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Abstract
Using traces of behaviors to predict outcomes is useful in varied contexts ranging from buyer behaviors to behaviors collected 
from smart-home devices. Increasingly, higher education systems have been using Learning Management System (LMS) 
digital data to capture and understand students’ learning and well-being. Researchers in the social sciences are increasingly 
interested in the potential of using digital log data to predict outcomes and design interventions. Using LMS data for pre-
dicting the likelihood of students’ success in for-credit college courses provides a useful example of how social scientists 
can use these techniques on a variety of data types. Here, we provide a primer on how LMS data can be feature-mapped 
and analyzed to accomplish these goals. We begin with a literature review summarizing current approaches to analyzing 
LMS data, then discuss ethical issues of privacy when using demographic data and equitable model building. In the second 
part of the paper, we provide an overview of popular machine learning algorithms and review analytic considerations such 
as feature generation, assessment of model performance, and sampling techniques. Finally, we conclude with an empirical 
example demonstrating the ability of LMS data to predict student success, summarizing important features and assessing 
model performance across different model specifications.
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There has been growing interest in the timely identification 
of students who are likely to perform poorly in for-credit Sci-
ence, Technology, Engineering, and Math (STEM) classes. 
Once identified, interventions attempting to prevent attrition 
can be made (Pistilli, Willis, & Campbell, 2014; Pritchard 
& Wilson, 2003; Zajacova, Lynch, & Espenshade, 2005; 
Cogliano, Bernacki, Hilpert, & Strong, 2022). Identifying 
students is particularly important in STEM disciplines given 
the high attrition rates of students typically underrepresented 

in these fields (National Academies of Sciences Engineering 
& Medicine, 2016) and the threats to the supply of qualified 
STEM professionals that attrition brings (Dai & Cromley, 
2014). Several variables derived from different data sources 
have previously been used to predict students’ likelihood of 
success and failure. Those variables often include demo-
graphic information about underrepresented groups (e.g., 
Dennis, Phinney, & Chuateco, 2005; Petty, 2014; Pritchard 
& Wilson, 2003; Tinto, 1975; Tinto & et al. 1993), which is 
currently under an ethical debate (Tene & Polonetsky, 2013; 
Slade & Tait, 2019), and self-report data (e.g., about motiva-
tion; Hulleman, Godes, Hendricks, & Harackiewicz, 2010). 
Increasingly, researchers have utilized technology-enhanced 
learning environments (e.g., learning management systems; 
LMS) to collect data about real-time learning behaviors that 
relate to distal course performance (Macfadyen & Dawson, 
2010; Márquez-Vera, Cano, Romero, & Ventura, 2013). The 
prediction of for-credit course performance based on LMS 
data provides a useful example for social scientists inter-
ested in digital trace data as a source of behavioral data. This 
paper adds to research on predictive modeling for student 

This research was supported by the National Science Foundation 
through Grant No. 1821594. The contents, opinions, and 
recommendations expressed are those of the author(s) and do not 
represent the views of the National Science Foundation.

 *	 Cara J. Arizmendi 
	 cara.arizmendi@duke.edu

1	 Duke University, Durham, NC, USA
2	 The University of North Carolina Chapel Hill, Chapel Hill, 

NC, USA
3	 Centre for Learning Analytics, Monash University, 

Melbourne, Australia

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-022-01939-9&domain=pdf


	 Behavior Research Methods

1 3

success using LMS data while also demonstrating how digi-
tal trace data may be used by researchers in general.

LMS has increasingly become a commonplace tool in 
higher education (Malloy, Jensen, Regan, & Reddick, 2002). 
Instructors use the platform for communicating with stu-
dents, conducting critical assessment tasks, and sharing digi-
tal resources students can use for learning. When instructors 
and students make use of LMS features, the system cap-
tures a trace of each event in a log file. The trace data can 
potentially allow researchers to better understand learning 
behaviors of students as they provide a rich, fine-grained, 
and accurate record of students’ actions (Nistor & Neubauer, 
2010). These passively collected data provide potential util-
ity for a wide range of higher education institutes hoping to 
decrease attrition rates in specific fields.

The log data collected through an LMS provide some 
advantages in predicting student achievement. LMSs such 
as Blackboard Learn, Canvas, Desire2Learn, or Sakai 
capture and store learning activities of students with time 
stamps at a fine-grained level, allowing researchers to track 
a variety of user actions and to examine the data from vari-
ous perspectives (Krumm, Waddington, Teasley, & Lonn, 
2014). Namely, the data contains a large amount of infor-
mation including frequency, time, and patterns of a series 
of activities (e.g., reading, posting, and taking exams) that 
reflect learning processes (Black, Dawson, & Priem, 2008; 
Bernacki, 2018). Importantly, the data are obtained in a 
naturalistic setting, allowing researchers insight into real-
life learning behaviors. Much of the interesting information 
in this kind of research, based on this emerging data type, 
could not be obtained by other means.

With the increased availability of such data comes the 
increase in its use by researchers and educators. Those new 
to this kind of approach will find themselves facing a number 
of questions and a wide variety of decision-points specific to 
the data type. The present paper serves as a resource to aid 
in understanding the opportunities and hurdles present when 
using LMS data to predict student success in a specific course, 
but ideas in this paper can be expanded to other types of digi-
tal trace data. We begin by providing an extensive overview 
of the use of LMS data to date. In this review, we outline the 
types of methods and variables used, as well as highlight some 
of the major outcomes. Using these prior studies as a founda-
tion, we next focus on suggestions for researchers as the field 
moves forward. We discuss ethical considerations in the use 
of these data that provide a backdrop for each decision point 
to come. We also provide an overview of a few approaches for 
analyzing the data. As those methods are continuously being 
improved upon, we focus less on the specific approaches and 
more on qualities of data mining approaches that research-
ers should consider when selecting an algorithm. Finally, and 
perhaps most critically, we discuss the critical role of feature 
construction and the options available in digital trace data. 

We use an exemplar dataset obtained on a student sample 
enrolled in an entry level undergraduate biology course to 
illustrate these points.

