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ABSTRACT

Most of existing gradient-based meta-learning approaches to few-
shot learning assume that all tasks have the same input feature
space. However, in the real world scenarios, there are many cases
that the input structures of tasks can be different, that is, different
tasks may vary in the number of input modalities or data types. Ex-
isting meta-learners cannot handle the heterogeneous task distribu-
tion (HTD) as there is not only global meta-knowledge shared across
tasks but also type-specific knowledge that distinguishes each type
of tasks. To deal with task heterogeneity and promote fast within-
task adaptions for each type of tasks, in this paper, we propose
HetMAML, a task-heterogeneous model-agnostic meta-learning
framework, which can capture both the type-specific and globally
shared knowledge and can achieve the balance between knowledge
customization and generalization. Specifically, we design a multi-
channel backbone module that encodes the input of each type of
tasks into the same length sequence of modality-specific embed-
dings. Then, we propose a task-aware iterative feature aggregation
network which can automatically take into account the context of
task-specific input structures and adaptively project the heteroge-
neous input spaces to the same lower-dimensional embedding space
of concepts. Our experiments on six task-heterogeneous datasets
demonstrate that HetMAML successfully leverages type-specific
and globally shared meta-parameters for heterogeneous tasks and
achieves fast within-task adaptions for each type of tasks.
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1 INTRODUCTION

Humans can quickly learn new concepts from few examples by
incorporating prior knowledge and context. Just like humans, few-
shot learning (FSL) is the task of learning new concepts with a
small number of labelled samples. Meta-learning is one prominent
family of approaches to address FSL problems, which focuses on
learning how to learn: how to generalize meta-knowledge from
a distribution of tasks and utilize it to rapidly adapt to new tasks
from the same task distribution. Recently, many gradient-based
meta-learning methods have been proposed to handle FSL tasks [10,
18, 27, 38, 42, 46]. Most of these methods are model-agnostic meta-
learners built upon MAML [10], aiming to find a single set of model
parameters from similar tasks so that a small number of gradient
updates will lead to good performance on future new tasks.
However, most existing gradient-based meta-learning methods
assume the task distribution is homogeneous, that is, all tasks from
either the same concept domain (e.g., a single dataset [10]) or a
combination of different domains (e.g., multiple datasets [38]) have
the same input feature space—for example, the inputs of all tasks
are same-dimensional images. Such an assumption limits the gen-
eralization ability of these methods to handle more complex and
heterogeneous task distribution (HTD): different tasks may vary in
the structure of input data or the number of input modalities. For
example, in few-shot emotion classification, some tasks may focus
on recognizing people’s emotion from the video modality, while
other tasks may predict on language scripts, recorded voices, or any
combination of the three modalities. Figure 1(a) shows examples
of task-homogeneous FSL, which assume identical data structures
in all tasks. Figure 1(b) shows an example of task-heterogeneous
FSL. Compared with the homogeneous FSL in Figure 1(a), hetero-
geneous tasks vary in terms of data type and the structure of input.
Figure 2(a) illustrates another example of task-heterogeneous FSL
containing four types of tasks, where we show each type of tasks
is associated with a specific input space (see the grey areas in the
figure). The input space of a type of tasks refers to the feature space
shared by all the training/validation samples within these tasks.
In this paper, we propose a gradient-based meta-learning ap-
proach to FSL under heterogeneous task distributions. The novel
task-heterogeneous few-shot learning problem is inevitable in many
real-world low-data scenarios. Considering tasks can be either uni-
modal or multimodal with respect to their input data sources, there
are mainly two cases of FSL across modalities. First, different modal-
ities may convey the same semantics of a concept, and it is feasible
to jointly learn multiple types of unimodal tasks if they share knowl-
edge in the same concept domain. For instance, the image of an
animal and the caption of it (text modality) both can distinguish this
animal from others. Simultaneously learning image classification
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Figure 1: Comparison of task-homogeneous few-shot learning and task-heterogeneous few-shot learning. Compared with
task-homogeneous few-shot learning, heterogeneous tasks vary in terms of the input spaces, data types and the structure of
input data, and thus will perform different within-task adaptions.

and text classification tasks that share the same concept domain
could help us to build up the knowledge of animal concepts. Second,
integrating multiple views of a concept or using auxiliary modali-
ties usually achieves better performance than learning with a single
modality [22, 41]. In this multimodal case, a problem neglected
by existing literature is that due to the potential data missingness
or data corruptness in some few-data scenarios, many tasks may
not have a complete set where all modalities are always available
[15]. Hence, it is uncertain that all these multimodal tasks have the
same input structure, and we have to jointly learn multiple types of
multimodal tasks, where different tasks may have different combina-
tions of modalities. For example, in Figure 2(a) where there are four
types of tasks, while type-2 tasks only have the modality-2 data
available, type-2 and type-3 tasks have the auxiliary modality-1
and modality-3, respectively. For both cases, it is beneficial to learn
the heterogeneous tasks across modalities due to the following
reasons: 1) jointly learning multiple views of tasks could help to
build up the knowledge of the concept domain; 2) we can generalize
reliable semantic feature extractors due to the implicit cross-modal
alignment; and 3) the mechanism of training a unified meta-learner
over heterogeneous tasks is more efficient than training separate
models for each type of tasks as there are global meta-parameters
that can be shared across different types of tasks.

With the heterogeneous task distribution (HTD), tasks share the
same concept domain but have different input spaces (as shown in
Figure 2(a)). As for meta-learning, while heterogeneous tasks could
globally share some common knowledge (e.g., knowledge of the
concept domain and early-stage feature embedding), there is also
type-specific knowledge, locally shared by each type of tasks, which
can reflect the different concept learning mechanisms of different
types of tasks. Therefore, the key challenge of dealing with task
heterogeneity is how to automatically reckon with type-specific
information to promote fast within-task adaptions for each type
of tasks. That is, we pursue how to customize the globally shared
meta-learner for each type of tasks.

