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Abstract

Using traces of behaviors to predict outcomes is useful in varied contexts ranging from buyer behaviors to behaviors collected
from smart-home devices. Increasingly, higher education systems have been using Learning Management System (LMS)
digital data to capture and understand students’ learning and well-being. Researchers in the social sciences are increasingly
interested in the potential of using digital log data to predict outcomes and design interventions. Using LMS data for pre-
dicting the likelihood of students’ success in for-credit college courses provides a useful example of how social scientists
can use these techniques on a variety of data types. Here, we provide a primer on how LMS data can be feature-mapped
and analyzed to accomplish these goals. We begin with a literature review summarizing current approaches to analyzing
LMS data, then discuss ethical issues of privacy when using demographic data and equitable model building. In the second
part of the paper, we provide an overview of popular machine learning algorithms and review analytic considerations such
as feature generation, assessment of model performance, and sampling techniques. Finally, we conclude with an empirical
example demonstrating the ability of LMS data to predict student success, summarizing important features and assessing
model performance across different model specifications.
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There has been growing interest in the timely identification
of students who are likely to perform poorly in for-credit Sci-
ence, Technology, Engineering, and Math (STEM) classes.
Once identified, interventions attempting to prevent attrition
can be made (Pistilli, Willis, & Campbell, 2014; Pritchard
& Wilson, 2003; Zajacova, Lynch, & Espenshade, 2005;
Cogliano, Bernacki, Hilpert, & Strong, 2022). Identifying
students is particularly important in STEM disciplines given
the high attrition rates of students typically underrepresented
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in these fields (National Academies of Sciences Engineering
& Medicine, 2016) and the threats to the supply of qualified
STEM professionals that attrition brings (Dai & Cromley,
2014). Several variables derived from different data sources
have previously been used to predict students’ likelihood of
success and failure. Those variables often include demo-
graphic information about underrepresented groups (e.g.,
Dennis, Phinney, & Chuateco, 2005; Petty, 2014; Pritchard
& Wilson, 2003; Tinto, 1975; Tinto & et al. 1993), which is
currently under an ethical debate (Tene & Polonetsky, 2013;
Slade & Tait, 2019), and self-report data (e.g., about motiva-
tion; Hulleman, Godes, Hendricks, & Harackiewicz, 2010).
Increasingly, researchers have utilized technology-enhanced
learning environments (e.g., learning management systems;
LMS) to collect data about real-time learning behaviors that
relate to distal course performance (Macfadyen & Dawson,
2010; Marquez-Vera, Cano, Romero, & Ventura, 2013). The
prediction of for-credit course performance based on LMS
data provides a useful example for social scientists inter-
ested in digital trace data as a source of behavioral data. This
paper adds to research on predictive modeling for student
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success using LMS data while also demonstrating how digi-
tal trace data may be used by researchers in general.

LMS has increasingly become a commonplace tool in
higher education (Malloy, Jensen, Regan, & Reddick, 2002).
Instructors use the platform for communicating with stu-
dents, conducting critical assessment tasks, and sharing digi-
tal resources students can use for learning. When instructors
and students make use of LMS features, the system cap-
tures a trace of each event in a log file. The trace data can
potentially allow researchers to better understand learning
behaviors of students as they provide a rich, fine-grained,
and accurate record of students’ actions (Nistor & Neubauer,
2010). These passively collected data provide potential util-
ity for a wide range of higher education institutes hoping to
decrease attrition rates in specific fields.

The log data collected through an LMS provide some
advantages in predicting student achievement. LMSs such
as Blackboard Learn, Canvas, Desire2Learn, or Sakai
capture and store learning activities of students with time
stamps at a fine-grained level, allowing researchers to track
a variety of user actions and to examine the data from vari-
ous perspectives (Krumm, Waddington, Teasley, & Lonn,
2014). Namely, the data contains a large amount of infor-
mation including frequency, time, and patterns of a series
of activities (e.g., reading, posting, and taking exams) that
reflect learning processes (Black, Dawson, & Priem, 2008;
Bernacki, 2018). Importantly, the data are obtained in a
naturalistic setting, allowing researchers insight into real-
life learning behaviors. Much of the interesting information
in this kind of research, based on this emerging data type,
could not be obtained by other means.

With the increased availability of such data comes the
increase in its use by researchers and educators. Those new
to this kind of approach will find themselves facing a number
of questions and a wide variety of decision-points specific to
the data type. The present paper serves as a resource to aid
in understanding the opportunities and hurdles present when
using LMS data to predict student success in a specific course,
but ideas in this paper can be expanded to other types of digi-
tal trace data. We begin by providing an extensive overview
of the use of LMS data to date. In this review, we outline the
types of methods and variables used, as well as highlight some
of the major outcomes. Using these prior studies as a founda-
tion, we next focus on suggestions for researchers as the field
moves forward. We discuss ethical considerations in the use
of these data that provide a backdrop for each decision point
to come. We also provide an overview of a few approaches for
analyzing the data. As those methods are continuously being
improved upon, we focus less on the specific approaches and
more on qualities of data mining approaches that research-
ers should consider when selecting an algorithm. Finally, and
perhaps most critically, we discuss the critical role of feature
construction and the options available in digital trace data.
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We use an exemplar dataset obtained on a student sample
enrolled in an entry level undergraduate biology course to
illustrate these points.

Systematic literature review

To help inform the generation of useful features from digital
trace behaviors and to gain insight into the expected perfor-
mance rates for varied analytic approaches, we conducted an
extensive literature review of publications that had similar
goals to our project. Specifically, we searched for publica-
tions reporting on predictive models developed to predict
students’ success in a single course. For reviews on other
topics important to predictive modeling in education, we
recommend Baker and Hawn (2021) for their review of algo-
rithmic bias in education, (Paquette, Li, Baker, Ocumpaugh,
& Andres, 2020) for their review of the use of demographics
variables in educational data mining, and Kizilcec and Lee
(2021) for their review of algorithmic fairness in education.

We queried EBSCO and Google Scholar bibliographical
databases with the search phrase ”predict student success
AND higher education”. The term “course success” was
used as an additional phrase in searching Google Scholar to
narrow down the number of results returned. After removing
duplicates of the returned results, the abstracts of 381 pub-
lications were screened for eligibility and 75 publications
were selected for detailed assessment. As per our inclusion
criteria, we selected only those studies that (1) focused on
undergraduate students, rather than on other populations of
learners, and (2) investigated models that predicted students’
course-specific performance, rather than other variables
often used as an indicator of “success” (e.g., course satis-
faction or engagement, or broader academic performances
that span multiple classes). We limited the included studies
to those that predicted course-specific success because the
focus of this review was prediction modeling using behav-
ioral digital trace data. Behavioral digital trace data are
very course-specific (e.g., downloads of a particular course
resource or accesses of a course-specific tool) and/or situ-
ated (e.g., timing of accessing a course gradebook after an
exam), and as such there are few behavioral digital trace
variables that would be common or similarly predictive
across courses. Studies that investigate predictors of suc-
cess that span multiple classes must necessarily use pre-
dictor variables that are broader than the digital trace data
upon which our paper is focused (e.g., demographics) and/
or indicators of success that are broader than our focus on
specific course grades (e.g., grade point average, retention
status). Therefore, such studies are not informative for our
review and were excluded. After close reading of 75 publi-
cations, 39 met these criteria and received full review. The
other 36 publications were excluded due to a lack of clarity
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in operationalizing or measuring student success or a failure
to report any kind of performance metrics for the predictive
models. This review is up to date as of October 2020.

Across the 39 papers, we identified 82 different predic-
tive models and report them in Table 1. Models relied on
a variety of demographic, performance, and behavioral
variables to predict the probability of students’ academic
success in a course. Most of the models were designed to
predict a dichotomous outcome associated with a perfor-
mance above or below a course-specific cutpoint of meaning
to those enrolled (e.g., a B or Better vs. a C or Worse, at/
above vs. below class median, safe vs. at-risk, pass vs. fail,
or successful vs. not successful; Baker, Lindrum, Lindrum,
& Perkowski, 2015; Wolff, Zdrahal, Nikolov, & Pantucek,
2013; Zacharis, 2015; Bernacki, Chavez, & Uesbeck, 2020;
Yu, Li, Fischer, Doroudi, & Xu, 2020). Reports of model
performance most often relied on prediction accuracy, which
provides a rate of true positives and negatives as one value,
as a sole performance measure. Additional reported metrics
included specificity (i.e., model’s ability to detect true nega-
tive outcomes) and precision (i.e., model’s ability to detect
true-positive outcomes). These metrics provide additional
insight into the kinds of classification accuracy achieved by
models and appear in the table. Other papers also reported
the following metrics: F-score (Lee & Kizilcec, 2020; Wolff
et al., 2013) and false-positive/false-negative rate (Yu et al.,
2020). We chose to focus on accuracy because it was the
most commonly reported metric among all prediction mod-
els found in our search.

Current state and next steps

Across the models included in the table, the prediction accu-
racy spanned between .47 to .99, and the average was .72
(SD = .10). The number of weeks of a semester required
to obtain this level of accuracy was 5.85 on average (SD
=3.67) and ranged from as few as 1 week to as many as
16. Our review highlighted three areas of improvement and
areas of consideration for future studies, which we address in
this paper. 1. Nearly two-thirds of the models that performed
well included some demographic or static data rather than
rely on the behavioral data. This raises some ethical con-
cerns, to be discussed later. 2. Many studies utilized only one
outcome measure (accuracy). 3. Newer analytic techniques,
such as regularization, which carry benefits over traditional
regression have not been used in these studies. One addi-
tional area of focus for future studies is how to best engineer
the trace data obtained so that the features reach their maxi-
mum potential in terms of usefulness and power to predict,
as well as the ways they might inform the kinds of interven-
tions that would be apt to deploy as support for students’
learning. Next, we focus on these three critical areas in turn.

Predictor variables used
Static variables

Among the types of predictors included in models, demo-
graphic data about students’ gender, race, and ethnicity
were the most common. These data tend to be readily
available to researchers as they are often solicited from
learners during the enrollment process in higher education
settings. However, the strength and direction of associa-
tions between demographic variables and course achieve-
ment are mixed across models. For example, gender’s role
varies greatly across models where in one introductory
biology course women are predicted to perform better
(Hauser, 2016), in a developmental mathematics course
they perform worse (Goosen, 2008), and in an introductory
Algebra course, gender does not contribute to a predic-
tion model (O’Connell, Wostl, Crosslin, Berry, & Grover,
2018). Similarly, students’ ethnic/racial minority status
predicted success in one introductory biology course
(Hauser, 2016), whereas ethnic/racial background was not
predictive of course grade in an introductory programming
course (Zacharis, 2015). First-generation college status
was the least frequently studied demographic predictor.
In the one study we found that included first-generation
college status, this variable was minimally useful in pre-
dicting students as at-risk in a physics class (Zabriskie,
Yang, DeVore, & Stewart, 2019).

Performance data were also used as predictors in many
models. Common kinds of performance data found in
our review were assessment scores (e.g., Choi, Lam, Li,
& Wong, 2018; Cooper & Pearson, 2012; Saqr, Fors, &
Tedre, 2017) and number of courses/hours completed and
grades or scores earned (e.g., Barber & Sharkey, 2012;
Culver, 2014; Bird, 2012). Some models included scores
on placement exams as predictors (D’Aloisio, 2016; Cul-
ver, 2014; Gultice, Witham, & Kallmeyer, 2015; McFate
& Olmsted, 1999).

Variables that describe students’ prior achievement
can be useful contributors to models in that they capture
students’ overall level of preparedness for a course, both
in terms of course-specific prior knowledge (i.e., when
the score reflects performance in a related, prerequisite
course) or their general ability to successfully engage in
similar learning tasks (e.g., undergraduate GPA to date).
Performance data that reflect scores on early assignments
within courses can be powerful predictors (e.g., Zabriskie
et al., 2019), but care should be taken to not include vari-
ables as predictors if they also contribute mathematically
to the criterion variable. In instances where models predict
a course grade, the inclusion of scores on early assign-
ments are confounded, rather than orthogonal and predic-
tive (e.g., Saqr et al., 2017).
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Table 1 Data sources and the accuracy achieved in studies reporting prediction of higher education outcomes (mean accuracy =71.6%)

Predictors Outcome
Authors Data sources Demographic Static/ Behavioral ~Variable Level Algorithm Performance Cross-validation ~ Observed
baseline measures (Weeks)
(accuracy / preci-
sion / specificity)
Baker et al., (2015)  Soomo learning envi- - - X pass or fail category (binary) Logistic regression .66/.57/.60 cross-validation 4
ronment
Baker et al., (2015)  Soomo learning envi- - - X pass or fail category (binary) Decision tree .66/.64/.44 cross-validation 4
ronment J-48)
Baker et al., (2015)  Soomo learning envi- - - X pass or fail category (binary) Decision tree .58/.571.47 cross-validation 4
ronment (J-Rip)
Baker et al., (2015)  Soomo learning envi- - - X pass or fail category (binary) Naive Bayes .67/.53/.48 cross-validation 4
ronment
Baker et al., (2015) Soomo learning envi- - - X pass or fail category (binary) W-K-Star .68/.67/.28 cross-validation 4
ronment
Baker etal., (2015)  Soomo learning envi- - - X pass or fail category (binary) Stepwise multiple .66/.57/.60 cross-validation 4
ronment regression
Barber & Sharkey LMS, financial aid gender, age, X X risk of failing  category (high, Logistic regression  >.90/-/- 50-50 train/test 4
(2012) system, student military status, low, neutral)
system financial aid
receipt,
ethnicity
Barber & Sharkey LMS, financial aid gender, age, X X risk of failing  category (high, Naive Bayes .85-.95/-/- Number of folds 4
(2012) system, student military status, low, or neutral) not provided,
system financial aid repeated ten
receipt, times
ethnicity
Bernacki et al., (2020) LMS (M1) - - X pass or fail category (binary) Logistic regression .61/.41./76 leave-one-out and 4
10-fold
Bernacki etal ., (2020) LMS (M1) - - X pass or fail category (binary) Decision tree .54/.44/.62 leave-one-out and 4
J-48) 10-fold
Bernacki et al., (2020) LMS (M1) - - X pass or fail category (binary) Decision tree .64/.48/.77 leave-one-out and 4
(J-Rip) 10-fold
Bernacki et al., (2020) LMS (M1) - - X pass or fail category (binary) Naive Bayes .61/.35/.80 leave-one-out and 4
10-fold
Bernacki et al., (2020) LMS (M2) - - X pass or fail category (binary) Logistic regression .67/.55/.77 leave-one-out and 4
10-fold
Bernacki et al., (2020) LMS (M2) - - X pass or fail category (binary) Decision tree .59/.40/.74 leave-one-out and 4
J-48) 10-fold
Bernacki et al., (2020) LMS (M2) - - X pass or fail category (binary) Decision tree .65/.50/.77 leave-one-out and 4
(J-Rip) 10-fold
Bernacki et al., (2020) LMS (M2) - - X pass or fail category (binary) Naive Bayes .66/.59/.71 leave-one-out and 4

10-fold

SPOYIB\ YdJeasay Joineyag



138uradg @

Table 1 (continued)

Predictors Outcome
Authors Data sources Demographic Static/ Behavioral Variable Level Algorithm Performance Cross-validation ~ Observed
baseline measures (Weeks)
(accuracy / preci-
sion / specificity)
Bernacki et al., (2020) LMS (M3) - - X pass or fail category (binary) Logistic regression .67/.57/.75 leave-one-out and 4
10-fold
Bernacki et al., (2020) LMS (M3) - - X pass or fail category (binary) Decision tree .61/.37/.80 leave-one-out and 4
J-48) 10-fold
Bernacki et al., (2020) LMS (M3) - - X pass or fail category (binary) Decision tree .63/.48/.75 leave-one-out and 4
(J-Rip) 10-fold
Bernacki et al,. (2020) LMS (M3) - - X pass or fail category (binary) Naive Bayes .65/.53/.74 leave-one-out and 4
10-fold
Bird (2012) - ethnicity, age, X - successful vs.  category (binary) Logistic regression -/0/100 - -
class not success-
ful
Bird (2012) - ethnicity, age, X - successful vs.  category (binary) Discriminant -/.50/.90 - -
class, distance not success- analysis
from the ful
university
Cakmak (2017) university database - X - course grade  category Collaborative 14/-/- details not pro- -
filtering vided
Choi et al., (2018) classroom response - X X level of exam  category Hierarchical linear .72/.60/.47 10-fold, repeated 1
system, survey score regression (R2 = 20 times
instrument 0.57)
Choi et al., (2018) classroom response - X X level of exam  category Hierarchical linear .73/.60/.47 10-fold, repeated 3
system, survey score regression (R2 = 20 times
instrument 0.57)
Choi et al., (2018) classroom response - X X level of exam  category Hierarchical linear .80/.70/.58 10-fold, repeated 6
system, survey score regression (R2 = 20 times
instrument 0.57)
Choi et al., (2018) classroom response - X X level of exam  category Hierarchical linear .82/.75/.61 10-fold, repeated 9
system, survey score regression (R2 = 20 times
instrument 0.57)
Choi et al., (2018) classroom response - X X level of exam  category Hierarchical linear .82/.75/.61 10-fold, repeated 12
system, survey score regression (R2 = 20 times
instrument 0.57)
Choi et al., (2018) classroom response - X X pass or fail category (binary) Hierarchical logis- .72/.44/.45 10-fold, repeated 1

system, survey
instrument

tic regression
(RMSE=0.89)

20 times
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Table 1 (continued)

Predictors Outcome
Authors Data sources Demographic Static/ Behavioral Variable Level Algorithm Performance Cross-validation ~ Observed
baseline measures (Weeks)
(accuracy / preci-
sion / specificity)

Choi et al., (2018) classroom response - X X pass or fail category (binary) Hierarchical logis- .73/.49/.47 10-fold, repeated 3
system, survey tic regression 20 times
instrument (RMSE=0.89)

Choi et al., (2018) classroom response - X X pass or fail category (binary) Hierarchical logis- .80/.58/.60 10-fold, repeated 6
system, survey tic regression 20 times
instrument (RMSE=0.89)

Choi et al., (2018) classroom response - X X pass or fail category (binary) Hierarchical logis- .82/.63/.66 10-fold, repeated 9
system, survey tic regression 20 times
instrument (RMSE=0.89)

Choi et al., (2018) classroom response - X X pass or fail category (binary) Hierarchical logis- .82/.63/.66 10-fold, repeated 12
system, survey tic regression 20 times
instrument (RMSE=0.89)

Cooper & Pearson student information race X - safe or at-risk  category (binary) Neural network .83/.76/- genetic optimiza- -

(2012) database tion, leave-
one-out Cross
validation

Culver (2014) student information gender, race, X - final grade category Logistic regression .62/-/- not provided -
system, math assess-  diploma type,
ment and college years since
student inventory high school
form

Cummings (2009) university database age, gender, X - course grade  successful vs. not Logistic regression .72/.89/.96 not provided -

number of successful
semesters at
college
D’Aloisio (2016) survey instruments gender, high X - final average  continuous Multiple regression -/-/- not provided 15
school GPA, score (R2=0.44)
number of
hours per
week spent on
mathematics
Das (2009) survey - - - midterm grade category Multiple regression -/-/- not provided 6
R2=0.17)

Das (2009) survey - X - midterm grade category Logistic regression .87/-/- not provided 6

Davidson (2017) student information age, gender, X - successful vs.  category (binary) Logistic regression .65/-/- not provided -
system ethnicity not successful
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Table 1 (continued)

Predictors Outcome
Authors Data sources Demographic Static/ Behavioral Variable Level Algorithm Performance Cross-validation ~ Observed
baseline measures (Weeks)
(accuracy / preci-
sion / specificity)
Davidson (2017) student information age, gender, X - successful vs.  category (binary) Logistic regression .81/-/- not provided -
system ethnicity not
successful
Davidson (2017) student information age, gender, X - successful vs.  category (binary) Logistic regression .85/-/- not provided -
system ethnicity not
successful
Davidson (2017) student information age, gender, X - successful vs.  category (binary) Logistic regression .80/-/- not provided -
system ethnicity not
successful
Fogle (2016) archival records age, gender, and X - final grade category (binary) Logistic regression -/-/- not provided -
ethnicity (R2 =0.30)
Fountain (2016) survey instruments, gender, race/ - - cor higher vs. category (binary) Logistic regression .85/-/- not provided -
class records ethnicity, age, lower
enrollment
status, student
and online
experience
Goad (2018) survey instruments - X - completing or  category (binary) Logistic regression .73/-/- not provided 2
not
Goosen (2008) - age, gender, and X - exit examina-  continuous Stepwise multiple ~ -/-/- not provided -
ethnicity tion score regression (R2 =
0.13)
Gorvine & Smith survey instruments attitudes - - percentage continuous Hierarchical -/-I- not provided -
(2015) towards group points regression analy-
work and sis (R2 = 0.06)
statistics
Gultice et al., (2015)  survey instruments age, hours X - pass or fail category (binary) Logistic regression .82/.64/.91 10-fold stratified, 1
earned/carried ten repetitions
Hauser, (2016) academic services age, gender, - - final grade category (binary) Logistic regression .83/-/- not provided -
ethnicity,

prior online
course experi-
ence, and
enrollment
status during
the semester
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Table 1 (continued)

Predictors Outcome
Authors Data sources Demographic Static/ Behavioral Variable Level Algorithm Performance Cross-validation ~ Observed
baseline measures (Weeks)
(accuracy / preci-
sion / specificity)
Junco & Clem (2015) CourseSmart eText- gender, race, X X final score continuous Blocked linear -/-1- Not provided 16
book, university ethnicity regression (R2 =
records 0.24)
Kotsiantis et al., LMS logs registrar - - X pass or fail category (binary) C4.5 (decision . 82/-1- 10-fold, rep- 11
(2013) tree) etition not
provided
Lee (2016) ToOLS assessment - X - successful vs.  category (binary) Nested regression  -/-/- not provided -
not success- (R2 =045)
ful
Lee & Kizilcec student administrative  Gender, first- X - a course grade category (binary) Random Forest 0.73/-/- - -
(2020) data generation at/ above (F-score=.80)
status, racial- course
ethnic group median
grade vs. not
McFate & Olmsted not reported - X - completing or  category (binary) Correlational -/-1- Not provided 1
III (1999) not analysis (R2 =
0.82)
Morrison & Schmit - X - successful vs.  category (binary) Logistic regression -/-/- Not provided -
(2010) not success- (R2 =0.31)
ful
O’Connell et al., - pell eligible, X X course grade  discrete grades Multiple regression .58/-/- best-subsets -
(2018) race, com- (a-f) model selection
pleted hours
O’Connell et al., - Pell eligible, X X pass or fail category (binary) Logistic regression .47/-/- best-subsets -
(2018) race, com- model selection
pleted hours
Ornelas & Ordonez ~ LMS, college database - X X successful vs.  category (binary) Naive Bayes .94/.92/.95 training and 16
(2017) at-risk validation set
(60 and 40 %,
respectively)
Rayno (2010) archival records age, gender, and X - pass or fail category (binary) Logistic regression .81/-/- not provided -
ethnicity
Romero et al., (2010) LMS logs and data- - - X final grade category Decision Tree .66/-/- 10-fold stratified, -
base (CART) ten repetitions
Romero et al., (2010) LMS logs and data- - - X final grade category Decision Tree .65/-/- 10-fold stratified, -
base (C.45) ten repetitions
Romero et al., (2010) LMS logs and data- - - X final grade category Rule Induction .65/-/- 10-fold stratified, -

base

ten repetitions
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Table 1 (continued)

Predictors Outcome
Authors Data sources Demographic Static/ Behavioral Variable Level Algorithm Performance Cross-validation ~ Observed
baseline measures (Weeks)
(accuracy / preci-
sion / specificity)
Sagqr et al., (2017) LMS - X X final grade continuous (0 to  Automatic linear .64/.54/- Not provided 6
100) modeling (ALM)
Sagqr et al., (2017) LMS - X X safe or at-risk  category (binary) Binary logistic 81/-/- Not provided 6
regression (R2 =
0.77)
Smith et al., (2012)  LMS logs, registrar - X X risk of failing  category (warn-  Naive Bayes 70 in Low, 54 Random sub- -
ing levels: low, in Moder- sampling,
moderate, high) ate, 34 in the repeated ten
High warning times
group/-/-
Williams (2019) VitalSource - - X final grade category Multiple regression -/-/- not provided 8
(R2=0.15)
Williams (2019) VitalSource - - X average test continuous Multiple regression -/-/- not provided 8
score (R2=0.10)
Wolff et al., (2013) virtual learning envi-  used in the X X pass or fail category (binary) Decision trees F=[0.61,0.94], 10-fold, repeti- 1 period
ronment, registrar model, but not tested at the tions data not between
reported three different provided Tutor
assessment marked
submission Assess-
points ments
Xing, Guo, Petakovic, CSCL environment; - - X course perfor-  category (five- Genetic Program-  .80/.80/- 10-fold, repeated -
& Goggins (2015) event logs mance point scale) ming ten times
You (2016) LMS - - X final score continuous (0 to  Hierarchical .69/-/- Not provided 8
100) regression analy-
sis (R2=.32)
Yu et al., (2020) institutional data gender, and X short-term category (binary) - .62/-/- (FPR=.47, course-level 8
transfer, success FNR=.30) leave- one-
income, first (final course group-out cross
generation grade above validation
and URM the class
status median vs.
not)
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SPOY13|\ YD1easay Joireyag



128unidg @

Table 1 (continued)

Predictors Outcome
Authors Data sources Demographic Static/ Behavioral Variable Level Algorithm Performance Cross-validation ~ Observed
baseline measures (Weeks)
(accuracy / preci-
sion / specificity)
Yu et al., (2020) Canvas LMS log data X short-term category (binary) - .60/-/- (FPR=.48, course-level 8
success FNR=.31) leave- one-
(final course group-out cross
grade above validation
the class
median vs.
not)
Yu et al., (2020) survey data X short-term category (binary) - .53/-/-/(FPR=.60, course-level 8
success FNR=.34) leave- one-
(final course group-out cross
grade above validation
the class
median vs.
not)
Yu et al., (2020) institutional data and ~ gender, and X X short-term category (binary) - .67/-/-(FPR=.35, course-level 8
Canvas LMS log transfer, success FNR=.31) leave- one-
data income, first (final course group-out cross
generation grade above validation
and URM the class
status median vs.
not)
Yu et al., (2020) institutional data and  gender, and X - short-term category (binary) - .63/-/-(FPR=.40, course-level 8
survey data transfer, success FNR=.34) leave- one-
income, first (final course group-out cross
generation grade above validation
and URM the class
status median vs.
not)
Yu et al., (2020) Canvas LMS log data X X short-term category (binary) - .61/-/-(FPR=.43, course-level 8
and survey data success FNR=.35) leave- one-
(final course group-out cross
grade above validation

the class
median vs.
not)
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Table 1 (continued)

Predictors Outcome
Authors Data sources Demographic Static/ Behavioral Variable Level Algorithm Performance Cross-validation ~ Observed
baseline measures (Weeks)
(accuracy / preci-
sion / specificity)
Yu et al., (2020) institutional data, Can- gender, and X X short-term category (binary) - .67/-/-(FPR=.35, course-level 8
vas LMS log data, transfer, success FNR=.30) leave- one-
and survey data income, first (final course group-out cross
generation grade above validation
and URM the class
status median vs.
not)
Zabriskie et al., (2019) institutional records gender, in-state, X - b or less/more  category (binary) Random Forest 68/-/- training and test 1
and classes URM, First set (62 and 38
Generation %, respectively)
Zabriskie et al., (2019) institutional records gender, in-state, X - b or less/more  category (binary) Logistic regression .73, .81 (two training and test 1

Zacharis (2015)

Zacharis (2018)

and classes

LMS

LMS logs, registrar

URM, First
Generation

failed/did not
fail

pass or fail

category (binary)

category (binary)

Logistic regression

Decision tree

courses)/-/-

.81/.70/.87

.99/.98/1

set (62 and 38
%, respectively)
10-fold, repeated
ten times
training and test
set (70-30%)

SPOY13|\ YD1easay Joireyag
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Behavioral (time-varying) variables

Behavioral trace data can be collected from usage logs from
digital course resources (i.e., usually LMS and textbook
companion sites) and provide a record of learning events
that are theorized to predict, but are also orthogonal to, sum-
mative performance data (Bernacki et al., 2020). Examples
of these behaviors are views, downloads, assignment sub-
missions and forum contributions (e.g., Kotsiantis, Tselios,
Filippidi, & Komis, 2013; Smith, Lange, & Huston, 2012;
Zacharis, 2015; Bernacki et al., 2020), clicker responses
in the classroom response system (Choi et al., 2018), and
number of clicks in a virtual learning environment (Wolff
et al., 2013).

Of the 82 predictive models reviewed in Table 1, 29
models made use of only behavioral predictors. For usage
logs to be of use in predicting student success, theoretically
aligned features need to be generated. In other words, in its
raw form, user log data are messy and may not immediately
confer meaningful measurement of behaviors. A typical user
log consists of a timestamp along with an action taken (e.g.,
clicks, inputs of values into fields, page visits, and selections
of dropdown menus). These user logs must be converted into
a data type that can be modeled and makes theoretical sense.
In one study where students were completing online courses
through a learning environment, researchers explored the
timeframe of learning environment access by creating a fea-
ture that indicated whether a student accessed the environ-
ment in the first n days of the course and how many days, d,
it had been since last access on day n (Baker et al., 2015).
This study also made use of performance on course exer-
cises. Another study explored in-class features by aggregat-
ing weekly attendance to calculate the cumulative attendance
rate along with cumulative in-class test scores (Choi et al.,
2018). Other models also used weekly aggregation to arrive
at features. For example, to create a feature, the number of
discussion posts was aggregated weekly and then averaged
for each individual to create a feature. Another example is
getting a total count of messages that a student sent to the
instructor (Barber & Sharkey, 2012).

Ultimately, methods for mapping captured events to a fea-
ture space should depend on the goals of a project. Important
to the process of feature mapping is the use of metadata.
Metadata helps researchers to be more specific about the
behaviors under observation. For example, knowing that a
student completed a download at three different timestamps
may hold little predictive value. However, a download can
be elaborated with metadata about the alignment of the
timestamp to the semester and the annotation of the objects
accessed to provide a human readable name that affords
interpretation. One might thus be able to make more mean-
ing from an event reflecting the download of a syllabus in the
first week of the semester, as compared to observing a "file
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download” event by a student on a specific date that is not
understood as relevant to the academic context. In particular,
we suggest researchers consider creating features from meta-
data that considers course content, behavioral specificity,
and timeframe in which an action was completed. For exam-
ple, if researchers or educators believe actions in particu-
lar course chapters or units hold differing predictive value,
researchers may want to create features that break down page
visits by course unit. Furthermore, the type of page visited
in a given unit might hold importance. For example, a page
visit to a practice test may be more predictive than a page
visit to an additional reading. Further, researchers can iso-
late page visits to a particular time frame, such as 2 weeks
before an exam. This feature can then defined be as number
of downloads of a practice test 2 weeks prior to the exam.
Another example is to dichotomize the feature to whether
or not a student visited the practice test page 2 weeks prior
to the exam. We provide more detail of feature examples
with varying specificity, granularity, and timeframes in our
presentation of the empirical example.

Ethics in the use of LMS data for model
building

One problem with approaching analysis with data-driven
methods is that data science perspectives are often believed
to be purely neutral and objective. This belief hides the
reality that educational data mining (EDM) carries with it
opportunity for threats to privacy as well as discrimination.
It also involves a set of decisions that need to be documented
and expressed to other researchers. The development of
data-driven models to predict student success creates the
potential for a number of well-intentioned but poorly rea-
soned decisions that can negatively impact the very students
such models are meant to benefit. Negative impacts can arise
from decisions regarding the privacy of student data, the col-
lection of representative data sets from which models could
be developed, the access to data describing learners and their
actions, and the implementation of models that may perform
inequitably for student subpopulations. New documents are
now emerging in an effort to provide guidance to analysts
who wish to develop models that can predict student success
(e.g., Seldon, Lucking, Lakhani, & Clement-Jones, 2020),
and we highlight two key elements that warrant considera-
tion: privacy and use of demographic data.

Privacy

Trace internet behaviors are used by many industries
towards goals such as: predicting likelihood of purchase,
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modeling political opinion-formation processes, following
the spread of emotion “contagions” using social media
data (Kaschesky & Riedl, 2011; Kramer, Guillory, &
Hancock, 2014), and describing information flow using
internet chain-letters (Liben-Nowell & Kleinberg, 2008).
In these cases, there may be little to no expectation of
privacy. For instance, when a user is navigating a store’s
website, it is understood that the owner of that website will
have access to their behaviors. The consent to use their
data is implied by simply using the website, and due in
no small part to that implied consent, internet behavioral
tracking has emerged as a major asset in modern capital-
ism (Zuboff, 2015). Individuals have become comfortable
trading aspects of their internet privacy for the benefits
and conveniences brought by these services (Silverman,
2017). Such trade-offs are more complicated in higher
education, and because of that, the writers of the Institute
for Ethical Al in Education Interim Report (Seldon et al.,
2020) argued data mining should not only follow a legal
framework but also provide a clear benefit to students,
have designated spaces without surveillance, and ensure
that the collection of any health data have justification for
how it helps educational purposes.

Despite the regularity and acceptance of gathering digi-
tal trace behaviors in other real-world contexts, the mere
acquisition of such data can be intrusive and unexpected
in the educational setting. The merging of data sets across
multiple institutions has caused concern (Singer, 2014),
as has the use of data even within one institute but across
different data systems (Parry, 2012). Thus, whereas stu-
dents may have accepted foregoing privacy when utilizing
the internet for activities such as social media interactions
and online shopping, the expectation for privacy may be
greater when engaging in educational activities using
LMS, particularly given students often have little recourse
or knowledge in regard to their personal data management
(Jerome, 2013; Tene & Polonetsky, 2013; Rubel & Jones,
2016). Many students rarely know what data are actu-
ally gathered about them and to what ends it may be used
(Richards & King, 2013).

Many themes that we considered in this discussion are
focal in the prediction modeling literature we reviewed,
yet the authors of those papers did not focus on privacy
as an issue. This may be due, in part, from prior research
where researchers primarily studied deidentified data and
archival data. In more recent years, a focus on data own-
ership and the importance of respecting student privacy
has become a focal issue in learning analytics (Prinsloo
& Slade, 2017; Zeide, 2017) especially in circumstances
where data are collected in real time from multiple data
systems and where ownership of and access to such data
fall under the governance of university policies informed
by local and national laws.

Demographics

Student demographics relate to various outcomes of suc-
cess in STEM disciplines. In STEM disciplines, fewer than
25% of underrepresented students, such as Latinx/Hispanic
and African-American students, complete their stated major
within 6 years (Eagan, Hurtado, & Chang, 2010). Despite
this low completion rate, students from these historically
underrepresented groups arrive at United States colleges and
universities with equivalent amounts of interest and excite-
ment in STEM as their peers, yet are significantly less likely
to persist in STEM majors (Maton, Pollard, McDougall
Weise, & Hrabowski, 2012), suggesting that barriers along
the way may impede progress for these students.

Likewise, recent data shows that first-generation col-
lege students (FGCSs), defined as students who enrolled in
postsecondary education, but whose parents had no such
experience, are far less likely to graduate with a bachelor’s
degree than their continuing generation peers (i.e., one or
more parents with postsecondary experience; Permzadian
& Credé, 2016; Redford & Mulvaney Hoyer, 2017). Indeed,
nearly 90% of FGCSs in the United States do not graduate
within 6 years of enrollment (Saenz, Hurtado, Barrera, Wollf,
& Yeung, 1971).

Demographic variables may have some utility in explain-
ing differential outcomes, but caution must be made when
including these variables as features in predictive models.
First, the use of demographic data has the potential for per-
petuating prejudices (Tene & Polonetsky, 2013). Second, a
student’s demographic variables have limited practical utility
as they are immutable characteristics that cannot serve as
targets for intervention (i.e., one’s age, racial, and cultural
affiliations are fixed, personal-level characteristics). There
also is the possibility that additional data that characterize
students’ engagement during learning subsume demographic
variables once they are added to models. An opposite out-
come is also possible, where demographic variables explain
a high degree of variability in the outcome measure that
results in the removal of changeable behavioral variables
in the prediction model. This might wash out important
behaviors that occur across specific demographic categories,
thus limiting utility in gaining insights from data. Third, the
richness of the behavioral data should suffice. The difficul-
ties specific populations have in academic arenas are not a
direct result of their demographic background but rather are
a function of their behaviors and societal biases or pressures.
Taken together, the inclusion of demographic variables may
interfere with the usefulness of the behavioral models.

This is not to say that demographic data should be
ignored or not used at all in prediction modeling. Rather, it
is vital that demographics be used in a very specific and nar-
row way: to ensure equitable prediction across demographic
categories. The predictive model must predict individuals

@ Springer



Behavior Research Methods

across racial/ethnic, gender, and generation status equally
well (Bernacki et al., 2020). Teachers and researchers need
to make sure that representation exists across all categories
to ensure that the resulting predictions serve all students
rather than unintentionally exclude certain populations from
potential interventions (Slade & Tait, 2019). At present,
this approach to the analysis of demographic/student back-
ground characteristics is not the norm. Most of the papers
we reviewed above did not assess model accuracy for the
subgroups of students on whom most research and support
efforts in STEM education are focused: women, members
of ethnic minority groups, and first-generation learners are
those underrepresented in the STEM workforce. As two
recent exceptions, Lee and Kizilcec (2020) and Yu et al.
(2020) evaluated model performance in subpopulations of
historically disadvantaged students including women, eth-
nic minorities, students from low-income families and first-
generation college students. The authors found that these
student populations were prone to algorithmic biases across
prediction models. For example, the models overestimated
women’s course success (Yu et al., 2020) and underesti-
mated ethnic minorities’ course success (Lee & Kizilcec,
2020). Hence, the accuracy predictive models obtain hence
needs to reflect those models’ ability to predict the outcome
of a hypothetical student regardless of a demographic sub-
group a student belongs to.

Analytic considerations
Machine learning algorithms

Researchers may not always know the best model to use
to predict student success. It may be unknown which fea-
tures are the best to include, which functional form they
take when relating to the outcome, and if the prediction on
one data set would work equally well for new data. For this
reason, machine learning algorithms are often used to arrive
at a model that provides the best prediction of the outcome
given the features available. Even in the case where there
are strong theoretical reasons for including a variable, such
as those derived from a specific learning theory, machine
learning approaches will likely still offer benefits by select-
ing the variables that optimally predict without overfitting
the model to the data.

It is important to keep in mind the end goal of predic-
tion—which is to predict. Variables that might not be of
substantive interest might end up being very predictive of
outcomes. For example, doing well on the first homework
assignment might, in some cases, be predictive of the distal
outcome of their final grade in the course. There is little
room to intervene here, and this variable might not hold
much substantive relevance to educational learning theories.
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Even when lacking substantive interpretation, it is important
to include these types of predictors if they are ethical and if
they improve the model’s prediction.

The majority of machine learning algorithms used for
the purpose of prediction are considered embedded machine
learning methods. This means that the learning occurs simul-
taneously with feature selection. Commonly used examples
in psychology are decision trees (Breiman, Friedman,
Stone, & Olshen, 1984; Kass, 1980) and regularization
approaches such as Least Absolute Shrinkage Selection
Operator (LASSO; Tibshirani, 1996) and elastic net (Zou &
Hastie, 2005). We focus here on results from one common
approach, elastic net, as this approach is easily interpretable
and thus will aid in discussion of key decisions regarding
feature selection. By using one analytic approach, we can
better highlight the importance of feature manipulation and
selection with a real data example. There are many options
available to researchers and an exhaustive and comprehen-
sive overview is outside the scope of the present paper. We
end this section with a brief synopsis of available methods
with the goal of providing researchers with a set of questions
to ask themselves when choosing a prediction algorithm.

Elastic net is an estimation approach that can be used for
a variety of models. Because most researchers are familiar
with the generalized linear model, here we describe estima-
tion for the simplest case — that of a linear regression. In
practice, researchers may seek to predict the final grade of
an individual on a continuous scale, in which case linear
regression is an appropriate model. Should researchers wish
to predict grade categories such as pass or fail or the letter
grade, logistic or multinomial regression would be better
models to use.

Elastic net

We describe here elastic net from within a regression frame-
work. Assuming an intercept of zero, those familiar with
linear regression will recognize that the cost function that
is minimized is:

N
D= D By M
i=1 J

where the term within the parentheses are the equation
residuals. The goal is to minimize the squared errors. We
start with LASSO as this is the foundation for elastic net. In
LASSO, this cost function is subject to the penalty:
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where ¢ >0 is the tuning parameter that controls the
amount of shrinkage applied to estimates. Simultaneous esti-
mation and variable selection are conducted by minimizing:

N
D= D B+ A 1B 3)
i=1 j J

When 1, =0, the estimates are the same as least square
estimates as there is no penalty. Those familiar with ridge
regression may see some similarities. The difference is that
LASSO uses an /1-norm penalty |3l whereas ridge regres-
sion uses the [2-norm penalty by squaring the term within
the summation on the right 4% Unlike ridge regression, lasso
regression is capable of shrinking some parameters to zero,
thus making it an ideal approach for feature selection in a
data-driven manner.

Elastic net includes both ridge regression and LASSO
penalties by minimizing:

N
200= DB’ +a LB+ A DB )
i=1 j I ;

A benefit of elastic net over LASSO is that, if multiple
variables are correlated, LASSO tends to just choose one
of them. This is opposite what occurs in the case of ridge
regression, where the coefficients of correlated predictors
are shrunk towards each other. For this reason, elastic net
has become the preferred method for simultaneous variable
selection and estimation. Simulation studies have supported
that elastic net outperforms LASSO in terms of recovering
the true effects that relate to the outcome (Ogutu, Schulz-
Streeck, & Piepho, 2012; Waldmann, Mészaros, Gredler,
Fuerst, & Solkner, 2013; Zou & Hastie, 2005).

Other methods to consider

We chose elastic net as our prediction model because it not
only optimizes how many and which features result in the
most predictive model, but it also allows for interpretable
results in the form of regression coefficients that will be
helpful for pedagogical purposes here. There are, however,
many other methods we could have chosen if prediction
was our primary goal and understanding of the relationship
between online behaviors and likelihood of success was
inconsequential. Here, we briefly review popular machine
learning methods for prediction and in which situations they
may be useful.

Popular machine learning methods for classification
problems (i.e., did a person pass or fail?), other than elastic
net, are neural networks, naive bayes, k-nearest neighbors,
decision trees, random forests, and support vector machines
(Kotsiantis, Zaharakis, & Pintelas, 2006; Osisanwo,

Akinsola, Awodele, Hinmikaiye, Olakanmi, & Akinjobi,
2017). That this is a partial list emphasizes the large num-
ber of available machine learning methods. When prediction
is the goal, many researchers simply fit as many models as
possible and determine which one performs best at predic-
tion. Some models, however, may be more useful in different
situations.

Neural networks (McCulloch and Pitts, 1948; Rosenblatt,
1958) are a modeling technique biologically inspired by
the action of neurons in the brain (Rumelhart, Hinton, &
Williams, 1986). Neural networks utilize the nonlinear rela-
tionships underlying a data set to perform classification. A
neural network consists of many “neurons”, nodes, each of
which is a mathematical function similar to regression that
contributes to the classification decision. Neural networks
typically consist of several layers of these nodes, with the
output layer being the classification layer. Similar to regres-
sion, hidden layers, or layers between the input and output
layers apply weights to the input. Weights are optimized in
order to minimize classification error. Neural networks can
be applied to both categorical and continuous predictors and
outcomes and scale well to large sample sizes. Model inter-
pretation, however, is difficult, and is often referred to as a
”black box” (Castelvecchi, 2016) because model parameters
are not inherently interpretable due to overparameterization.
Montavon, Samek, & Miiller (2018) provide methods for
interpreting neural networks.

Decision trees (Breiman et al., 1984; Kass, 1980) are
another popular method. A decision tree consists of a binary
tree where each node has a threshold, determining which
node is next traversed. The final, or terminal, node deter-
mines classification of a case. Decision trees are computa-
tionally fast for small to medium datasets, often accurate,
and can be adapted as a regression tree when the outcome
is continuous. In simple cases, decision trees are useful
for visually understanding how different variables impact
an outcome and provide useful interpretation since the top
nodes in a tree are the most important variables in the clas-
sification process. In cases with many branches, or decisions,
interpretability and accuracy is reduced. Finally, they are
non-linear, allowing for less strong assumptions than regres-
sion techniques, and are potentially less sensitive to outliers
than linear regression methods (Murthy, 1998).

Random forests are an extension of decision trees that use
the concept of bagging (i.e., getting the average model of
several models) to improve model performance (Breiman,
2001). Here, bootstrapping is performed to create decision
trees from many random samples in the training set. Predic-
tion on a new data point is performed by predicting the class
in every decision tree created, then averaging the results to
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determine the final result. Random forests have many of
the same properties as decision trees. They have a lower
sensitivity to outliers, allow for identification of the most
important features, and are computationally efficient. They
improve upon decision trees by reducing overfitting, having
robustness to noise, and improving classification accuracy
(Breiman, 2001). One drawback, however, is that they bias
categorical variables that have many levels (Strobl, Boul-
esteix, Zeileis, & Hothorn, 2007).

Naive Bayes is another simple technique that relies on cal-
culations based on two probabilities, the probability of each
class (y) and the conditional probability (y given x) (Lewis,
1998; Rish & et al. 2001). Naive Bayes, however, comes
with the strong assumption that all x values are independent.
That all x values are independent is unlikely in the context
of LMS behaviors where, according to learning theory, pre-
dictors will likely be dependent on one another. If naive
Bayes, however, works well as a predictive algorithm, and
prediction is the primary goal of the model, researchers may
choose to ignore this assumption. Because of its computa-
tional simplicity, naive Bayes works well with large training
sets and many predictor variables. Additionally, naive Bayes
can be used in multi-class classification problems and works
especially well when the predictor variables are categorical.

K-nearest neighbors (Cover and Hart, 1967) is a technique
where prediction of a new case is determined by summa-
rization of the k nearest cases. In k-nearest neighbors, the
algorithm is used on the entire data set, instead of a training
and test set. Typically, closeness is determined by Euclidean
distance (Zhang, 2016). K-nearest neighbors often requires
dimensionality reduction prior to running the algorithm due
to the difficulty of measuring distance with high numbers
of dimensions (Beyer, Goldstein, Ramakrishnan, & Shaft,
1999).

Support vector machines (SVMs; Cortes & Vapnik, 1995)
are a powerful modeling technique with high accuracy.
SVMs work by finding the hyperplane, which can be linear
or non-linear (e.g., a line in two-dimensional data), that best
separates the data into classes. SVMs are optimized on the
margin between the points closest to the hyperplane, where
larger margins are optimal. SVMs are very efficient at clas-
sifying new data but slower to train than some of the other
methods mentioned here (Cristianini, Shawe-Taylor, & et al.
2000). Additionally, this technique does not make strong
assumptions, unlike regression techniques and naive Bayes,
and typically, does not result in overfitting due to regulari-
zation. One potential drawback, depending on the aims of
the researcher, is that the standard SVM does not shrink
low values to zero. Instead, all variables are included in the
model, meaning that researchers will not have a reduced list
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of predictive variables that could be targeted via interven-
tion. If the aim is selection of relevant variables, regulari-
zation approaches or using regularization on the SVM are
better suited.

Evaluating model performance

Performance measures are an important choice in machine
learning. Again, which metric should be used often depends
on the goal of the research. For example, if misclassifying a
case as a false negative carries greater risk than misclassify-
ing a case as a false positive, one might choose to prioritize
sensitivity over other measures. Relying solely on sensitiv-
ity, however, would result in a model where all individuals
are classified in the positive group, which is not a practical
or useful model. In this section, we review several meas-
ures of model performance and discuss the pros and cons
of using each to choose the best model from a set of fitted
models. Ultimately, one should run several models using
several different performance measures, but choosing among
the models can be aided by prioritizing certain performance
measures over others.

Before discussing the performance measures, we first
define the following terms: true positive (TP), false positive
(FP), true negative (TN), false negative (FN). A true positive
is a case classified as positive that is also positive according
to ground truth. Conversely, a false positive is a case clas-
sified as positive that is negative according to ground truth.
For example, a student classified as being at risk for a lower
grade who actually performed well in the course would be a
false positive. Similarly, true negatives are cases classified
as negative that are actually negative, and false negatives are
cases classified as negative that are actually positive (i.e., a
student classified as not being at risk for a lower grade who
performs below threshold). Counts of these values factor
into all performance measures we present here, though this
is not an exhaustive list.

Accuracy and misclassification rate

Accuracy is interpreted as the proportion of correct clas-
sifications out of total classifications (Baratloo, Hosseini,
Negida, & El Ashal, 2015). More specifically:

TP + TN s
TP+ TN + FP+ FN )

Accuracy =

Users should be careful about interpreting high accuracy
values with class imbalanced data. In data where there are
few cases of the negative class, a model which predicts all
cases to be in the negative class would achieve high accuracy
but have no predictive value (Longadge & Dongre, 2013).

Misclassification rate, however, is the proportion of incor-
rect classifications out of total classifications.
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Misclassification = FP+FN (6)
TP+ TN + FP+ FN

Care should also be taken in interpreting misclassification
rate with class imbalanced data (Krzanowski, 2005).

Sensitivity and specificity

Sensitivity is defined as the proportion of positive cases cor-
rectly classified as positive. Sensitivity is sometimes also
referred to as recall or the true-positive rate and is defined
in equation form as:

TP

Sensitivity = TP+—F]V

)

Conversely, specificity is the proportion of negative
cases correctly classified as negative. Specificity is some-
times referred to as selectivity or the true negative rate and
is defined in equation form as:

TN

Specificity = 70 Tp

®)

A perfect classification model would have a sensitivity of
100% with a specificity of 100%. Ideally, the chosen model
would balance these two statistics. It would be easy to create
a model with either 100% sensitivity or 100% specificity by
classifying all cases as either positive or negative. However,
this type of model would have no predictive value (Baratloo
et al., 2015). In our work, we do not choose the model based
on sensitivity or specificity because of this issue. We also do
not select models based on misclassification rate because of
the class imbalance issues. We do, however, use accuracy as
a model selection measure in order to have one type of per-
formance measure from this class of performance measures.

Cohen’s kappa

Kappa (Cohen, 1960) is a useful measure for both multiclass
solutions and imbalanced classes, where accuracy can be
misleading (i.e., cases where one class is underrepresented
in the sample). Kappa can be interpreted as a measure of
how well the classifier is performing compared to a model
that just classifies cases at random (Landis & Koch, 1977).
Originally developed as a measure of interrater reliability,
the formula for kappa is:

l_pa

Kk=1-
l_pe

©))

where p,, is the accuracy (i.e., agreement between ground
truth and classifier) and p, is the expected agreement (i.e.,
accuracy if model classifies at random). The highest possible
value of kappa is 1, where 1 represents perfect classification.

Cutoffs have been provided by Landis and Koch (1977),
where 0-0.20 is slight agreement, 0.21-0.40 is fair agree-
ment, 0.41-0.60 is moderate agreement, 0.61-0.80 is sub-
stantial agreement, and 0.81-1 is almost perfect agreement.
A negative value would indicate that the classification model
is worse than random.

AUC-ROC

The area under the receiver-operator characteristic curve
(AUC-ROC; Melo, 2013) is a measure that balances the
previously defined false- and true-positive rates. The ROC
is a curve where the false-positive rate is plotted on the
x-axis, and the true-positive rate is plotted on the y-axis.
By exploring the ROC, one can determine how an increase
in false-positives determines an increase in true-positives,
the goal being to determine the probability of true positives
at different thresholds of false positives. For example, we
could have a true-positive rate of 100%, but in doing so, we
would also have a false-positive rate of 100%. The AUC is
the area under the ROC and ranges from 0.5 to 1. The closer
the AUC is to 1, the better the model is at reducing both
false-positives and false-negatives.

Algorithmic fairness

In addition to using these measures of model performance
to assess overall model performance, we also suggest using
these measures to explore model performance among sub-
groups within one’s dataset to determine if the model is per-
forming equitably among these subgroups. Kizilcec et al.
(2021) described three definitions of algorithmic fairness
across groups: independence, separation, and sufficiency.
Independence means that algorithmic decisions should be
independent of group status. To meet independence, the pro-
portion of individuals predicted to be in the positive class
should be equal across groups. Separation means that the
algorithmic decisions should be independent of group sta-
tus, conditional on true predictions. That is, true-positive
(sensitivity) and false-positive rates should be equal across
groups. Under sufficiency, the proportion predicted to be in
the positive class for a given group should equal the pro-
portion that is actually in the positive class. Kizilcec and
Lee (2021) described sufficiency as a “weak” guarantee of
algorithmic fairness.

Oversampling

Oversampling is used when one of the outcome categories is
much larger than the other, such as when researchers would
like to increase the weight of the smaller population. In data
where one of the predictive categories is rare, it is possible
that machine learning approaches return models where all
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individuals are assigned to one class, resulting in either high
specificity with poor sensitivity or poor specificity with high
sensitivity. If the sample is balanced, it is likely that over-
sampling is not necessary. As with the above analytic over-
views, we do not intend this review to be exhaustive - rather,
we sought to provide researchers with enough understand-
ing to know how to consider emerging approaches. When
using any oversampling method, oversampling should only
be completed on the training set and not the entire data set.
If oversampling is completed on the entire set, synthetic data
points that are already in the training set may also be cre-
ated in the test set, potentially leading to overfitting (Kovécs,
2019).

Random oversampling is a *naive’ oversampling method
in which random cases from the minority class are dupli-
cated in the training set (Ling & Li, 1998). Because the data
is being duplicated in the training set, it is possible this tech-
nique leads to overfitting of the minority class (i.e., model
performance is better in the training set but worse in the
test set because the model is being fit to data with a larger
n in the smaller class than actually exists). When using this
method, we recommend comparing the performance of the
model obtained from oversampled data to the original data
in both the training and the test set to determine if overfitting
is an issue (Japkowicz & et al. 2000).

Synthetic Minority Oversampling TEchnique (SMOTe;
Chawla, Bowyer, Hall, & Kegelmeyer, 2002) is one of the
most commonly used methods for oversampling data where
at least one of the predictor or outcome categories is under-
represented. With SMOTe, overfitting is still possible but
less likely than with random oversampling because SMOTe
is not simply duplicating existing data. SMOTe creates new,
synthetic data points using information from existing data
points in the underrepresented categories. Conceptually,
SMOTe creates new, synthetic data points between existing
real data points in the minority class. This is done by creat-
ing a vector between k-nearest neighbors of each minority
data point and generating synthetic data points on these vec-
tors. There are two tuning parameters for SMOTe, k and n.
K is the number of neighbors to connect to each data point,
and n is the number of times to duplicate that data point. In
R (Torgo & Torgo, 2013), the default for & is five nearest
neighbors. Additionally, the minority class is oversampled
at a rate of 200% and the majority class is undersampled at
arate of 200%.

Empirical example
Here, we use an empirical example to illustrate the ideas

and recommendations presented above. After selecting
a model, oversampling, and evaluation methods, we can
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proceed with a feature selection process that is guided
by learning so that our model can be both predictive of
learning outcomes and potentially informative for a future
intervention effort. For our empirical example, data were
collected from students across multiple sections and
semesters of an introductory biology course. All course
sections utilized the same syllabus and LMS course site
designs. Course instructors employed flipped classroom
(i.e., students address topic content and assignments before
the related class session) and active-learning (i.e., in-class
individual and group activities and formative assessments)
pedagogies delivered via a blended learning format (i.e.,
online resources and assignments coupled with in-person
instruction). For each of 24 topic lessons, students were
tasked with completing guided reading assignments and
an online homework module before the related class ses-
sion where formative assessment questions are interwoven
into lecture presentations. Additionally, a prior knowledge
assessment on the first day of class, seven multi-topic
quizzes, three unit midterm exams, and a cumulative final
exam were administered. Our behavioral data came from
multiple sources: (1) LMS interactions; (2) use of the text-
book publisher’s online assignment platform; (3) use of
the course section’s forum site; (4) attendance logs for
instructor office hours; (5) use of peer mentoring, and (6)
use of learning center services. Any time a student took
an action such as submitting assignments, downloading
documents, clicking links to external websites, creating
or replying to forum posts, or scheduling office hours, a
timestamped log entry was created. Static data consisted of
institutional data about the learner including demographic
information and prior performance (i.e., not used in the
model) and gradebook data about their performance in the
course (i.e., used to produce the criterion variable.)

In its raw form, the data represent individual actions
to access a single piece of content, respond to a single
interactive exercise, or to subscribe to a single service.
These events may afford predictive power in isolation, but
they are voluminous to consider, and the specific combina-
tion of these very fine-grained events that are predictive
for one sample may be less apt to retain their predictive
accuracy when applied to future samples. Thus, we rely
upon our understanding of the learning context and the
instructional design intentions that motivated the provi-
sion of these resources to guide our feature engineering.
That is, we aggregate events involving like objects into
classes of resource type use, and where possible, tag these
with the learning processes those objects were designed to
afford. For this example, we utilize data collected during
one semester of an introductory level course to provide
concrete illustration of the types of features one might
have access to from LMS trace data. We also leverage this
data to demonstrate the differential predictive ability that
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behaviors can have based on how researchers choose to
quantify and code them.

Feature generation

As discussed in our earlier section on predictor variables,
an important aspect of feature generation from trace data is
deciding how to create predictive and theoretically mean-
ingful features from raw user log data. We use this example
to illustrate the many decisions involved. Specifically, we
discuss the window of prediction, the use of counts ver-
sus dichotomous features, aggregation across time, and the
specificity of course unit metadata. We do not go into detail
regarding the data themselves as these are highly specific
to the course and instructors. Thus, they may have lim-
ited generalizability. The process we use here, however, is
generalizable.

Window of prediction

Like most decisions we discuss here, deciding which actions
to extract from user logs depends on the research question.
In many studies where researchers aimed to develop pre-
diction models, researchers used the first 6 weeks of data,
but there was also substantial variance in that range, with
some studies limiting data collection down to the first
week, whereas others continued data collection through-
out a 16-week semester. If the goal is to implement a mid-
semester intervention aimed at identifying students who are
less likely to succeed, modeling the whole semester of data
would not be useful. A better decision would be to model
the early weeks of the course to provide a sufficiently timely
prediction and to preserve an opportunity to intervene before
an assessment that is critical to succeeding in a course. In
the current study, we sought to build a model that produced
an accurate prediction with time to intervene before the very
first assessment in the course and explored using either the
first 3 weeks or the first 4 weeks of the semester in order to
determine if fewer weeks of data retained similar predictive
value to more weeks of data.

Counts versus dichotomous variables

Next, we considered how to code information from our
given window of prediction. In the current study, we coded
variables as counts or dichotomous depending on how
we expected a predictor to relate to the outcome. Specifi-
cally, we considered the type of event that was observed
and whether that event would confer ongoing benefits, or
whether a single instance of the event might be sufficient to
confer benefit, with additional instances providing no clear
advantage to the learner. A common distinction we made
was between access of downloadable content where a single

access would suffice to afford enduring use of a file versus
visits to an interactive object, such as a practice quiz that
afforded repeated self-testing or a forum that afforded ongo-
ing engagement with peers. For this reason, we ran mod-
els containing solely count values and models containing
a mixture of count and dichotomized variables. First, we
categorized event types as best represented as dichotomous
when a single instance made sense and repeated instance did
not, and as continuous when ongoing use afforded ongoing
benefit. Then, we examined a thresholding approach where
use or disuse of a class of resources might serve as a cat-
egorical descriptor of an individual’s approach to learning in
the course. These dichotomous features described a learner
as one who did or did not engage in a variety of events,
and at times provided additional predictive power to mod-
els when provided as candidate features. Some examples of
categorical variables that explained variance over and above
continuous versions included: submitting a forum question,
attending a review session, attending tutoring, meeting with
a writing coach, downloading class 0 lecture notes, submit-
ting guided reading questionnaire at different points in the
semester (GRQ; required homework item) 4, downloading
GRQ 7, submitting a revised GRQ 1, submitting a revised
GRQ 4, saving a GRQ 1, downloading lecture O slides, and
downloading lecture 3 slides. These categorical variables
describe a distinct tendency to engage in a particular behav-
ior, and categorical tendency to engage vs. not engage in a
behavior can be a more important piece of information that a
representation that assumes a linear effect where each addi-
tional engagement in a behavior confers increasing benefit.

Aggregation across time

Similar to our method of aggregating use of similar objects
into counts of access of resources that reflect a theoretically
interpretable learning behavior, we also aggregated events
into contextually meaningful periods of time in which they
occurred. That is, university courses are often organized into
content units, and those units are further broken down into
activities that conform to a weekly rhythm where students
engage with a prescribed set of content in each semester
week. Thus, we considered whether individuals’ summa-
tive effort through the prediction window would predict
their performance and whether disaggregating such effort
into semester weeks might further decompose variance in
the timing of these events in ways that provide additional
predictive power. If we are looking at the first 4 weeks of
data, do we want to get a count of each action for each week
or a count that aggregates across the entire 3-week time
period? If there is reason to believe that week 1 behavior
would be differentially predictive than week 3 behavior, it
would make sense to aggregate on a weekly basis rather than
across all 3 weeks. We might hypothesize that a download of
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the syllabus in the first week of a course might be positively
associated with strong performance in a course, whereas the
same download conducted in the third week of the course
might be minimally or even negatively associated with per-
formance. If, however, parsimony is important and break-
ing the data down by week is not expected to add much
value, simply aggregating across the entire 3-week period
may be preferred. We explored both methods of aggregation
along with the combination of both methods of aggregation
to determine which led to better prediction in the current
data set.

Specificity of features

As mentioned in the section on predictor variables, behaviors
can be coded at varying levels of specificity. A researcher
can choose to create features with behaviors as broad as a
download of any resource to as specific as a download of
Unit 3 lecture materials (in our course, topics were sepa-
rated into units). We explored the use of features with three
levels of specificity: (1) unit-specific; (2) common events;
and (3) theory-driven behaviors (i.e., a further aggregation
of common events that are consistently reflective of a learn-
ing strategy).

Unit-specific events tie the action to the content being
learned. Thus, there can be a downloading lecture slides
feature for each unit in the course, forum contribution for
each unit in the course, and so on. A common event is an
event that summarizes the use of a particular learning object
type (e.g., access a course outline), and ignores the specific
topic to which it pertains (e.g., chapter 3). Other examples of
common events are downloading lecture slides, contributing
to a forum, or completing a quiz. Finally, researchers can
look to theory to guide how trace data can be transformed
into useful features. Within the scholarship on STEM learn-
ing, researchers have often turned to self-regulated learning
(SRL; Greene, Deekens, Copeland, & Yu, 2018; Hadwin,
Jarveld, & Miller, 2011) theory to understand and intervene
upon student behaviors. The primary tenets of SRL theory
(e.g., course success requires students’ active and thought-
ful pursuit of learning goals and such pursuit requires self-
knowledge and the ability to monitor learning and adjust
as needed; Pintrich, 2000) can be used to create predictive
features. For example, syllabus access can indicate student
identification of learning goals, students’ views of and
responses to quiz feedback can indicate monitoring, and
particular contingencies among behaviors (e.g., monitoring
learning by accessing feedback and then adjusting learning
by rereading sections of a course text) can be used to infer
the kinds of adaptations that indicate effective self-regu-
lation and higher likelihood of student success (Bernacki,
2018; Binbasaran Tuysuzoglu & Greene, 2015).
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Analysis

Each feature set was split into a training set (75% of obser-
vations =265 students) and a test set (25% of observations
=88 students). Logistic regression with elastic net penalty
was then applied to each data set to predict outcomes on
Exam 4, a summative final exam that serves as a criterion
variable representing mastery of topics covered throughout
the semester. Each outcome was binarized using a "C+”
threshold. A score greater than or equal to 80 was above a
”C+"” (per syllabus) and coded O here, while scores lower
than 80 were considered ”C+ and below” and coded 1. This
grade was chosen as it serves as a pragmatic discriminator
where those who tend to earn grades in the A to B range
move forward in their program of study, whereas those who
earn grades in the C range or worse often repeat the course,
either as a requirement of their degree program, or because
future employers or degree programs require an A or a B for
acceptance into jobs or programs.

All predictors in the test and train sets were standardized
separately by mean-centering and dividing by the standard
deviation. Tenfold cross-validation was used to identify the
best regularization/model hyperparameters. Three different
sampling techniques were used: no oversampling, random
oversampling, and SMOTe. Additionally, each analysis was
conducted choosing the best model on either accuracy or
Cohen’s kappa. In total, 132 models were run. An ANOVA
with all main effects and relevant two-way interactions was
run to compare the kappa value of each model. We chose to
look at kappa values to assess model performance regardless
of the performance measure used in model selection during
the model building stage. In addition to obtaining the accu-
racy, kappa, and sensitivity for each model, we also report
performance measures across first-generation status, minor-
ity status, gender, honors student status, student’s major, and
course section to determine the level of algorithmic fair-
ness across groups. We also report additional statistics on
independence (proportion of each group predicted to be in
positive class) and separation (false-positive rates) as sug-
gested by Kizilcec et al. (2021). Important to note is that
the models with dichotomous variables only included unit-
specific features. Including common features would result
in the same results.

Results
Comparison of models

An ANOVA with all main effects and a two-way interaction
between specificity of feature and method of aggregation
was completed to uncover differences in kappa depending on
model performance measure, oversampling method, window
of prediction, specificity of feature, whether some variables
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Table2 ANOVA comparing kappa values of models

Df SumSq MeanSq F-value Pr(>F)

Model Perf. Eval. 1 0.00 0.00 0.44 0.508
Oversampling Method 2 0.01 0.01 242 0.093
Window of Prediction 1 0.01 0.01 4.12 0.045%*
Specificity of Feature 2 005 0.03 9.41 <0.001#**
Aggregation Method 2 031 0.16 58.58  <0.001#**
Dichotomized 1 0.00 0.00 1.58 0.212
Specificity of Feature: 3 0.04 0.01 5.24 0.002%*
Aggregation Method
Residuals 119 0.32 0.00

Results indicate that the window of prediction, the specificity of the
feature, the aggregation method, and the interaction of feature speci-
ficity and aggregation method were significantly associated with
model kappa. Signif. codes: 0'##%0.001%0.01%0.05.

were dichotomized, and aggregation method. The single
two-way interaction was included based on a preliminary
model of only main effects. Results from the ANOVA are
reported in Table 2.

Results indicate statistically significant relations between
the kappa value of the models run and the main effects of
window of prediction (p < .05), specificity of feature (p <

.01), and method of aggregation (p < .001). Additionally,
there was a statistically significant interaction effect between
specificity of feature and aggregation method (p < .01). Type
of performance measure (p = .51) and whether or not some
variables were dichotomized (p = .21) were not statistically
significant predictors.

A heatmap in Fig. 1 shows differences in Cohen’s kappa
depending on model specifications. Models with common
event features aggregated weekly across 3 weeks of data
and with either no oversampling or SMOTe oversampling
performed best according to kappa. Models with non-dichot-
omized, unit-specific features aggregated across a 4-week
period and using SMOTe oversampling performed the most
poorly. Overall, the models where the features were common
events appeared to be the highest performing. Additionally,
weekly aggregation in this sample provided better perfor-
mance with aggregation across the entire 3 or 4-week period
performing more poorly, indicating that a more granular
count leads to better model performance.

Winning model

Here, we present results from the winning model. Those
interested in viewing full results from the full set of

Model Kappa by Feature Specificity and Window of Prediction

Window of Prediction
3Weeks

4 Weeks

random oversampling  none smote

Unit-Specific Dichotomized

random oversampling none smote

Unit-Specific

o _
total -
combination = Kappa
o -
total -
combination =

random oversampling  none smote

Common SRL

random oversampling none smote

Feature Specificity

Note. Models with common event features aggregated weekly across 3 weeks of data and with either no oversampling or SMOTe oversampling
performed best according to kappa. Models with non-dichotomized, unit-specific features aggregated across a 4-week period and using SMOTe
oversampling performed the most poorly. Models where the features are common events are the highest performing models. Weekly aggregation
in this sample provided better performance with aggregation across the entire 3- or 4-week period performing more poorly.

Fig. 1 Differences in model kappa according to different model specifications
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models tested can look in the supplemental materials at
https://osf.io/mj4ah/. The model we present here worked
best in all scenarios and for our objectives of having a pre-
dictable and interpretable model. This winning model used
data from the first 4 weeks of the semester. No oversam-
pling was completed, and the performance measure was
accuracy. Unit-specific feature types, aggregated across
both the entire 4-week period and by each week, were
used in the model. No counts were dichotomized, and there
were a total of 139 potential features.

Model prediction performance The overall best-performing
model achieved an accuracy of 0.75, a Cohen’s kappa of
0.49, a sensitivity of 0.74 , and an AUC-ROC of 0.75. In
other words, the model was successful in classifying 75% of
students into classes based on prediction of their earning of
a C+ or worse or a B- or better on a final exam. The model
performed 49% better than a model that would have classi-
fied all students as C+ or worse earners (i.e., assigning this
label to all cases based on it being the more populous class).
Most importantly, for the purposes of prediction, a sensitiv-
ity of 0.74 means that the model successfully identified 3 out
of 4 students who would ultimately earn a C+ or worse on a
final exam, using only those data gathered prior to the first
unit exam. The model thus provides an accurate prediction
at a timely moment when these students could be provided
with learning support that could help them avoid having
to repeat the course due to earning a C+ or worse on an
early exam that contributes substantially to their final grade
and which can delay or derail STEM degree attainment and
workforce entry. Group distributions and model performance
metrics for each group can be found in Table 3.

Model equity performance There was variability in model
accuracy and kappa across subgroups. That said, except for
first-generation students, we attained accuracy greater than
or equal to 0.70 and Kappa greater than or equal to 0.30
across all groups. In general, the model performed similarly
across course sections and across biology majors and non-
biology majors, with slightly better performance in section 2
and for biology majors according to accuracy and kappa
values. The model performed perfectly among honors stu-
dents (i.e., all students were correctly classified). However,
there were only six honors students, and non-honors clas-
sification performed well. Concerning demographic groups,
we observed slightly better model performance based on
accuracy and kappa in groups traditionally overrepresented
in STEM. There was also better model performance in non-
female students. Overall model performance for members of
underrepresented racial minority groups (accuracy =0.71,
x =0.30) and among female students (accuracy =0.70, k
=0.39), however, was good. In constract, the model achieved
only moderate performance for first generation students,
indicating a deficit in the model (accuracy =0.65, x =0.16) .

Based on the sensitivity, false-positive rates, and percent
of individuals predicted to be in the positive class, there
was variability in our model regarding the requirements of
independence and separation. The greatest discrepancies
(excluding the honors student comparisons) were between
first-generation and continuing-generation students and
between underrepresented racial minority groups and those
in the majority group. The deficit in model performance
combined with the lack of independence and separation
indicate a need to investigate different ways of predicting

Table 3 Model performance broken down by demographic groups and course sections

Accuracy Kappa Sensitivity FP Rate Predicted
Positive

First generation (n =17) 0.65 0.16 0.69 67% 76%
Other generation (n =62) 0.76 0.52 0.74 20% 44%
Underrepresented minority (n =21) 0.71 0.30 0.80 50% 71%
Non-minority (n =55) 0.75 0.48 0.70 22% 42%
Female (n =56) 0.70 0.39 0.70 32% 52%
Other (n =33) 0.83 0.66 0.82 15% 33%
Honors student (n =6) 1.00 1.00 1.00 0% 0%

Non-honors student (n =74) 0.72 0.43 0.70 29% 50%
Biology major (n =18) 0.78 0.53 0.82 29% 61%
Non-biology major (n =62) 0.73 0.45 0.69 26% 47%
Section 1 (n =51) 0.73 0.42 0.65 23% 39%
Section 2 (n =36) 0.78 0.53 0.82 29% 61%

Model performance was similar across course sections and across biology majors and non-biology majors, with slightly better performance in
section 2 and in biology majors. The model performed perfectly among honors students. There is slightly better performance in non-minorities.
There is also better performance in non-female students. Finally, there is moderate performance of the model for first generation students, indi-

cating a deficit in the model to classify first generation students.

@ Springer


https://osf.io/mj4ah/

Behavior Research Methods

the success of first-generation students as well as under-
represented minorities.

Important features

In the winning model, 58 features were selected for inclu-
sion in the model. A summary of presence of feature and
strength of relationship with exam 4 outcome are presented
in Fig. 2. An inspection of the features reveals the kinds of
approaches to learning that were associated with successful
or poorer performance, and these insights can inform future
methods to support learners. For the majority of features
selected, higher counts of engagement with a given action
resulted in a lower likelihood (i.e., negative coefficient) of
the student being classified as performing poorly in the class.
Examples of the most important types of engagement (i.e.,
those with high absolute coefficient values) for this increased
likelihood of acceptable academic performance in the course
were increased counts of: downloading additional course
information prior to the start of the course, downloading
the lecture slides for lesson three, accessing the course cal-
endar, and attending tutoring. Performance on the pretest
had the greatest impact, indicating that prior knowledge is
important to course outcome. For a few variables, greater
engagement was associated with a higher likelihood of poor
performance in the course. Examples of engagement associ-
ated with increased risk were increased counts of: download-
ing lecture notes for lesson 1, saving GRQ submission for
lesson 2, making an office hours appointment, and editing
calendar events.

Discussion

Our main goal was to create a guide for behavioral research-
ers interested in using digital trace data. We did this by pro-
viding a primer on methods for analysis and feature genera-
tion. We also set out to examine how different prediction
modeling decisions would impact the accuracy obtained by
modeling students’ early behaviors as predictors of success
on a cumulative final exam in a high enrollment, gateway,
science course. Overall, model performance was improved
when we aggregated features on a weekly basis rather than
across the entire 3- or 4-week period. This indicates that
the granularity and timing of when a student completes an
action is important to predicting their success. This finding
follows logic, as completing assignments early or download-
ing the syllabus early in the semester may be associated with
proactive behavior in general, thus leading to greater likeli-
hood of success.

A third key aim of the paper was to not only accurately
predict student achievement using an optimal method of

modeling using learning behaviors, but also to reserve the
demographic data often used to predict achievement instead
as a lens to appraise the equity of model accuracy. This
method allowed us to avoid perpetuating biases induced by
use of person-level characteristics as indicative of future suc-
cess, ensured that all variance explained by a model would
owe to behaviors that could be conducted by any student and
observed by researchers, and potentially inform efforts to
support those predicted to perform poorly. Our best model
achieved accuracy above that typically achieved by prior
researchers including those who relied upon demographic
variables as predictors, and this accuracy was retained for
all groups to whom the model was applied during testing.
This confirms that the model could be applied with the
confidence that it not only avoids perpetuating biases, but
also affords an equitably accurate projection of a students’
performance based only on their learning behavior for both
those adequately- and under-represented in science-learning
contexts and fields.

The fourth aim of the paper was to confirm that the pre-
dictive accuracy was sufficient for the subclass of students
who performed poorly on the exam that served as our crite-
rion variable. Our most accurate model was able to identify
three out of four students who would ultimately go on to
earn a C+ or worse on their cumulative final exam - solely
based on behaviors in the course obtained prior to the first
exam. In doing so, the model demonstrated a sufficient sen-
sitivity to detect such students at a time when they had yet
to begin achieving poor outcomes on assessments, and the
behavior-based predictions provided some transparency into
the kinds of learning behaviors that might contribute to poor
outcomes and could be addressed by intervention.

Non-malleable factors

In the field of learning analytics, the decision whether to
include person-level demographic variables and other char-
acteristics of the individual that are not amenable to inter-
vention is the focus of ongoing discussion (Buckingham
Shum, 2020) Those who advocate for their inclusion tout
the contribution to the accuracy of prediction, and the expla-
nation of variance in outcome variables based on known
sociological factors. However, others argue that including
these variables has the potential to overassign likelihood of
a particular outcome to individuals based on factors that are
entirely unrelated to the ways that a particular individual
engages in learning. The inclusion of such variables has the
potential to subsume variance that could be more coher-
ently explained if it remained available to the collection of
behavioral variables that might combine to explain similar
amounts of variance and produce a far more interpretable
model (Bernacki et al., 2020). This latter approach, while it
may produce slightly less accurate prediction, may provide
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Coefficients of features selected using elastic net

Download Lecture Notes Lesson 1
Save GRQ Submission Lesson 2
Make office hours appointment
Edit calendar events
Access GRQ Lesson 4
Download Lecture Notes Lesson 3
Download GRQ Lesson 2
Access GRQ Lesson 5
Content available
Download GRQ Lesson 4
Download Lecture Notes Lesson 7
Access GRQ Lesson 1
View syllabus page
Read GRQ Submission Lesson 5
Section 2 Attend Class 4
Save GRQ Submission Lesson 4
Download Lectures Notes Lesson 6
Download GRQ Lesson 6
Read GRQ Submission Lesson 3
Attend review session
Submit New GRQ Lesson 4
Submit GRQ Lesson 5
Submit New GRQ Lesson 5
Read GRQ Submission Lesson 1
Download Lecture Notes Lessons 9-14
Section 2 Attend Class 2
site.upd
Access gradebook
Submit GRQ Lesson 7
Submit New GRQ Lesson 7
Revise GRQ Submission Lesson 7
Section 2 Attend Class 0
Access Lesson Info Lessons 1-8
Download syllabus
Section 2 Attend Class 5
Meet with writing coach
Download Lecture Slides Lesson 4
Save GRQ Submission Lesson 1
Access GRQ Lesson 7
Submit GRQ Lesson 6
Submit New GRQ Lesson 6
Revise GRQ Submission Lesson 1
Download Additional Readings Lesson 5
Section 2 Attend Class 6
Download Study Guide Lessons 1-8
Forum question event
Download GRQ Lesson 7
Revise GRQ Submission Lesson 6
Download Lecture Notes Lesson 2
Submit GRQ Lesson 4
Visit learning center webpage
Download Lecture Notes Lesson 1-8
Revise GRQ Submission Lesson 4
Attend tutoring
Access course calendar
Download Lecture Slides Lesson 3
Download Additional Course Info Lesson 0
preTest

Feature

Negative values indicate a lower likelihood of being in the at-risk group. Students’ score on the pretest was the strongest predictor.

Fig.2 Coefficient strength and direction for winning model
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sufficient model performance to afford intervention, and fur-
ther offer to intervene to support learners, based on the types
of behaviors that they may (fail to) conduct and which are
predictive of poorer outcomes.

Implications

There are several implications to be taken from this work.
First, there are many combinations of analytic and feature
generation methods that a researcher could take when ana-
lyzing digital trace data. Selection of methods is going to be
context specific, and the goals of the research should be well
thought out. Throughout the paper, we discussed:

¢ the trade-off between prediction and interpretation

e the presence of class imbalance and how that should be
addressed when selecting model performance techniques
and oversampling methods

e choice of model considering computational efficiency,
sample size, types of predictors and outcomes, and inter-
pretability

e the decision of whether to include demographic variables

e the granularity at which features are generated

e assessing equity across groups

Our results suggest that regression with the elastic net
penalty provides a model that achieves predictive power,
while also allowing for simple interpretation in the regres-
sion framework. Because we achieved the best model per-
formance with counts aggregated weekly, it may suggest
that researchers could benefit from creating more granular
features. With regards to other modeling hyperparameters
we discussed, we suggest researchers try them all when cre-
ating predictive models to determine which ones provide
the best model performance. Decisions about quantitative
methods should also be made with an ethical lens (Panter
& Sterba, 2011). Also, we suggest that researchers evaluate
model performance based on how the model performs across
demographic subgroups to ensure model equity.

Limitations

All prediction models are necessarily context specific. They
are defined by the target outcome adopted as a criterion vari-
able. The model that is produced is predicated on the can-
didate features provided by the learning environment and
the selection of a sample of learners who engage within it.
In that sense, this study is thus limited to a single course
at a single institution, and the sample that could be drawn
from a pair of sections of a Biology 101 course. With that in
mind, the course is a reasonable exemplar of the high enroll-
ment gateway courses in institutes of higher education. Such
work is context specific, should be replicated in additional

contexts, and future researchers should experiment with ele-
ments of the design with an aim to improve upon them.

Our models generally delivered equitable accuracy to
nearly all student groups, but one group whose perfor-
mance the model struggled to accurately classify was first
generation college students. It may be the case that these
students engaged with the learning resources in ways that
differed from those who may have benefited from the social
influence of others who had attended university. Additional
research will need to be conducted to derive larger samples
and examine differences in the behaviors and potentially the
intentions across first- and continuing-generation students. It
is possible that first-generation students use different strate-
gies for success or that certain strategies work better for
them because of differing prior knowledge. To ensure that
we provide equitable assistance to students who are likely to
perform poorly academically, we need to better understand
these differences.

In this study, we did not consider modeling techniques
that may have better predictive value but offer little in terms
of interpretation. Our priority was to obtain predictive accu-
racy but to also ensure that the model derived accuracy from
interpretable features that could provide insight to the design
of future intervention. If we only cared about prediction, we
would want to include other models in the selection process
(e.g., NNs, SVMs, etc.). These models have the capacity to
outperform the models reported in this paper, and could be
useful in future prediction efforts, especially if intervention
methods have already been prepared.

Conclusions and future directions

In this paper, we aimed to probe the optimal design choices
to produce accurate and equitable prediction of student suc-
cess that afforded opportunity for and insight into interven-
tion. We achieved model accuracy superior to typical levels
reported in the literature and further confirmed that this
level of accuracy was achieved for both well- and under-
represented groups in STEM, who are often at a disadvan-
tage in STEM learning contexts and who are often further
disadvantaged by Al decisions that perpetuate biases. We
avoided such perpetuation by developing a model without
person-level data describing students’ demographic charac-
teristics, demonstrating that it is possible to model student
success agnostic to a student’s background, and that focus-
ing on their behavior can provide equitable opportunities
for supporting learnings and insight into how best to do so.

In addition, we explored a wide range of feature mapping
possibilities. Future research could expand upon the current
paper by considering alternative methods of feature genera-
tion. Here, we represented features as counts of actions in a
given unit, aggregated across the predictive window. There
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are endless other options to explore. Of particular interest is
the use of factor analysis and other profiling methods.

Factor analysis, among other clustering and profiling
methods, would provide an avenue to reduce dimensional-
ity and to reduce error in measurement. It may also be a way
to model relationships more aligned with learning theory
and create more intuitive interpretations of the model. For
example, knowing that downloading the syllabus early in
the semester is associated with higher likelihood of success
is only useful if we can understand the underlying charac-
teristics that lead to such measurable behaviors. Combin-
ing indicator variables to measure proactiveness, however,
would be more informative for developing generalizable
interventions not tied to the specifics of the course modeled
in the current study.

Because of the sensitive nature of the data, none of the
raw data is available. We provide the code we used along
with synthetic data for illustrative purposes at https://osf.
io/mj4ah/. We also have the results and code for the model
comparisons reported in the paper. None of the models were
preregistered.
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