Systematic literature review

To help inform the generation of useful features from digital 
trace behaviors and to gain insight into the expected perfor-
mance rates for varied analytic approaches, we conducted an 
extensive literature review of publications that had similar 
goals to our project. Specifically, we searched for publica-
tions reporting on predictive models developed to predict 
students’ success in a single course. For reviews on other 
topics important to predictive modeling in education, we 
recommend Baker and Hawn (2021) for their review of algo-
rithmic bias in education, (Paquette, Li, Baker, Ocumpaugh, 
& Andres, 2020) for their review of the use of demographics 
variables in educational data mining, and Kizilcec and Lee 
(2021) for their review of algorithmic fairness in education.

We queried EBSCO and Google Scholar bibliographical 
databases with the search phrase ”predict student success 
AND higher education”. The term ”course success” was 
used as an additional phrase in searching Google Scholar to 
narrow down the number of results returned. After removing 
duplicates of the returned results, the abstracts of 381 pub-
lications were screened for eligibility and 75 publications 
were selected for detailed assessment. As per our inclusion 
criteria, we selected only those studies that (1) focused on 
undergraduate students, rather than on other populations of 
learners, and (2) investigated models that predicted students’ 
course-specific performance, rather than other variables 
often used as an indicator of ”success” (e.g., course satis-
faction or engagement, or broader academic performances 
that span multiple classes). We limited the included studies 
to those that predicted course-specific success because the 
focus of this review was prediction modeling using behav-
ioral digital trace data. Behavioral digital trace data are 
very course-specific (e.g., downloads of a particular course 
resource or accesses of a course-specific tool) and/or situ-
ated (e.g., timing of accessing a course gradebook after an 
exam), and as such there are few behavioral digital trace 
variables that would be common or similarly predictive 
across courses. Studies that investigate predictors of suc-
cess that span multiple classes must necessarily use pre-
dictor variables that are broader than the digital trace data 
upon which our paper is focused (e.g., demographics) and/
or indicators of success that are broader than our focus on 
specific course grades (e.g., grade point average, retention 
status). Therefore, such studies are not informative for our 
review and were excluded. After close reading of 75 publi-
cations, 39 met these criteria and received full review. The 
other 36 publications were excluded due to a lack of clarity 
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in operationalizing or measuring student success or a failure 
to report any kind of performance metrics for the predictive 
models. This review is up to date as of October 2020.

Across the 39 papers, we identified 82 different predic-
tive models and report them in Table 1. Models relied on 
a variety of demographic, performance, and behavioral 
variables to predict the probability of students’ academic 
success in a course. Most of the models were designed to 
predict a dichotomous outcome associated with a perfor-
mance above or below a course-specific cutpoint of meaning 
to those enrolled (e.g., a B or Better vs. a C or Worse, at/
above vs. below class median, safe vs. at-risk, pass vs. fail, 
or successful vs. not successful; Baker, Lindrum, Lindrum, 
& Perkowski, 2015; Wolff, Zdrahal, Nikolov, & Pantucek, 
2013; Zacharis, 2015; Bernacki, Chavez, & Uesbeck, 2020; 
Yu, Li, Fischer, Doroudi, & Xu, 2020). Reports of model 
performance most often relied on prediction accuracy, which 
provides a rate of true positives and negatives as one value, 
as a sole performance measure. Additional reported metrics 
included specificity (i.e., model’s ability to detect true nega-
tive outcomes) and precision (i.e., model’s ability to detect 
true-positive outcomes). These metrics provide additional 
insight into the kinds of classification accuracy achieved by 
models and appear in the table. Other papers also reported 
the following metrics: F-score (Lee & Kizilcec, 2020; Wolff 
et al., 2013) and false-positive/false-negative rate (Yu et al., 
2020). We chose to focus on accuracy because it was the 
most commonly reported metric among all prediction mod-
els found in our search.

Current state and next steps

Across the models included in the table, the prediction accu-
racy spanned between .47 to .99, and the average was .72 
(SD = .10). The number of weeks of a semester required 
to obtain this level of accuracy was 5.85 on average (SD 
= 3.67) and ranged from as few as 1 week to as many as 
16. Our review highlighted three areas of improvement and 
areas of consideration for future studies, which we address in 
this paper. 1. Nearly two-thirds of the models that performed 
well included some demographic or static data rather than 
rely on the behavioral data. This raises some ethical con-
cerns, to be discussed later. 2. Many studies utilized only one 
outcome measure (accuracy). 3. Newer analytic techniques, 
such as regularization, which carry benefits over traditional 
regression have not been used in these studies. One addi-
tional area of focus for future studies is how to best engineer 
the trace data obtained so that the features reach their maxi-
mum potential in terms of usefulness and power to predict, 
as well as the ways they might inform the kinds of interven-
tions that would be apt to deploy as support for students’ 
learning. Next, we focus on these three critical areas in turn.

Predictor variables used

Static variables

Among the types of predictors included in models, demo-
graphic data about students’ gender, race, and ethnicity 
were the most common. These data tend to be readily 
available to researchers as they are often solicited from 
learners during the enrollment process in higher education 
settings. However, the strength and direction of associa-
tions between demographic variables and course achieve-
ment are mixed across models. For example, gender’s role 
varies greatly across models where in one introductory 
biology course women are predicted to perform better 
(Hauser, 2016), in a developmental mathematics course 
they perform worse (Goosen, 2008), and in an introductory 
Algebra course, gender does not contribute to a predic-
tion model (O’Connell, Wostl, Crosslin, Berry, & Grover, 
2018). Similarly, students’ ethnic/racial minority status 
predicted success in one introductory biology course 
(Hauser, 2016), whereas ethnic/racial background was not 
predictive of course grade in an introductory programming 
course (Zacharis, 2015). First-generation college status 
was the least frequently studied demographic predictor. 
In the one study we found that included first-generation 
college status, this variable was minimally useful in pre-
dicting students as at-risk in a physics class (Zabriskie, 
Yang, DeVore, & Stewart, 2019).

