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Abstract

Federated learning (FL) enables edge-devices to
collaboratively learn a model without disclosing
their private data to a central aggregating server.
Most existing FL algorithms require models of
identical architecture to be deployed across the
clients and server, making it infeasible to train large
models due to clients’ limited system resources. In
this work, we propose a novel ensemble knowl-
edge transfer method named Fed-ET in which small
models (different in architecture) are trained on
clients, and used to train a larger model at the
server. Unlike in conventional ensemble learn-
ing, in FL the ensemble can be trained on clients’
highly heterogeneous data. Cognizant of this prop-
erty, Fed-ET uses a weighted consensus distilla-
tion scheme with diversity regularization that ef-
ficiently extracts reliable consensus from the en-
semble while improving generalization by exploit-
ing the diversity within the ensemble. We show the
generalization bound for the ensemble of weighted
models trained on heterogeneous datasets that sup-
ports the intuition of Fed-ET. Our experiments on
image and language tasks show that Fed-ET signif-
icantly outperforms other state-of-the-art FL algo-
rithms with fewer communicated parameters, and
is also robust against high data-heterogeneity.

1 Introduction

Moving both data collection and model training to the edge,
federated learning (FL) has gained much spotlight since it
was introduced [McMahan et al., 2017]. In FL, a num-
ber of edge-devices (clients), like cell-phones or IoT de-
vices, collaboratively train machine learning models with-
out explicitly disclosing their local data. Instead of com-
municating their data, the clients locally train their mod-
els, and send model updates periodically to the aggregating
server. The two distinctive challenges in FL are that clients
can have i) limited system resources, and ii) heterogeneous
local datasets [Kairouz et al., 2019; Bonawitz et al., 2019].

*Work done while at Microsoft Research. Corresponding author
email: {yaejeec@andrew.cmu.edu}.

2881

Many recent work in FL [Wang et al., 2021] overlook the
clients’ resource constraints, using large homogeneous mod-
els on the clients and server. In practice, the clients do not
have enough bandwidth or computing power to train large
state-of-the-art (SOTA) models, and therefore, are restricted
to train smaller and computationally lighter models. More-
over, a naive aggregation of the clients’ models can hinder
the convergence of the model due to high data-heterogeneity
across the clients [Sahu et al., 2020; Cho et al., 2021;
Ozkara et al., 2021]. Based on these constraints, the global
model trained on clients can fail to work well in practice.

A more realistic approach to learn from the resource-
constrained clients in FL is by allowing different models to be
deployed across clients depending on their system resources,
all while training a larger model for the server. This presents
a new challenge where clients return models not only trained
on heterogeneous data, but also with different architecture
(amongst themselves and the server). Hence, we raise the
question: How can we utilize an ensemble of different mod-
els trained on heterogeneous datasets to train a larger model
at the server? We draw insight from ensemble knowledge
transfer [Hinton et al., 2015; Allen-Zhu and Li, 2021] to in-
vestigate this problem in our work in the FL context.

Previous studies on ensemble knowledge transfer [Lan et
al., 2018; Hong et al, 2021; Tran et al., 2020; Park and
Kwak, 2020], propose methods to transfer knowledge from
a bag of experts to a target model, where the ensemble mod-
els are trained on similar datasets. These datasets are com-
monly generated from methods data augmentation or sim-
ple data shuffling. In FL, however, the models are trained
on heterogeneous data distributions, where some models may
show higher inference confidence than others, depending on
the data sample used for knowledge transfer. Knowing which
model is an expert than the others for each data sample is
imperative for effective ensemble transfer in FL — especially
when there are no hard labels for the data samples.