We address two issues in this challenge. First, the meta-learner
for HTD should be able to balance generalization (i.e., the meta-
knowledge globally shared across tasks) and customization (i.e., the
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type-specific meta-knowledge able to customize the global knowl-
edge) based on each task’s specific input space. The difficulty is that,
given a new task sampled from HTD whose input structure is un-
clear, the meta-learner should automatically leverage type-specific
and global knowledge to achieve the task-aware projection: the
mechanism that maps samples from the input space to the concept
space should be different for different types of tasks, as illustrated
in Figure 2(a) (arrow lines). Although one may convert the problem
setting from heterogeneity into homogeneity using preprocessing
strategies like imputation [2, 29, 36], this may introduce extra noise
to the original task which has negative impacts on the performance,
especially in low-data scenarios. Directly learning with different
input spaces is necessary. Second, due to the inconsistency of input
structures, tasks may use different model architectures and thus
cannot share a single set of model parameters. Although one can
train separate homogeneous meta-learners [10, 38] for each type of
tasks, this strategy is not efficient as well as not effective: there are
parameters shared by several types of tasks but trained repeatedly;
the separate training will reduce the number of training tasks in
each type which limits the ability of knowledge generalization; and,
the knowledge shared between tasks is not well-explored.

To tackle the above issues, we propose Task-Heterogeneous
Model-Agnostic Meta-Learning (HetMAML). The key idea of Het-
MAML is to leverage globally shared knowledge and type-specific
knowledge to promote fast within-task adaptions for each type
of tasks. We propose a three-module task-aware learning frame-
work that can effectively capture both the global and type-specific
meta-parameters and achieve the knowledge customization while
simultaneously preserving knowledge generalization. Our main
contributions are summarized as follows:

e We study a novel task-heterogeneous few-shot learning prob-
lem involving multiple input spaces, data types, and modality
combinations. We show the importance of studying this real-
world problem and define our setting of task heterogeneity.
As far as we know, this is the first attempt to this problem.

e We introduce HetMAML, a model-agnostic meta-learning
approach to task-heterogeneous few-shot learning. We pro-
pose a task-aware iterative feature aggregation network to
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Figure 2: (a) An example of heterogeneous tasks sharing the concept domain but having different input spaces. There are a
total of four types of tasks; each grey area indicates the input space of a certain type of tasks and the feature space shared by
all data samples in these tasks. Colored filled circles represents unimodal or multimodal data samples; different colors within
grey areas indicate that the samples have different structures, which are listed in the bottom-left box. Note that here we omit
the id of samples to clearly show their structure differences. The arrow lines represent task-aware projections, meaning that
data samples are mapped from different feature spaces to a unified concept space. (b) The proposed HetMAML framework.

promote the effectiveness of knowledge customization as
well as adaption efficiency.

e Our experimental results on six datasets demonstrate that
HetMAML can effectively capture global and type-specific
meta-parameters across heterogeneous tasks and fast adapt
to different types of new tasks.

2 METHODOLOGY

2.1 Problem Formulation

In this section, we will provide an explicit formulation of the few-
shot learning problem under heterogeneous task distribution.

Definition 1 (Heterogeneous Task Distribution). Suppose we
have a total of M data sources (modalities) and the data samples in
each task are either unimodal or multimodal. A heterogeneous task
distribution (HTD) P(‘?') is defined as a mixture of M” homogeneous
task distributions P(71), P(T2), ..., P(‘TMI), where each P(77") is
associated with a specific input space, i.e., a certain combination
of the M modalities. Then there will be a total of M’ types of task
instances sampled from the HTD, where 2 < M’ < 2M — 1.

Task-heterogeneous Meta-learning. We are given a dataset
D consisting of task instances sampled from a heterogeneous task
distribution P (‘7‘) The dataset D is divided into the meta-training
DIrn  and the meta-testing DX5L,  sets. Each meta-training task
contains N classes sampled from a set of classes C!"™, while the
classes of each meta-testing task are sampled from a disjoint set of
new classes C*S?. The goal of task-heterogeneous meta-learning
is to find a set of meta-parameters from D/, which can rapidly
adapt to future novel tasks Z)frfét @

Each task instance 7; ~ P(‘7A') is composed of a within-task
training set Sq; (support set) and testing set Qg; (query set), each
of which consists of a few unimodal or multimodal data samples.
The support set of a N-way K-shot classification task contains K
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samples for each of N classes Sg; = {(Xjuk, Yink)In = 1..N, k =
1..K}, where Xj,; = (Xz(rlzl)c l(jl)c (A;Ic)) denotes the composite
input of each sample and y;,,; is the label. The query set contains
T samples from the same N classes Qg; = {(X}},y},)|t = 1..T}.
Note that although we use the notation X to include a full set
of M modalities for each sample, it still contains the information
about which modalities are not available in this task. For example,
if the mth source does not exist in task 7;, the source website or
sensor will return a message indicating its unavailability, or the
mth modality of each sample X in a task is not informative. Then,
given a task 7;, we are able to recognize the input space of this task

e} (1) (M)]

by computing a configuration vector c¢g; = from

the raw data in the support set Sg; (described in Section 2.2. 1).

2.2 Task-Heterogeneous Model-Agnostic
Meta-Learning Framework

A traditional task neural network can be viewed as a two-module
architecture, consisting of a backbone module (the earlier layers for
feature extraction) and a head module (the later layers for decision
making such as classification). Most existing model-agnostic meta-
learners for homogeneous tasks are built upon such architecture.