Performance data were also used as predictors in many 
models. Common kinds of performance data found in 
our review were assessment scores (e.g., Choi, Lam, Li, 
& Wong, 2018; Cooper & Pearson, 2012; Saqr, Fors, & 
Tedre, 2017) and number of courses/hours completed and 
grades or scores earned (e.g., Barber & Sharkey, 2012; 
Culver, 2014; Bird, 2012). Some models included scores 
on placement exams as predictors (D’Aloisio, 2016; Cul-
ver, 2014; Gultice, Witham, & Kallmeyer, 2015; McFate 
& Olmsted, 1999).

Variables that describe students’ prior achievement 
can be useful contributors to models in that they capture 
students’ overall level of preparedness for a course, both 
in terms of course-specific prior knowledge (i.e., when 
the score reflects performance in a related, prerequisite 
course) or their general ability to successfully engage in 
similar learning tasks (e.g., undergraduate GPA to date). 
Performance data that reflect scores on early assignments 
within courses can be powerful predictors (e.g., Zabriskie 
et al., 2019), but care should be taken to not include vari-
ables as predictors if they also contribute mathematically 
to the criterion variable. In instances where models predict 
a course grade, the inclusion of scores on early assign-
ments are confounded, rather than orthogonal and predic-
tive (e.g., Saqr et al., 2017).
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1 3 Table 1   Data sources and the accuracy achieved in studies reporting prediction of higher education outcomes (mean accuracy = 71.6%)

Predictors Outcome

Authors Data sources Demographic Static/ 
baseline

Behavioral Variable Level Algorithm Performance 
measures  
(accuracy / preci-
sion / specificity)

Cross-validation Observed 
(Weeks)

Baker et al., (2015) Soomo learning envi-
ronment

- - X pass or fail category (binary) Logistic regression .66/.57/.60 cross-validation 4

Baker et al., (2015) Soomo learning envi-
ronment

- - X pass or fail category (binary) Decision tree 
(J-48)

.66/.64/.44 cross-validation 4

Baker et al., (2015) Soomo learning envi-
ronment

- - X pass or fail category (binary) Decision tree 
(J-Rip)

.58/.57/.47 cross-validation 4

Baker et al., (2015) Soomo learning envi-
ronment

- - X pass or fail category (binary) Naïve Bayes .67/.53/.48 cross-validation 4

Baker et al., (2015) Soomo learning envi-
ronment

- - X pass or fail category (binary) W-K-Star .68/.67/.28 cross-validation 4

Baker et al., (2015) Soomo learning envi-
ronment

- - X pass or fail category (binary) Stepwise multiple 
regression

.66/.57/.60 cross-validation 4

Barber & Sharkey 
(2012)

LMS, financial aid 
system, student 
system

gender, age, 
military status, 
financial aid 
receipt,  
ethnicity

X X risk of failing category (high,  
low, neutral)

Logistic regression >.90/-/- 50-50 train/test 4

Barber & Sharkey 
(2012)

LMS, financial aid 
system, student 
system

gender, age, 
military status, 
financial aid 
receipt,  
ethnicity

X X risk of failing category (high,  
low, or neutral)

Naïve Bayes .85-.95/-/- Number of folds 
not provided, 
repeated ten 
times

4

Bernacki et al., (2020) LMS (M1) - - X pass or fail category (binary) Logistic regression .61/.41./76 leave-one-out and 
10-fold

4

Bernacki et al ., (2020) LMS (M1) - - X pass or fail category (binary) Decision tree 
(J-48)

.54/.44/.62 leave-one-out and 
10-fold

4

Bernacki et al., (2020) LMS (M1) - - X pass or fail category (binary) Decision tree 
(J-Rip)

.64/.48/.77 leave-one-out and 
10-fold

4

Bernacki et al., (2020) LMS (M1) - - X pass or fail category (binary) Naïve Bayes .61/.35/.80 leave-one-out and 
10-fold

4

Bernacki et al., (2020) LMS (M2) - - X pass or fail category (binary) Logistic regression .67/.55/.77 leave-one-out and 
10-fold

4

Bernacki et al., (2020) LMS (M2) - - X pass or fail category (binary) Decision tree 
(J-48)

.59/.40/.74 leave-one-out and 
10-fold

4

Bernacki et al., (2020) LMS (M2) - - X pass or fail category (binary) Decision tree 
(J-Rip)

.65/.50/.77 leave-one-out and 
10-fold

4

Bernacki et al., (2020) LMS (M2) - - X pass or fail category (binary) Naïve Bayes .66/.59/.71 leave-one-out and 
10-fold

4
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Table 1   (continued)

Predictors Outcome

Authors Data sources Demographic Static/ 
baseline

Behavioral Variable Level Algorithm Performance 
measures  
(accuracy / preci-
sion / specificity)

Cross-validation Observed 
(Weeks)

Bernacki et al., (2020) LMS (M3) - - X pass or fail category (binary) Logistic regression .67/.57/.75 leave-one-out and 
10-fold

4

Bernacki et al., (2020) LMS (M3) - - X pass or fail category (binary) Decision tree 
(J-48)

.61/.37/.80 leave-one-out and 
10-fold

4

Bernacki et al., (2020) LMS (M3) - - X pass or fail category (binary) Decision tree 
(J-Rip)

.63/.48/.75 leave-one-out and 
10-fold

4

Bernacki et al,. (2020) LMS (M3) - - X pass or fail category (binary) Naïve Bayes .65/.53/.74 leave-one-out and 
10-fold

4

Bird (2012) - ethnicity, age, 
class

X - successful vs. 
not success-
ful

category (binary) Logistic regression -/0/100 - -

Bird (2012) - ethnicity, age, 
class, distance 
from the 
university

X - successful vs. 
not success-
ful

category (binary) Discriminant 
analysis

-/.50/.90 - -

Cakmak (2017) university database - X - course grade category Collaborative 
filtering

.74/-/- details not pro-
vided

-

Choi et al., (2018) classroom response 
system, survey 
instrument

- X X level of exam 
score

category Hierarchical linear 
regression (R2 = 
0.57)