In this work, we propose a novel ensemble knowledge
transfer algorithm for FL named Fed-ET which trains a
large model at the server via training small and heteroge-
neous models at the resource-constrained and data hetero-
geneous clients. Inspired by the successful usage of knowl-
edge transfer via unlabeled public data [Hinton et al., 2015;
Allen-Zhu and Li, 20211, Fed-ET leverages unlabeled data
to perform a bi-directional ensemble knowledge transfer be-
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Method Client Model Public Client Access to Server Model Possible
Heterogeneity Data Public Data Size Tasks
FedAvg [McMahan er al., 2017] No N/A N/A = Client Model Any
FedProx [Sahu et al., 2020] No N/A N/A = Client Model Any
SCAFFOLD [Karimireddy et al., 2020] No N/A N/A = Client Model Any
MOON [Li et al., 2021] No Unlabeled Required = Client Model Only Image
FedDF [Lin et al., 2020] Yes Unlabeled  Not Required = Client Model Any
DS-FL [Itahara e al., 2021] Yes Unlabeled Required = Client Model Any
FedGKT [He et al., 2020] Yes N/A N/A > Client Model  Only Image
FedGEMS [Cheng et al., 2021] Yes Labeled Required > Client Model Any
Fed-ET (ours) Yes Unlabeled  Not Required > Client Model Any

Table 1: Comparison of Related Work with Fed-ET

tween the server and client models. Unlike previous work in
FL with knowledge distillation or with sole focus on tackling
data-heterogeneity (see Table 1), Fed-ET allows client model-
heterogeneity while training a larger model at the server, and
can be used for any classification tasks. Moreover, Fed-
ET does not impose any overhead to the clients nor assumes
that the clients have access to additional data other than its
private data. In Fed-ET clients simply perform local training
as in standard FL while all the other computations are done
by the server. Our main contributions are:

* We propose Fed-ET, the first ensemble transfer algorithm
for FL (to the best of our knowledge) using unlabeled data
that enables training a large server model with smaller mod-
els at the clients, for any classification task.

* We consider the data-heterogeneity in FL by proposing
a weighted consensus distillation approach with diversity
regularization in Fed-ET that effectively filters out experts,
showing the corresponding generalization bounds.

* We show Fed-ET’s efficacy with image and language clas-
sification tasks where Fed-ET achieves higher test accu-
racy, with more robustness against data-heterogeneity and
fewer communication rounds, than other FL algorithms.

2 Background and Related Work

Ensemble Knowledge Transfer. Knowledge transfer from
an ensemble of trained models to a target model has been
studied in various areas of machine learning. In [Lan er al.,
2018], ensemble knowledge distillation for online learning
is proposed where the teacher ensembles are trained on-the-
fly to simultaneously train the teachers along with the tar-
get model. In [Hong et al., 2021], ensemble reinforcement
learning is investigated where an ensemble of policies share
knowledge through distillation. In [Tran er al., 2020], ensem-
bles trained on shuffled data are used to transfer knowledge to
a target model, and ways to utilize the diversity across these
models to improve knowledge transfer are investigated.

The previous work mentioned above, however, is not di-
rectly applicable to FL because i) the local models are trained
on heterogeneous data, and ii) FL is an iterative process with
only a fraction of clients participating in every communica-
tion round. Since the server sends its knowledge back to a
new set of clients every round in FL, an ensemble knowledge

transfer scheme should have a well defined feedback loop
from the target model to the ensemble of models. As such,
our proposed Fed-ET induces a data-aware weighted consen-
sus from the ensemble of models, with a feedback loop to
transfer the server model’s knowledge to the client models.

FL with Knowledge Distillation. Several studies investi-
gated combining FL with knowledge distillation to allow dif-
ferent models across clients, or to improve the server model.
In [Itahara et al., 20211, an entropy-reduction aggregation
method of the clients’ logits is proposed, lowering the vari-
ance of the clients’ outputs. In [He et al., 2020], FedGKT is
proposed specifically for image classification, using knowl-
edge distillation across CNNs with small CNNss at the clients
and a larger CNN at the server. In [Li ef al., 2021], MOON
is also proposed for image tasks, where contrastive loss is
used across models of identical architecture from the server
and clients to improve the server model. In [Lin et al.,
2020], FedDF is proposed to aggregate heterogeneous mod-
els through knowledge distillation with unlabeled public data,
but it does not take data-heterogeneity into account and the
server model is restricted to the clients’ models.

The aforementioned work in FL with knowledge distilla-
tion are limited to specific scenarios such as when we have
labels in the public dataset, target only image tasks, or have
low data-heterogeneity across the clients. Our proposed Fed-
ET is not limited to these scenarios while still being able
to outperform the baselines in Table 1 as shown in our ex-
periments. We use a weighted consensus-based distillation
scheme, where clients with higher inference confidence con-
tribute more to the consensus compared to less confident
clients. We also take use of a diversity regularization term,
where clients that do not follow the consensus can still trans-
fer useful representations to the server model.

3 Federated Ensemble Transfer: Fed-ET

We propose Fed-ET, an ensemble knowledge transfer frame-
work that trains a large server model with small and hetero-
geneous models trained on clients, using an unlabeled public
dataset!. Concisely, Fed-ET consists of the three consecutive
steps: i) clients’ local training and representation transfer, ii)

! Applicable datasets are accessible by the server through data
generators (e.g., GAN), open-sourced repositories, or data markets.
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weighted consensus distillation with diversity regularization,
and iii) server representation transfer (see Figure 1).

3.1 Preliminaries

We consider a cross-device FL setup with a [N-class classifi-
cation task where K clients are connected to a server. Each
client £ € [K] has its local training dataset ) and each
data sample ¢ is a pair (x,y) with input x € R and label
y € [1,N]. Each client has its local objective Fj(w) =
IBilk:I > cen, f(W, &) with f(w, ) being the composite loss
function. Having a large w with identical architecture across
all resource-constrained clients, as done in the standard FL
framework, can be infeasible. Moreover, the local minimums
w}, k € [1, K] minimizing F},(w) can be different from each
other due to data-heterogeneity. Fed-ET tackles these obsta-
cles by training a large server model with data-aware ensem-
ble transfer from the smaller models trained on clients.

Formally, we consider U small and heterogeneous models
at the server with M = {1 : wy,...,U : Wy} where M is
the hashmap with the keys 1, ..., U as model ids, the values
M(i] = wW; € R™ as the models, and n; as the number of
parameters for ¢ € [U]. All of the small models in M have
a representation layer h; € R“, ¢ € [U], which includes
the classification layer, connected to the end of their different
model architectures v < n;,i € [U]. Each client is des-
ignated its model to use from M depending on its resource
capability. With slight abuse of notation, we denote the model
id chosen by client k as M (k) € [1, U], and the local model
for that client k € [K] as W), = W) = M|[M(k)] which
has its respective representation layer defined as hy.

The server has its large model defined as w € R™ also with
its representation layer defined as h € R*. The large server
model is assumed to be much larger than the small server
models in M, i.e., n > n;,i € [U]. As shown in the fol-
lowing sections, the representation layers h and hy, k € [K]
are shared bidirectionally between clients and server to trans-
fer the representations learned from their respective training.
Only the server has access to an unlabeled public dataset de-
noted as P. The local models wy, k € [K], and large server
model W output soft-decisions (logits) over the pre-defined
number of classes N, which is a probability vector over the
N classes. We refer to the soft-decision of model wj over
any input data x in either the private or public dataset as
s(Wg,x) : R™® x (B, UP) = Ap, where Ay stands
for the probability simplex over V.

3.2 Ensemble Transfer with Federated Learning

Step 1: Client Local Training & Representation Trans-
fer. For each communication round ¢, the server gets the set
of m < K clients, denoted as S0, by selecting them in
proportion to their dataset size. The upper-subscript (¢, ) de-
notes for ¢-th communication round and r-th local iteration.
Note that S(*9) is independent of the local iteration index.
For each client k € S(*0), the most recent version of its des-
ignated model w(t ” = W%%) = M[M(k)] is sent from
the server to the client. The clients perform local mini-batch
stochastic-gradient descent (SGD) steps on their local model

wl(f’o) with their private dataset By, k € [K]. Accordingly,

2883

the clients & € S*9) perform 7 local updates so that for ev-
ery communication round their local models are updated as:

WI(:,T):WI(:,O) 77t Z Vf (tr) ) (1)

r= OﬁEf(t \T)

where 7, is the learning rate and %Zieﬁém) Vf(wl(ct,r)’g)

is the stochastic gradient over mini-batch 5}(:,7«) of size b ran-
domly sampled from By,. After the clients k& € S(:9) finish

their local updates, the models w,(f ™) k€ S®0) are sent
to the server. Each client has dlfferent representation lay-
ers h,(f ™) in their respective models W,(: 7 ke St The
server receives these models from the clients and updates its

large model’s representation layer with the ensemble mod-

els as H(t’o) = = Zke$<, 0) h “7) . This pre-conditions the

large server model with the chents representations for Step 2
where we train the large server model with the ensemble loss.