Due to the existence of task heterogeneity, we design a three-
module framework, HetMAML, as illustrated in Figure 2(b), consist-
ing of three modules: a multi-channel backbone, a single-channel
head module, and an additional intermediate module-the task-
aware feature aggregation network (TFAN), which can adaptively
transform the composite information produced by the backbone
into a single hidden representation fed to the head.

2.2.1 Multi-Channel Backbone Module. A challenge in this prob-
lem is that the input feature space of samples is type-specific; each
type of tasks has a specific combination of modalities and hence the
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feature extraction schemes between different tasks can be different.
For example, while image classification tasks use convolutional
neural networks (CNNs) to extract features, other tasks that in-
volve sequential data may use recurrent neural networks (RNNs).
Despite the feature embedding being type-specific, each modal-
ity’s feature extractor can be shared by several types of tasks. In
order to enable simultaneous learning over heterogeneous tasks,
our backbone module should be able to effectively model both the
shared and type-specific feature extractors. To achieve this goal, we
propose a multi-channel backbone module, where each channel is a
modality-specific feature extractor. Basically, if two tasks both have
a modality in their input spaces, they can share the same feature
extractor’s meta-parameters for embedding this modality.

Given a task 77, it is easy to identify the input space of this task

based on the data samples in the support set S7. We can obtain
(1) (2 (M)]

gl Cq

= 1 denotes that the mth modality is

a task-specific vector cq- = [c T to represent the

(m)
b

,C

input space, where ¢

,(Tm ) = 0 denotes missing). Considering the

missing modalities are not informative, c,(r )

if the mth modalities of all the samples in S¢ are similar such
that Var(™ = Yk 1% ™ — ™| |2/NK < €, where ™ =
Yk Xpk ™ /NK and € is a threshold.

Then, suppose O = {01, 0, ..., Orr} is the parameter set of the
multi-channel backbone module, and 90, (+; Om) is the feature ex-
tracting network for modality-m with parameter 6,,. Based on the
pre-computed cq- which indicates the input space of the task, for
any sample X = (x(1),x®___ xM)) in the task 7", each modality
can be embedded as z(™ = 90, (x(m) ; O0m) if c(;.n) =10r,zM =0
if c,(;n ) = 0. Note that there will be no gradient update for those
channels with c,(rm ) = 0.

available in this task (¢

is set to 0 if and only

The multi-channel backbone module will produce M embedded
vectors: z<1), z(z), . zM) Each embedding vector z(m e RF rep-
resents a piece of modality-specific information. Note that despite
the architecture differences between channels, all modalities are
encoded onto the same F;-dimensional semantic space, reducing
the impact of input statistical divergence of different types of tasks.

2.2.2  Task-Aware Feature Aggregation for Heterogeneous Tasks. The
set of encoded modality-specific information {z("™ }f\n/l:l produced
by the multi-channel backbone is not ready for decision making.
One may consider simply concatenating all modality-specific vec-
tors and directly feeding it to the head neural networks. However,
this strategy is not effective due to the following two reasons. First,
a concatenated vector is large and sparse—its dimension is M - F;
and many modalities that are absent in the task are represented
by zero. This will result in a large feature mapping network at the
beginning of the head module, which is not feasible in few-shot
learning setting. Second, when there are multimodal types of tasks,
the multiple input modalities can be highly-interacted [43], hence
it is necessary to consider their potential interactions before deci-
sion making. These reasons motivate us to consider to effectively
combine and condense all the modality-specific features. Thus, we
insert an intermediate feature aggregation module © 4 between the
backbone module and head module, which can transform the set
of modality-specific information produced by the backbone into
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a single lower-dimensional and non-sparse vector that represents
the task-specific information.

In large-scale multimodal learning [16, 43], aggregating multiple
features is a general topic. However, there are two challenges when
multiple features are aggregated in a few-data scenario with an
irregular input structure configuration. In other words, the multi-
feature aggregation in a task-heterogeneous few-shot setting should
satisfy two prerequisites: 1) Efficiency of feature aggregation.
According to [15], multiple modalities contain complementary in-
formation, and effective aggregation should be able to combine
them while leveraging their potential interactions. Although tech-
niques such as Tensor Fusion Network (TFN) [43] have achieved
effective interaction modeling, they basically require large-scale
training data due to extensive parameters. We found that, in few-
shot learning, such a large model tends to lead to over-fitting and
requires more training episodes during adaption. Also, simple meth-
ods such as the concatenation are faster and smaller in model size
but less powerful in exploring multimodal interactions. Correspond-
ingly, in a heterogeneous few-data scenario, we should balance
the adaption efficiency and the exploration of multimodal interac-
tions. 2) Task awareness of feature aggregation. Homogeneous
few-shot learning focuses on learning the transferable knowledge
generally shared across tasks (i.e., generalization). In contrast, in our
heterogeneous few-shot setting, each task has a specific combina-
tion of modalities so that how to perform multimodal interactions
can be very different between tasks. For example, while image clas-
sification tasks only analyze image data, a bimodal task containing
both image and text should consider image-text interactions. The
feature aggregation network shared by all types of tasks should be
aware of each task’s specific input structure so that it can adaptively
perform multimodal interactions. In other words, in addition to
generalization, we also should learn how to customize the globally
shared meta-learner (i.e., customization). That is, under a hetero-
geneous task distribution, the feature aggregation network should
balance generalization and customization.

Motivated by the two prerequisites, we propose Task-aware
Feature Aggregation Network (TFAN), which contains two compo-
nents: 1) Iterative Feature Aggregation based on the bidirectional
recurrent neural network and 2) Attentional Contextual Learning,
to achieve the task-awareness of feature aggregation.

Iterative Feature Aggregation Network. As mentioned above,
to achieve an effective feature aggregation in low-data scenarios,
we pursue a balance between the exploration of multimodal interac-
tions and the adaption speed. We found that the existing large-scale
multimodal fusion technique [43, 44] as well as the straightfor-
ward feature combinations such as concatenation cannot effectively
achieve this goal. Alternatively, we propose to employ the frame-
work of bidirectional recurrent neural network (BRNN) [28] to
iteratively combine the information of multiple modalities chan-
nel by channel while training parameters for processing only one
channel at each step.

Suppose the set of multi-channel encoded modality-specific in-
formation {z(™ }%I:l constructs a sequence with M components
Z = (zW,2& ...z where we consider each piece of modality-
specific information z(™) as a token as in text embedding. Using the
bidirectional long-short term memory (BiLSTM) [12] network as
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an example of BRNN, in text embedding, BiLSTM learns a represen-
tation for each token by combining with the other words as context.
Similarly, given the sequence Z, each modality-specific embedding
z{™ can be combined with the others through the bidirectional
modality-by-modality iterative calculation process:

T (™ = ISTM(2(™), | (m-1)

7™ = TSTM(2(™), T (m+) (1)
h(m =H(m g §(m ¢ RE:,

where & denotes concatenation and F; is the dimension of hidden
state. The iterative feature aggregation network will produce M
hidden states: H = {h(™ }1\”/1121_ Each hidden state h(™) is consid-
ered as a view of aggregated multimodal information combining all
modality-specific information in Z.

The idea of iterative aggregation is to encode multimodal features
modality by modality while exploring their interactions step by
step. According to the forward pass function of an LSTM’s unit

o = sigmoid(Wyz(™ + Uph(™™ + b )
o* = sigmoid(Wiz(m) +Uhm D 4 b;)
o™ = sigmoid(W,z(™ + Uph™™D + by)
5™ = tanh(Wez™ + U-h(™D 4 b,)

— ,m m-1 m_ . ~m
=0 0v, " +0;" 0u

(2
o
h(™ =™ o tanh (o),

where {Wf, Uy, bf}, {W;, Ui, bi}, {Wo, Uy, by }, and {W,, Ug, b} are
the LSTM parameters of the forget gate, the input gate, the output
gate, and the memory cell, respectively, at each iterative step, the
memory cell’s update mechanism enables the feature interaction
between each new coming feature z(™m and previous aggregated
information h(™~)_ Note that Eq. (2) is for each direction.

As for adaption efficiency, the number of trainable parameters of
the iterative feature aggregation is O((F; + F2) F2), where F; and F
are dimensions of the embedding vector of each modality and the
hidden state of the recurrent network, respectively. Compared with
the highly-interacted feature aggregation methods designed for
large-scale data, such as the multimodal outer-product containing
O((F1)ME,) parameters [43], our model reduces the computation
complexity of fusion and thus requires less training episodes and
adapts faster. Also, compared with early fusion methods such as
[16, 19, 25] containing O(MF; F;) parameters, iterative aggregation
is more powerful in exploring multimodal interactions while the
computation complexity is unrelated with M. In addition, as we also
face the task-heterogeneity challenge, iterative aggregation works
better in the task-heterogeneous few-shot learning environment.

Attentional Contextual Learning for Task-aware Feature
Aggregation. Under a heterogeneous task distribution, we pursue
the balance between generalization (globally shared knowledge)
and customization (task-specific knowledge). In other words, the
feature aggregation network should be aware of each task’s specific
input structure, and learn how to explore task-specific knowledge
to effectively customize the globally shared feature integration
process. We propose the attentional contextual learning to achieve
such balance, the task-awareness of feature aggregation.

First, since our definition of task heterogeneity is the config-
uration or availability of a set of input modalities, the sequence
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Z = (zW, 22 ... 2(M) can reflect the specific knowledge for the
given task’s input structure—each modality has its own position in
this sequence and the absent modalities can be considered as a spe-
cial token. In other words, we can view the input structure of tasks
as the “context" of the sequence Z, which can distinguish different
types of tasks. In text embedding, BRNN models the sequential
data by leveraging context dependencies in the input sequence
(context-aware) [45]. Similarly, when the BRNN-based iterative fea-
ture aggregation encodes the sequence of modalities, it can take
into account the input structure (context) of the given task, which
reflects task-specific knowledge.

Besides, to further customize the iterative feature aggregation
network using task-specific knowledge, we propose an external
meta-network gy (+; ), which learns a task embedding vector 7 for
each given task to represent the task-specific knowledge as

7 =gycrs¢) € R, (3)
where F3 is the dimension of task embedding. We let the task em-
bedding 7 represent the type-specific knowledge that reflects each
task’s specific input space and distinguishes different tasks; hence,
7 is embedded from the ¢4 calculated in Section 2.2.1. Then, we
utilize 7 as extra knowledge to customize the globally shared meta-
parameters in the feature aggregation network. Specifically, we
employ a modified attention mechanism [1] to facilitate the cus-
tomization. The final task-specific information is represented by

M
h* = Z Amh™ € RF2, ()
m=1
where {Am}ﬁ\n/I:1 are attention coefficients indicating the role of
each modality with respect to the type-specific knowledge 7:
_ exp(v/tanh(W,,[h™ @ 7]))
"7 3, exp(vTtanh(Wj, [hD @ 7]))’

A (5)
where @ denotes concatenation operation, and v € R and W, €
RFs*(FotF5) are Jearnable parameters of the attention module. The
attention mechanism incorporates the type-specific knowledge 7
into the feature aggregation, so that it can adaptively perform the
within-task adaption for different types of tasks.

