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Viscous flows through configurations manufactured or naturally assembled from soft materials ap-
ply both pressure and shear stress at the solid–liquid interface, leading to deformation of the fluidic
conduit’s cross-section, which in turn affects the flow rate–pressure drop relation. Conventionally,
calculating this flow rate–pressure drop relation requires solving the complete elastohydrodynamic
problem, which couples the fluid flow and elastic deformation. In this Letter, we use the recip-
rocal theorems for Stokes flow and linear elasticity to derive a closed-form expression for the flow
rate–pressure drop relation in deformable microchannels, bypassing the detailed calculation of the
solution to the fluid-structure-interaction problem. For small deformations (under a domain per-
turbation scheme), our theory provides the leading-order effect of the interplay between the fluid
stresses and the compliance of the channel on the flow rate–pressure drop relation. Our approach
uses solely the fluid flow solution and the elastic deformation due to the corresponding fluid stress
distribution in an undeformed channel, eliminating the need to solve the coupled elastohydrody-
namic problem. Unlike previous theoretical studies that neglected the presence of lateral sidewalls
(and considered shallow geometries of effectively infinite width), our approach allows us to deter-
mine the influence of confining sidewalls on the flow rate–pressure drop relation. In particular, for
the flow-rate-controlled situation and the Kirchhoff–Love plate-bending theory for the elastic defor-
mation, we show a trade-off between the effect of compliance of the deforming top wall and the drag
due to sidewalls on the pressure drop. While compliance decreases the pressure drop, the drag due
to sidewalls increases it. Our theoretical framework may provide insight into existing experimental
data and pave the way for the design of novel optimized soft microfluidic configurations of different
cross-sectional shapes.

I. INTRODUCTION

Pressure-driven viscous flows through conduits manufactured from soft materials apply both pressure and shear
stress at the solid–liquid interface, leading to deformation of the cross-section, which in turn affects the relationship
between the flow rate q and the pressure drop ∆p [1–3]. Understanding this q −∆p relation is important for various
microfluidic, lab-on-a-chip, biomedical, and soft robotics applications, such as pressure-actuated valves [4], passive
fuses [5], pressure sensors [6, 7], soft actuators [8, 9], and estimating the drug injection force [10]. Conventionally,
calculating the flow rate–pressure drop relation requires solving the complete elastohydrodynamic problem [11], which
couples the hydrodynamics to the elastic response, or a pressure-deformation relation is assumed a priori [12, 13].
For example, recent studies used lubrication theory and linear elasticity to obtain the solution of the coupled problem
for the fluid velocity and the elastic deformation. Then, the q −∆p relation for Newtonian and complex fluids was
derived from the latter for deformable microchannels that are slender and shallow [14–19]. However, as we show,
these detailed calculations of the solution for coupled fluid–structure interaction can be bypassed, at least in some
cases, by jointly applying the reciprocal theorems for the fluidic and elastic problems.

The Lorentz reciprocal theorem has been applied widely in low-Reynolds-number fluid mechanics to facilitate the
calculation of integrated quantities by eliminating the need for calculating the detailed velocity and pressure fields
(e.g., [20–22]). In particular, several studies showed the versatility of the Lorentz reciprocal theorem for evaluating the
force and torque on a particle moving in the vicinity of a deformable boundary [23–29], as well as its linear and angular
velocities. Although the integral form of the reciprocal theorem is particularly convenient for calculating integrated
hydrodynamic quantities such as force, torque, and flow rate [22], its use has been primarily limited to obtaining the
force and torque acting on particles in flows of viscous fluids in unbounded and semi-infinite domains [30, 31]. To
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FIG. 1: Schematic illustration of the geometry consisting of a three-dimensional deformable channel of length ` with an initially
rectangular cross-section of width w and height h0. The channel contains a viscous fluid steadily driven by an imposed flow
rate q, leading to the deformation uy(x, z) of the top wall of thickness b, which in turn affects the pressure drop ∆p over the
axial distance `. The sidewalls are assumed to be rigid.

date, only a few studies have utilized the reciprocal theorem to obtain the flow rate or flow rate–pressure drop relation
for confined viscous Newtonian and complex fluid flows, such as in rigid channels [32–35].

In addition to fluid mechanics, the reciprocal theorem has been used extensively in the solid mechanics community
since Maxwell [36] and Betti [37]; we refer the interested reader to the book of Achenbach [38]. Similar to the fluidic
reciprocal theorem, which relates the velocity v and stress σf fields of one problem to the velocity v̂ and stress σ̂f fields
of an auxiliary problem, the elastic reciprocal theorem relates the displacement u and stress σs fields of one problem
to the displacement û and stress σ̂s fields of an auxiliary problem. Given this similarity between the fluidic and elastic
reciprocal theorems, one would expect to find the application of the theorems to fluid–structure interaction problems
involving fluid flow and elastic deformation. However, to the best of our knowledge, no simultaneous application of
the fluid and elastic reciprocal theorems has been presented to date, particularly, for calculating the flow rate–pressure
drop relation for deformable channels.

In this Letter, we show how the reciprocal theorems for Stokes flow and linear elasticity can be harnessed to obtain
the flow rate–pressure drop relation in deformable channels of initially rectangular cross-section, bypassing the detailed
calculation of the solution to the fluid-structure interaction problem. Employing the slenderness of the geometry and
considering small deformations, we derive a closed-form expression for the flow rate–pressure drop relation under a
domain perturbation scheme. This relation accounts for the leading-order effect of the interplay between the fluid
stresses and the compliance of the channel. Our approach uses only the fluid flow solution and the elastic deformation
due to the corresponding fluid stress distribution in an undeformed channel, without the need to solve the coupled
elastohydrodynamic problem. Furthermore, we show that our theory allows determining the influence of confining
lateral sidewalls on the q − ∆p relation, in contrast to previous theoretical studies that neglected the presence of
sidewalls and considered shallow geometries of effectively infinite width [14, 15, 17–19, 39]. We illustrate the use of
our approach for the model case of a thin deformable top wall that obeys the Kirchhoff–Love plate-bending theory.
For the flow-rate-controlled situation, we show that, while increased compliance of the channel decreases the pressure
drop, the drag due to the sidewalls increases it.

II. PROBLEM FORMULATION AND GOVERNING EQUATIONS

Consider the incompressible steady pressure-driven flow of a Newtonian viscous fluid in a slender and deformable
channel of length `, width w, and (deformed) height h, as shown in Fig. 1. The fluid flow has velocity v = (vx, vy, vz)
and pressure distribution p, which are induced by the imposed flow rate q. Our goal is to determine the resulting
axial pressure drop ∆p for a given q. The top wall of the channel is soft and may deform due to the fluid stress
distribution, acting at the fluid–solid interface, leading to the displacement field u = (ux, uy, uz). The sidewalls are
assumed to be rigid. Specifically, we use u0y(x, z) to denote the steady vertical displacement of the lower surface of

the top wall, i.e., the fluid–solid interface, so that its position is given by y = h(x, z) = h0 + u0y(x, z), where h0 is
the undeformed height of the channel (in the absence of flow). We further assume the top wall of the channel has a
constant thickness b and constant material properties.

We consider low-Reynolds-number flow, so that fluid inertia is negligible compared to viscous forces. In this limit,
the continuity and momentum equations governing the fluid motion take the form

∇ · v = 0, ∇ · σf = 0, (1)
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where σf = −pI + µ(∇v + (∇v)T) is the Newtonian stress tensor, I is the identity tensor, and µ is the fluid’s
dynamic viscosity. The governing equations (1) are supplemented by the no-slip and no-penetration boundary con-
ditions along the channel walls, v = 0 at y = 0, h(x, z), and at x = ±w/2. Further, the integral constraint∫ w/2

−w/2

∫ h(x)

0
vz(x, y, z) dy dx = q enforces the flow rate. In addition, we assume that fluid exits at the outlet to

atmosphere and set p(`) = 0, so that ∆p = p(0).
Suppose that the top wall of the channel can be modeled as a linearly elastic isotropic solid with shear modulus

G and first Lamé parameter λ. Neglecting body forces in the solid, the steady stress balance in the elastic material
takes the form

∇ · σs = 0, (2)

where σs = λ(∇·u)I+2GD is the stress tensor of a linearly elastic solid and D = (∇u+(∇u)T)/2 is the infinitesimal
strain tensor. Note that G and λ are related to the Young’s modulus E and Poisson’s ratio ν as G = E/[2(1 +ν)] and
λ = Eν/(1 + ν)(1 − 2ν). The governing equation (2) is supplemented by the no-displacement boundary condition,
u = 0 along the lines of contact, z = 0, `, and x = ±w/2, with the inlet/outlet and rigid walls. In addition, at
the fluid–solid interface y = h(x, z), the continuity of stresses requires that n · σs = n · σf , where n is the unit
normal vector to the fluid–solid interface. This condition couples the fluidic and elastic problems. Finally, we assume
a stress-free condition at the upper surface of the top wall, i.e., ñ · σs = 0, where ñ is the unit normal vector to the
upper surface of the soft wall.

We introduce dimensionless variables based on lubrication theory,

X =
x

w
, Y =

y

h0
, Z =

z

`
, Vx =

vx
(ε/δ)vc

, Vy =
vy
εvc

, Vz =
vz
vc
, P =

p

pc
, H =

h

h0
, U =

uy
uc
, (3)

where vc = q/(h0w) is the characteristic axial velocity scale, pc = µvc`/h
2
0 = µq`/(wh30) is the characteristic pressure

scale, and uc is the characteristic scale of deformation of the top wall [14]. Also, we have defined ε = h0/` and
δ = h0/w, which represent, respectively, the slenderness and the shallowness of the channel. We assume ε = h0/` to
be small, ε � 1, but δ = h0/w can be O(1), with the ordering 0 < ε � min(δ, 1). Thus, unlike previous theoretical
studies that assumed δ = h0/w � 1 [14, 15, 17–19, 39], we consider a slender channel that is not necessarily shallow.

In recent studies it was shown that for rectangular elastic top wall geometries, the horizontal displacements ux and
uz are much smaller in comparison to the vertical displacement uy [18]. The latter can also be rationalized using a
scaling argument. Balancing the elastic elongational stress and the viscous stress at the top wall, we obtain that uz
scales as µq`/(Ewh20). Thus, for example, for the plate-bending theory in which b � w and uy ∼ µq`w3/(Eb3h30),
we find uz/uy ∼ b3h0/w

4 � 1. A similar argument yields ux/uy � 1. Therefore, it is sufficient and convenient,
to consider that the entire deformation of the top wall is in the y-direction. Further, for thin structures b . w, the
deformation at the fluid–solid interface is representative of the entire wall motion (i.e., uy ≈ u0y), consistent with
reduced theories of elastic deformation, such as those due to Winkler, Kirchhoff–Love, Mindlin–Reissner, and Föppl–
von Kármán [40, 41]. Therefore, in the following, we make explicit the kinematic assumption that the displacement of
the fluid–solid interface can be written as u = (0, uy(x, z), 0). Thus, the dimensionless deformed shape of the channel
H(X,Z) can be expressed in terms of the dimensionless top wall deformation U(X,Z) as

H(X,Z) = 1 + (uc/h0)U(X,Z) = 1 + βU(X,Z), (4)

where β = uc/h0 is the dimensionless ratio that quantifies the compliance of the top wall.

III. RECIPROCAL THEOREMS FOR VISCOUS FLOWS IN WEAKLY DEFORMABLE CHANNELS

A. Fluidic reciprocal theorem

Let v̂, p̂, and σ̂f denote, respectively, the velocity, pressure, and stress fields corresponding to the solution of the
pressure-driven flow in a rigid (rectangular) channel, satisfying∇·v̂ = 0,∇·σ̂f = 0, with σ̂f = −p̂I+µ(∇v̂+(∇v̂)T).
To exploit the reciprocal theorem, we first expand the velocity, pressure, and stress fields into perturbation series in
the dimensionless parameter β = uc/h0 � 1 controlling the compliance of the top wall:

v = v̂ + βv1 + O(β2), (5a)

p = p̂+ βp1 + O(β2), (5b)

σf = σ̂f + βσf,1 + O(β2), (5c)
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where v1, p1, and σf,1 are the first-order corrections to the velocity, pressure, and hydrodynamic stress in the
rectangular domain due to the deformation of the top wall. From (1) and (5), it follows that the corresponding
governing equations are the Stokes equations ∇ · v1 = 0, ∇ · σf,1 = 0. The Lorentz reciprocal theorem states that
the two sets of velocity and stress fields (v̂, σ̂f ) and (v1,σf,1) satisfy [21]:∫

S0

n·σf,1 ·v̂ dS+

∫
S`

n·σf,1 ·v̂ dS+

∫
Stop

n · σf,1 · v̂ dS︸ ︷︷ ︸
=0

=

∫
S0

n·σ̂f ·v1 dS+

∫
S`

n·σ̂f ·v1 dS+

∫
Stop

n·σ̂f ·v1 dS, (6)

where Stop is the lower surface of the top wall in the undeformed state, S0 and S` are the surfaces at the inlet (z = 0)
and outlet (z = `), respectively, and n is the unit outward normal on a respective surface. Note that the integrals
over the bottom and side walls of the channel vanish because v̂ = v1 = 0 there. Also, the last term on the left-hand
side of (6) vanishes because v̂ = 0 on Stop.

Using the asymptotic expansion (5) and non-dimensionalization (3), we obtain

n · σf,1 · v̂|z=0, ` = ∓µv
2
c `

h20

[
−P1V̂z + O(β)

]
Z=0, 1

, n · σ̂f · v1|z=0, ` = ∓µv
2
c `

h20

[
−P̂ Vz,1 + O(β)

]
Z=0, 1

, (7)

where the minus sign in (7) corresponds to S0 and the plus sign corresponds to S` (see [34, 35]).
Similarly, the integrand in the last term of (6), evaluated at y = h0 (i.e., on Stop), with n = ey and n · σ̂f =

µ(∂v̂z/∂y)ez − p̂ey, is

n · σ̂f · v1|y=h0
=
µv2c
h0

[
∂V̂z
∂Y

Vz,1

]
Y=1

. (8)

Note that the pressure term in n · σ̂f does not contribute to (8) because the leading-order flow is purely axial, so that
v1 · ey|y=h0

= 0 due to no penetration. We determine Vz,1(X,Y = 1, Z) by applying the no-slip boundary condition,

Vz(X,Y = H(X,Z), Z) = 0, and using (4) and (5a), together with the domain perturbation expansion in β introduced
above, to obtain

Vz(X,H(X,Z), Z) = V̂z(X, 1, Z) + β

(
Vz,1(X, 1, Z) + U(X,Z)

∂V̂z
∂Y

∣∣∣∣∣
Y=1

)
+ O(β2) = 0. (9)

It follows that Vz,1(X, 1, Z) = −U(X,Z) ∂V̂z/∂Y
∣∣∣
Y=1

. Thus, (8) reduces to

n · σ̂f · v1|y=h0
=
µv2c
h0

[
∂V̂z
∂Y

Vz,1

]
Y=1

= −µv
2
c

h0
U(X,Z)

(
∂V̂z
∂Y

∣∣∣∣∣
Y=1

)2

+ O(β). (10)

Substituting (7) and (10) into (6), and using the outlet boundary condition P1(Z = 1) = P̂ (Z = 1) = 0, we obtain

∫ 1

0

∫ 1/2

−1/2

[
P1V̂z − P̂ Vz,1

]
Z=0

dXdY = −
∫ 1

0

∫ 1/2

−1/2

U(X,Z)

(
∂V̂z
∂Y

∣∣∣∣∣
Y=1

)2
 dXdZ + O(β). (11)

Noting that P1 = P1(Z) and P̂ = P̂ (Z) to the leading order in ε, consistent with the classical lubrication approximation

[42], and
∫ 1

0

∫ 1/2

−1/2 V̂zdXdY = 1 and
∫ 1

0

∫ 1/2

−1/2 Vz,1dXdY = 0, (11) yields the first-order correction to the pressure drop,

defined as ∆P1 = P1(Z = 0), for the weakly deformable channel (β � 1):

∆P1 = −
∫ 1

0

∫ 1/2

−1/2

U(X,Z)

(
∂V̂z
∂Y

∣∣∣∣∣
Y=1

)2
 dXdZ. (12)

Equation (12) is the first key result of this Letter, which allows the determination of the first-order correction to
the pressure drop of the deformable channel, provided the top wall deformation U(X,Z) is known. Therefore, in
fact, (12) is not restricted to deformable channels, and provides the first-order correction to the pressure drop for the
three-dimensional rigid channel, whose top wall is non-uniform and has any prescribed shape variation expressed as
H(X,Z) = 1 + βU(X,Z).
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B. Elastic reciprocal theorem

Let ũ and σ̃s denote, respectively, the displacement and stress fields corresponding to the solution of the elastic
problem in the same domain but with different boundary conditions on the stress or displacement fields. The cor-
responding governing equation is ∇ · σ̃s = 0, with σ̃s = λ(∇ · ũ)I + 2GD̃. The Maxwell–Betti reciprocal theorem
[36–38] states that the solutions, (u,σs) and (ũ, σ̃s), to the two elastostatic problems satisfy:∫

S

n · σs · ũ dS =

∫
S

n · σ̃s · u dS, (13)

where n is the unit outward normal to the bounding surfaces S of the elastic solid.
Before applying the elastic reciprocal theorem (13) to our elastohydrodynamic problem, recall a few assumptions we

have made. First, in this problem, u = uy(x, z)ey and ũ = ũy(x, z)ey. Second, there is no-displacement on the lateral
walls of the solid. Third, the continuity of tractions, n · σs = n · σf , holds at the fluid−solid interface, y = h(x, z).
Lastly, we have assumed a stress-free condition at the upper surface of the top wall. Based on these assumptions, the
terms, n · σs · ũ and n · σ̃s · u, appearing in (13) are calculated as

n · σs · ũ|y=h(x,z) = n · σf · ũ|y=h(x,z) = pcuc

[
−PŨ + O(ε)

]
= pcuc

[
−P̂ Ũ + O(ε, β)

]
, (14a)

n · σ̃s · u|y=h(x,z) = n · σ̃f · u|y=h(x,z) = pcuc

[
−P̃U + O(ε)

]
= pcuc

[
− ˆ̃PU + O(ε, β)

]
, (14b)

where to obtain the last equality we used the domain perturbation expansion introduced above, i.e., P = P̂ + O(β)

and P̃ = ˆ̃P + O(β). Substituting (14) into (13) leads to∫ 1

0

∫ 1/2

−1/2

ˆ̃PU dXdZ =

∫ 1

0

∫ 1/2

−1/2
P̂ Ũ dXdZ. (15)

Next, we utilize the convolution principle to obtain an explicit expression for the deformation U(X,Z) from (15).

Choosing ˆ̃P as a point load, i.e., ˆ̃P = δD(X −X )δD(Z −Z), applied on the fluid–solid interface at the point (X ,Z),
where δD is the Dirac delta distribution, we obtain

U(X,Z) =

∫ 1

0

∫ 1/2

−1/2
P̂ (X ,Z)Ũ(X,Z;X ,Z) dXdZ. (16)

Here, Ũ(X,Z;X ,Z) is the point-load solution (or, Green’s function) of the elastic problem with appropriate boundary
conditions under the aforementioned assumptions.

C. Flow rate–pressure drop relation for deformable channels using fluidic and elastic reciprocal theorems

Combining (12) and (16), we obtain the first-order correction to the pressure drop for the weakly deformable
channel, β � 1, expressed using the fluidic and elastic reciprocal theorems:

∆P1 = −
∫ 1

0

∫ 1/2

−1/2

∫ 1

0

∫ 1/2

−1/2
P̂ (X ,Z)Ũ(X,Z;X ,Z) dXdZ

(
∂V̂z
∂Y

∣∣∣∣∣
Y=1

)2
 dXdZ. (17)

Equation (17) is the second key result of this Letter, clearly indicating that the first-order correction to the pressure
drop arises due to the interplay between the fluid stresses and the compliance of the channel. Furthermore, (17) shows
that ∆P1 depends only on the solution of the pressure-driven flow in a rigid channel for the fluid problem (hat) and
the solution of the elastic deformation for a point-load (tilde), thus eliminating the need to a priori solve the coupled
elastohydrodynamic problem.

The dimensionless pressure drop is thus ∆P = ∆P̂ + β∆P1 + O(β2), where the solution of the corresponding
pressure-driven flow in a rigid (rectangular) channel [43] is well known:

P̂ (Z) =
12

1− κ(δ)
(1− Z), ∆P̂ =

12

1− κ(δ)
, where κ(δ) =

192

π5

∞∑
n=1

1

(2n− 1)5
δ tanh

[
(2n− 1)π

2δ

]
, (18a)

V̂z(X,Y ) =
12

1− κ(δ)

[
1

2
(1− Y )Y − 4

π3

∞∑
n=1

1

(2n− 1)3
cosh[(2n− 1)πX/δ]

cosh[(2n− 1)π/(2δ)]
sin[(2n− 1)πY ]

]
. (18b)



6

1
0

0.1

0.2

0.3

0.4

0.5

0.8
1
1.2
1.4
1.6
1.8
2
2.2

(b)(a)

�

0 0.5

  
  
  
  
  
  
  
  
  
  
  
   

  ∆
P/

12
=

1

�

0.8

1

1.2

1.4

1.6

1.8
0.1 0.2 0.3 0.4 0.5

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

Increasing δ 

δ δ

β

∆
P
/1

2 =
 ∆

p
w

h
03 /

12
µ
q�

∆
P
/1

2 =
 ∆

p
w

h
03 /

12
µ
q�

β
∆P/12

β = 0.2
δ = 0
Christov et al. (2018) (δ = 0)

�

Increasing β �

FIG. 2: Dimensionless pressure drop ∆P/12 = ∆pwh3
0/12µq` in a deformable channel modeled using the plate-bending theory.

(a) Contour plot of the dimensionless pressure drop as a function of β̃ = uc/24h0 and δ = h0/w. (b) Dimensionless pressure

drop as a function of δ = h0/w (dotted line) for β̃ = 0.2 and as a function of β̃ = uc/24h0 (solid and dashed curves) for δ = 0.
The solid line represents the first-order asymptotic solution and the dashed line represents the solution based on the lubrication
theory (also for δ = 0), derived by Christov et al. [14].

IV. ILLUSTRATED EXAMPLE

In this section, we illustrate an application of our results towards calculating the first-order-in-β correction to the
pressure drop in a slender compliant channel. For this example and for simplicity, we model the compliance of the
top wall using the plate-bending theory. Under the assumptions that the maximum displacement of the top wall is
small compared to its thickness b, and the thickness b is small compared to its width w, maxx,z[uy(x, z)] � b � w,
the steady-state displacement uy(x, y) satisfies the Kirchhoff–Love equation for isotropic bending of a plate under a
transverse load supplied by the fluid pressure, i.e., p = B∇4

‖uy [40, 41, 44]. Here, B = Eb3/[12(1− ν2)] is the bending

stiffness, and ∇4
‖ is the biharmonic operator in the (x, z) plane.

Using (3) and performing order-of-magnitude analysis, we obtain uc = w4pc/B = w3µq`/(h30B) and thus β =
uc/h0 = w4pc/(Bh0) = w3µq`/(h40B). Furthermore, it follows that P (Z) = ∂4U/∂X4 + O(ε2/δ2) [14, 39], where
0 � ε � min(1, δ) but δ = h0/w is not necessary small. The Green’s function corresponding to the point-load
solution of the latter equation with clamped boundary conditions [45], i.e., U |X=±1/2 = ∂U/∂X|X=±1/2 = 0, is

Ũ(X,Z;X ,Z) =
1

24

(
X − 1

2

)2(
X +

1

2

)2

δD(Z −Z). (19)

Using (18) and (19), (17) provides the first-order correction to the pressure drop for arbitrary value of δ = h0/w.
We note that it is difficult to obtain a closed-form expression for ∆P1, which holds for any δ = h0/w, because of
the velocity profile (18b) is represented as an infinite series. While the Z-integration can be performed analytically,

the X-integration is done numerically. However, for δ � 1, from (18b) it follows that ∆P̂ = 12, P̂ (Z) = 12(1 − Z),

and V̂z(Y ) = 6(1 − Y )Y , and substituting theses results and (19) into (17) yields ∆P1/12 = −3/120, so that

∆P/12 = 1− (3/120)β + O(β2) = 1− (3/5)β̃ + O(β̃2), where β̃ = β/24 = w4pc/(24Bh0) = w3µq`/(24h40B).
It is instructive to compare the latter result to the solution for the dimensionless pressure drop previously derived

by Christov et al. [14] using lubrication theory. The result from [14], holding for δ � 1 and β̃ = O(1), is expressed as
an implicit relation:

12 = ∆P

[
1 +

β̃

20
∆P +

β̃2

630
(∆P )2 +

β̃3

48048
(∆P )3

]
(lubrication theory for δ � 1), (20)

and it also yields ∆P/12 = 1− (3/5)β̃+ (86/175)β̃2 + O(β̃3) for β � 1, upon solving for the positive real root of (20).

Observe that this expression is identical to our asymptotic solution for the pressure drop to first order in β̃.
In Fig. 2(a), we present a contour plot of the dimensionless pressure drop accounting for the first-order correction due

to fluid–structure interaction as a function of β̃ = uc/24h0 and δ = h0/w, for the deformable channel modeled using
the plate-bending theory. Figure 2(a) clearly indicates the existence of the trade-off between the effect of compliance
of the deforming top wall and the effect of sidewalls on the pressure drop. While the pressure drop decreases with
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β̃, it increases with δ. The white (light) solid curve ∆P/12 = 1 divides the colormap into two regions: in the upper
region, the compliance dominates over the sidewall effects and thus ∆P/12 < 1, whereas in the lower region, the
sidewall drag is dominant and ∆P/12 > 1.

Next, in Fig. 2(b), we show a comparison of our analytical predictions and the lubrication-theory-based solution

(20) for the non-dimensional pressure drop as a function of β̃, for δ = 0 (an infinitely wide channel). The black solid

line represents our first-order asymptotic solution, ∆P/12 = 1− (3/5)β̃+O(β̃2), and the gray dashed curve represents
the lubrication solution, (20). It is evident from Fig. 2(b) that our first-order asymptotic solution, which is strictly

valid for β̃ � 1, slightly underpredicts the lubrication solution; yet even for β̃ = 0.5, it results in a modest relative
error of approximately 10%. For further clarification, the dotted (red) curve shows the dimensionless pressure drop

as a function of δ = h0/w, for β̃ = 0.2, clearly indicating that, while increased wall compliance decreases the pressure
drop, drag due to the sidewalls increases it.

V. CONCLUDING REMARKS

In this Letter, we showed how the reciprocal theorems for Stokes flow and linear elasticity can be used to derive
a closed-form expression for leading-order correction, due to deformation, to the flow rate–pressure drop relation for
rectangular channels. Using a domain perturbation approach and considering small deformation, our theory captures
the interplay between the fluid stresses and the compliance of the channel’s top wall, bypassing the need to calculate
the solution of the coupled fluid-structure-interaction problem. Furthermore, unlike previous theoretical studies, which
neglected the presence of lateral sidewalls (and considered shallow geometries of effectively infinite width within the
lubrication approximation), our approach allows the determination of the influence of confining sidewalls on the q−∆p
relation.

The present theoretical approach is not limited to the case of a three-dimensional channel of initially rectangular
cross-section, and it could also be applied to calculate the first-order correction to the pressure drop in axisymmetric
deformable tubes, for which the leading-order pressure drop is given by the classical Hagen–Poiseuille law [46]. Finally,
while we considered viscous Newtonian fluids, it would be of interest to understand how the rheological response of
complex fluids (such as shear thinning and viscoelasticity) influences the flow rate–pressure drop relation in deformable
channels. One convenient approach to accomplish this task would be to rely on reciprocal theorems, and use a
combination of the present approach and the approach recently established by Boyko and Stone [34, 35] for calculating
the effect of complex fluid rheology on the flow rate–pressure drop relation for rigid non-uniform channels. These
calculations are left for future investigation.
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[25] B. Rallabandi, B. Saintyves, T. Jules, T. Salez, C. Schönecker, L. Mahadevan, and H. A. Stone, Rotation of an immersed

cylinder sliding near a thin elastic coating, Phys. Rev. Fluids 2, 074102 (2017).
[26] B. Rallabandi, N. Oppenheimer, M. Y. Ben Zion, and H. A. Stone, Membrane-induced hydroelastic migration of a particle

surfing its own wave, Nat. Phys. 14, 1211 (2018).
[27] A. Daddi-Moussa-Ider, B. Rallabandi, S. Gekle, and H. A. Stone, Reciprocal theorem for the prediction of the normal force

induced on a particle translating parallel to an elastic membrane, Phys. Rev. Fluids 3, 084101 (2018).
[28] A. Kargar-Estahbanati and B. Rallabandi, Lift forces on three-dimensional elastic and viscoelastic lubricated contacts,

Phys. Rev. Fluids 6, 034003 (2021).
[29] V. Bertin, Y. Amarouchene, E. Raphael, and T. Salez, Soft-lubrication interactions between a rigid sphere and an elastic

wall, J. Fluid Mech. 933, A23 (2022).
[30] L. G. Leal, The motion of small particles in non-Newtonian fluids, J. Non-Newtonian Fluid Mech. 5, 33 (1979).
[31] L. G. Leal, Particle motions in a viscous fluid, Annu. Rev. Fluid Mech. 12, 435 (1980).
[32] R. F. Day and H. A. Stone, Lubrication analysis and boundary integral simulations of a viscous micropump, J. Fluid Mech.

416, 197 (2000).
[33] S. Michelin and E. Lauga, A reciprocal theorem for boundary-driven channel flows, Phys. Fluids 27, 111701 (2015).
[34] E. Boyko and H. A. Stone, Reciprocal theorem for calculating the flow rate–pressure drop relation for complex fluids in

narrow geometries, Phys. Rev. Fluids 6, L081301 (2021).
[35] E. Boyko and H. A. Stone, Pressure-driven flow of the viscoelastic Oldroyd-B fluid in narrow non-uniform geometries:

analytical results and comparison with simulations, J. Fluid Mech. 936, A23 (2022).
[36] J. C. Maxwell, On the calculation of the equilibrium and stiffness of frames, Phil. Mag. (Ser. 4) 27, 294 (1864).
[37] E. Betti, Teoria della elasticitá, Il Nuovo Cimento 7, 69 (1872).
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