Step 2: Ensemble Loss by Weighted Consensus with Di-
versity Regularization. Next, the large server model is
trained via a weighted consensus based knowledge distilla-
tion scheme from the small models received from the clients.
A key characteristic of the ensemble is that each model may
be trained on data samples from different data distributions.
Hence, some clients can be more confident than others on
each of the public data samples. However, all clients may
still have useful representations to transfer to the server, even
when they are not very confident about that particular data
sample. Hence Fed-ET proposes a weighted consensus dis-
tillation scheme with diversity regularization, where the large
server model is trained on the consensus knowledge from the
ensemble of models while regularized by the clients that do
not follow the consensus.

Weighted Consensus. First we derive a reliable consen-
sus over the ensemble of models by evaluating the variance
within the logit vectors s(w,(:’T), x), x € P for each client
k € St We denote this variance as o2(w\"™ x) =

Var(s(w,(:’T),x)), which is the variance taken over the N
total probability values for the N-multi-class classification

task. Higher o2(w ,(: ™), x) indicates a more confident client
k about how well it models data sample x, and vice-
versa [Camacho-Gémez et al., 2021]. Hence, we weigh the

logits from the clients with high o(w'"™, x) more heavily
compared to low-variance logit clients. Formally, we set a
confidence based weighted average over the logits for each
data sample x € P denoted as:

SC) = Y el swi %) @)
keS(t.0)
where the weights are defined as:

a](:,r) (X) (t T) / Z

le&S(t.0)

w X)) @)

The resulting weighted consensus logit s(*7)(x) efficiently
derives the consensus out of the ensemble of models trained
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Figure 1: Overview of the Fed-ET framework with 3 clients and U small models; (a): server sends the predesignated small models in M to
the selected clients; (b): clients perform local training and send the updates to the server; (c): server updates its large model with the received
updates with FedET’s primary 3 steps for ensemble transfer (see Section 3.2).

on heterogeneous datasets due to filtering out the following
two main adversaries: i) the non-experts with low intra-
variance within each logit, and ii) overly-confident but er-
roneous outliers by utilizing the power of ensemble where
multiple experts contribute to the consensus.

For each data sample x we get the most probable label from
s(t7)(x) as:

(1) (x) = argmax 7 (x) 4
label€[0,N —1]

The pair (x, y(gt’T) (x)), x € P is the consensus-derived data

sample from the unlabeled public dataset P, which is then
used to train the server model with the cross-entropy loss

I((x, ygm) (x)),w®"?)). The cross-entropy loss term used
in the final ensemble loss for training the server model is:

IPIZZ (%957 (%)), W) 5)

xeP

Diversity Regularization. While the confidence based
weighted consensus can derive a more reliable consensus
from the ensemble, the diversity across the participating mod-
els is less represented. Meaningful representation informa-
tion of what clients learned from their private data should
be included, even when certain clients have low-confidence
and may have different logits from the consensus. Encour-
aging diversity across models can improve the generaliza-
tion performance of ensemble learning [Tran er al., 2020;
Park and Kwak, 2020]. Hence, we gather the logits from the
clients that do not coincide with the consensus, formally,

Sc(z:;?) (x) = {l:y»)(x) # argmax s(wl(t’ﬂ,x)
label€ [0, N —1]
N1e8® 0} (6)
and formulate a regularization term:
sii ()= 3 alw 7 xswx) @)
resg

where the weights are

ar(x) = o2(wi )/ > 2w %) (8

1leS(t.0)

Accordingly, the diversity regularization term for the final en-
semble loss is where K L(-,-) is the KL-divergence loss be-
tween two logits:

KL% (x), s(w (0, x)) )

Final Ensemble Loss. Finally, combining the weighted
consensus based cross-entropy loss in (5) with the diversity
regularization in (9), the server model is updated, in every
communication round ¢, by minimizing the following objec-
tive function:

= (t, 0) (t, 7—) =(t,0)
F0) = e 3 1. 347(00), )

xeP
FAKL(ET (%), s(w®9 %)) (10)

To minimize the ensemble loss in (10), instead of going
through the entire dataset P, the server model takes 75 mini-
batch SGD? steps by sampling a mini-batch 57(,“ ) e
[0, 75 — 1] of by data samples from P uniformly at random
without replacement. Then, for every communication round
t the server performs:

Ts—1

7(t’7—5) — 7(t10) — & (th) 7(t17’)
Wit = w0 ST N Vi p T (€)W )

S r=0 gl
FAVKL(s7 (€), 5w, €))]
(11)

Note that neither the weighted ensemble term nor the diver-
sity regularization term dominates the ensemble loss in (10)
with a reasonable \ (see Table 4) and further because each
term comes from a different set of clients. The former term
is from the majority of the clients following the consensus,
while the latter term is from the other clients that do not co-
incide with that consensus. Due to data-heterogeneity, these
two different sets of clients likely change every round mak-
ing it difficult for a single term to dominate the ensemble loss
during training.

*Herein, SGD is depicted without loss of generality for other
optimization algorithms.
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Algorithm 1 Federated Ensemble Transfer: Fed-ET

1: Initialize: Hashmap of Heterogeneous Models: M =

{1: wi O), LU *(O 0 } Designated Model Ids for
each chent k € [K]: ./\/l(k) € [1,U]; Selected set of
m < K clients: S(0:0)
2: Output: W™ 0)
3: Fort=0,. — 1 communication rounds do:
4 Clientsk € S (t 9) in parallel do:
Receive w,(C 0 = wg\t/’l(zzc) = M[M(k)] from server
Update w,(: ) with (1) and send it to server
Server do:
Receive all updated local model w,(: ) ke S0,

R e A

Transfer client representation H( = Lym S(.0) h (t,7)
10:  Update W*™) with (11) and update M with (12)
11:  Transfer server representation H(t’m models in M

12: Get St+1.0) by sampling in proportion to dataset sizes

Step 3: Server’s Representation Transfer. Finally, we up-
date the server’s small models in M by aggregating the re-
ceived clients’ models with identical architecture by simple
averaging. Concretely, with Si(t"o) ={k: ke S n
M(k) =i}, i € [U], we update M as

1 5
M(i] = w0 = S(“’)’ S owimieu] (2

K3

kes{t®

After this update, the updated H(t’TS) from the server model
w(t7) is transferred to all the models in M.

The algorithm of Fed-ET. In the preceding paragraphs, we
have shown three essential components of Fed-ET for feder-
ated ensemble transfer with heterogeneous models trained on
heterogeneous data distributions. The complete algorithm of
Fed-ET can be obtained by using these components in tan-
dem as described in Algorithm 1. Note that FedET is easily
extendable to allow clients to define their own model archi-
tectures depending on their computing resources.

3.3 Generalization Bound for Ensemble Transfer

In Fed-ET, an ensemble of small models trained on heteroge-
neous data distributions is used to train a large server model
for its target test data distribution. We show the generaliza-
tion properties of a weighted ensemble of models trained on
heterogeneous datasets in respect to the server’s target dis-
tribution, supporting the weighted consensus distillation pro-
cess of Fed-ET. We consider hypotheses h : X — ), with
input space x € X, label space y € ), and hypotheses space
‘H. The loss function I(h(x),y) measures the classification
performance of h for a single data point (x, y). We define the
expected loss over all data points for an arbitrary data distri-
bution D" as Lp:(h) = E(x y)~p [[(h(x),y)] for h € H and
assume that £(h) is convex with range [0, 1]. We now present
the generalization bound for the server’s target distribution
with respect to an ensemble of weighted models trained on
heterogeneous datasets below in Theorem 1.
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Theorem 1. With K clients and a server for FL, we have

D as the server’s target test data distribution, and Dj,, Dy
as the true and empirical data distribution, respectively, for

client k € [K|. We define hj, = argminy, Lp, (h) and hy, =
arg min L5 ( ). Then, we have for the weighted ensemble

of models Z

a;, i € [K], Zfil o; = 1, with probability at least 1 — §
over the choice of samples, the bound:

K K
Lp <Z aihf%) < Zaiﬁﬁ (h
+ +/logd—1 Z

-1 aihg . Jfor K clients with arbitrary weights

d(D;, D) + Z%Vz

\/|B
(13)

where v; = infy, Lp,(h)+ Lp(h) and d(D;, D) measures the
distribution discrepancy between two distributions.

In Theorem 1, the first, second, and third terms in the up-
per bound show that the generalization performance of the
ensemble transfer worsens by the following qualities of each
clients: 1) bad local model quality on its own training data, ii)
small training dataset size, and iii) large discrepancy between
its data distribution D;, ¢ € [K] and server’s target data distri-
bution D. Fed-ET aims in giving lower weights to the clients
that demonstrate i) and iii) by weighted consensus distilla-
tion where the confidence levels and multiple inferences of
the clients contribute to the consensus, so that erroneous out-
liers can be filtered out. The effect of ii) is also considered
in Fed-ET by sampling clients in proportion to their dataset
sizes.

4 Experiments

For all experiments, partial client participation is considered
where 10 clients are sampled from the 100 clients for image
tasks and the 106 clients for the language task.

Datasets. For image datasets, the training dataset is parti-
tioned data heterogeneously amongst a total of 100 clients
using the Dirichlet distribution Dirg (o) [Hsu ez al., 2019].
The public dataset is generated by applying a different data
transformation to the data samples (non-overlapping with ei-
ther the training or test dataset) to further differentiate it with
the training dataset. For the language task, we use sentiment
classification with Sent140 (Twitter) dataset. For the training
dataset, users with more than 100 data samples are treated
as the FL clients, leading to a total of 106 clients. For all
datasets, non-overlapping users’ data samples are used.

Models. For image tasks, we set a CNN, ResNet8, and
ResNet18 [He et al., 2016] for the small server models, and a
VGG19 [Simonyan and Zisserman, 2014] for the large server
model. For language tasks, a Tiny-BERT [Bhargava er al.,
2021] and a LSTM classifier are set for the small server mod-
els, and a Mini-BERT [Bhargava ef al., 2021] is set for the
large server model. For the representation layers we use a
small MLP with dimension 128 which is a small increase in
the model size. The small server models in M are designated
(prior to training) to the clients uniformly at random.
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a = 0.1 (Higher Data-Het.) a = 0.5 (Lower Data-Het.) N/A
Method CIFARI10 CIFAR100 CIFARI10 CIFAR100 Sent140

FedAvg 71.19 (£0.27) 30.21 (+0.32) 74.82 (£0.23) 33.12 (£0.13) 71.51 (£0.45)
Model FedProx 7245 (£0.13) 3151 (£0.11) 75.24 (£0.19) 33.63 (£0.08) 71.32 (£0.31)
Homogeneous Scaffold 75.12 (£0.20) 30.61 (£0.57) 78.69 (£0.15) 34.91 (£0.61) 73.28 (£0.35)

MOON 75.68 (£0.51) 33.72 (£0.89) 81.17 (£0.41) 42.15(£0.72) N/A
Model FedDF 73.81 (+0.42) 31.87 (+0.46) 76.55 (£0.32) 37.87 (iO 31) 72.19 (+0.43)
Heterogeneous DS-FL 65.27 (£0.53) 29.12 (£0.51) 68.44 (£0.47) 33.56 (£0.55) 63.12 (£0.71)
Fed-ET (ours) 78.66 (£0.31) 35.78 (£0.45) 8I.13(£0.28) 41.58 (£0. 36) 75.78 (£0.39)

Table 2: Best test accuracy achieved by Fed-ET and baselines with varying data-heterogeneity. The large server model is used for evaluation
for the model homogeneous baselines and the model heterogeneous baselines that require separate server models.

CIFARIO CIFAR100  Sentl40
Method Cace(TO%)  Cace(30%)  Caee(70%)
FedAvg 72 x 109 87 x 10° 25 x 10°
FedProx 70 x 107 86 x 107 22 x 107
Scaffold 68 x 109 79 x 109 19 x 10°
MOON 75 x 107 90 x 10° N/A
Fed-ET (ours) 26 x 10 31 x10° 9 x 10°

Table 3: Communication cost to achieve the target test accuracy «
(Cacc(x)) for o = 0.1.

Baselines. We consider two types of baselines: i) model
homogeneous (FedAvg, FedProx, Scaffold, MOON) and ii)
model heterogeneous (FedDF, DS-FL). FedGKT assumes full
client participation, thus a direct comparison with Fed-ET is
not possible. For model homogeneous, we use the large
server model for evaluation. For model heterogeneous we use
the small server models for the client models and the large
server model for the server model (if a separate server model
is required).

Effectiveness of Fed-ET. In Table 2, we show the best
achieved test accuracy of Fed-ET and the baselines for dif-
ferent degrees of data-heterogeneity. Fed-ET achieves higher
test accuracy for CIFAR10 with high data-heterogeneity (o« =
0.1) and Sent140 compared to both the model homogeneous
and model heterogeneous baselines. Specifically, for a =
0.1, MOON achieves 75% and 33% for CIFAR10 and CI-
FAR100 respectively at the cost of communicating directly
the large VGG19 while Fed-ET achieves higher accuracy
of 78% and 35% respectively while using smaller models
than VGG19 for the clients. For lower data-heterogeneity
(v = 0.5), MOON slightly out-performs Fed-ET by around
1% but at the cost of training larger models at the clients.

Communication Efficiency. The communication effi-
ciency of Fed-ET is shown in Table 3. We compare the
communication cost Cye.(z), the total number of model pa-
rameters communicated between the server and clients dur-
ing training to achieve test accuracy x. The baselines in
Table 3 require model-homogeneity, and hence communi-
cate the large server model, while Fed-ET communicates the
smaller models in M for each round. Fed-ET is able to
achieve the target test accuracy with approximately 3x less
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Diversity Parameter (\)

Datasets 0.05 0.5

CIFARIO 76.55 (iO 25) 78.66 (+0.31) 75.29 (£0.31)
CIFARI00 31.71(40.43) 35.78 (+£0.45) 30.18 (+0.55)
Sent140 72.11 (£0.28) 74.37 (+0.42) 75.78 (£0.39)

Table 4: Effect of diversity regularization in Fed-ET on test accuracy
with different values of A for & = 0.1.

number of communicated parameters compared to those of
the baselines. Fed-ET enables efficient training with smaller
models at the clients, while achieving comparable perfor-
mance to when large models are used at the clients.

Effect of the Diversity Parameter \. In Table 4, we show
the performance of Fed-ET with different values of A\, which
modulates the diversity regularization term in (10). With
A = 0, Fed-ET only uses the weighted consensus to train
the large server model without leveraging the diversity across
the clients” models. A larger A indicates larger regularization
loss to include more diversity across the clients’ models. For
image tasks the best performance is achieved with A = 0.05,
indicating that diversity indeed helps in improving general-
ization of the server model when moderately applied to the
training. For the language task, a larger A = 0.5 achieves
the best performance, demonstrating that depending on the
task, more inclusion of the diversity across the models in the
ensemble can increase the generalization performance.

5 Conclusion

Motivated by the rigid constraint of deploying identical
model architectures across the clients/server in many FL algo-
rithms, we propose Fed-ET, an ensemble knowledge transfer
framework to train large server models with smaller models
trained on clients. Without additional overhead at the clients,
Fed-ET transfers knowledge to the target model with a data-
aware weighted consensus distillation from an ensemble of
models trained on heterogeneous data. Fed-ET achieves high
test accuracy with significantly lower communication over-
head and robustness against data-heterogeneity. Relevant fu-
ture steps are evaluating different deploying strategies of het-
erogeneous models to the clients and extending Fed-ET to a
general ensemble knowledge transfer framework.
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