Overall, our task-aware feature aggregation network (TFAN)
transforms the multi-channel modality-specific information into
task-specific information. Network parameters in this module in-
clude the iterative feature aggregation 6j¢r, the task-embedding ¢,
and the attention module {v, Wy }.

2.2.3  Single-Channel Head Module. In the previous stage, TFAN
adaptively projects samples from different input spaces onto a uni-
fied concept space—the generated task-specific representations of
each sample in different type of tasks are in the same concept space
(see arrow lines in Figure 2(a)). As for final decision making, we use
a single-channel head module fy,, (+; 0fr). For few-shot classifica-
tion, the architecture of the head module is a multi-layer classifier
followed by a softmax layer, i.e., softmax(fp,, (h*; 0p)).

2.3 Training Procedure

HetMAML is built upon the model-agnostic meta-learning (MAML)
framework [10, 26], which solves a bilevel optimization problem to
find an initialization ®¢ for a neural network as the meta-parameters.
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This training procedure assumes that the single meta-initialization
Oy is an appropriate generalization of prior knowledge for all tasks.
It requires tasks to be homogeneous in terms of the size of labelled
data, the classes number, the input structure, and so on.

Unlike homogeneous MAMLs, our task-heterogeneous model
leverages extra task-specific knowledge to perform slightly different
adaption between different types of tasks, that is, finding a balance
between generalization and customization. Therefore, we divide
meta-parameters into two disjoint sets: internal parameters and
external parameters.

2.3.1 Internal and External Parameters. We define internal parame-
ters (IP) © as the meta-parameters, which take the gradient updates
during the inner-loop optimization, to perform the adaption to
each specific task. The internal parameters of HetMAML include
the meta-initialization of the iterative feature aggregation network
and the head module, i.e., © = {0ier, Oy }. The task-aware iterative
feature aggregation projects input features onto the concept space,
by considering the input context of each task. Hence 0;se, may
vary among different tasks and need to adapt to each task. The
head module (classifier) 8y learns decision boundaries within the
concept space. Since different tasks have different concepts, the
parameters for dividing the concept space is specific for each task.

External parameters (EP) ® are defined as the meta-parameters,
which pass through the neural network but does not need to adapt
to each task during inner-loop optimization. The external parame-
ters of HetMAML include the parameters of multi-channel back-
bone module, the task embedding network as well as the attention
mechanism used for customization, i.e., ® = {0p, ¢, v, W }. The
backbone 0p can be shared across tasks as it performs early-stage
feature embedding of each data source. Meta-parameters in the
task embedding network ¢ aim to capture the knowledge of how to
distinguish different types of tasks, based on the structure property
of each given task. ¢, v, and W, embeds each task’s input structure
and utilize it to customize the internal parameters during adaption.

2.3.2 Bilevel Optimization. The overall training procedure of Het-
MAML is described in Algorithm 1. Following [10, 26], the outer
loop updates the meta-initialization of internal parameters ®y and
the external parameters ® to enable fast adaptation over a batch
of task instances. The inner loop takes the outer-loop ®¢ and @,
and, separately for each task, performs a few gradient updates of
internal parameters over the labelled examples in the support set,
while freezing external parameters.

Formally, let ©; signify © for task 7; during the inner-loop op-
timization, and let the initial ®] = @y. In the inner-loop adaption,
during each gradient update, we compute

0] — 0] - aVe, L7;(f(X; 0}, 0),y; S,), (6)

where f(-) is the forward function of HetMAML network, and
L7:(-;S7;) is the loss on the support set of task 7;.

Separately for each task, after a fixed number of inner-loop up-
dates, we obtain the adapted parameter ©}(®y), which is dependent
on meta-initialization ©¢. Then, the outer-loop optimization up-
dates ©®¢ and ® over a batch of task instances:

Q) — 8-V, . Lr(f(X*6](00),d)y":Q7) ()
Ti~p(T)
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Algorithm 1 Training Procedure of HetMAML

1: Requires: Heterogeneous task distribution P(T)
2: Requires: Learning rates a, f8
3: Randomly initialize internal parameters ©.
4: Randomly initialize external parameters ®.
5: //outer-loop optimization
6: while not done do R
7. Sample batches of heterogeneous tasks 7; ~ P(7")
8 // inner-loop optimization

9

for all i do
10: Obtain data {Sy;, Q7 } for each task 7;.
11: Obtain task structure cqg; from each Sg; as Section 2.2.1.
12: Obtain task embedding 7; = g(cq;; ¢) using external ¢.
13: Compute adapted internal parameters with a fixed number

of steps w.r.t. the NK examples from Sg; as in Eq.(6).

14: Evaluate £; (f(X*; ®lf, ), y"; Qqg;) w.rt. T samples of Q.
15:  end for
16:  Update initialization of internal parameters ®q as Eq.(7).

17:  Update external parameters ® as Eq.(8).
18: end while
19: return: O and ¢

-V Y Ly(f(X50](80),9).y5Q7), ()
Ti~p(T)
where Lq:(-; Qg;) is the loss on the query set of task 7;.

3 EXPERIMENTS

In this section, we compare HetMAML with state-of-the-art base-
lines on six task-heterogeneous few-shot datasets.

3.1 Datasets

Since we define a new task-heterogeneous few-shot learning prob-
lem, we constructed our datasets from existing multimodal datasets.

3.1.1  Selection of the Source Multimodal Datasets. One prerequi-
site for the source multimodal dataset is that the total number of
classes |C| should be large. First, we have to split C into two dis-
joint sets of class set, C!"™ and C’!, for constructing Z)rtrg’m and
.‘Dfrfét o> respectively. Then, the class set C; of each task instance is
sampled from C. To construct a meta dataset containing a proper
number of task instances (for training meta-learner), where the
N classes in different task instances do not overlap too much, a
large number of total classes is necessary. Another requirement
is that, in the source multimodal dataset, the number of subjects
(multimodal samples) for each class should also be large to make
sure each data sample will not repeat frequently over tasks. Since
some multimodal datasets with three or more modalities such as
emotion classification datasets have a small number of classes and
subjects, we did not consider using them as the source.

We chose the following two datasets as our source multimodal
datasets: 1) Caltech-UCSD-Birds 200-2011 (CUB-200) [39] dataset
contains 11,788 images for 200 bird species, including black footed
albatross, bobolink, fish crow, and so on. Each image is annotated
with a vocabulary of 312 attributes (e.g., crown color, belly color,
eye color, etc.), which we use as the text modality. We used the
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lctrny/ictst) M’ Task Input Structures
Type 1: X1
hetModelNet-1 30/10 2 Type 2: X2
Type 1: X1
hetModelNet-2 30/10 2 Type 2: (X1,X2)
Type 1: X2
hetModelNet-3 30/10 2 Type 2: (X1,X2)
Type 1: X1
hetModelNet-4  30/10 3  Type2:X2
Type 3: (X1,X2)
hetCUB200-1  150/50 2  Lype liimage
Type 2: text
hetCUB200-2  150/50 2  Lype liimage

Type 2: (image, text)

Table 1: Statistics of the six task-heterogeneous few-shot
datasets (X1: MVCNN modality, X2: GVCNN modality).

two data sources from the CUB-200 dataset: the image modal-
ity x/mage ¢ RIXZOX256 and the text modality x'¢*t € R312, 2)
ModelNet40 [40] is a 3D object detection dataset containing 12,311
3D CAD shapes covering 40 common categories, including air-
plane, bathtub, bookshelf, bottle, bowl, cone, cup, and so on. Fol-
lowing [8], we use it as a bimodal dataset where the two modali-
ties are the two views of shape representation extracted from two
pre-trained networks: Multi-view Convolutional Neural Network
(MVCNN) [33] and Group-View Convolutional Neural Network
(GVCNN) [9]. Specifically, the two data sources from the Model-
Net40 are: modality-X1 (MVCNN representation) x"2¢"" ¢ R40%
and modality-X2 (GVCNN representation) x9°°"* € R?%48, For sim-
plicity, we will use “X1” and “X2” to represent the two modalities
of ModelNet40.

3.1.2  Construction of Task-Heterogeneous Datasets. From source
datasets, we constructed six task-heterogeneous few-shot datasets
in total, which were built up as follows. First, we split the class
set into two subsets, i.e., C = {C!"™ C**!}, such that |C!""| =
int(3/4|C|) and C*$* = C\ C*"™. Then, we generated task instances
for each of the meta-train and meta-test datasets: |Z)f7:e"t ol = Nirn
tasks for the meta-train dataset and |D,’7f£t al = Nist tasks for the
meta-test dataset. Specifically, for constructing each task 7~ in
Dfrfe”m, we randomly selected N classes from C;,, and then se-
lected K samples from each class to form the support set; then, we
selected other Kq labelled samples for each class to form the query
set. Finally, we split each of D!, and D!$!, into M’ groups; each
group contains one type of tasks—we deleted certain modalities in
tasks following the configuration in Table 1. Statistics of the six
constructed task-heterogeneous datasets are described below.
hetCUB200-1 and 2. Using the multimodal samples in CUB200,
we constructed Ny, = 4000 and N¢s; = 1000 task instances with
Kg = 12. Each data sample in CUB200 is a pair of (image, text)
modalities. We considered the text modality as either the auxiliary
modality for image or a view of sample that provides useful infor-
mation under missing-image conditions. Therefore, we built two
datasets; both has two types of tasks—the first type is unimodal
tasks that only process images. In hetCUB200-1, tasks have either
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image or text modalities. In hetCUB200-2, the task heterogeneity
was created by deleting the text modality from a half of tasks.
hetModelNet-1 (2, 3, and 4). Using the multimodal samples in
ModelNet40, we constructed N;,,, = 4000 and N;g; = 1000 task
instances with K4 = 12. We considered different conditions of
modality combinations—the modality-X1, the modality-X2, and a
pair of modalities (X1,X2). Hence we could construct four datasets
from ModelNet40, whose input structures are listed in Table 1.

3.2 Baselines

We compared HetMAML with three families of meta-learning base-
lines. The first is the methods designed for unimodal task distri-
bution: MAML [10], SNAIL [18], and LEO [27]. The second is
MUMOMAML [38], a method designed for multimodal task dis-
tribution. These baselines are limited to homogeneous tasks with
the same input structure, and cannot be directly applied to our
task-heterogeneous setting. We pre-processed the original hetero-
geneous inputs such that the processed inputs have the same feature
space. The input dimension is fixed to that of the modality which
has the largest input feature space. Besides, similar to [38], we used
Multi-MAML baselines which consist of multiple MAML models
trained separately on each type of tasks. We tested two versions of
Multi-MAMLs: Multi-MAML (TF) and Multi-MAML (BF). For
fair comparisons, we let each MAML also have an intermediate
module: while Multi-MAML (TF) uses a Tensor Fusion Network [43]
for feature aggregation, Multi-MAML (BF) uses a BRNN network
(i.e., BILSTM) as in HetMAML.

3.3 Results and Discussions

All the experiments in this paper were conducted on a single-core
GPU using Pytorch 3. In all experiments, we let F; = 128, Fy = 64,
and F3 = 64. Image backbones used 4 convolutional building blocks
with 32 channels. The threshold for calculating ¢ was set to e = 1071,
As for meta training, the gradient update step of inner-loop adaption
was set to 10, and we fixed @ = 1072 and = 10~ in all experiments.
For the BRNN in TFAN module, we chose to use a BILSTM network
to perform the iterative feature aggregation.

We evaluated HetMAML and baselines based on their perfor-
mance on the few-shot classification accuracy, and, to evaluate the
efficiency of our model, we also report the meta-training time and
the size of trainable meta-parameters.

3.3.1 Task-Heterogeneous Few-Shot Classification. Tables 2 and
3 report classification accuracy on each dataset. One can observe
that HetMAML outperforms baselines on each dataset in terms
of the classification accuracy within a few gradient updates. This
demonstrates that HetMAML can successfully handle these het-
erogeneous task distribution cases and can fast adapt to all types
of new tasks. The results on hetModelNet-1 where all tasks are
unimodal show that HetMAML can achieve the best performance
in the cross-modal case of task heterogeneity. On the other datasets
which have multimodal tasks, or especially with larger classes or
less shots, HetMAML and Multi-MAML (BF) outperforms other
baselines, showing that the proposed BRNN-based iterative feature
aggregation (IFA) can achieve a proper balance between the effi-
ciency of adaption and effectiveness of multimodal integration so
that is suitable for few-shot problems. Multi-MAML (TF) which
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hetModelNet-1

hetModelNet-2

hetModelNet-3 hetModelNet-4

Method

5-way 5-way 10-way 5-way 5-way 10-way 5-way 5-way 10-way 5-way 5-way 10-way
1-shot 5-shot 1-shot 1-shot 5-shot 1-shot 1-shot 5-shot 1-shot 1-shot 5-shot 1-shot
MAML 80.6 91.2 60.5 80.4 90.6 46.5 89.6 98.7 70.1 84.2 94.7 67.7
SNAIL 82.3 92.6 63.2 81.8 92.4 50.3 91.5 98.8 74.1 85.8 95.1 70.5
LEO 83.1 94.8 68.5 84.2 95.7 55.2 94.8 99.2 80.2 91.2 96.3 74.7
MuMoMAML 82.5 93.3 64.4 84.9 92.6 53.4 93.4 99.3 78.9 89.7 95.6 69.2
Multi-MAML(TF) 75.7 94.2 50.5 68.2 88.6 323 77.4 93.3 54.3 74.3 91.4 47.1
Multi-MAML(BF) 76.1 94.3 50.7 80.8 94.3 62.5 92.7 98.9 81.3 83.9 94.5 66.5
HetMAML (ours) 84.5 94.7 72.8 85.7 95.2 71.9 95.0 99.3 90.1 92.3 95.3 78.3
Table 2: Few-shot classification accuracy (%) on the meta-test splits of hetModelNet-1 (2, 3, and 4) datasets.
hetCUB200-1 hetCUB200-2 Method MT-Time Model Size
Method 5-way 5-way 5-way 5-way Multi-MAML (TF) 26.2 min 2,762,905
1-shot 5-shot 1-shot 5-shot Multi-MAML (BF) 34.5 min 1,736,783
MAML 43.9 60.2 52.7 69.5 HetMAML (ours) 17.5min 908,485
Multi-MAML(TF) 413 63.1 39.1 51.2 Table 4: Comparison of model size and the average meta-
Multi-MAML(BF) 414 62.8 50.3 68.4 training time (MT-Time) on hetModelNet-4.
HetMAML (ours) 48.7 643 542  70.7

Table 3: Few-shot classification accuracy (%) on the meta-test
splits of hetCUB200-1 and hetCUB200-2 dataset.

optimizes a large multimodal fusion network failed in few-shot
learning scenarios as it requires a much larger parameter set due
to its high-dimensional tensor. Instead, HetMAML encodes multi-
modalities in a recurrent manner with a relatively small size of
parameters. We also observe that the other five homogeneous base-
lines failed in all task-heterogeneity settings because they cannot
customize the globally shared model architecture for tasks having
different input structures. In contrast, HetMAML can better balance
customization and generalization since the attentional contextual
learning (ACL) can automatically take into account the context of
tasks’ input structures.

In addition, HetMAML outperforms Multi-MAML (BF), espe-
cially in 5/10-way 1-shot settings. It is because HetMAML simul-
taneously trains all types of tasks and thus can access more data
from other types of tasks during training. In contrast, each MAML
in Multi-MAMLs only uses the smaller number of tasks of a specific
type for training these networks. Jointly training heterogeneous
tasks could capture more reliable meta-knowledge rather than sep-
arately training multiple MAMLs.

3.3.2  Adaption Speed Comparison. We also compare adaption speed
in Figure 3, where we display the 10-way 1-shot classification ac-
curacy (meta-test) with respect to the number of gradient updates,
separately for each type of tasks on each of the four hetModelNet
datasets. In this figure, we compare HetMAML with Multi-MAML
baselines on two datasets. Other baselines are not compared here
because they view different types of tasks as the same type. Solid
lines denote the average results of all types of tasks; dash lines
denote the results of tasks that only have modality X1 as the input
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(type-X1); dotted lines denote the results of tasks that only have
modality X2 as the input (type-X2); and dash-dotted lines denote
tasks that have a pair of modalities as the input (type-(X1,X2)).

Overall, while the baselines need 8-9 or more gradient updates
to adapt to new tasks, HetMAML can adapt to new tasks with just
2-3 updates, which demonstrates the fast adaption ability of Het-
MAML. We can observe that although HetMAML trains all types
of tasks simultaneously, it can successfully fast adapt to each type
of new tasks, suggesting that the proposed model is aware of the
task-specific input structure. In addition, HetMAML outperforms
baselines, especially on unimodal tasks, because the training of
each types of tasks can benefit from more data from other types.
Furthermore, these results are achieved with less training time
and parameter size, showing that HetMAML is a more efficient
framework than Multi-MAML baselines. The adaption speed of
the TFN-based baseline on type-(X1,X2) tasks is very slow (see
the blue dash-dotted lines), suggesting that the large-scale multi-
modal fusion strategy is not suitable to few-shot multimodal tasks.
According to the left-2 and left-3 charts, Type-(X1,X2) adaption
in Multi-MAML (BF) is faster than the type-X1 or type-X2 adap-
tion, proving the efficiency of iterative aggregation on few-shot
multimodal fusion.

3.3.3 Efficiency and Scalability. Table 4 reports the comparison on
the model sizes and training time between HetMAML and Multi-
MAML. Compared with separate training baselines, our HetMAML
uses one-third or a half of trainable meta-parameters to achieve
better adaption performance, showing that HetMAML can effi-
ciently and effectively generalize both type-specific and shared
meta-parameters across heterogeneous tasks. Moreover, HetMAML
can be more scalable than baselines in terms of the number of data
sources, in spite that our datasets include only two modalties be-
cause existing multimodal datasets having more modalities do not
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Figure 3: Adaption speed comparison with 10-way 1-shot setting on hetModelNet-1 (2, 3, and 4). For each dataset, the left three
sub-figures indicate the results on each type of tasks, the right sub-figure indicates the average result of all testing tasks.

have enough samples to construct meta datasets. For HetMAML,
the increase of AM modalities will result in AM feature extractors
{0|VYm € AM} added to the multi-channel backbone, while the
other two modules’ parameters will remain the same.

4 RELATED WORKS

In this section, we briefly review related works in meta-learning,
cross-modal domain adaption, multimodal multi-task learning, and
multimodal integration.

Meta-Learning. Meta-learning approaches to few-shot learning
problem mainly include gradient-based methods [10, 18, 42, 46] and
metric-based methods [14, 20, 30, 34, 37]. While metric-based meta-
learning learns a distance-based prediction rule over the embed-
dings, gradient-based methods employ a bilevel learning framework
that adapts the embedding model parameters given a task’s train-
ing examples. We follows gradient-based paradigm as the bilevel
framework has the potential mechanisms for feature selection and
could be more robust to input variations rather than metric-based
frameworks. Recent FSL [7, 21, 22, 41] extended to multimodal few-
shot scenarios. Yet most of these methods assume homogeneous
multimodal features, where input samples over tasks consist of the
same set of modalities. In contrast, we focus on the case that some
modalities may not be available in some tasks and thus different
tasks may have different combinations of modalities. Recently, task-
adaptive meta-learning [13, 27, 35, 38] considered task distribution
across domains, but different tasks still share the same input space.
Different from these methods that assume task homogeneity, we
study a novel FSL approach under heterogeneous task distributions.

Cross-modal Domain Adaption. Domain Adaptation (DA) is
useful in the situations where the source and target domains have
the same classes but the input distribution of the target task is
shifted with respect to the source task. Cross-modal DA deals with
the special case that the inputs of the source and target differ in
modalities [24], which is similar to the cross-modal case of our task
heterogeneity. However, cross-modal DA focuses on the adaption
between two domains (source and target). In contrast, this paper
learns meta-knowledge for unlimited unseen tasks. There is no
meta-objective in DA that optimizes “how to learn" across tasks.

Multimodal Multi-Task Learning. Multi-Task Learning (MTL)
aims to jointly learn several related tasks such that each task can
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benefit from parameters or representation sharing across different
tasks. Multimodal MTL [5, 23] deals with using MTL methods to
solve multimodal integration problem. Our HetMAML also attempts
to design a parameter-sharing strategy so that all types of tasks can
be learned with a unified framework. However, we aim to obtain
meta-knowledge across unlimited tasks leveraging these shared
parameters, whereas MTL intends to solve a fixed number of known
tasks through a single-level optimization without a meta-objective.

Multimodal Integration. Deep multimodal integration studies
how to align or integrate different modalities (e.g., visual, language,
acoustic, or others) into a joint embedding. Existing methods in-
clude early fusion [11, 19, 25, 31], late fusion that models the dynam-
ics of multimodal interactions [4, 17, 43], and multimodal sequential
learning [3, 32, 44]. A majority of existing multimodal fusion mod-
els rely on large-scale training data so that their performance may
drop dramatically in the few-data scenario. Also, most works build
frameworks designed for single-type tasks, which are not very ro-
bust to heterogeneous few-shot tasks. Although one can impute
unavailable modalities using imputation strategies [2, 6, 29, 36] to
convert the problem into homogeneity, this may introduce extra
noise to the original few-data task, and also, the multimodal inte-
gration function may still vary between different types of tasks.
In contrast, HetMAML directly learns with different input spaces
and can be aware of the input structures of multimodal tasks to
promote knowledge customization.

5 CONCLUSIONS

In this paper, we introduced HetMAML, a novel task-heterogeneous
meta-agnostic meta-learning approach to few-shot learning under
heterogeneous task distribution. To effectively capture both the
type-specific and globally shared meta-parameters, we designed
a three-module framework, including a multi-channel backbone
to extract modality-specific embeddings, a task-aware feature ag-
gregation network to adaptively transform these multimodal em-
beddings into a task-specific representation by leveraging the task’
type-specific knowledge, and a single-channel head module for
decision making. Experiment results show that HetMAML is able
to effectively and efficiently capture meta-parameters across het-
erogeneous tasks, balance customization and generalization, and
successfully fast adapt to all types of new tasks.
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