.72/.60/.47 10-fold, repeated 
20 times

1

Choi et al., (2018) classroom response 
system, survey 
instrument

- X X level of exam 
score

category Hierarchical linear 
regression (R2 = 
0.57)

.73/.60/.47 10-fold, repeated 
20 times

3

Choi et al., (2018) classroom response 
system, survey 
instrument

- X X level of exam 
score

category Hierarchical linear 
regression (R2 = 
0.57)

.80/.70/.58 10-fold, repeated 
20 times

6

Choi et al., (2018) classroom response 
system, survey 
instrument

- X X level of exam 
score

category Hierarchical linear 
regression (R2 = 
0.57)

.82/.75/.61 10-fold, repeated 
20 times

9

Choi et al., (2018) classroom response 
system, survey 
instrument

- X X level of exam 
score

category Hierarchical linear 
regression (R2 = 
0.57)

.82/.75/.61 10-fold, repeated 
20 times

12

Choi et al., (2018) classroom response 
system, survey 
instrument

- X X pass or fail category (binary) Hierarchical logis-
tic regression 
(RMSE= 0.89)

.72/.44/.45 10-fold, repeated 
20 times

1
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Predictors Outcome

Authors Data sources Demographic Static/ 
baseline

Behavioral Variable Level Algorithm Performance 
measures  
(accuracy / preci-
sion / specificity)

Cross-validation Observed 
(Weeks)

Choi et al., (2018) classroom response 
system, survey 
instrument

- X X pass or fail category (binary) Hierarchical logis-
tic regression 
(RMSE= 0.89)

.73/.49/.47 10-fold, repeated 
20 times

3

Choi et al., (2018) classroom response 
system, survey 
instrument

- X X pass or fail category (binary) Hierarchical logis-
tic regression 
(RMSE= 0.89)

.80/.58/.60 10-fold, repeated 
20 times

6

Choi et al., (2018) classroom response 
system, survey 
instrument

- X X pass or fail category (binary) Hierarchical logis-
tic regression 
(RMSE= 0.89)

.82/.63/.66 10-fold, repeated 
20 times

9

Choi et al., (2018) classroom response 
system, survey 
instrument

- X X pass or fail category (binary) Hierarchical logis-
tic regression 
(RMSE= 0.89)

.82/.63/.66 10-fold, repeated 
20 times

12

Cooper & Pearson 
(2012)

student information 
database

race X - safe or at-risk category (binary) Neural network .83/.76/- genetic optimiza-
tion, leave-
one-out cross 
validation

-

Culver (2014) student information 
system, math assess-
ment and college 
student inventory 
form

gender, race, 
diploma type, 
years since 
high school

X - final grade category Logistic regression .62/-/- not provided -

Cummings (2009) university database age, gender, 
number of 
semesters at 
college

X - course grade successful vs. not 
successful

Logistic regression .72/.89/.96 not provided -

D’Aloisio (2016) survey instruments gender, high 
school GPA, 
number of 
hours per 
week spent on 
mathematics

X - final average 
score

continuous Multiple regression 
(R2 = 0.44)

-/-/- not provided 15

Das (2009) survey - - - midterm grade category Multiple regression 
(R2 = 0.17)

-/-/- not provided 6

Das (2009) survey - X - midterm grade category Logistic regression .87/-/- not provided 6
Davidson (2017) student information 

system
age, gender, 

ethnicity
X - successful vs. 

not successful
category (binary) Logistic regression .65/-/- not provided -
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Table 1   (continued)

Predictors Outcome

Authors Data sources Demographic Static/ 
baseline

Behavioral Variable Level Algorithm Performance 
measures  
(accuracy / preci-
sion / specificity)

Cross-validation Observed 
(Weeks)

Davidson (2017) student information 
system

age, gender, 
ethnicity

X - successful vs. 
not  
successful

category (binary) Logistic regression .81/-/- not provided -

Davidson (2017) student information 
system

age, gender, 
ethnicity

X - successful vs. 
not  
successful

category (binary) Logistic regression .85/-/- not provided -

Davidson (2017) student information 
system

age, gender, 
ethnicity

X - successful vs. 
not  
successful

category (binary) Logistic regression .80/-/- not provided -

Fogle (2016) archival records age, gender, and 
ethnicity

X - final grade category (binary) Logistic regression 
(R2 = 0.30)

-/-/- not provided -

Fountain (2016) survey instruments, 
class records

gender, race/
ethnicity, age, 
enrollment 
status, student 
and online 
experience

- - c or higher vs. 
lower

category (binary) Logistic regression .85/-/- not provided -

Goad (2018) survey instruments - X - completing or 
not

category (binary) Logistic regression .73/-/- not provided 2

Goosen (2008) - age, gender, and 
ethnicity

X - exit examina-
tion score

continuous Stepwise multiple 
regression (R2 = 
0.13)

-/-/- not provided -

Gorvine & Smith 
(2015)

survey instruments attitudes 
towards group 
work and 
statistics

- - percentage 
points

continuous Hierarchical 
regression analy-
sis (R2 = 0.06)

-/-/- not provided -

Gultice et al., (2015) survey instruments age, hours 
earned/carried

X - pass or fail category (binary) Logistic regression .82/.64/.91 10-fold stratified, 
ten repetitions

1

Hauser, (2016) academic services age, gender, 
ethnicity, 
prior online 
course experi-
ence, and 
enrollment 
status during 
the semester

- - final grade category (binary) Logistic regression .83/-/- not provided -
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Predictors Outcome

Authors Data sources Demographic Static/ 
baseline

Behavioral Variable Level Algorithm Performance 
measures  
(accuracy / preci-
sion / specificity)

Cross-validation Observed 
(Weeks)

Junco & Clem (2015) CourseSmart eText-
book, university 
records

gender, race, 
ethnicity

X X final score continuous Blocked linear 
regression (R2 = 
0.24)

-/-/- Not provided 16

Kotsiantis et al., 
(2013)

LMS logs registrar - - X pass or fail category (binary) C4.5 (decision 
tree)

. 82/-/- 10-fold, rep-
etition not 
provided

11

Lee (2016) ToOLS assessment - X - successful vs. 
not success-
ful

category (binary) Nested regression 
(R2 = 0.45)

-/-/- not provided -

Lee & Kizilcec 
(2020)

student administrative 
data

Gender, first-
generation 
status, racial-
ethnic group

X - a course grade 
at/ above 
course 
median 
grade vs. not

category (binary) Random Forest 0.73/-/- 
(F-score=.80)

- -

McFate & Olmsted 
III (1999)

not reported - X - completing or 
not

category (binary) Correlational 
analysis (R2 = 
0.82)

-/-/- Not provided 1

Morrison & Schmit 
(2010)

- X - successful vs. 
not success-
ful

category (binary) Logistic regression 
(R2 = 0.31)

-/-/- Not provided -

O’Connell et al., 
(2018)

- pell eligible, 
race, com-
pleted hours

X X course grade discrete grades 
(a-f)

Multiple regression .58/-/- best-subsets 
model selection

-

O’Connell et al., 
(2018)

- Pell eligible, 
race, com-
pleted hours

X X pass or fail category (binary) Logistic regression .47/-/- best-subsets 
model selection

-

Ornelas & Ordonez 
(2017)

LMS, college database - X X successful vs. 
at-risk

category (binary) Naïve Bayes .94/.92/.95 training and 
validation set 
(60 and 40 %, 
respectively)

16

Rayno (2010) archival records age, gender, and 
ethnicity

X - pass or fail category (binary) Logistic regression .81/-/- not provided -

Romero et al., (2010) LMS logs and data-
base

- - X final grade category Decision Tree 
(CART)

.66/-/- 10-fold stratified, 
ten repetitions

-

Romero et al., (2010) LMS logs and data-
base

- - X final grade category Decision Tree 
(C.45)

.65/-/- 10-fold stratified, 
ten repetitions

-

Romero et al., (2010) LMS logs and data-
base

- - X final grade category Rule Induction .65/-/- 10-fold stratified, 
ten repetitions

-
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Table 1   (continued)

Predictors Outcome

Authors Data sources Demographic Static/ 
baseline

Behavioral Variable Level Algorithm Performance 
measures  
(accuracy / preci-
sion / specificity)

Cross-validation Observed 
(Weeks)

Saqr et al., (2017) LMS - X X final grade continuous (0 to 
100)

Automatic linear 
modeling (ALM)

.64/.54/- Not provided 6

Saqr et al., (2017) LMS - X X safe or at-risk category (binary) Binary logistic 
regression (R2 = 
0.77)

.81/-/- Not provided 6

Smith et al., (2012) LMS logs, registrar - X X risk of failing category (warn-
ing levels: low, 
moderate, high)

Naïve Bayes 70 in Low, 54 
in Moder-
ate, 34 in the 
High warning 
group/-/-

Random sub-
sampling, 
repeated ten 
times

-

Williams (2019) VitalSource - - X final grade category Multiple regression 
(R2 = 0.15)

-/-/- not provided 8

Williams (2019) VitalSource - - X average test 
score

continuous Multiple regression 
(R2 = 0.10)

-/-/- not provided 8

Wolff et al., (2013) virtual learning envi-
ronment, registrar

used in the 
model, but not 
reported

X X pass or fail category (binary) Decision trees F=[0.61, 0.94], 
tested at the 
three different 
assessment 
submission 
points

10-fold, repeti-
tions data not 
provided

1 period 
between 
Tutor 
marked 
Assess-
ments

Xing, Guo, Petakovic, 
& Goggins (2015)

CSCL environment; 
event logs

- - X course perfor-
mance

category (five-
point scale)

Genetic Program-
ming

.80/.80/- 10-fold, repeated 
ten times

-

You (2016) LMS - - X final score continuous (0 to 
100)

Hierarchical 
regression analy-
sis (R2=.32)

.69/-/- Not provided 8

Yu et al., (2020) institutional data gender, and 
transfer, 
income, first 
generation 
and URM 
status

X short-term 
success 
(final course 
grade above 
the class 
median vs. 
not)

category (binary) - .62/-/- (FPR=.47, 
FNR=.30)

course-level 
leave- one-
group-out cross 
validation

8
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Predictors Outcome

Authors Data sources Demographic Static/ 
baseline

Behavioral Variable Level Algorithm Performance 
measures  
(accuracy / preci-
sion / specificity)

Cross-validation Observed 
(Weeks)

Yu et al., (2020) Canvas LMS log data X short-term 
success 
(final course 
grade above 
the class 
median vs. 
not)

category (binary) - .60/-/- (FPR=.48, 
FNR=.31)

course-level 
leave- one-
group-out cross 
validation

8

Yu et al., (2020) survey data X short-term 
success 
(final course 
grade above 
the class 
median vs. 
not)

category (binary) - .53/-/-/(FPR=.60, 
FNR=.34)

course-level 
leave- one-
group-out cross 
validation

8

Yu et al., (2020) institutional data and 
Canvas LMS log 
data

gender, and 
transfer, 
income, first 
generation 
and URM 
status

X X short-term 
success 
(final course 
grade above 
the class 
median vs. 
not)

category (binary) - .67/-/-(FPR=.35, 
FNR=.31)

course-level 
leave- one-
group-out cross 
validation

8

Yu et al., (2020) institutional data and 
survey data

gender, and 
transfer, 
income, first 
generation 
and URM 
status

X - short-term 
success 
(final course 
grade above 
the class 
median vs. 
not)

category (binary) - .63/-/-(FPR=.40, 
FNR=.34)

course-level 
leave- one-
group-out cross 
validation

8

Yu et al., (2020) Canvas LMS log data 
and survey data

X X short-term 
success 
(final course 
grade above 
the class 
median vs. 
not)

category (binary) - .61/-/-(FPR=.43, 
FNR=.35)

course-level 
leave- one-
group-out cross 
validation

8
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Table 1   (continued)

Predictors Outcome

Authors Data sources Demographic Static/ 
baseline

Behavioral Variable Level Algorithm Performance 
measures  
(accuracy / preci-
sion / specificity)

Cross-validation Observed 
(Weeks)

Yu et al., (2020) institutional data, Can-
vas LMS log data, 
and survey data

gender, and 
transfer, 
income, first 
generation 
and URM 
status

X X short-term 
success 
(final course 
grade above 
the class 
median vs. 
not)

category (binary) - .67/-/-(FPR=.35, 
FNR=.30)

course-level 
leave- one-
group-out cross 
validation

8

Zabriskie et al., (2019) institutional records 
and classes

gender, in-state, 
URM, First 
Generation

X - b or less/more category (binary) Random Forest 68/-/- training and test 
set (62 and 38 
%, respectively)

1

Zabriskie et al., (2019) institutional records 
and classes

gender, in-state, 
URM, First 
Generation

X - b or less/more category (binary) Logistic regression .73, .81 (two 
courses)/-/-

training and test 
set (62 and 38 
%, respectively)

1

Zacharis (2015) LMS - - X failed/did not 
fail

category (binary) Logistic regression .81/.70/.87 10-fold, repeated 
ten times

-

Zacharis (2018) LMS logs, registrar - - X pass or fail category (binary) Decision tree .99/.98/1 training and test 
set (70-30%)

-
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Behavioral (time‑varying) variables

Behavioral trace data can be collected from usage logs from 
digital course resources (i.e., usually LMS and textbook 
companion sites) and provide a record of learning events 
that are theorized to predict, but are also orthogonal to, sum-
mative performance data (Bernacki et al., 2020). Examples 
of these behaviors are views, downloads, assignment sub-
missions and forum contributions (e.g., Kotsiantis, Tselios, 
Filippidi, & Komis, 2013; Smith, Lange, & Huston, 2012; 
Zacharis, 2015; Bernacki et al., 2020), clicker responses 
in the classroom response system (Choi et al., 2018), and 
number of clicks in a virtual learning environment (Wolff 
et al., 2013).

Of the 82 predictive models reviewed in Table 1, 29 
models made use of only behavioral predictors. For usage 
logs to be of use in predicting student success, theoretically 
aligned features need to be generated. In other words, in its 
raw form, user log data are messy and may not immediately 
confer meaningful measurement of behaviors. A typical user 
log consists of a timestamp along with an action taken (e.g., 
clicks, inputs of values into fields, page visits, and selections 
of dropdown menus). These user logs must be converted into 
a data type that can be modeled and makes theoretical sense. 
In one study where students were completing online courses 
through a learning environment, researchers explored the 
timeframe of learning environment access by creating a fea-
ture that indicated whether a student accessed the environ-
ment in the first n days of the course and how many days, d, 
it had been since last access on day n (Baker et al., 2015). 
This study also made use of performance on course exer-
cises. Another study explored in-class features by aggregat-
ing weekly attendance to calculate the cumulative attendance 
rate along with cumulative in-class test scores (Choi et al., 
2018). Other models also used weekly aggregation to arrive 
at features. For example, to create a feature, the number of 
discussion posts was aggregated weekly and then averaged 
for each individual to create a feature. Another example is 
getting a total count of messages that a student sent to the 
instructor (Barber & Sharkey, 2012).

Ultimately, methods for mapping captured events to a fea-
ture space should depend on the goals of a project. Important 
to the process of feature mapping is the use of metadata. 
Metadata helps researchers to be more specific about the 
behaviors under observation. For example, knowing that a 
student completed a download at three different timestamps 
may hold little predictive value. However, a download can 
be elaborated with metadata about the alignment of the 
timestamp to the semester and the annotation of the objects 
accessed to provide a human readable name that affords 
interpretation. One might thus be able to make more mean-
ing from an event reflecting the download of a syllabus in the 
first week of the semester, as compared to observing a ”file 

download” event by a student on a specific date that is not 
understood as relevant to the academic context. In particular, 
we suggest researchers consider creating features from meta-
data that considers course content, behavioral specificity, 
and timeframe in which an action was completed. For exam-
ple, if researchers or educators believe actions in particu-
lar course chapters or units hold differing predictive value, 
researchers may want to create features that break down page 
visits by course unit. Furthermore, the type of page visited 
in a given unit might hold importance. For example, a page 
visit to a practice test may be more predictive than a page 
visit to an additional reading. Further, researchers can iso-
late page visits to a particular time frame, such as 2 weeks 
before an exam. This feature can then defined be as number 
of downloads of a practice test 2 weeks prior to the exam. 
Another example is to dichotomize the feature to whether 
or not a student visited the practice test page 2 weeks prior 
to the exam. We provide more detail of feature examples 
with varying specificity, granularity, and timeframes in our 
presentation of the empirical example.

Ethics in the use of LMS data for model 
building

One problem with approaching analysis with data-driven 
methods is that data science perspectives are often believed 
to be purely neutral and objective. This belief hides the 
reality that educational data mining (EDM) carries with it 
opportunity for threats to privacy as well as discrimination. 
It also involves a set of decisions that need to be documented 
and expressed to other researchers. The development of 
data-driven models to predict student success creates the 
potential for a number of well-intentioned but poorly rea-
soned decisions that can negatively impact the very students 
such models are meant to benefit. Negative impacts can arise 
from decisions regarding the privacy of student data, the col-
lection of representative data sets from which models could 
be developed, the access to data describing learners and their 
actions, and the implementation of models that may perform 
inequitably for student subpopulations. New documents are 
now emerging in an effort to provide guidance to analysts 
who wish to develop models that can predict student success 
(e.g., Seldon, Lucking, Lakhani, & Clement-Jones, 2020), 
and we highlight two key elements that warrant considera-
tion: privacy and use of demographic data.

Privacy

Trace internet behaviors are used by many industries 
towards goals such as: predicting likelihood of purchase, 
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modeling political opinion-formation processes, following 
the spread of emotion ”contagions” using social media 
data (Kaschesky & Riedl, 2011; Kramer, Guillory, & 
Hancock, 2014), and describing information flow using 
internet chain-letters (Liben-Nowell & Kleinberg, 2008). 
In these cases, there may be little to no expectation of 
privacy. For instance, when a user is navigating a store’s 
website, it is understood that the owner of that website will 
have access to their behaviors. The consent to use their 
data is implied by simply using the website, and due in 
no small part to that implied consent, internet behavioral 
tracking has emerged as a major asset in modern capital-
ism (Zuboff, 2015). Individuals have become comfortable 
trading aspects of their internet privacy for the benefits 
and conveniences brought by these services (Silverman, 
2017). Such trade-offs are more complicated in higher 
education, and because of that, the writers of the Institute 
for Ethical AI in Education Interim Report (Seldon et al., 
2020) argued data mining should not only follow a legal 
framework but also provide a clear benefit to students, 
have designated spaces without surveillance, and ensure 
that the collection of any health data have justification for 
how it helps educational purposes.

Despite the regularity and acceptance of gathering digi-
tal trace behaviors in other real-world contexts, the mere 
acquisition of such data can be intrusive and unexpected 
in the educational setting. The merging of data sets across 
multiple institutions has caused concern (Singer, 2014), 
as has the use of data even within one institute but across 
different data systems (Parry, 2012). Thus, whereas stu-
dents may have accepted foregoing privacy when utilizing 
the internet for activities such as social media interactions 
and online shopping, the expectation for privacy may be 
greater when engaging in educational activities using 
LMS, particularly given students often have little recourse 
or knowledge in regard to their personal data management 
(Jerome, 2013; Tene & Polonetsky, 2013; Rubel & Jones, 
2016). Many students rarely know what data are actu-
ally gathered about them and to what ends it may be used 
(Richards & King, 2013).

Many themes that we considered in this discussion are 
focal in the prediction modeling literature we reviewed, 
yet the authors of those papers did not focus on privacy 
as an issue. This may be due, in part, from prior research 
where researchers primarily studied deidentified data and 
archival data. In more recent years, a focus on data own-
ership and the importance of respecting student privacy 
has become a focal issue in learning analytics (Prinsloo 
& Slade, 2017; Zeide, 2017) especially in circumstances 
where data are collected in real time from multiple data 
systems and where ownership of and access to such data 
fall under the governance of university policies informed 
by local and national laws.

Demographics

Student demographics relate to various outcomes of suc-
cess in STEM disciplines. In STEM disciplines, fewer than 
25% of underrepresented students, such as Latinx/Hispanic 
and African-American students, complete their stated major 
within 6 years (Eagan, Hurtado, & Chang, 2010). Despite 
this low completion rate, students from these historically 
underrepresented groups arrive at United States colleges and 
universities with equivalent amounts of interest and excite-
ment in STEM as their peers, yet are significantly less likely 
to persist in STEM majors (Maton, Pollard, McDougall 
Weise, & Hrabowski, 2012), suggesting that barriers along 
the way may impede progress for these students.

Likewise, recent data shows that first-generation col-
lege students (FGCSs), defined as students who enrolled in 
postsecondary education, but whose parents had no such 
experience, are far less likely to graduate with a bachelor’s 
degree than their continuing generation peers (i.e., one or 
more parents with postsecondary experience; Permzadian 
& Credé, 2016; Redford & Mulvaney Hoyer, 2017). Indeed, 
nearly 90% of FGCSs in the United States do not graduate 
within 6 years of enrollment (Saenz, Hurtado, Barrera, Wolf, 
& Yeung, 1971).

Demographic variables may have some utility in explain-
ing differential outcomes, but caution must be made when 
including these variables as features in predictive models. 
First, the use of demographic data has the potential for per-
petuating prejudices (Tene & Polonetsky, 2013). Second, a 
student’s demographic variables have limited practical utility 
as they are immutable characteristics that cannot serve as 
targets for intervention (i.e., one’s age, racial, and cultural 
affiliations are fixed, personal-level characteristics). There 
also is the possibility that additional data that characterize 
students’ engagement during learning subsume demographic 
variables once they are added to models. An opposite out-
come is also possible, where demographic variables explain 
a high degree of variability in the outcome measure that 
results in the removal of changeable behavioral variables 
in the prediction model. This might wash out important 
behaviors that occur across specific demographic categories, 
thus limiting utility in gaining insights from data. Third, the 
richness of the behavioral data should suffice. The difficul-
ties specific populations have in academic arenas are not a 
direct result of their demographic background but rather are 
a function of their behaviors and societal biases or pressures. 
Taken together, the inclusion of demographic variables may 
interfere with the usefulness of the behavioral models.

This is not to say that demographic data should be 
ignored or not used at all in prediction modeling. Rather, it 
is vital that demographics be used in a very specific and nar-
row way: to ensure equitable prediction across demographic 
categories. The predictive model must predict individuals 
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across racial/ethnic, gender, and generation status equally 
well (Bernacki et al., 2020). Teachers and researchers need 
to make sure that representation exists across all categories 
to ensure that the resulting predictions serve all students 
rather than unintentionally exclude certain populations from 
potential interventions (Slade & Tait, 2019). At present, 
this approach to the analysis of demographic/student back-
ground characteristics is not the norm. Most of the papers 
we reviewed above did not assess model accuracy for the 
subgroups of students on whom most research and support 
efforts in STEM education are focused: women, members 
of ethnic minority groups, and first-generation learners are 
those underrepresented in the STEM workforce. As two 
recent exceptions, Lee and Kizilcec (2020) and Yu et al. 
(2020) evaluated model performance in subpopulations of 
historically disadvantaged students including women, eth-
nic minorities, students from low-income families and first-
generation college students. The authors found that these 
student populations were prone to algorithmic biases across 
prediction models. For example, the models overestimated 
women’s course success (Yu et al., 2020) and underesti-
mated ethnic minorities’ course success (Lee & Kizilcec, 
2020). Hence, the accuracy predictive models obtain hence 
needs to reflect those models’ ability to predict the outcome 
of a hypothetical student regardless of a demographic sub-
group a student belongs to.

Analytic considerations

Machine learning algorithms

Researchers may not always know the best model to use 
to predict student success. It may be unknown which fea-
tures are the best to include, which functional form they 
take when relating to the outcome, and if the prediction on 
one data set would work equally well for new data. For this 
reason, machine learning algorithms are often used to arrive 
at a model that provides the best prediction of the outcome 
given the features available. Even in the case where there 
are strong theoretical reasons for including a variable, such 
as those derived from a specific learning theory, machine 
learning approaches will likely still offer benefits by select-
ing the variables that optimally predict without overfitting 
the model to the data.

It is important to keep in mind the end goal of predic-
tion—which is to predict. Variables that might not be of 
substantive interest might end up being very predictive of 
outcomes. For example, doing well on the first homework 
assignment might, in some cases, be predictive of the distal 
outcome of their final grade in the course. There is little 
room to intervene here, and this variable might not hold 
much substantive relevance to educational learning theories. 

Even when lacking substantive interpretation, it is important 
to include these types of predictors if they are ethical and if 
they improve the model’s prediction.

The majority of machine learning algorithms used for 
the purpose of prediction are considered embedded machine 
learning methods. This means that the learning occurs simul-
taneously with feature selection. Commonly used examples 
in psychology are decision trees (Breiman, Friedman, 
Stone, & Olshen, 1984; Kass, 1980) and regularization 
approaches such as Least Absolute Shrinkage Selection 
Operator (LASSO; Tibshirani, 1996) and elastic net (Zou & 
Hastie, 2005). We focus here on results from one common 
approach, elastic net, as this approach is easily interpretable 
and thus will aid in discussion of key decisions regarding 
feature selection. By using one analytic approach, we can 
better highlight the importance of feature manipulation and 
selection with a real data example. There are many options 
available to researchers and an exhaustive and comprehen-
sive overview is outside the scope of the present paper. We 
end this section with a brief synopsis of available methods 
with the goal of providing researchers with a set of questions 
to ask themselves when choosing a prediction algorithm.

Elastic net is an estimation approach that can be used for 
a variety of models. Because most researchers are familiar 
with the generalized linear model, here we describe estima-
tion for the simplest case – that of a linear regression. In 
practice, researchers may seek to predict the final grade of 
an individual on a continuous scale, in which case linear 
regression is an appropriate model. Should researchers wish 
to predict grade categories such as pass or fail or the letter 
grade, logistic or multinomial regression would be better 
models to use.

Elastic net

We describe here elastic net from within a regression frame-
work. Assuming an intercept of zero, those familiar with 
linear regression will recognize that the cost function that 
is minimized is:

where the term within the parentheses are the equation 
residuals. The goal is to minimize the squared errors. We 
start with LASSO as this is the foundation for elastic net. In 
LASSO, this cost function is subject to the penalty:

(1)
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where t ≥ 0 is the tuning parameter that controls the 
amount of shrinkage applied to estimates. Simultaneous esti-
mation and variable selection are conducted by minimizing:

When λ1 = 0, the estimates are the same as least square 
estimates as there is no penalty. Those familiar with ridge 
regression may see some similarities. The difference is that 
LASSO uses an l1-norm penalty |β| whereas ridge regres-
sion uses the l2-norm penalty by squaring the term within 
the summation on the right β2. Unlike ridge regression, lasso 
regression is capable of shrinking some parameters to zero, 
thus making it an ideal approach for feature selection in a 
data-driven manner.

Elastic net includes both ridge regression and LASSO 
penalties by minimizing:

A benefit of elastic net over LASSO is that, if multiple 
variables are correlated, LASSO tends to just choose one 
of them. This is opposite what occurs in the case of ridge 
regression, where the coefficients of correlated predictors 
are shrunk towards each other. For this reason, elastic net 
has become the preferred method for simultaneous variable 
selection and estimation. Simulation studies have supported 
that elastic net outperforms LASSO in terms of recovering 
the true effects that relate to the outcome (Ogutu, Schulz-
Streeck, & Piepho, 2012; Waldmann, Mészáros, Gredler, 
Fuerst, & Sölkner, 2013; Zou & Hastie, 2005).

Other methods to consider

We chose elastic net as our prediction model because it not 
only optimizes how many and which features result in the 
most predictive model, but it also allows for interpretable 
results in the form of regression coefficients that will be 
helpful for pedagogical purposes here. There are, however, 
many other methods we could have chosen if prediction 
was our primary goal and understanding of the relationship 
between online behaviors and likelihood of success was 
inconsequential. Here, we briefly review popular machine 
learning methods for prediction and in which situations they 
may be useful.

Popular machine learning methods for classification 
problems (i.e., did a person pass or fail?), other than elastic 
net, are neural networks, naive bayes, k-nearest neighbors, 
decision trees, random forests, and support vector machines 
(Kotsiantis, Zaharakis, & Pintelas, 2006; Osisanwo, 
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Akinsola, Awodele, Hinmikaiye, Olakanmi, & Akinjobi, 
2017). That this is a partial list emphasizes the large num-
ber of available machine learning methods. When prediction 
is the goal, many researchers simply fit as many models as 
possible and determine which one performs best at predic-
tion. Some models, however, may be more useful in different 
situations.

Neural networks  (McCulloch and Pitts, 1948; Rosenblatt, 
1958) are a modeling technique biologically inspired by 
the action of neurons in the brain (Rumelhart, Hinton, & 
Williams, 1986). Neural networks utilize the nonlinear rela-
tionships underlying a data set to perform classification. A 
neural network consists of many ”neurons”, nodes, each of 
which is a mathematical function similar to regression that 
contributes to the classification decision. Neural networks 
typically consist of several layers of these nodes, with the 
output layer being the classification layer. Similar to regres-
sion, hidden layers, or layers between the input and output 
layers apply weights to the input. Weights are optimized in 
order to minimize classification error. