ug),, is finite dimensional because there are only finitely many ways that we can
express a given g < 0in h®* as a negative sum of roots in [T—®. This implies that M (A, 1),
is the tensor product of a finite dimensional [g-module with an irreducible Whittaker mod-
ule. Such modules are of finite length and have composition factors which are irreducible
Whittaker modules (for 1]y ) by [10, §4 Thm. 4.6]. Because categories of Whittaker mod-
ules are closed under extensions [16, §1], this in turn implies that M (X, n), is an object in

N(se). O

The f)@—weight space structure of M (A, n) described in proposition 1 is also inherited by
its unique irreducible quotient L(X, n). Moreover, because the unique maximal submodule
N C M(x,n) has h®-weights which are strictly less than A — p, L(X, ) has a unique
maximal h®-weight, A — p, with respect to the partial order on h®*, and all other weights
of L(A, n) lie in a cone below this “highest” weight. The highest H®-weight space of a
standard module in N\ and the highest h©-weight space of its unique irreducible quotient
are both isomorphic to an irreducible [g-Whittaker module: M (X, n)a—p = L(A, Nr—p =
YL —p+ pe,n).

We finish this section by showing that all modules in N, decompose into generalized
h®-weight spaces, and these weight spaces are modules in A (sg).

Theorem 4 Any object V in N,y admits a decomposition

v=p v+

rehe
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where the generalized h®-weight spaces V* are finite length \g-modules. Moreover; if we
restrict the lg-action to the semisimple subalgeb@@ C lo and denote the resulting sg-
module by VF, the generalized h®-weight spaces V* of V are objects in N (s).

Proof 1t is enough to consider V € Nj ,. By [16, §1], these categories are stable under
subquotients and extensions. The h®-semisimplicity of irreducible modules in N, implies
that all modules in ./\/'9,,7 are U (h®)-finite. Because objects in A are finite length and
exact sequences of g-modules in J\/g,,] descend to exact sequences of h®-weight spaces, the
assertion follows from induction in the length of V. O

2.2 Character Theory

In this section, we use the decomposition of a module in A, into generalized hO-weight
spaces to develop a theory of formal characters in the category of Whittaker modules which
generalizes the theory of formal characters of highest weight modules [8, Ch. 1 §13]. This
character theory is new to the literature, though an alternate version of a character theory
for Whittaker modules appeared in unpublished work [11]. The main result of this section
is that the formal character of a module V in A, completely determines its class in the
Grothendieck group KN

Fix an n-character n € chn, and let KN (sg) be the Grothendieck group of the category
N(s@). For an object V € N (sg), we refer to the corresponding isomorphism class in
KN (se) by [V].

Definition 3 Let V be an object in Nn~ For n # 0, the formal character of V is
chv = ) [VF]eH
nehOr
where V# is the restriction of the [g-module V* to the semisimple subalgebra sg C lg,

[V#] is the class of V# in the Grothendieck group KN (se), and e* is a formal variable
parameterized by u € h®*. For n = 0and V € Ay we definechV = [V] € KN.

A standard Whittaker module is completely determined by its formal character.

Proposition 2 The following are equivalent.

(i) chM(@,n) =chM(,n).
i) M@, n) =M(@,n).

Proof 1t is clear that (ii) implies (i). Assume that ch M (X, n) = ch M (v, ). Then M (X, 1)
and M (v, n) have the same f)@—weights, and [M (%, n),] = [M(v, n),] for any such ho-
weight g. This implies that A — p is an h®-weight of M (v, 5),s0 A — p < v — p. But also,
v — pisan b®—weight of M(A,n),sov—p < A—p and thus A — p = v — p. Because
MO, Mr—p =Y —p+pe,n)and M(v,n)y—p =Y (v — p + pe, n), we have

YA —p+po, M =[Y(v—p+po,n] € KN(se).

Because the sg-modules Y(A — p + pg) and Y (v — p + pe) are irreducible objects in
N (se), the equality [Y(A — p + pe,n)] = [Y(v — p + pe, n)] of isomorphism classes
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in the Grothendieck group implies that Y(A — p 4+ pe,n) = Y (v —p + pe,n) as se-
modules. Irreducible nondegenerate Whittaker modules are completely determined by their
infinitesimal character [10, §3 Thm. 3.6.1], so both modules have infinitesimal character
Q2@,3—p+pe- This is only possible if Wg - A = Weg - v, which implies that M (A, n) =
M(v, n). O

Because any module V in Ny, has infinitesimal character x; for A € 6, there are only
finitely many irreducible modules in the category Ngy,,. Let {L(A1,7n),...,L(Ay,n)} be
the distinct irreducible modules in /\/’9,,,, and let So = (A1 —p,...,Am—p} C HhO* be
the collection of their highest h®-weights. Any module V in Ny, must have composition
factors on this list, so by Theorem 4, the h©-weights g of V that show up in the character
must be of the form p =A; — p — Z] ymjejforl <i <mandm; € Zxo.

Let KNy, be the Grothendieck group of the category Ny ,,. If V and W are isomorphic
objects in ./\fg,,,, then ch V = ch W, and since character is additive on short exact sequences,
we have a well-defined homomorphism

ch: KNy, — 1_[ KN (sg)et

1<So

given by ch[V] = ch V. Here u < Sp means that 4 < X; — p for some A; — p € Sp. Our
main result of this section is the following.

Theorem 5 ch: KNy, — [],<5, KN (se)e” is an injective homomorphism.

Proof To show that ch is injective, it is enough to show that the set of characters
{ch[L(A1, n)], ..., ch[L(Ay, n)]} is linearly independent. Consider a non-trivial linear
combination
by Ch[L(M, n)] + 4 by ch[L(Ap, n)] = 0.

As before let So = {A1 —p, ... — p} C 5©* be the collection of the highest ho-
weights of the irreducible objects in /\fg »- Note that the elements {;}/*; C h* are distinct,
but it is possible that when restricted to h©, A; = = Aj for some i # j, so Syp might have
repeated elements. Choose a maximal element of this set, Aj — p. Then A j — p can only
appear as a highest weight of modules in {L(A1, 1), ..., L(Ay, n)}.

Because the linear combination of irreducible characters vanishes, the coefficient of
¢*i=P must vanish as well. That coefficient is

b, [L(Aiy, '7)1._,,] + -+ b, [L(A,, n)x._,,],

where {A;,..., A} C {A1,...,An} are the elements of h* so that A;; —p = --- =
Ai, —p = X — p. Because the highest h®-weight space of an irreducible module in N
is an 1rredu01ble Whittaker module for sg, we have a vanishing linear combination of
isomorphism classes of irreducible objects in KN (sg):

bylY(hiy —p+pe, D]+ - +b;,[Y(Xi, — p+ pe,n] =0

Each of the classes in the above sum must be distinct because the corresponding irreducible
modules are non-isomorphic, so we conclude that b;;, = --- = b;, = 0, and ch must be

In

injective. O

This immediately implies the following corollary.

Corollary 2 Let V and W be objects in Ny ,,. Then the following are equivalent:
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(i) chV =chW.
(i) V and W have the same composition factors.

We complete this section with an explicit calculation of the formal character of a stan-
dard Whittaker module, which we will use in Section 4. Let M (X, n) be the standard
Whittaker module determined by A € h* and n € chn. Note that as an [g-module,
M, n) = Ue) ®c Y(A — p + pe, n). The Cartan subalgebra h acts semisimply on
U (uig), and the collection of h-weights of U (iig) are

0=41- Z Ma @ My € L0

aeTT\TY
As described in Section 2.1, M (X, 1) decomposes into h®-weight spaces of the form

MO,y =Ue)p ®c YA —p + po, )

for w < 0 in h®*. The h®-weight space of U (iig) corresponding to a h®-weight u < 0 is
the sum of the h-weight spaces of U (iig) corresponding to h-weights that restrict to w on
h@; that is, for u € b®,
U= Y Ui,
keQ.klpo=H

We define a function p : Q — N by p(x) = dimUf (iig), . This function can be interpreted
combinatorially as counting the number of distinct ways that v € h* can be expressed as a
sum of roots in Z’L\Eg. When ® = §, this is Kostant’s partition function.

By [12, §2 Lem. 2.2(b)], each U/ (iig)y is a finite-dimensional [g-module, so the se-
module M (A, n), is the direct sum of a finite-dimensional sg-module and an irreducible
s@-module. This allow us to apply [10, §4 Thm. 4.6] and conclude that ng acts on M (X, n),
by the nondegenerate character n|n,, and that M (A, n), has composition series length
equal to dimU (lig), = Z p(x). Furthermore, [10, §4 Thm. 4.6] implies that the

KEQ.k|go=p

composition factors of M (A, n), are
{YA—p+pe+xmnlceQande =pn}
This implies that in the Grothendieck group KN (sg),

(MO Ml = Y plY—p+pe+i,ml
keQ.klpo=n
Therefore,
chM(, )= Y MO, mMle’ =Y pl)Y(—p+peo +v, M. (2)
vehO* KkeQ

3 A Category of Twisted Sheaves

In this section, we introduce the geometric objects that correspond to Whittaker modules
under Beilinson—Bernstein localization. Let X be the flag variety of g, and for A € h*, let
D,. be the corresponding twisted sheaf of differential operators on X. (See Appendix A.3
for more details on this construction.) The geometric category that emerges as an analogue
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to the category Ny, is a certain subcategory of the category Mc(D;) of quasi-coherent
D, -modules which is equivariant under the action of the Lie group N = Intn. We start by
describing this category of twisted Harish-Chandra sheaves? for a general Harish-Chandra
pair (g, K) to establish a parameterization of simple objects and to define standard and
costandard objects. Then we specialize to the Harish-Chandra pair (g, N) which describes
our setting of Whittaker modules. The classification of simple n-twisted Harish-Chandra
sheaves for an arbitrary Harish-Chandra pair (g, K) appeared in [17], as did the idea of using
holonomic duality to define costandard n-twisted Harish-Chandra sheaves. The results on
costandard n-twisted Harish-Chandra sheaves in this section are new to the literature.

3.1 Twisted Harish-Chandra Sheaves

In this section we describe the category of twisted Harish-Chandra sheaves, following [17].
For details on our choice of notation and geometric conventions, see Appendix A. Fix a
Harish-Chandra pair (g, K) and linear form A € h*. Let ¢ be the Lie algebra of K, and let
n : £ — C be a Lie algebra morphism. We say that V is a (Dy, K, n)-module if

(i) Visacoherent D, -module,
(i) Vis a K-equivariant O x-module, and
(iii)) inEndV, 7(&) = u(€) 4+ n(&) for all £ € ¢, and the morphism

DV —>YV

is K -equivariant. Here 7 is induced by the D, -action and w is the differential of the
K -action.

We denote by M., (Dy, K, n) the category of (D;, K, n)-modules, and we refer to the
objects in this category as n-twisted Harish-Chandra sheaves. This category of twisted
Harish-Chandra sheaves carries much of the same structure as the non-twisted category
described in [14, Ch. 4]. In particular, any n-twisted Harish-Chandra sheaf is holonomic
[17, Lem. 1.1] so all n-twisted Harish-Chandra sheaves have finite length [17, Cor. 1.2].

Irreducible n-twisted Harish-Chandra sheaves were classified in [17, §3]. An irreducible
sheaf in Mo, (D;, K, ) is uniquely determined by a pair (Q, t) of a K-orbit 0 C X
and an irreducible n-twisted connection T on Q. All irreducible n-twisted Harish-Chandra
sheaves L£(Q, t) occur as unique irreducible subsheaves of standard n-twisted Harish-
Chandra sheaves, which are defined as follows. Fix x € Q, and let b, be the corresponding
Borel subalgebra of g. Let Sy denote the stabilizer in K of x. Then the Lie algebra of Sy is
€N b,. Let ¢ be a Cartan subalgebra in g contained in by, and s : h* — ¢* the specializa-
tion at x [15, §2]. Let u denote the restriction of the specialization of A 4+ p to £ N b, and
i : O — X the inclusion of Q into X. Then in the notation of Appendix A, (D) = Do.u
[7, App. A].

Definition 4 Let Q be a K-orbit in X, i : Q — X be the natural inclusion, and t an
irreducible M(Dg, ., K, n)-module. Then Z(Q, t) = i4(r) is a holonomic (Dy, K, n)-
module. We call Z(Q, 1) the standard n-twisted Harish-Chandra sheaf attached to (Q, 7).

2When 5 = 0, the twist disappears and this category is exactly the category of Harish-Chandra sheaves in
[14, Ch. 4, §3].
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Let us now see how holonomic duality can be used to define costandard objects in the
category Mo (D;, K, n). For our fixed A € h* let & C h* be the Weyl group orbit of A.
Let Df oh (M(D,)) be the derived category of bounded complexes of coherent D -modules.
We have a duality functor

D: D, (M(Dy)) — DL, (M(D_;)

coh
given by the formula
DV') = RHomp, (V', Dy)[dim X],
for V' e D%, (M(Dy)).

In the case of holonomic D;-modules, we can use this duality on derived categories
to define a notion of duality on modules. Let My, (D;) be the thick subcategory of
Mon (D;) consisting of holonomic Dy -modules. If V is an object in M, (D;,), then D(V)
is a complex in Dfoh (M(D-,)) with holonomic cohomology and H”(D(V)) = 0 for
p # 0. Therefore, we can define a functor

* 1 Mo (D) = Mo (D)%
by
V* = HODW)).

This is the holonomic duality functor. We have the following result.

Theorem 6 (i) The functor V +— V* from My, (D;) to Mo (D—;)°P is an antiequiv-
alence of categories.
(ii) The functor V — (V*)* is isomorphic to the identity functor on M, (D;.).

We use the holonomic duality functor to construct costandard objects in the category
Mon(Dy, K, 1) as follows. Let Q be a K-orbit in X and 7 an irreducible M(Dg ., K, 1)-
module. Let £(Q, 1) be the corresponding irreducible n-twisted Harish-Chandra sheaf, and
Z(Q, ) the corresponding standard n-twisted Harish-Chandra sheaf. Then £(Q, ) is an
irreducible holonomic D, -module supported on the closure of the orbit Q. Therefore, by
Theorem 6, £(Q, 7)* is an irreducible holonomic D_; -module whose support is contained
in the closure of Q.

Lemma 1

L(Q, )" = L(Q, 7).

Proof LetdQ = Q — Qand X’ = X — Q. Then j : Q — X' is a closed immersion, and
k : X’ — X is an open immersion. We have an exact sequence of n-twisted Harish-Chandra
sheaves

0— L(Q,7) > Z(0,7) > Q@ — 0,
where Q = Z(Q, 1)/L(Q, t). One can show that Q is supported on 9 Q [17, §3]. Because
k is an open immersion, kT is exact, and for any D;-module V, kT (V) = V|x-. Therefore,
by restricting to X" we see that £(Q, 7)|x = Z(Q, 7)|x’. Because duality is local, we have
LQ, 0)*x = (L(Q, DIx)* = (T(Q, D)Ix)" = ji(D)".

Moreover, by Kashiwara’s equivalence of categories (Theorem 15), jy commutes with
duality, so we have

LQ, D) |x = j4 ().
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On the other hand, 7* is an irreducible n-twisted K -equivariant connection on Q compatible
with (=X + p, ). Hence,

LQ, D) |x = j+(t") = L(Q, T9)|x/,
and we see that
LQ, D) =L(Q, 5.

Dualizing, we obtain the desired result. O

This leads us to our definition of costandard objects in the category Mo, (D;., K, n).

Definition 5 Let Q be a K-orbit in X, i : Q — X be the natural inclusion, and 7
an irreducible M(Dy ., K, n)-module. The n-twisted Harish-Chandra sheaf M(Q, 7) =
Z(Q, t*)* is the costandard n-twisted Harish-Chandra sheaf attached to the geometric data

Q. 1).

There is a natural inclusion £(Q, t*) — Z(Q, t*). By dualizing, we get a natural
epimorphism M(Q, 1) — L(Q, 1), so £L(Q, 1) is a quotient of M(Q, t). The main
properties of costandard n-twisted Harish-Chandra sheaves are the following.

Proposition 3 (i) The length of M(Q, 1) is equal to the length of T(Q, ).
(ii) The irreducible n-twisted Harish-Chandra sheaf L(Q, ) is the unique irreducible
quotient of M(Q, t). The kernel of this projection is supported on d Q.

Proof Duality preserves irreducibility and £(Q’, t*)* = L(Q’, t/) for any irreducible
n-twisted Harish-Chandra sheaf £(Q’, t’), so by Lemma 1, the composition factors of
M(Q, t) must be equal to those of Z(Q, t). This proves (i). Furthermore, we have a short
exact sequence of D_;-modules

0— L(0,t") - Z(0, %) - Q@ — 0,

where Q is a holonomic D_; -module supported in d Q. Applying holonomic duality to this,
we get a short exact sequence of D, -modules

0— Q> M(Q,7) = L(O,1) — 0.

Because £(Q, ) is the unique irreducible submodule of Z(Q, t*) and duality preserves
support, this implies that the kernel Q* of the projection map M(Q,1) — L(Q, 1)
is the unique maximal submodule of M(Q, t) and is supported in 8 Q. This proves the
proposition. O

We complete this section with a proposition (Proposition 4) which will be of use in
computing global sections of n-twisted Harish-Chandra sheaves in Section 4. The proof of
the proposition uses the following three lemmas.

Lemma 2 If V is a object in Moy (Dy, K, n) such that [V] = [Z(Q,1)] in the

Grothendieck group K Mo, (D;., K, ), then there exists a nontrivial morphism from V
into L(Q, 7).

Proof Leti : QO — X be the natural inclusion. As in the proof of Lemma 1, we can write i
as the composition of a closed immersion j : Q — X’ := X — 90 and an open immersion
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k : X’ - X. Because the quotient @ := Z(Q, t)/L(Q, ) is supported on dQ and the
restriction functor kT = |y is exact, we have

Z(Q. Dlx = L(2. Dlx

In KMon(Dy, K, 1), [V] — [L(Q, 1)] = [Q], so all other composition factors of V must
be supported in d Q. Hence

Vix = L(Q, Dlx

as well. Since k. is right adjoint to | x/, we have
Hom(V, Z(Q, 1)) = Hom(V|x, j+ (7)) = Hom(L(Q, 7)Ix/, £L(Q. T)|x’) # 0.

This proves the lemma. O

Lemma 3 If V is an object in Mo (Dy, K, n) such that [V] = [M(Q, 1)] in the
Grothendieck group KM on(D;., K, 1), then there exists a nontrivial morphism from
M(Q, 1) into V.

Proof By dualizing the morphism in Lemma 2, we know that if [V*] = [M(Q, )]
in KM.on(D—,, K, 1), then there exists a nontrivial morphism from M (Q, t*) into V*.
Applying this fact to V* proves the lemma. O

Lemma 4 IV is an object in Mon(D;., K, n) such that [V] = [M(Q, 1)] and V has
L(Q, t) as a unique irreducible quotient, then V ~ M(Q, t).

Proof By Lemma 3, there is a nontrivial morphism f : M(Q, t) — V. Because L(Q, 1)
is the unique irreducible quotient of M (Q, 7) (Proposition 3), the image of f has £(Q, 1)
as a composition factor. If the image of f is not all of ), then it is contained in the unique
maximal submodule of V. But then the image of f cannot have £(Q, t) as a composition
factor. Hence f must be surjective. The objects V and M(Q, t) have the same length, so
the kernel of f is zero. We conclude that f is an isomorphism. O

We can use the preceding lemmas to relate global sections of n-twisted Harish-Chandra
sheaves to n-twisted Harish-Chandra modules. For a regular W-orbit & C h* and Lie algebra
morphism n : ¢ — C, let Mfg(ug, K, n) be the category of n-twisted Harish-Chandra
modules, as in [17][§1].3

Proposition 4 Let A € 0 C b* be antidominant and regular, and {M(Q, 1)} C
Meon(Dy, K, ) the set of costandard n-twisted Harish-Chandra sheaves. Let {M(Q, ©)}
be a family of modules in M ¢,(Uy, K, n) parameterized by the pairs (Q, T) such that

(i) each M(Q, ) has a unique irreducible quotient L(Q, t), and
(i) in KMyse(Up, K, 1), [T(X, M(Q, )] = [M(Q, 7)].

Then T'(X, L(Q, 1)) = L(Q, 1) and I'(X, M(Q, 1)) = M(Q, 7).

3The definition in Section 2 is a special case of this category for K = N.
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Proof We prove the proposition by induction on the dimension of Q. Assume that Q is of
minimal dimension. Then M (Q, 7) is irreducible. Because A is antidominant and regular,
I'(X, M(Q, 7)) must be irreducible. The modules I'(X, M(Q, 7)) and M(Q, t) have the
same composition factors because they have the same class in the Grothendieck group, so
(X, M(Q,1)) = M(Q, 7). Because M(Q, t) = L(Q, 1), this proves the proposition in
the base case.

Let Q be of dimension 7, and assume that (i) and (ii) hold for all Q' of dimension less
than or equal to n. Because M(Q, 7) has £(Q, 7) as its unique irreducible quotient, all
other composition factors of M(Q, t) are of the form L£(Q’, t’) for orbits Q' which are
contained in 3 Q. By the induction assumption, the composition factors of I'(X, M(Q, 7))
are ['(X, £(Q', 7)) = L(Q', ") and I'(X, L(Q, t)). But L(Q, 1) # L(Q', 1) for Q #
Q’,so (X, L(Q, 1)) # L(Q',t'). Since M(Q, t) has L(Q, 7) as a unique irreducible
quotient and [M (Q, t)] = [["'(X, M(Q, 7))] in the Grothendieck group, we must have that
I'(X, L(Q, 1)) = L(Q, 7). This proves the first statement.

It follows that A, (M (Q, 7)) has unique irreducible quotient A; (L(Q, 7)) = L(Q, 7).
Therefore, by Lemma 4, A; (M (Q, 1)) >~ M(Q, 7). This completes the proof. O

3.2 The Harish-Chandra Pair (g, N)

Now we specialize to the setting of Whittaker modules. Let K = N = Intn. Let b be the
unique Borel subalgebra of g containing n = LieN. The pair (g, N) is a Harish-Chandra
pair. By the discussion in Section 3.1, standard objects in M., (Dy, N, ) are parameter-
ized by pairs (Q, t), where Q is an N-orbit and 7 is an irreducible N -equivariant connection
in Meon(Dg,u, N, 1). In the setting of the Harish-Chandra pair (g, N), we can describe
these pairs more explicitly.

The N-orbits on X are Bruhat cells C(w), w € W. Our fixed character n € chn
determines a parabolic subgroup Pg C G such that LiePg = pe as in Section 2.1. The
Pg-orbits on X are unions of Bruhat cells [14, Ch. 6 §1 Lem. 1.9], and for each Pg-orbit,
there is a unique Bruhat cell which is open in that orbit. There is a bijection between the
Pg-orbits in X and the cosets Wg\ W, and the partial order on orbits determined by clo-
sure corresponds to the partial order on We\ W inherited from the Bruhat order on longest
coset representatives [14, Ch. 6 §1 Prop. 1.10, Prop 1.11]. Furthermore, the Weyl group
element w parameterizing the unique open Bruhat cell in a Pg-orbit is the unique longest
coset representative w€ in the corresponding coset C. In [17, §4], Mili¢ié and Soergel
established that the only N-orbits admitting compatible connections* are Bruhat cells C (w)
that are open in some Pg-orbit. They also established that the only irreducible n-twisted
N-equivariant O¢(y)-modules on such Bruhat cells are Oc¢ (). Therefore, our standard,
simple, and costandard objects in the category M., (D;., N, n) are the following.

Definition 6 For the parameters C € Wg\W, A € h* and n € chn, we define Z(wC, x, n)
to be the standard n-twisted Harish-Chandra sheaf corresponding to the N-orbit C(w<)
and the compatible connection O¢,,cy on C (w©). (Here w€ is the unique longest coset
representative of C.) We refer to the corresponding irreducible n-twisted Harish-Chandra
sheaf by L(w®, A, n) and the corresponding costandard n-twisted Harish-Chandra sheaf by
M@WE, A, n).

4That is, the only orbits on which there exist nontrivial irreducible (Dg ., N, n)-modules
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Remark 2 The parameter A € h* in this definition emerges in the direct image functor,
iy : M(Dg ) — M(D,), whose construction depends on A. (See Appendix A.2 for more
details.)

It is clear that the global sections of irreducible n-twisted Harish-Chandra sheaves for
the Harish-Chandra pair (g, N) are n-twisted Harish-Chandra modules for the same Harish-
Chandra pair. Under the equivalence of the categories M r,(Uy, N, 1) and /\/’9,,] [17, §2
Lem. 2.3], these irreducible n-twisted Harish-Chandra modules correspond to irreducible
Whittaker modules. Recall that the goal of this paper is to develop an algorithm for com-
puting composition multiplicities of standard Whittaker modules. From the arguments
above, we see that converting this multiplicity question to the geometric setting of twisted
Harish-Chandra sheaves amounts to showing that the global sections of either costandard
or standard n-twisted Harish-Chandra sheaves are standard Whittaker modules. We will do
this in Section 4, but first we establish some useful results on the action of intertwining
functors on costandard n-twisted Harish-Chandra sheaves.

3.3 Intertwining Functors and U-Functors

For A € h* and w € W, one can construct an “intertwining functor” which sends D, -
modules to D, -modules. These functors play a crucial role in our geometric arguments
in Section 5, so we use this section to record some of their key properties. Detailed
development of these properties can be found in [14, Ch. 3 §3].

The orbits of the diagonal action of G = Int(g) on X x X are smooth subvarieties, and
can be parameterized in the following way. Given x, y in X and corresponding Borel subal-
gebras by, by, we can choose a Cartan subalgebra ¢ contained in by N by. Let ny = [by, by]
and ny = [by, by]. Then b, and b, determine specializations [15, §2] of (h*, X, >7) into
(c*, R, RY), and (¢*, R, R;r), respectively, where R is the root system of (g, ¢), R C R is
the collection of positive roots determined by n,, and R;r C R is the collection of positive
roots determined by n,. The positive root systems R;" and R are related by w(R{) = Ry
for some Weyl group element w € W, and this w does not depend on choice of Cartan sub-
algebra in b, Nb,. We say that by is in relative position w with respect to by. It is clear that
b, is in relative position w~! with respect to by. For w € W, let

Zy = {(x,y) € X x X|by is in relative position w with respect to by }. 3)
This gives us a parameterization of G-orbits in X x X.

Lemma 5 [14, Ch. 3 §3 Lem. 3.1]

(i) Sets Zy, for w € W are smooth subvarieties of X x X.
(i) The map w v+ Z,, is a bijection of W onto the set of G-orbits in X x X.

Denote by p; and p; the projections of Z,, onto the first and second factors of X x X,
respectively. Then p; for i = 1,2 are locally trivial fibrations with fibers isomorphic to
affine spaces of dimension £(w). Moreover, they are affine morphisms [14, Ch. 3 §3 Lem.
3.2]. Let wz,|x be the invertible O, -module of top degree relative differential forms for
the projection py : Z,, — X and let T, be its inverse sheaf. Then T, = p7(O(p — wp)),
and there is a natural isomorphism [14, Ch. 3 §3 Lem. 3.3]

(Dyi)Pt = (D)7,
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The morphism p; : Z,, — X is a surjective submersion, so the inverse image functor
Pyt M(Dy) - M(D}?)
is exact. Because twisting by an invertible sheaf is also an exact functor, we can define a
functor
L, : D"(M(D;)) - D" (M(Duy))
by the formula
LI,(V) = p1+(Tw ®0,, p3 (V)
for V' € DP(M(Dy)). This is the left derived functor of the functor
Ly : M(Dy) = M(Dyy),
where for V € M(D;),
Ly(V) = H'p1(T ®0,, P3 V).

We call the right exact functor I, the intertwining functor attached tow € W.

In the case where w is a simple root, we can define a related collection of U-functors,
which have desirable semisimplicity properties. Let « € IT be a simple root, and denote
by X, the variety of parabolic subalgebras of type «. Let p, be the natural projection of X
onto X, and let Y, = X xx, X be the fiber product of X with X relative to the morphism
P« Denote by g1 and g» the projections of Y, onto the first and second factors, respectively.
Then we have the following commutative diagram:

Y, —2 4 x

"

x Py x,.

There is a natural embedding of Y, into X x X that identifies Y, with the closed subva-
riety Z1 U Z, of X x X. Under this identification, Z; is a closed subvariety of Y, and Z;,
is an open, dense, affinely embedded subvariety of Y, [14, Ch. 3 §8 Lem. 8.1].

Let A € h* be such that p = —«” () is an integer. Let £ be the invertible Oy, -module
on Y, given by

L =g} O(=p+ Dsap +a)) @0y, 45 O(—=p+ Do)~ "
This allows us to define functors
U’ ch(,Dk) - ch(DsaA)
by the formula ' '
U'(V) = H q11(¢5 V) ®oy, L)

for V € Myc(Dy) [14, Ch. 3 §8, Lem. 8.2]. These functors first appeared in [14] as geo-
metric analogues to the U, functors in [20], and they play a critical role in the algorithm of
Section 5 for their semisimplicity properties. Because the fibers of ¢ are one-dimensional,

Ul =0for j # —1,0, 1. If V is irreducible, the relationship between U/ (V) and I, (V) is
captured in the following theorem.

Theorem 7 [14, Ch. 3 §8 Thm. 8.4] Let A € h* be such that p = —a (1) is an integer; and
V € Myc(Dy) an irreducible Dy -module. Then either

i) U'V) = U'(V) = V(pa) and U°(V) = 0, and in this case I;,(V) = 0 and
L_llsu V) = V(pa); or
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() U~'(V) = U (V) = 0, and in this case L~'I;,(V) = 0 and there exists a natural
exact sequence

0— VW) = I, (V) = V(pa) — 0.
The module U (V) is the largest proper quasicoherent Dy, 1-submodule of I, (V).

3.4 Intertwining Functors on Standard and Costandard Sheaves

In this section we examine the action of intertwining functors on standard and costandard
n-twisted Harish-Chandra sheaves in the category M, (D;., N, n). These results will be
critical in establishing the relationship between ./\/'9,,, and M., (D;., N, n), and are new to
the literature. Let o € I1, w € W, and p; fori = 1, 2 the projections of Z;, (3) onto the first
and second coordinates, respectively. As in Section 3.2, let b be the unique Borel subalgebra
of g containing n = Lie N. We start with a useful lemma.

Lemma 6 The projection p1 : Zs;, — X induces an immersion of pz_1 (C(w)) into X, and
its image is equal to C (wsy).

Proof If y € C(w), then by is in relative position s, with respect to by if and only if
x € C(wsy). Therefore, pz_1 (C(w)) = C(wsy) x C(w), which implies the result. O

Our first result is the following proposition.

Proposition 5 Let C € We\W and « € Il be such that Csy, > C, and let . € bh* be
arbitrary. Then

LIy, (Z(wC, x,m) =Z(w sq, sah, n).

Proof The diagram

Py (CwS) — z,,

| |-

cwC —»<  x

are surjective submersions and j and

commutes. Furthermore, py and pry = pa| -1 c
Py (Cw%))
i,c are affine immersions, so p;, pr2+, iycy,and ji are all exact. Thus,
Py @ W, 1. m) = pF (e (Ocuey) )
= Jj+(pry (Oc(ue)) 5)
= j+(0p2*1(c(w6‘)))' (6)

Here Eq. 4 is the definition of Z (wC, A, 1), Eq. 5 is base change, and Eq. 6 follows from
the fact that dimZ,, — dimX = dimp, ' (C(w©)) — dimC(w°).
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Applying the projection formula of Proposition 11 to the morphism p1, the line bundle
L = O(p — sup), and the twisted sheaf of differential operators D, on X, we obtain the
following commutative diagram:
MDJ") —— M(Dy)
PiLD®0, —i y%x -
M(DEyPry Ly M(DE).

We compute

LI, T, 1, m) = pi+(Ts, ®0,, p3 T WS, %, ) @)
= P1+(Tsu @0y, J+(O -1 cue))) ®)
= P+ (PO = 5ap) B0y, J+(O -1 ¢ (yc)) )
= O(p = 5ap) ®0x P1+(+(O -1 ¢ (ye))- (10)

Here Eq. 7 follows from the definition of intertwining functors, Eq. 8 from the Eqgs. 4-6
above, Eq. 9 from the fact that 75, = pj(O(p — sep)), and Eq. 10 from the projection
formula diagram.

By Lemma 6, we have a commutative diagram

Pyl Ccwy) — z,,

-l i

L,C

wb sy

C(wCsy) —2 X.

where pr1 = p1|c(w).
Picking up our previous computation, this lets us further conclude that

(10) = O(,O - Sotp) ®OX iwcsu—}—(prl-i-(op;l(C(wC)))) (11)
= O(p — sap) ®oy iwcsa—}—(OC(wcsa)) (12)
= T(wCsq, Sgh, n). (13)

In this final computation, Eq. 11 follows from the commutative diagram immediately pre-
ceding it, Eq. 12 from Lemma 6, and Eq. 13 from the definition of Z(w s, soA, ) and
[14, Ch.2 §2]. O

For C € Wg\W, let M(wc, A, 1) be the corresponding costandard n-twisted Harish-
Chandra sheaf in the category Mo, (D;., N, n). Our second result is the following.

Proposition 6 Let C € We\W and a € I be such that Csy, < C, and let . € bh* be
arbitrary. Then
I, (MWE, &, m) = MW s, sahs ),
and
LP I, (MW, x,m)) = 0 for p #0.

Proof By Proposition 5 applied to the coset Csy and linear form —A € h*, we have

I(wc, —x,n) = LI, (I(wcsa, —Sq A, 1)).
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Applying holonomic duality, we get
M@C, 1, m) = D(LIs, (T(wEsq, —sah, n)))
= (Do LI, o D)MW sq, sah, 1))

By [14, Ch. 3 §4 Thm. 4.4], D o LI, o D is the quasi-inverse of the intertwining functor
LI, so applying LI, to both sides of the above equation proves the proposition. O

Combined with [14, Ch. 3 §3 Cor. 3.22], this implies the following result.

Theorem 8 If A € h* is w-antidominant, and C € Wg\W is such that Csy < C, we have
HP (X, M€, 3, m) = H? (X, M(wCsq, sah, 1))
forany p € Zy.

The final result of this section is a technical lemma which uses Proposition 6 to relate
costandard n-twisted Harish-Chandra sheaves supported on arbitrary Pg-orbits to costan-
dard n-twisted Harish-Chandra sheaves supported on the unique closed Pg-orbit. This
lemma will be critical in the arguments of Section 4. Recall that every coset C € Wg\W
has a unique longest coset representative w® and unique shortest coset representative wc
[14, Ch. 6 §1 Thm. 1.4]. If wg € W is the longest element, then by [14, Ch. 6 §1 Thm. 1.2
Thm. 1.4], we have wowe = w€, and L(wewc) = L(we) + L(we) = L(wE).

Lemma 7 Let . € b* be arbitrary. For any C € Wg\W,
Lye (M@S, 1, m) = M(we, wek, ),

and
L? Ly (M, &, n)) = 0 for p #0.

Proof We proceed by induction in £(wc¢). If £(wc) = 0, then C = Wg, and the assertion
is trivially true. If £(wc) = 1, then wc is a simple reflection s, for « € IT — ®. Then
L(wesy) = L(we) + 1 and Wes, > We. By Proposition 6,
I, M(wesa, +, n) = M(we, sak, 1),
and
Lp[sa (M(IU@SQ, A, 1)) = 0for p # 0.
Now let C € Wg\ W be arbitrary and assume that
Ly (MWS, 2, m) = M(we, wek, n) and L Lye (MW, &, ) = 0 for p # 0.
Let o € IT be such that Cs, > C. By [14, Ch. 6 §1 Prop. 1.6], the shortest element wcy, in
Csy 1S wWeSy. Thus,
Lyesy MW sg, 2, m) = Ty (I, (M sq, 2, 1))
= Iwc (M(wcv SO!)"! 77))
= M(we, wesah, n).
Here the first equality follows from the “product formula” for intertwining functors [14, Ch.

3 §3 Cor. 3.8] and the second equality from Proposition 6. This completes the proof of the
lemma by induction. O
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4 Geometric Description of Whittaker Modules

In this section we establish the connection between the category of Whittaker modules
and the category of twisted Harish-Chandra sheaves by proving that global sections of
costandard twisted Harish-Chandra sheaves are standard Whittaker modules. The theorem is
proven in three steps: first, we establish the result for costandard sheaves where the param-
eter n € chn is nondegenerate; then, we prove that the formal characters align properly
for costandard sheaves corresponding to the smallest Pg-orbit (where the parameter 7 is
allowed to be arbitrary); finally, we extend the result to all costandard sheaves. This proof is
new to the literature, though an alternate proof of this relationship was given in the unpub-
lished work [11]. This allows us to use geometric arguments to draw conclusions about our
algebraic category of Whittaker modules, which will be essential in the interpretation of
the algorithm developed in Section 5. Our main tool in this section is the theory of formal
characters developed in Section 2.2.

We begin by examining the nondegenerate case. Let wo be the longest element of the
Weyl group W of g.

Proposition 7 Let n € chn be nondegenerate and ). € h*. Then
(X, M(wo, &, m) = M(wok, n).

Proof If n is nondegenerate, then W = Wg, so by [17, Thm. 5.1], there exists a unique
irreducible object L(wo, A, ) = Z(wo, A, n) = M(wo, A, n) = Dy um) C,; in
Meon(D;., N, n). Assume A is antidominant, and let & C b* be the W-orbit of A. Then by
[17, Thm. 5.2],

(X, M(wo, &, 1)) =Us Quw) C; = M(wok, n).
Now, in order to deal with general A € h*, let w € W be arbitrary. By the preceding
argument (first equality) and [14, Ch. 3 §3 Thm 3.23] (second equality), we have
M(wok, n) = RT'(M(wo, A, ) = RT(LLy(M(wo, A, m)) = RT'(C),

where C is a complex in D?(D,,;) such that for any i € Z, C' is a finite sum of copies of
the unique irreducible object M (wg, wA, n). (The last equality follows from [17, §5 Thm.
5.6].) Because the image of M (wpA, 1) in the derived category is a complex with a single
irreducible object in degree zero and zeros elsewhere and RI is an equivalence of derived
categories, the equality above implies that

Therefore,
['(X, M(wo, wi, ) = M(wok, n) = M(wowh, n).
This completes the proof of the proposition. O

Proposition 8 Let n € chn be arbitrary, . € b*, and 0 C b* the Weyl group orbit of A. In
the Grothendieck group KM ¢o(Up, N, 1),
[T(X, M(we, A, m)] = [M(wei, n)].
Here wg is the longest element in the Weyl group Wg determined by ®. We will prove

the proposition in a series of steps. Our first step is to realize the standard sheaf correspond-
ing to the smallest Pg-orbit as the direct image of a twisted Harish-Chandra sheaf for the
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flag variety of lg. Let P(wg) be the Pg-orbit with open Bruhat cell C(wg) C P(we).
Because wg is minimal in the set of longest coset representatives [14, Ch. 6 §1 Lem. 1.7],
P(we) is a closed subvariety of X. Because P(we) is an orbit of an algebraic group action
it is also a smooth subvariety of X. In fact, P(wg) is isomorphic to the flag variety of
lg. In particular, by [14, Ch. 6, §1, Lem. 1.9], we have the following orbit decomposition
P(we) = UteW@ C(twe) = UwEW@ C(w). Let

iwg : C(we) = P(we), j: P(we) - X, andi : C(we) = X

be the natural inclusions, so i = j o iyg is the composition of an open immersion and a
closed immersion. By definition, Z(we, A, n) = j+(F), where F = iyo+(Ocwe)), and
Oc(we) is the N-equivariant connection in M., (D;, N, 1) described in Section 3.2.

Lemma 8 The sheaf F is the standard object L(we, A + p — pe, Nlng) in the category
Mo (Dpwe),itps No, Nlng) corresponding to the open Bruhat cell C(wg) C P(we).

Proof As described above, we can view P(wg) as the flag variety for [g, and the character
Nlne is nondegenerate on lg. The irreducible N-equivariant connection Ocy,) is compat-
ible with (A, ) € h* x chn by construction. We can restrict the N-action to Ng9 C N, and
consider O¢(y) as an irreducible Ng-equivariant connection compatible with (A, n|ne) €
h* x n. This allows us to interpret F = iyq 1 (Oc(we)) as the standard sheaf on the flag
variety of lg induced from the irreducible Ng-equivariant connection O¢ ) on C(we)

in Mcon ((D{)", No, 11lng). (Note that because 7]y, is nondegenerate, this is the only stan-

dard 7|y -twisted Harish-Chandra sheaf in the category Mo (D{, Ne, nlne) by [17, Thm.
5.1].) Because

D] = (Dx,34p) = Dpwe)r+p = Ditp—pos
we have that
F =1L(we,+p — po; Nlne)-

This completes the proof. (]

Our next step is to use the normal degree filtration (Appendix A.2) to analyze the
global sections of the standard sheaf Z(we, A, ). We will do so using the theory of for-
mal characters established in Section 2.2. By Lemma 8, we can express our standard sheaf
Z(we, A, n) = j+(F), where F = L(we, A + p — po, Nlne)- Because j : P(wg) = X
is a closed immersion, this implies that Z(we, A, n) has a filtration by normal degree,

F,Z(we, *, n). Let GrZ(we, A, n) be the associated graded sheaf. Let ch : Ny, —>
I1 n<so K N ([, lo])e* be the formal character function described in Section 2.2.

Lemma9 chl'(X, GrZ(we, X, n)) = chl'(X, Z(we, A, n)).

Proof By construction, we have
(X, Z(we, A, ) = lim (X, FyZ(we, A, ).
For each n € Z, we have an exact sequence
0—> F,_1Z(we, A, n) > F,Z(we, A, n) = Grp,Z(we, A, n) — 0.

We claim that H? (X, Gr,Z(we, A, n)) = 0 for p > 0. To see this, note that by con-
struction, Gr,Z(we, A, ) is the sheaf-theoretic direct image of a sheaf on P(wg) which
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has a finite filtration such that the graded pieces are standard 7|, -twisted Harish-Chandra
sheaves on the flag variety P(wg) of lg. These have vanishing cohomologies by the proof
of Proposition 7, which implies the claim. The short exact sequence above gives rise to a
long exact sequence

0 - I'X, Fu1Z(we, A, ) — T'(X, FyZ(we, A, n)) = I'(X, GryZ(we, A, n)) —
— HY(X, Fyo1Z(we, 2, 1)) — H' (X, F,Z(we, A, 7)) — 0 — -

Using induction on n and the preceding paragraph, we see that H?” (X, F,Z(we, A, 7)) =0
for p > 0, and therefore H” (X, Z(we, A, n)) = 0 for p > 0. This implies that for each
n € Z4, we have a short exact sequence

0—TI'(X, F,_1Z(we, A, n) = I'(X, F,Z(we, »,n) — I'(X, Gr,Z(we, A, 1)) — 0.

Note that if A € h* is antidominant, the existence of this short exact sequence follows from
the exactness of I', but this argument above holds for arbitrary A € h*. This gives us a
filtration of I'(X, Z(we, A, n)), with associated graded module

I'(X,GrZ(we,x m) = P T X, GrI(we,r )

= Pr&x, FZwe,hn)/TX, FaiZ(we, k, n)).
Because the formal character sums over short exact sequences, we have
chT (X, Grp’L(we, X, n)) = chT (X, F,Z(we, X, n)) — chT' (X, F,1Z(we, A, 17)).
Now we compute the formal character, using the fact that it distributes through direct sums.

chT'(X, GrI(we. . m) = ch P I'(X, GraZ(we. . 1))

nely

Y (chT'(X, FZ(we, ,m) — chT(X, Fym1Z(we, A, 1))
HEZ+

chT' (X, Z(we, A, 1)).

This completes the proof. O

This reduces our calculation of the formal character of I' (X, Z(wg, A, 1)) to the calcu-
lation of the formal character of I'(X, GrZ(we, A, 17)). Before completing this calculation,
we need a few more supporting lemmas.

The adjoint action of the Borel b on g extends to an action of b on the universal
enveloping algebra U (1g). The h-weights of this action are

0=13- Z Meo| My € L0

aez T\

Let Nx|P(u,(_)) = j*(Tx)/Trwe) be the normal sheaf of P(wg) in X and S(Nx|P(w@)) the
corresponding sheaf of symmetric algebras.

Lemma 10 As Opy,)-modules,

SWNxipwe) = €D Ow).

neo
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Proof For any x € P(weg), there is an equivalence of categories between the category
Myc(Op(we), Po) of quasicoherent Pg-equivariant O py,,)-modules and the category of
algebraic representations of B, = stabp,{x} given by taking the geometric fiber of a sheaf
F in Myc(Op(we), Po). Under this correspondence, the one-dimensional representation
C,, of weight p corresponds to the sheaf O p ) ().

Let xo € X be the point corresponding to B. The Pg-orbit of xp in X is the unique
closed Pg-orbit, so it must be equal to P(we). In particular, xo € P(we), so we have an
equivalence of the category M(Op ), Po) with the category of algebraic representa-
tions of B. Under this equivalence, the normal sheaf Nx|p () corresponds to the Adjoint
representation of B on ug, or, equivalently, the adjoint representation of b on ug.

Therefore to analyze the Op(,e)-module S(Nx|p(we)), We can examine the symmetric
algebra S(ug), viewed as a b-module under the inherited action of the adjoint representation
of b on ug. The universal enveloping algebra U/ (ig) has a PBW filtration such that the asso-
ciated graded module Grid (@) is isomorphic to S(ug). Under the adjoint action, U (1ig)
decomposes into h-weight spaces corresponding to weights in Q. Therefore, the b-module
S(u@) decomposes into h-weight spaces corresponding to the same weights in Q.

For k € Zx, consider V = S*(tig). There is a b-invariant filtration

O=FKhVCchVC---CFV=V

such that F;V/F;_1V = C,, where u € Q is an h-weight of Sk(ﬁ(.)). This induces a
filtration of V = S¥(Nx|p(we))

0O=FRVCFHVC---CcERV=YV
where each F;V is a Pg-equivariant subsheaf and F;V/F; 11V = Opy)(1t). This proves
the result. O
Lemma 11 For A, u € b¥,
I(U)@, )‘" 77|n@) ®OP(w®) O(H’) = I(U)@, A + M, 77|n@)~

Proof This follows immediately from the definition of Z(we, A + i, 11lng) (Definition 4)
and the projection formula (Proposition 11). O

Lemma 12 As a left D, -module, the graded sheaf
Gri(we,r n) = jo(F ®0p(yq SN Pwe)) R0 p(we) OC2pe — 2p)).

Proof Recall the left D{ -module F of Lemma 8. By an application of Eq. 38 to the right
Dy -module F ®Op(ue) @P(we)» We see that as a right Dy -module,

GrZ(we, 2, ) = jo(F ®0p) SNXIPw6)) ®Opy) ©Pwe))-

Twisting by wy gives us the left D, -module structure
GrZ(we, 2, = jo(F ®0pue) SNX|Pwe)) ®Op(g, @Pwe)IX)s

where wp we)| X = ©P(we) ®(9P(w(_)) j*(a))_(l) is the invertible O py,,)-module of top degree
relative differential forms for the morphism j. The result then follows from the fact that
®pwe)x = ORpe —2p). O

Now we are ready to prove Proposition 8.
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Proof of Proposition 8 Using the preceding lemmas and the computation of the character

of standard Whittaker modules from Section 2.2, we can show that the formal character

of I'(X, Z(we, A, 1)) is equal to the formal character of M (weA, n). By Corollary 2, this

implies our result. Here A € h* and 5 € chn are arbitrary. We compute:

chI'(X,.Z(we, A, M) = chI'(X, GrZ(we, A, 1)) 14
= chT(X. jo(F ®0 () SNXIPwe)) @O0y Q206 —20))) (15)
= chT (P(we), F®0p,,, SNX|P(we)) ®0pue OC2pe—2p)) (16)

= chT(P(w6). F ®0py) @D OW) ®0,,y) 0206 —20)  (17)

neo
= ch'(P(wo). P Z(we. 1+ p — po + 1t +200=2p. 1lns)) (18)
neQ
=ch @ Y0~ p+pe + 1t nlne) (19)
neQ
=Y YO = p+po + 1, mler—rHe (20)
neQ
=chM(\,n) = chM(weh, n). 21

Here, Eq. 14 follows from Lemma 9, Eq. 15 from Lemma 12, Eq. 16 from Kashiwara’s
theorem, Eq. 17 from Lemma 10, Eq. 18 from Lemma 8, Eq. 19 from Proposition 7, Eq. 20
from Definition 3, and Eq. 21 from Eq. 2 and the fact that two standard Whittaker modules
are isomorphic if their h* parameters are in the same Wg-orbit.

Because Z(weg, A, 1) = M(we, A, n), we conclude using Corollary 2 that in
KMfg(u& N, n),

[T(X, M(we, 2, n)] = [M(wek, n)].
This completes the proof of Proposition 8. O
Before stating and proving the main result of this section, we record one final fact about
tensor products of standard Whittaker modules with finite-dimensional g-modules. This
lemma will be used in the proof of Theorem 9 to deal with the case of singular A € bh*.

Let A € h* be antidominant and u € P(X) be antidominant and regular. Then A + w is
antidominant and regular. Let Q(X) be the root lattice. Let

Wy={weWlwr—-r1eQ(X)}CW
be the integral Weyl group of A, which is the Weyl group of the root subsystem
T={eeZ|a’(A)eZ}CX.

For any g-module V, denote by V[, the generalized Z(g)-eigenspace of V corresponding
to the infinitesimal character ;.

Lemma 13 Let F be the finite-dimensional g-module of highest weight —u. For w € W,
(M(w® + @), n) ®c Flpny = M(wi, n).

Proof By [16, Lem. 5.12], T := M(w(: + 1), n) @c F has a filtration by g-submodules
0=Tychhc---CcT,=T
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such that the associated graded module GrT is isomorphic to the direct sum
P Mwe+w+v,m,
vEP(F)
where P (F) is the set of weights of F, counted with multiplicity. We claim that there is
exactly one standard Whittaker module appearing in this sum with infinitesimal character
X, and it is equal to M (w, n). Indeed, assume that for some v € W and v € P(F),
wh+ ) +v=1ovi

Then A+pu+ wlhy=wlor, sow loa—r=wlv— (—u) € Q(X). On one hand, since
) is antidominant, w~'vA — A must be a positive sum of positive roots in ;. On the other
hand, since —pu is the highest weight of F and w v e P(F),w'v—(—p)isa negative
sum of positive roots in X, . Hence

wloa—a= M—l—w_lv =0.

This implies that v = —wpu. The weight v = —wpu is an extremal weight of F, so it
must occur with multiplicity 1. Therefore, there is exactly one standard Whittaker module
in the direct sum decomposition above with infinitesimal character x;, and it is equal to
M(wh, n).
The generalized Z(g)-eigenspace corresponding to x; is the submodule
Tpy=1{teT| (kerx,\)k -t=0forsomek e Z}CT.
Since M (wA, n) appears exactly once in GrT, there is some index 1 < i < n such that
T;/Ti-1 = M(wh, n),

and the quotient 7/7; is annihilated by a power of ﬂ;f:i +1 Ker Xuw4p)+v;, with
Xw(+p)+v; 7 X This implies that 7/7; is a direct sum of submodules with generalized
infinitesimal characters different from x,. It follows that T C T;.

Since T; is anpihilated by a p.ow.er. of .]—[’j:l ker Xw+m)+v;> T; splits into a direct §um
of submodules with generalized infinitesimal characters Xu(+u)+v; for 1 < j < i. Since
T;_ is not annihilated by any power of ker yx;, it follows that T}y is a direct complement of
T;_1 in T;. Hence Tjy) =~ M (wA, n). O

Finally, we are ready to prove our desired result.

Theorem 9 Let ) € h* be antidominant, C € Wo\W, and n € chn be arbitrary. Then
L(X, MW, 4, m) = MW, n).

Proof Lemma 7 implies that for C € Wg\W,
LIye (M@WC, &, m) = M(we, wek, 1)
and
RT (LI (M, &, 0)) = RT(M(we, wck, n)).
If A € b* is antidominant, then by [14, Ch. 3 §3 Thm. 3.23],
RTC(MwC, &, n)) = RT (M(we, wck, ),

and
HP (X, MwC, x,n)) =0for p > 0.
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Therefore, by Proposition 8,
[T(X, MwE, x, n)] = [['(X, M(we, wch, M) = [M(wEx,n].

Assume furthermore that A € h* is regular. Because M (w A, 1) has a unique irreducible
quotient and A € h* is antidominant and regular, Proposition 4 implies our result.

Now assume that A € bh* is antidominant but not necessarily regular. We extend the
result above to this setting using the Zuckerman translation functors of [14, Ch. 2 §2]. Let
@ € P(X) be antidominant and regular, so A + w is antidominant and regular. By definition,
for any coset C € Wg\W, TwC, A, n) = Z(wC, A + 1, n)(—p), and by dualizing, the
analogous statement is also true for costandard n-twisted Harish-Chandra sheaves. Let F be
the finite-dimensional irreducible g-module of highest weight —u. Let F = Ox Q¢ F. The
sheaf F naturally has the structure of an /° := Ox ®c U (g)-module. For any /°-module
V, we denote by V|, the generalized Z(g)-eigensheaf corresponding to A. (For more details
on this construction, see [14, Ch. 2 §2].) Then, using the fact that A + p is antidominant and
regular, we compute

T'(X, M@, &, ) = DX, MW, & + . n)(—p)
= T (X, M@, &+ p, 1) ®0y Fin)
P(X, MW, &+ 1, m) ®oy Fliag
(CX, M@S, 2 + 1, m) ®c Fpy
(MW O+ ). m) ®c Fp
= M@, n).

Here the second equality follows from [14, Ch. 2 §2 Lem. 2.1] and the final equality follows
from Lemma 13. This completes the proof of Theorem 9. O

It is now straightforward to calculate the global sections of irreducible modules.

Theorem 10 Let A € h* be regular antidominant. Then, for any C € Weo\W, we have
T(X, LwC, &, m) = LwCA, n).

Proof Because A is regular antidominant, the global sections functor I'(X, —) is an
equivalence of categories. Therefore, by Theorem 9, the unique irreducible quotient
LW, A, n) of MW, A, 1) must be mapped to the unique irreducible quotient L(w€ax, n)
of M(wCXx, n) by I'(X, —). O

These results explicitly establish the connection between the category of Whittaker mod-
ules and the category of twisted Harish-Chandra sheaves and prepare us to describe the
algorithm in the following section.

5 A Kazhdan-Lusztig Algorithm

This section provides an algorithm for computing composition multiplicities of standard
Whittaker modules with regular integral infinitesimal character. These multiplicities are
given by Whittaker Kazhdan—Lusztig polynomials which are constructed geometrically
using twisted Harish-Chandra sheaves. This algorithm is the main result of this paper, and
was inspired by the Kazhdan—Lusztig algorithm for Verma modules in [14, Ch. 5 §2].
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To state the theorem containing the algorithm, we return to the combinatorial setting of
the introduction. Let W be the Weyl group of a reduced root system X with simple roots
IT C X, and let S C W be the corresponding set of simple reflections. For a subset of
simple roots ® C IT with Weyl group We C W, let He be the free Z[q, ¢ ~']-module with
basis 8¢, C € We\W. For « € I1, we define a Z[q, ¢~ ']-module endomorphism by

0 if Csq = C;
To(Bc) = { q6¢c +écs, fCsq > C;
q7'8¢ + 8¢y, if Csq < C.

The order relation on cosets is the Bruhat order on longest coset representatives. This is
a partial order [14, Ch. 6 §1]. The formula for T, is inspired by formulas related to the
antispherical module for the Hecke algebra appearing in [19]. We will describe explicitly
the relationship between our setting and the setting of [19] in Section 6. The algorithm is
given in the following theorem.

Theorem 11 There exists a unique function ¢ : Wo\W — He satisfying the following
properties.

(i) ForC € We\W,
o(C) =dc + Z Pcpdp,
D<C
where Pcp € qZlq].
(i) Fora € Il and C € W\W such that Cs, < C, there exist cp € 7 such that

Tou(9(Cs)) = Y cpg(D).

D=C

The function ¢ determines a family of polynomials Pcp parameterized by pairs of
cosets in Wg\ W. We refer to these polynomials as Whittaker Kazhdan—Lusztig polynomi-
als, because, as we will see in Section 5.1, they determine composition multiplicities of
standard Whittaker modules.

First we will prove uniqueness of the function ¢ : Wg\W — Hg in Theorem
11 using a straightforward combinatorial argument. Next, we prove existence of ¢ by
appealing to geometry. Defining ¢ geometrically provides the critical link between the
Whittaker Kazhdan—Lusztig polynomials Pcp of Theorem 11 and Whittaker modules. This
is explained in detail in Section 5.1.

We begin by proving uniqueness of ¢ in a slightly stronger form. Denote by We\ W<
the set of cosets C € Wg\ W such that L(w€) < k.

Lemma 14 Let k € N. Then there exists at most one function ¢ : Wo\W<x —> He such
that the following properties are satisfied.

(1) For C € We\W<,

9(C)=68c+ Y Pcpdp,
D<C
where Pcp € qZ[q].
(ii)) Fora € Il and C € Wo\W< such that Cs, < C, there exist cp € Z such that

Tu(@(Csa)) = Y cp(D).

D=C

@ Springer



A Kazhdan-Lusztig Algorithm for Whittaker Modules m

Proof We proceed by induction in k. By [14, Ch. 6 §1 Lem. 1.7], the unique minimal
element in the coset order is Wg, so the base case is k = £(wg), where wg is the longest
element in Wg. In this case, Wo\ W< = {Wg}. The only possible function ¢ : Wo\W —
‘He which satisfies (i) is ¢(We) = Sw,, and (ii) is void.

Assume that for k > £(wg), there exists ¢ : Wg\W<x —> Heg which satisfies (i) and
(ii). Our induction assumption is that ¢|w,\w_,_, is unique. By [14, Ch. 6 §1 Prop. 1.6],
there is a coset C € Wg\ W<, such that ((wc) = k. Then by [14, Ch. 6 §1 Lem. 1.7], there
exists « € IT such that Cs, < C. By (ii),

To(9(Cs)) = Y cpp(D).
D<C

Evaluating at ¢ = 0 and using (i), we have

To(9(Csa))(0) = Y ¢p (aD +> PDE(0)6C> = > cpép.

D=<C E<D D=C

Because £(w ) = k — 1, the induction assumption implies that the coefficients cp in
this sum are uniquely determined. On the other hand, using the definition of ¢ and 7,,, we
compute

To(p(Csa)) = Tu(Bcs,) + Y, Pes,nTu(8D)
D<Csy

qécs, + 8¢ + Z Pcs,pTy(8p).
D<Csqy

Because all cosets D appearing in the sum are less than Cs, in the coset order, £(w?) <
k — 1 for any such D. In particular, §¢ does not show up in this sum. Evaluating at zero and
setting this equal to our first computation, we conclude that cc = 1. Therefore,

¢(C) =T(p(Csa)) — Y cp@(D).
D<C

This shows that the Lemma holds for We\ W<, , and we are done by induction. O

The uniqueness of Theorem 11 follows immediately from Lemma 14. Next we establish a
parity condition on solutions of Lemma 14 which will be critical in upcoming computations.
We define additive involutions i on Z[g, ¢ '] and : on He by

i(g™ = (=1)"q™, form € Z, and
1(q"sc) = (—1)m+e(wc)q’”8c, form € Z and C € We\W.

A simple calculation shows that (T,t = —Tj,.

Lemma 15 Let k € N. Let ¢ : Wo\W<x —> He be a function satisfying properties (i)
and (ii) of Lemma 14. Then

Cy_pfaD

Pcp =q"" 7" Qcp,

where Qcp € Z[qz, q‘z].
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Proof Define a function v : We\W<; — He by ¥(C) = (=1)!®)i(o(C)). Then

Cy_ Dy .
Y(C) =8¢+ Y (=D Di(Pep)sp.
D<C

The polynomials (—1){@)=¢@)i(pep) are in gZ[q], so  satisfies (i). We will show that
¥ also satisfies (ii), then use Lemma 14 to conclude that ¥ = ¢. Let C € Wg\ W< and
o € IT such that Cs, < C. Then

Tu(¥(Csa)) = (=)™ (=T, (L(e(Cs4))))
= (=D ™\ T,(1(p(Csa)))
= (DO 3 epe(D)

D=C

= (=D epup(D))

D=C

= > DOy (D),

D<C

This shows that ¢ satisfies (ii), so Lemma 14 implies that ¢ = ; that is, that
Pep = (=D Di(pep).

This relationship implies the result. O

Now we are ready to prove the existence statement of Theorem 11. Let F €
Meon(Dx, N,n). For w € W, let i, : C(w) —> X be the canonical immersion of the
corresponding Bruhat cell into the flag variety. We note the following facts.

— For any k € Z, L_kil‘,f(]:) is an n-twisted N-equivariant connection on C(w), so
it is isomorphic to a direct sum of copies of Oc(w). We refer to the number of
copies of Ocy) that appear in this decomposition as the O-dimension, and denote it
dimo (L7%i} (F)).

— Because the dimension of C(w) is £(w), for any k € Z,

RO (Fy = L4 (F).
Here n = dim X.

We define a function v : Mo, (Dx, N,n) — He by
vF)= Y Y dimo(R"i (F))q"sc. (22)

CeWo\W meZ

For C € We\W, let Ic := Z(w€, —p, n) be the standard sheaf in Mop(Dx, N, )
corresponding to the coset C and L¢ := L(w®, —p, n) its unique irreducible subsheaf.

Proposition 9 Let ¢(C) = v(L¢). Then ¢ satisfies conditions (i) and (ii) in Theorem 11.

Checking that ¢ satisfies 11 (i) is straightforward.
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Lemma 16 Let ¢(C) = v(L¢). Then
¢(C) =8¢+ Y Pcpép.
D<C
where Pcp € qZ]q].

Proof We need to show three things:
() D £C, dimo(RmiiUD(ﬁc)) =0forallm € Z,

o (1 ifm=0
(®)  dimo (R™i c (Le) = {0 otherwise ’ and

(¢) ifD<C, dim@(R’”iva(ﬁc)) =0forallm <O0.

Part (a) follows immediately from the fact that suppL¢c = C(w€) and D < C in the coset
order if and only if Cw?)y c c(w®) [14, Prop 1.11]. To see part (b), we first observe that
R’ (Le) = R «(Ze) = RV o (iyye 1 (Ocuey) = Oy

So dimo(ROil!ﬂc (L¢)) = 1. Furthermore, for m # 0,

R™i! ((Lc) = R™i! () = R™iL ¢ (iyye 1 (Ocue)) = 0.
This proves (b). We end by showing (c). Let D € Wg\ W be a coset so that D < C. Because
i,p 1s an immersion, il!u p 1s a right derived functor, so for any m < O, R’"ify »V) =0
for any D-module V on X. Thus all that remains is to show that Roi:UD (Lc) = 0. Let

X' = X —3CwP), and let JuwP - C(wP) — X’ be the natural closed immersion, and
ky,p : X' — X the natural open immersion. Then we have a commutative diagram.

cwPy — ™, x
x e

Using the fact that dim X = dim X', that ka is an open immersion, and Kashiwara’s
Theorem, we compute

R%juo (R (L)) = R jyp (RY): »(ROK, (L))
= Rjuyp (R j, n (LT, (L))
= R%j,o (R} h(Lelx))
= RT (o) (Lelx).

From this calculation we see that R? JuwP +(Roi :U p (L)) is the submodule of L¢|x consist-

ing of sections supported on C(w?). However, because X’ is open, Lc|x’ is irreducible,
so this submodule must be zero. We conclude that Roiiu »(Lp) = 0, which completes the
proof of the lemma. O

Our final step in proving Theorem 11 is establishing that ¢ satisfies Theorem 11(ii).
Before we make this argument, we need to introduce a useful family of functors Uolj :
Mye(Dx) — Myc(Dx) and examine their semisimplicity properties. We dedicate the
next page to doing so.

@ Springer



114 A. Romanov

Fix o € II, and let p, : X —> X, be projection onto the flag variety of parabolic
subalgebras of type «. If P, C G is the standard parabolic of type «, then P, = BU Bsy B.
Let C(v) be the Bruhat cell corresponding to v € W. Then we have the following facts:

—  The Bruhat cell C(v) ~ C*™, 50, : C(v) —> X is an affine morphism.

— The image py(C(v)) is an affine subvariety of Xg.

—  The projection py is locally trivial, so p, 1(po(C(v)) is a smooth, affinely embedded
subvariety of X.

We conclude that pa’l(pa (C(v))) = C(v) U C(vsy). One of these orbits is closed in
Po 1(pa(C(v))) and the other is open and dense. We have two possible scenarios:

1. £(vsq) = £€(v) + 1. Then dim(C (vsy)) > dim(C (v)), and so

— C(vsy) is open and dense in p;l (pa (C(Vv))),
—  C(v)isclosed in p;l (pa (C(v))), and
-  po: C(v) — pu(C(v)) is an isomorphism.

2. £(vsg) = £(v) — 1. Then dim(C (vsy)) < dim(C (v)), and so

—  C(vsy) is closed in p;l (pa (C(v))),
— C(v) is open and dense in p;‘ (pa(C(v))), and
- pa:CW) —> pu(C(v)) is a fibration with fibers isomorphic to an affine line.

We define a family of functors UX : My (Dx) — Myc(Dx) by
UKF) = pg (H pay (F)).

Because the fibers of the projection map py : X — X, are one-dimensional, Uéj can
be non-zero only for k € {—1,0, 1}. These functors are closely related to the U-functors
discussed in Section 3.3. (We will make this relationship explicit in the proof of Theorem
17.) Their main utility in our argument comes from their semisimplicity properties.

Lemma 17 Let C € We\W and o € I1 be such that Cs, < C. Then

(i) Uk(Lcy,) =0forallk #0, and
(ii) US(ECSQ) is a direct sum of Lp for D < C.

Proof By construction, Ug (Lc¢s,) is aholonomic (Dx, N, n)-module supported on C(wC),
SO US (Lcs,) has finite length, and its composition factors must be in the set {Lp|D €
We\W and D < C}. Because p, is a locally trivial fibration with fibers isomorphic to P!
(in particular, it is a projective morphism of smooth quasi-projective varieties), and Lc, is
a semisimple holonomic D-module, the decomposition theorem [18, §1 Thm. 1.4.1] implies
that H¥ Pa+t(Lcs,) are semisimple. By the local triviality of py, this in turn implies that
Ug (Lcs,) are semisimple, which completes the proof of (ii).

To prove (i), we establish the connection between Ug and the U-functors of Section 3.3.
Let Y, = X xx, X be the fiber product of X with itself relative to the morphism p, with
projections g1 and g» onto the factors. By base change (Theorem 16),

UK (Les,) = pt(H pas (Lesy)) = Hoqii(aF (Lesy)
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Because Dy = D_,, we have that the twist UO’j (Lesy ) () = Uk (Lcs,), where U* is the
functor from Section 3.3. To complete the proof, we need to show that we are in case (ii) of
Theorem 7; that is, that L~} I, (Lcs,) = 0. Because Csy < C, we can apply Proposition 5
to the coset Cs, and conclude that

LI, (I(wcsa, A D)) = I(wc, Sgh, 1).

In particular, this implies that L7 5o (L(WEsq, A, n)) = 0, and because Lc, is a submodule
of Z(wCsy, A, n), L~ 5, (Lcs,) = 0 as well. O

We are working toward showing that ¢(C) = v(L¢) satisfies (ii). We will do so by prov-
ing that for @ € IT and C € Wg\W such that Cs, < C, Ty (¢(Csy)) = v(Ug(,CcSa)). This
relationship is useful because it allows us to use Lemma 17 to decompose v(UO(l) (Lcs,)) and
obtain the desired sum in Theorem 11(ii). Before jumping into the argument, we must estab-
lish what happens if we pull back an irreducible module to a Bruhat cell which corresponds
to a Weyl group element which is not a longest representative in some coset C € Wg\W.
Lemma 18 will be critical in upcoming computations.

Lemma 18 Let v € W be a Weyl group element such that v # wC is not a longest coset
element for any coset C € Wo\W. Let F € M on(Dx, N, n) be irreducible. Then

Rt (F) =0
forallk € Z.

Proof Let X' = X — 9C(v), and express the canonical immersion i, as the composition of
a closed immersion and an open immersion in the following way.

cowy s x by x

iy
Then, if F is an irreducible (Dx, N, )-module,
iN(F) = joky(F)
= iyko ot ok (F)
= itkyy RT o) (ky (F))
= ipky+ RTcy (Flx).

Here we are using Kashiwara’s theorem, the fact that dim X = dim X’, and the fact that k,
is an open immersion. Because X’ is open in X and F is irreducible, F|y- is irreducible as
well. For all k € Z, Rkl"c(v)]:lxr is a submodule of F|x, so either Rk[‘c(v)]-'lx/ =0, or
R¥ CewyFlx = Flx. In the first case, the preceding calculation implies that RFi ; (F) =0,
and we are done. In the second case, we have suppF|x = supkaFc(v)]-'lx/ C C(v).
By [13, Ch. V §4 Cor. 4.2], F is the unique irreducible holonomic Dx-module that
restricts to F|xs, and suppF = suppF|x» € C(v). There are no irreducible objects in
Mon(Dx, N, n) with support equal to C(v) because v is not a longest coset element,
so we must have suppF € 9C(v) = C(v) — C(v). But this implies that suppFly =
supkaFc(U)]: |x» = 0, so the second case cannot happen. O
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Let C € Wg\W and o € TII be such that Cs, < C. The rest of this section is spent
proving that 7,, (¢(Csy)) = v(Ug (Lcs,))- Our first step in relating these two quantities is to
establish the existence of a certain long exact sequence in cohomology which will be useful
in relating O-dimensions of modules which appear in the decomposition of v(UO? (Lcsy))-

Let D € Weo\W be a coset such that D < C, so £(wP) < £(w®) and C(wD) c C(w©).
By [14, Ch. 6 §1 Prop 1.6], wCsg is the longest element of Csy, and L(wCsy) = L(w) — 1.
By assumptlon C(wc) is open and dense in p, ~1 (Pu (C(wc))) = C(wc) UC (w€sgy), so the

closure py ' (pa(C(wC))) = C(wC). Because C(wP) C C(wC), the image py(C(w?)) C
Pa(C(w©)), so

CwP)UCWPsq) = py (pa(CwP))) C pa’ (pe(C(wC))) = CWC).

We conclude that both w? S < w€ and wP < wC€. Because both elements are less than or
equal to w€ in the Bruhat order, we can assume without loss of generality that w”s, < w?;
ie. E(w Se) = L(wP) — 1 and C(wP) is openin Z, 1= p, 1(pD,(C(wD))) = Cw?)U
C(wPsy).

Let j : Zo, — X and jp : pa(C(wD)) —> X, be natural inclusions. Let ¢, :
Zo —> pa(C(wP)) be the restriction of p, to Z,. Then we have the following fiber
product diagram:

Zy —1 3 X

e

Pa(CwP)) 2 X,.

Note that because py and g, are surjective submersions, pJ and g} are exact, so they
both lift to functors on the respective derived categories D?(M(Dy)) and D? (M (Dgz,)).In
the calculations below we denote both the functors on the derived category and the functors
on modules by the same name, either p} or g;. Let d be the codimension of Z, in X.
Note that the codimension of pg (C(wP)) = pa(Zy) in Xg is also d. Recall that for any
immersion i : ¥ — X of smooth algebraic varieties, the extraordinary inverse image and
the D-module inverse image are related by i'[codim(Y)] = Li*. By this relationship, base
change (Theorem 16), and Lemma 17, we compute

H*(j' pd pat(Les,))
H (LT (pf past (Les,))
= H" g (Ljf (pas+ (Les,)))
H*(qf jhpa+ (Les,)

o H (jp pa+ (Lcs,))
= g H (qa+j'(Lcsy))-

REF U Les,))
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Our next step is to analyze the complex j !(ﬁcsa)- Denote by i : CwP) — Z, and
i’ : C(wPsy) —> Z, the canonical affine immersions. Note that i is an open immersion,
and i’ is a closed immersion. We have the following commutative diagram.

C(w?)

For any complex F* € Db(./\/l (Dz,)), we have the following distinguished triangle
[13, Ch. IV §9]:
0" F — F — iy Flewp)-
Applying this to F* = j'(Lc¢;,) and using the facts that j!(ﬁcsa)lc(wD) =itj'(Les,) =
i!j!(ECSa) = i;}D (Lcs,) because i is an open immersion and i"o j! = i:uDsa, we obtain the
distinguished triangle
1

iilp (Les) — ' (Lesy) — iyil p(Ley,).

Sa w

Applying the exact functor ¢,y we get the following distinguished triangle in
DY (M(Dy, cury)):

(Ga 0 i+ Gilyn, (Les,)) — qa+j (Les,) — (o 0 D)+ 3y (Les,)-

Because p, (C(wP)) is an N-orbit in X, and all D-modules in the arguments above are N-
equivariant, the cohomologies of the complexes in this triangle are all direct sums of copies
of O po (C(wDy)- From this final distinguished triangle, we obtain a long exact sequence in
cohomology:

- = H (o 0 D)4 liyp (Les,)) = HE(qa 0 )4 Gyn, (Les,)) =

w w= Sy

HY(qo+ (' (Lesy)) = H (qo 0 4G p(Les,)) —
Hk+1

1

((qa 0 i)+ (ipyp, (Les))) = -
This is a sequence of D, (¢, p)-modules which are direct sums of copies of O, (c(wD))-
Note that the map
Gooi': C(wPsy) — pa(CwP))
is an isomorphism, and the map
quoi: Cw?) — pa(C(w?))

is a locally trivial projection with one-dimensional fibers. This implies that

dimo H (4o 0 i)+ (i}yp, (Les,)) = dimoR i) (Les,), and (23)

dimo H ((ga 0 1) 4 (i}, p (Lcs,))) = dimR! L (Ley,). (24)

Now we are ready to prove that ¢ (C) = v(L¢) satisfies 11 (ii) by induction in the length
of w€. The base case is when w€ = wg and C = We. In this case, for any o € II, either
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Csq = C, or Csq > C because weg is minimal length in the set of longest coset elements,
so 11(ii) is void.

Fix k € N. Assume that ¢(C) := v(Lc¢) satisfies 11 (ii) for C € Wg\W<. This is our
induction assumption. Under this assumption, we can reformulate the parity condition of
Lemma 15 in the following way. Since ¢|wg\w satisfies conditions (i) and (ii) of Lemma
14 on We\W<, if C € Wo\W<¢ and D € Wo\W, then Pcp = ¢‘@)—t@”) 00 p for
some Qcp € Z[qQ, q’z].5 Because

Pep(g) =) dimo(R™i »(Lc)g™,
meZ

by the definition of ¢, we conclude that for any C € Wo\W< and D € Wg\W, if m =
L(wC) —£(wP) — 1 (mod 2), then Rmi:uD (L¢) = 0. We refer to this as the inductive parity
condition.

Let C € Wg\W be a coset such that L(w€) =k + 1 and @ € I such that Cs, < C. Let
D € Wg\W be such that D < C. Then Cs, € Wg\W<, so we can apply the inductive
parity condition to the cosets Cs, and D. This yields

R™i! ,(Ley,) = 0forallm € Z withm = £(w®) — £(w”) (mod 2). (25)

Now since we’ve chosen D arbitrarily, there are two possible relationships between D and
a. Either Ds, = D or Dsy # D. In the first case, Lemma 18 implies that for all m € Z,
Rmil!u Dy (Lcs,) = 0, since wPs, isn’t a longest coset representative. In the second case,
we can apply the inductive parity condition again to the cosets Cs, and Ds,, to see that
R’”ifﬂDSa (Lcs,) = 0forallm € Z withm = £(w®) — £(w?) + 1 (mod 2). (26)

Combining Eqgs. 25 and 26 with Eqgs. 23 and 24, we see that for any D < C and any

integer m such that m = £(w®) — £(w?) + 1 (mod 2),
H™((qa 0 )+ (i} p(Lcs,)) = 0, and
H"((qa 0i")+Gyp, (Les,)) = 0.

Using the long exact sequence in cohomology from earlier, we conclude that for any integer
m such that m = £(w€) — £(w?) + 1 (mod 2),

H™"(qa+j'(Lcs,)) = 0.

The outcome of the this discussion is that the long exact sequence in cohomology associated
to the cosets C and D has the form

o> 0->0->0->%x>%x>%x>0->0->0->%x>%x—>%x—>0->0->0—>---

where the *’s represent possibly non-zero elements. Since O-dimension sums over short
exact sequences, we conclude after another application of Eqs. 23 and 24 that for any integer
m such that m = £(w®) + £(w?) 4+ 1 (mod 2),

dimo H" (qo+j' (Les,) = dimoR™i, »  (Ley,) +dimo R i) (Ley,)-
By restricting this further to C(wP) and C(wPsy), we see that for any m € 7,
dimoR"i} » (U (Lcy,)) = dimoR" i), (Leg,)+dimoR™i) » (Ley,), and(27)
dimoR"i\ . (Ug(Ley,)) = dimoR™i, p(Les,) +dimoR" Vi (Leg,). (28)

wDsq

SNote that we are adopting the convention that for D £ C, Pcp = 0, and this statement is trivially true.
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In addition, if D € Wg\W has the property that Ds, = D, we can use Lemma 18 to
further reduce Eqs. 27 and 28. Indeed, by Lemma 18, if Ds, = D,

dimoR""i; . (Lcs,) = 0, and
dim@RmifUDSa (Les,) =0
for allm € Z,. By Lemma 17, UO?(ECSQ) = @Dgc mcpLp for some mep € Z4, hence
Lemma 18 also implies that
dimoR"i} p  (Ug(Ley,)) = 0.
Therefore, we conclude that for all cosets D < C such that Ds, = D,
dimoR™i! » (U (Ley,)) =0 (29)

forallm € Z.
The Egs. 27, 28, and 29 are what we need to show that 7y (¢(Csy)) = v(Ug(Ecsa)). The
computation is as follows.

V(U (Les,) Yo D dimo(R"i! (U (Leg, )™ 8

DeWe\W meZ
= 3 Y dimo®R"i, U(Leq)))q"dp
Dsy>D meZ

+ ) Y dimo(R"i, , (UN(Ley, )" b

Dsy <D meZ

+ ) Y dimo(R"i , (UN(Les, )" p

Dsq=D meZ

= > D dimoR"i,p, (UJ(Lcs,))q" s,

Dsqy<D meZ

+ Y0 Y dime(R™i , (U(Les,))q™dp

Dsqy<D meZ

= Y Y @dmoR"i,(Les,) +dimoR™ i b (Les,))q"8Ds,
Dsy<D meZ
+ ) Y @dmoR™i L (Les,) + dimoR™i 5. (Les,))q" 8D
Dsq<D meZ

!

= Y Y @moR"i ,(Les,) +dimoR™i . (Les,))q" (b +dps,)

Dsq<D meZ
= Y Y dimoR™i! ) (Les, )" (@7 8D + 6ps,)
Dsy <D meZ
+ ) Y dimoR"i 5 (Lcs,))q" Obs, +q8D)
Dsq>D meZ

= Ta(V(Lng)) = Ty (9(Csq)).

Therefore, for C € Wo\W<¢41 and o € IT such that Csy < C,
To(p(Csa)) = v(UY(Les,) = v(ED enLp) = Y cpv(Lp) = Y cpp(D),

D=<C D=<C D<C

i.e. Theorem 11 (ii) holds on Wg\W<i41. By induction, this completes the proof of
Proposition 9, which in turn completes the proof of Theorem 11.
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5.1 Composition Multiplicities of Standard Whittaker Modules

We are now ready to establish the connection between Whittaker Kazhdan—Lusztig polyno-
mials and multiplicities of irreducible Whittaker modules in standard Whittaker modules.
We start with two preliminary lemmas.

Lemma 19 The evaluation v(—1) of the map v at —1 factors through the
Grothendieck group K (M on(Dx, N, 1)) of Mcon(Dx, N, 1).

Proof For an object F in Mon(Dx, N, n),
VA (=D = Y Y (=" dimo(R™i] c (F)sc.
CeWo\W meZ

If0 - F| - F» — F3 — 0is a short exact sequence in M., (Dx, N, n), then for each
C € We\W, we have a long exact sequence

;71 . m . 3m .
R™iL c(Fi) 25 R o (F) &5 R7L o (Fa) 25 R (Fp)

Om—1
—

of N-equivariant n-twisted connections on C (w€). For each m € Z, we have short exact
sequences

0 — Kker f, — R’”i:uc(}'l) — im f,,;, — 0,
0 — kerg, — R'”i:uc (F2) —> img, — 0, and
0 — kerd,, — Rmil!uc(]:S) — img,, — 0.

Since O-dimension sums over short exact sequences and ker f,, = imd,,_;, kerg,, =
im fp,, and ker d,, = im g,,, we have

D (=D dime(R"i! o (F2) = Y (—=1)" dimo(R"i! o (F1))

mez mez

=Y (=) dimo ker f,
mez

+ ) (=D dimo(R"i) ¢ (F3))
meZ

=Y (=)™ dimo ker
meZ

= Y (=)™ dimo(R"i. c (F1))

mez

+ Y (=D dimo(R™i, ¢ (F3)).
mez

This implies the result. O

Lemma 20 v(Z¢) = §c.

Proof By definition, Z¢ = i,,c +(0C(wc)). By Kashiwara’s theorem (Theorem 15),

R’ o (Zc) = R ¢ (iyc 1 (Ocquey)) = Oc ey,
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and for m # 0,
R"i! o(Ze) = R™i! (i 1 (Ocque)) = 0.
Let D # C be another coset in Wg\W. Then i;}) (C(w®)) = 0, so by base change
(Theorem 16),
R™i! p(Ze) = R™i! iy (Ocgyey) =0
for all m € Z. O

Let x : Mcon(Dx,N,n) — K(M.on(Dx, N, n)) be the natural map of the category
Mon(Dx, N, 1) into its Grothendieck group K (M on(Dx, N, n)).

Theorem 12 Let Pcp, C, D € Wo\W be the polynomials in Theorem 11. Then

X(Le) = xTe)+ Y Pep(=D)x@p).
D<C

Proof By definition, x(Lc),C € Wg\W form a basis for the Grothendieck group
K (Mcon(Dx, N, n)). Because Z¢ contains L¢ as a unique irreducible submodule, and the
other composition factors of Z¢ are Lp for D < C, we can see that x (Z¢), C € We\W
form another basis for the Grothendieck group. Therefore, there exist Acp € Z such that

X(Lc) =" repxTp).
D=<C

By Lemma 19, v(—1) factors through K (M ,;(Dx, N, n)) and by Lemma 20, v(Zp) =
3p, so by comparing coefficients and using the definition of v, we have

v(Le) (=) =Y repv@p)(—=) = Y Acpdp.
D<C D<C

By construction, Pcc = 1 forany C € We\W, so Acc = 1 and Pcp(—1) = Acp. This
proves the theorem. O

This theorem gives an algorithm for calculating the multiplicities of irreducible Whit-
taker modules in standard Whittaker modules. Pick a total order compatible with the partial
order on Wg\W. With respect to this order, the matrix (Acp)c,pewg\w 1S lower triangu-
lar and has 1’s on the diagonal. Here Acp = Pcp(—1) as in the proof of Theorem 12. Let
(Lcp)c,pewe\w be the inverse matrix. From Theorem 12, we have

xTo)= Y, Y pcerepx@p)

DeWo\W EcWo\W

Z UCE Z repx@p)

EecWe\W DeWg\W

> mcex(Le)

EcWo\W

= > ncex(Le).

E<C

By Theorem 9 and Theorem 10, we have established the main result of this paper.
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Corollary 3 The multiplicity of the irreducible Whittaker module L(—wPp,n) in the
standard Whittaker module M(—w€ p, 1) is pcp.

We can get results analogous to Theorem 12 and Corollary 3 for integral . € bh* by
twisting by a equivariant invertible Ox-module.

Corollary 4 Let A € b* be regular, integral, and antidominant. Then the multiplicity
of the irreducible Whittaker module L(wP (L — p), n) in the standard Whittaker module

MWC (= p), n) is pep.

Proof From Corollary 3, we know that in the Grothendieck group of
Meon (’D—p7 N, n),

[ZwC, —p, M =M@, —p,ml= Y pceplLw®” —p,ml.
DeWe\W

Moreover, by the projection formula (Proposition 11), we have Z w€, —p, @A) =
Z(w€, A — p, n), which in turn implies that L(w®, —p, n) = L(wE, A — p, n) since the
twist functor — () must send irreducible objects in M., (D_,, N, ) to irreducible objects
in Mcon(Dy—p, N, 1) and each standard n-twisted Harish-Chandra sheaf has a unique
irreducible subsheaf. By Theorem 9 this implies the result. O

Establishing the same multiplicity results for standard Whittaker modules of arbitrary
infinitesimal character requires further analysis, which we will examine in future work. It
is of note that the proof of Theorem 11 immediately implies that the coefficients of the
Whittaker Kazhdan—Lusztig polynomials Pcp are non-negative integers.

Corollary 5 The coefficients of the polynomials Pcp from Theorem 11 are non-negative

integers.

Proof This follows immediately from Proposition 9 and the definition of v. O

6 Whittaker Kazhdan-Lusztig Polynomials

This section relates the Whittaker Kazhdan—Lusztig polynomials Pcp of Theorem 11 to the
combinatorics of Kazhdan—Lusztig polynomials appearing in [19] and [14, Ch. 5 §2 §3].
We also describe a duality between the Kazhdan—Lusztig algorithm for Whittaker modules
established in Section 5 and the Kazhdan-Lusztig algorithm for generalized Verma modules
established in [14, Ch. 6 §3 Thm. 3.5], following the philosophy of dual Hecke algebra
modules laid out in [21, §12 §13]. To make these associations, we need to introduce the
Hecke algebra into our story.

6.1 The Hecke Algebra
Let (W, S) be a Coxeter system with length function £ : W — N.

Definition 7 The Hecke algebra H = H(W, S) of the Coxeter system (W, S) is the
associative algebra over Z[q, ¢ '] with generators { Hy }scs satisfying the relations
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(i) (quadratic)
(Hy +q)(H; —g~ ") =0foralls € S, and

(ii) (braid) for each pair s, t € S,
HSHZHA‘ S HtHth e

with mg; elements on each side of the equality. (Here my; is the order of st in W.)

All H, for s € S are invertible with H;l = H; + (q — q’l). For w € W, we choose
a reduced expression rs---t of w and define H,, € H by H,H--- H;. This element
is independent of choice of reduced expression. If £(w) + £(v) = £(wv), then we have
H,, H, = Hy,. There is exactly one ring homomorphism

d:H —>H
Hw— H
suchthatg = ¢~ ' and H,, = (H,,-1 )~L. This is clearly an involution. We say that H € H

ii self-dual if H = H.Foreachs € S, the element C; := H, + q is self-dual. Indeed,
Cs=(H) "+q'=H;+q=C,.

6.2 He is a Hecke Algebra Module

Now we return to the setting of Section 5. Let W be the Weyl group of a reduced root
system X with simple roots I C ¥ and corresponding simple reflections S C W. Then
(W, S) is a Coxeter system. Let ® C I be a fixed subset of simple roots and let He =
EBC€W®\W Zlq, q’l]éc be the Z|[q, q’l]-module from Theorem 11. Recall that for each

o € T we defined a Z[g, g~ ']-linear endomorphism 7, of He by

0 if Csq =C
To(8¢c) = { q8c + 8¢5, ifCsy > C .
g '8¢ + 8¢y, if Csy < C

Our first observation is that the operators {7, }y,cr1 give an action of the Hecke algebra of
(W, S) on He. Indeed, if we define S, := T, — ¢, then a computation shows that S,
satisfies both the quadratic and braid relations of the Hecke algebra, thus the map ¢ : H —
Endz, ,-11(He) given by ¥ (Hs,) = Sy gives He the structure of a left H-module. The
map v sends the self-dual basis element Cy;, € H described in the previous section to the
endomorphism Ty,

This extra structure will allow us to relate Theorem 11 to the results in [19, §2 §3].
Our first step is to establish a relationship between He and a certain induced right #-
module (the antispherical module for the Hecke algebra) in order to extend the duality in H
given by the involution d to a duality in He. If Sg C S is the subset of simple reflections
corresponding to @ C TI, then the subalgebra H® of H generated by {H,} fora € O is
isomorphic to the Hecke algebra of the Coxeter system (Wg, Sg). The surjection H® —
Zlq,q~ "] sending H,, + —q gives Z[q, "] the structure of a H®-bimodule, and with
this bimodule structure we can form the induced right H-module

N® :=2Z[q, ¢ "1 ®0 H.

This is the antispherical module of the Hecke algebra H. Note that in the special case
©® = @, N'© is the Hecke-algebra H as a module over itself with the right regular action.
The set {N,, := 1 ® H,,} for minimal coset representatives w € C € We\W forms a basis
for A as a Z[q, ¢~ ']-module.
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Remark 3 By instead using the surjection H® — Z[q, ¢~'] given by Hy, > ¢~ ! to form
the H©-bimodule structure on Zlq, q_l], it is possible to construct another induced right
H-module M® := Z[g, g~ ] ®q0 H [19, §3]. This is the spherical module of the Hecke
algebra . This module also has the property that M? = H. By an analogous argument to
the one below, one can show that the Kazhdan—Lusztig combinatorics of generalized Verma
modules (as described in [14, Ch. 6 §3]) is given by the spherical H-module.

One can compute [19] that the action of C; on N'© for s € § is given by

0 ifws e C
NywCs = 3 qNy + Ny ifws >wandws ¢ C .
q’le + Nys ifws < wand ws ¢ C

Therefore, there is a Z[g, ¢ ~']-module isomorphism

(]5:7‘[9—)/\/’@)
éc — N

wewC€

which intertwines the left -action on He with the right H-action on A/ ©_ That is, for
E € Ho, ¢(Cs E) = ¢(E)Cy,. Here we is the longest element in We.

Note that in the special case ® = ¢, this provides an Z[q, ¢ ~']-module isomorphism
between Hy and the Hecke algebra .0 The benefit of relating He to this induced module
is that it allows us to use the involution d of H to construct an involution of the induced
module, which we can then use to define self-duality in Hg. There is a homomorphism of
additive groups

N® — N®
a®H+— a®H:=a®H.
This homomorphism has the property that N, = N, and
NH=NH (30)

forall N € N© and H € H. We say that an element E € Hg is self-dual if the cor-
responding element in A/® is fixed under this involution; that is, if ¢ (E) = ¢ (E). Since
¢(Ty(E)) = ¢(E)Cy, forany o € [T and E € He and C;, is self-dual in H, property (30)
implies that T, preserves self-duality.

6.3 The Recursion Relation in Theorem 11 is Equivalent to Self-Duality

The main content of this section is a proof that condition (ii) in Theorem 11 is equivalent to
¢(C) being self-dual in the sense of the preceding section.

Theorem 13 Let ¢ : Wo\W — He be a function satisfying

¢(C) =8¢ + Y Pcpdp for Pcp € qZIg] (31)
D<C

for all C € We\W. Then the following are equivalent.

5This justifies the notational choice in [14, Ch. 5 §2], where the Z[q, qil]-module Hy is referred to as H.
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(i) Ifa € Il and C € Wg\W are such that Csy, < C, then there exist mp € 7 such that
Tu(@(Csa)) = Y mpe(D).
D=C
(i) All p(C) are self-dual.

Proof Assume that (i) holds, and take C and « such that Cs, < C. Using the definition of
T, we compute

To(9(Csa)) = Tou(Bcs, + Y Pes,e0E)
E<Csy

8¢ +qdcs, + Y, Pes,eTu(SE)
E<Csq

=dc+ Y Qcpdc

D<C

for some Qcp € Z[q]. Therefore, mc = 1. Thus, for any o € IT such that Csy, < C,

9(C) = Ty (9(Csa) = Y mpe(D). (32)
D<C
Now we show that all ¢ (C) are self-dual by induction in L(wC).If C = We, then p(Wg) =
dwe is self-dual because ¢ (w,) = 1 ® H, and H, = H, in H. Assume @(D) is self-dual
for all D < C. Then because T, preserves self-duality, Eq. 32 implies that ¢(C) is self-dual.
We conclude that (i) implies (ii).
Now let ¢ : Wo\W — He be a function satisfying Eq. 31 and condition (ii). For
C € Wg\W, choose o € I such that Cs, < C. If no such « exists, then (i) is void and we
are done. If such an « does exist, we have

To(p(Csq)) = 8¢ + E Qcpdp
D<C
for appropriately chosen Qcp € Z[q]. Define

P(C) := Ty (p(Csq)) — Z Qcp0)¢(D).
D<C
The function ¢ satisfies Eq. 31 and is self-dual by the fact that 7,, preserves self-duality.
Next we argue that there is a unique function satisfying both Eq. 31 and condition (ii),
and thus ¢ = ¢. First, observe that for any E € }_ccy,\w 9Z[g1éc, seli-duality implies
E = 0.Indeed, if E = ¢y, \w Rcdc and we let C be maximal such that R # 0, then
¢(E) = ¢ (E) implies that Rc = R, which is impossible because Rc € gZ[q]. Therefore,
if o' : Wo\W — He and ¢ : Wo\W — Hg are two functions satisfying Eq. 31 and (ii),
then ¢(C) — ¢/(C) € ZCEW(_)\W q7Z[q18¢ is self-dual, so (C) = ¢'(C).
We conclude that ¢ = ¢, and by rearranging we obtain

T,@(Cse) = 3 mp@(D) formp = { Qo@D =€

D<C
Thus (ii) implies (i). O

This establishes the relationship between the results in this paper and the results in [19,
§2 §3]. In particular, it establishes that Theorem 11 in this paper is equivalent to part 2
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of Theorem 3.1 in [19]. This allows us to explicitly compare Whittaker Kazhdan—Lusztig
polynomials Pcp to polynomials that have shown up elsewhere in the literature under the
name “parabolic Kazhdan—Lusztig polynomials.” We list these relationships now.

Remark 4 1. The Whittaker Kazhdan—Lusztig polynomials Pcp are equal to the polyno-
mials ny  in [19] for x = wew€ and y= wew?.
2. A normalization of Pcp gives the parabolic Kazhdan—Lusztig polynomials in [5]. The
polynomials
(ql(w@wD) _ qi(w@wc))PCD

are polynomials in the variable v := ¢~2, and they are precisely the polynomials

(Iw@wD)*],(w@wD)*l in [5] foru = v and Wg = Wj.
3. In the special case where ® = ¢, the polynomials

(qé(v) - qe(w))PwU

are the Kazhdan—Lusztig polynomials as defined in [9].
6.4 Duality of Whittaker Modules and Generalized Verma Modules

We conclude this paper by relating the Whittaker Kazhdan—Lusztig polynomials Pcp to
the polynomials arising in the Kazhdan—Lusztig algorithm for generalized Verma mod-
ules established in [14, Ch. 6 §3]. Generalized Verma modules are a class of parabolically
induced highest weight modules for a Lie algebra. For details of their construction, see
[14, Ch. 6]. The main results of this section are Eq. 33 which relates the algorithm in The-
orem 11 to the algorithm in [14, Ch. 6 Thm. 3.5], and Proposition 10, which provides a
formula relating Whittaker Kazhdan—Lusztig polynomials to Kazhdan—Lusztig polynomi-
als. By Theorem 13, Proposition 10 is a special case of [19, Prop. 3.4], but our proof is new,
and independent of results in [19]. Equation 33 also recovers the Kazhdan-Lusztig inversion
formulas of [9] as a special case.

In [14, Ch. 6 §3], Mili¢i¢ establishes a Kazhdan—Lusztig algorithm for generalized
Verma modules. We review his results here to establish their relationship with the Whit-
taker Kazhdan—Lusztig algorithm of this paper. Let Ho = EBCeW@\W Zlg,q " 18¢c be
the Z[g, g~ ']-module from the preceding section. We can realize He as a Z[g, g~ '1-
submodule of the Z[q, ¢~ ']-module Hy = DB ew Zlg., g~ 118, by setting

8C = Z ql(v)(sva.

veWeg
Fora € I, let T : Hy — Hy be the endomorphism defined by

qbw + Suws, if wsy > w
g 8w + s, fwsy <w’

7 (5y) = {

as in Section 6.2. We introduce ¢ into the notation here to emphasize that To? is an endo-
morphism of Hg. A computation shows that the endomorphism T(f} transforms 8¢ in the
following way:
(q+q Hsc ifCsq =C;
T)(5¢c) = { q8c +8cs, if Csy < C;
g '8¢ + 8¢y, if Csy > C.

It follows that Hg is stable under To?, s0 He is an H-submodule of Hy. In [14, Ch. 6 §3],
Milici¢ proves the following Kazhdan-Lusztig algorithm for generalized Verma modules.
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Theorem 14 [14, Ch. 6 §3 Thm. 3.5] There exists a unique function ¢’ : Wo\W — Heg
satisfying the following.
(i) ForC e We\W,
¢'(C)=8c+ Y Plpdp
D<C
for Pl € qZ[q), and
(i) for o € I such that Cs, < C, there exist integers m’D such that

T)(¢'(Cs)) = ) mpe'(D).
D<C

Furthermore, the polynomials P/, are given by the Kazhdan—Lusztig polynomials for
(W, S) by
Pé p = Pycyp.

Since Theorem 11 specializes to the Kazdhan—Lusztig algorithm for Verma modules
[14, Ch. 5 §2 Thm. 2.1] when ® = @, one can see from Mili¢i¢’s proof of Theorem 14 that
the unique function ¢’ : Wo\W — Hg satisfying Theorem 14 is the function ¢’(D) :=
g (wP), where g : W — Hyg is the unique function guaranteed by Theorem 11 in the
special case ® = ¢J. The Kazhdan—Lusztig polynomials P(.,, of Theorem 14 describe the
multiplicities of irreducible highest weight modules in generalized Verma modules [14, Ch.
6 §3 Cor. 3.7].

For arbitrary ® C II, the Whittaker Kazhdan—Lusztig polynomials are inverse to the
polynomials appearing in Theorem 14 in the following sense.

wE) ) pr _|1ic=D
. ;\W(_l) v v PConwOPDE - {0 if C ;éD . (33)
€EWe

This relationship appears as Proposition 3.9 in [19], where it is originally attribued to
Douglass [6]. If we specialize to ® = (), then Wg\W = W, and Eq. 33 recovers the
Kazhdan-Lusztig inversion formulas.

¢ ¢ 1 ifv=w
Xv:v(_l) WHW P Pywouwy = {0 o 2w (34)
ue

We complete this section by describing the relationship between the Whittaker Kazhdan—
Lusztig polynomials Pcp and the Kazhdan—Lusztig polynomials in [14]. If ® = {,
Theorem 11 specializes the algorithm in [14, Ch. 5 §2 Thm. 2.1], and the polynomials Py,
are the Kazhdan—Lusztig polynomials as defined in [14]. Note that these polynomials dif-
fer in normalization from the Kazhdan—Lusztig polynomials appearing in [9]; see Remark
4. The following formula relates Whittaker Kazhdan—Lusztig polynomials for general ® to
Kazhdan-Lusztig polynomials.

Proposition 10 For © C I1 arbitrary,

4
Pcp = Z (—=q) (U)Pw(.)wcvw(.)wn'

veWep

Proof Fix an arbitrary ® C II, and pick a total order compatible with the partial order on
We\W. From Theorem 14 we see that Pl.;, = 0 for D > C and P/.;, = 1 if C = D, so
the matrix P = (P(p) of polynomials with respect to our total order is lower triangular
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with 1’s on the diagonal and coefficients in Z[q]. The inverse matrix Q = (Q¢p) is also
lower triangular with 1’s on the diagonal and coefficients in Z[g]. From Eq. 33 we see
that the coefficients Q¢ p of the inverse matrix are related to Whittaker Kazhdan—Lusztig
polynomials in the following way:

C D
Ocp = (=)W T@D Py Cue- 35)

Then, if ¢y : W — Hy is the unique function from Theorem 11 corresponding to the subset
® =, we have

> Qepepw®) > Qe | Y. Phre

DeWe\W DeWe\W EcWe\W

Z Z QcpPhr | 8k

EcWo\W \ DeWo\W

— Sc.

Here the polynomials Q¢ p correspond to our arbitrary fixed ®, and only the function ¢y is
specific to the special case ® = . Now, if we specialize further to the case that our fixed
® is ® = (4, the computation above implies

D Q) = bu. (36)
veW

Then, because
5c = Z qﬁ(v)(ngc’

veWg

we have the following relationship:

> Qeppw®) = > q"V6,,c

DEW@\W veWep
= > q' (Z vacuq)(u))
veWep ueWw
=Y | D 4" Qe | 0.
ueW \veWg

Here the second equality follows from Eq. 36. Since {¢p(u) : u € W} form a basis for Hy
by Theorem 11, this implies that

Ocp = Z qe(v)vaCwn'

veWg

Thus, since £(vw€) = £(wC) — £(v) for v € Wg by [14, Ch. 6 §1 Lem. 1.8], an application
of Eq. 35 for the special case ® = @ results in the following formula:

Ocp = (_l)e(wC)-M(wD) Z (_I)E(v)qz(v) Py D€ g - @37

veWep
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The element w€ wy is the shortest element of the coset Cwy, so it is equal to we wCwo by
[14, Ch. 6 §1 Thm. 1.4]. The proposition then follows by combining Eq. 37 with Eq. 35. [
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Appendix: Geometric Preliminaries

In this appendix we record some some fundamental results about functors between cate-
gories of modules over twisted sheaves of differential operators which play a critical role in
the arguments of Sections 4 and 5. For a detailed treatment of this subject, see [7, 14, 15].

A.1 Twisted Sheaves of Differential Operators

Let X be a smooth complex algebraic variety of dimension n. Denote by Ox the structure
sheaf of X, Dy the sheaf of differential operators on X, 7 the tangent sheaf on X, Qx
the cotangent sheaf on X, and wy the invertible Ox-module of differential n-forms on X.
Denote by iy : Ox — Dy the natural inclusion. A twisted sheaf of differential operators
on X is a pair (D, i) of a sheaf D of associative C-algebras with identity on X and a homo-
morphism i : Ox — D of sheaves of C-algebras with identity that is locally isomorphic to
the pair (Dx, ix).

For f : Y — X a morphism of smooth algebraic varieties and D a twisted sheaf of
differential operators on X, we define

Dy_x =0y ®s-10, f~'D.

Then Dy_, x is a left Oy-module for left multiplication and a right f ~1D-module for right
multiplication on the second factor. Denote by D/ the sheaf of differential Oy-module
endomorphisms of Dy_, x which are also f~!D-module endomorphisms. There is a natural
morphism of sheaves of algebras i s : Oy — D/, and the pair (D7, i £) is a twisted sheaf
of differential operators on Y.

Let D be a twisted sheaf of differential operators on X and £ an invertible Ox-module.
The twist of D by L is the sheaf D* of differential O x-module endomorphisms of £ ®¢,
D that commute with the right D-action. Because £ ®p, D is an Ox-module for left
multiplication, there is a natural homomorphism i, : Ox — DE, and (DL, i) is a twisted
sheaf of differential operators on X. If f : ¥ — X is a morphism of smooth algebraic
varieties as above, (D) = (D)D),

If X is a homogeneous space for a group G with Lie algebra g, then a homogeneous
twisted sheaf of differential operators on X is a triple (D, y, ), where D is a twisted sheaf
of differential operators on X, y is the algebraic action of G on X, and « : U(g) — I'(X, D)
is a morphism of algebras such that the following three conditions are satisfied:

(i) the multiplication in D is G-equivariant;
(ii) the differential of the G-action on D agrees with the action T +— [« (§), T] for& € g
and T € D; and
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(iii)) the map « : U(g) — ['(X, D) is a morphism of G-modules.

For x € X, denote by B, the stabilizer of x in G and by its Lie algebra. For each B, -invariant
linear form A € b one can construct a homogeneous twisted sheaf of differential operators
Dx.» [7, App. A §1] and all homogeneous twisted sheaves of differential operators on X
occur in this occur in this way.

If A is a sheaf of C-algebras on X, we denote by .A° the opposite sheaf of C-algebras on
X. Thenif (D, i) is a twisted sheaf of differential operators on a smooth algebraic variety X,
(De, i) is also a twisted sheaf of differential operators on X. In particular, the pair (D%, ix)
is a twisted sheaf of differential operators, and it is naturally isomorphic to (DY, iy ). If
X is a homogeneous space and § is the By -invariant linear form which is the differential of
the representation of By on the top exterior power of the cotangent space at x, then (Dyx ;)°
is naturally isomorphic to Dx _ 45.

A.2 Modules over Twisted Sheaves of Differential Operators

Let D be a twisted sheaf of differential operators on a smooth complex algebraic variety X.
For a category M (D) of D-modules, we denote M (D) (resp. M, (D)) the correspond-
ing category of quasicoherent (resp. coherent) D-modules. We can view left D-modules
as right right D°-modules and vice-versa. In other words, the category /\/léc(D) of qua-
sicoherent left D-modules on X is isomorphic to the category the category ./\/lffC(DO) of
quasicoherent right D°-modules on X. This relationship allows us to freely use right or left
modules depending on the particular situation, and because of this, we frequently drop the
exponents ‘L’ and ‘R’ from our notation.

For a coherent D-module V, we can define the characteristic variety Ch) of V in the
same way as the non-twisted case [13, Ch. III §3]. Because this construction is local, the
results in the non-twisted case carry over to our setting. In particular, we have the following
structure:

(i) ChV is a conical subvariety of the cotangent bungle 7*(X).
(i) dim(ChY) > dim(X).

If dim(ChY) = dim(X), we say that V is a holonomic D-module. Holonomic D-modules
form a thick subcategory My, (D) of Mon(D). If V is coherent as an Ox-module, we
call ¥V a connection. Connections are locally free as Oyx-modules and their characteristic
variety is the zero section of 7*(X), so they are holonomic.

For an invertible Ox-module £ and a twisted sheaf D of differential operators on X, we
define the twist functor from ML (D*) by

Vi (L®oy D)®@pV

forV e M qLC (D). The twist functor is an equivalence of categories.

For an abelian category C, we use the notation D(C) and DP(C) to refer to the derived
category and bounded derived category of C, respectively. We identify C with its image in
D(C) (resp. D”(C)) under the natural embedding.

For a morphism f : ¥ — X of smooth algebraic varieties and a twisted sheaf D of dif-
ferential operators on X, we define the inverse image functor f+ : M gc D) > M gc (D)
by

f+(V) = DY—)X ®f—1D f_IV
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forV e MCI}L- (D). In general f is right exact with left derived functor Lf . If f is an open

immersion, then fT is exact and (V) = V|y. If f is a submersion, then f7 is exact. We
. . . . !
define the extraordinary inverse image functor f*: DP (./\/léC (D)) — Db(./\/lgc (D)) by

f'=Lf* o[dimY — dimX].

If f is an immersion then f' is the right derived functor of the left exact functor
LdimY—dimX ¢+ Mgc(D) — /\/léc(Df ). In this setting, we refer to the functor
LAmY=dimX ¢+ 5¢ £ and for V € Mc(D), we refer to the k'"-cohomology modules
H* (V) as R¥ F1(V).

We define the direct image functor f : D" (./\/lffc (D)) —» D (./\/lffc (D)) by

f+OV) = RfOW ®%; Dy_.x),

for W' € DP(MR(D/)). Here R fo 1s the right derived functor of the sheaf-theoretic direct
image functor f,. If f is an immersion, f+ is the right derived functor of the left exact
functor H' o f1 o D : ME.(Df) — ME (D), where D is the natural embedding of
M(Ifc (D) into the derived category D(./\/lqc(Df)). In this setting, we refer to H% fyroD
by ft.If f is an open immersion, then f, = Rf, is the sheaf-theoretic direct image. If f
is affine, then f, is exact.

The relationship between the twist functor and the direct image functor is the following.

Proposition 11 (Projection Formula) Let f : Y — X be a morphism of smooth complex
algebraic varieties, D a twisted sheaf of differential operators on X, and L an invertible
Ox-module. Then the following diagram commutes.

D(M(D')) ——— D(M(D))
FO®0, fl l&%x -
D(M((D*)F)) —— DM(D*))

For a module V € ./\/lR (D), and a smooth subvarlety Y C X, denote by I'y (V) the D-
module of local sections Y The functor I'y : (D) — ./\/l (D) is a left-exact functor,

and we denote by RI'y : D (./\/l (D)) — Db (/\/l (D)) 1ts right derived functor. The
following equivalence of categorles is very useful in computatlons

Theorem 15 (Kashiwara) IfY is a closed smooth subvariety of a smooth algebraic variety
X, i:Y — X the natural immersion, and D a twisted sheaf of differential operators on X,
then the functor

(DY) > ME.(D)
establishes an equivalence of categories between ./\/lR (D' and the full subcategory

MR Y(D) of supported in Y. The quasiinverse of iy is i'. In particular, if V is a quasico-

herent Di-module, then i'(iy(V)) =V, and if U is a D' -module, then i' (i (V)) =V, and
ifU is a quasicoherent D-module, then i, (i'(U)) = Ty U).
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Leti : ¥ — X be the immersion of a closed subvariety. If Jy is the ideal pf Ox
consisting of germs vanishing on ¥, we can define an filtration of Dy_, x by (left D*, right
i~'Ox)-modules by

FyDy_x ={T € Dy_x|Tp =0forg € (Jy)"'},

for p € Z. We call this filtration the filtration by normal degree. By Kashiwara’s theorem,
it induces a natural Oy -module filtration on supported on Y. Namely, if W € M gc DY,

FpizW) =ieONV ®pi FyDy—x).
The associated graded module has the form
GrizOW) =i.(W Q0, SWNxr)), (38)

where V. x|y = i*(Tx)/Ty denotes the normal sheaf of Y, and S N, x|y ) is the corresponding
sheaf of symmetric algebras [7, App. A §3.3].

The interaction between D-module functors and fiber products is captured by base
change.

Theorem 16 (Base Change Formula) Let f : X — Z and g : Y — Z be morphisms of
smooth complex algebraic varieties such that the fiber product X x 7Y is a smooth algebraic
variety, and let D be a twisted sheaf of differential operators on Z. Then the commutative
diagram
XxzV 2y
pl 8
x—L 57
determines an isomorphism
gofi=qiop
of functors from D (M (DY) to D (M(D?)).

A.3 Beilinson-Bernstein Localization

A key ingredient in this story is the localization theory of Beilinson and Bernstein, which we
briefly review here. Full details can be found in [2, 14]. For the remainder of this appendix,
let g be a complex reductive Lie algebra, h the abstract Cartan subalgebra of g [15, §2], and
X the flag variety of g. Fix A € bh*, and let 6 be the Weyl group orbit of A in h*. In [2],
Beilinson and Bernstein construct a twisted sheaf of differential operators D, on X for each
A € b*. (In the notation of Section Appendix A.1, D; = Dy ;+,.) They show that for any u
in the Weyl group orbit § of A, the global sections I'(X, D,,) of D,, are equal to Uy, which
is the quotient of I/(g) by the ideal in Z(g) corresponding to 6 under the Harish-Chandra
homomorphism. This implies that the global sections functor I' maps quasicoherent D; -
modules into I/ (g)-modules with infinitesimal character y;; that is, there is a left exact
functor

I Mye(Dy) = MUs).

Beilinson and Bernstein define a localization functor
Ay s MUp) — ch(,D)u)

by Ay (V) =Dy Qu, V for V.e M(Uy). The localization functor is right exact and is a left
adjoint to I". In [2] it is shown that for antidominant regular A € h*, A, is an equivalence of
categories, and its quasi-inverse is I".
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A.4 Translation Functors

Fix € b*, and let D, be the corresponding homogeneous twisted sheaf of differential
operators. Any p in the weight lattice P(X) = {A € h*|aV (1) € Z for all « € T} naturally
determines a G = Intg-equivariant invertible Ox-module O(u) on X. Twisting by O(u)
defines a functor
—() : M(Dy) = M(Diip)

by V() = O(n) Qoy V for V € M(D;,). We call this functor the geometric translation
functor. 1t is evidently an equivalence of categories, and it also induces an equivalence of
categories on M (D;) (resp. M on(D;)) with M on (D;,) (resp. Meon (Dagp)).
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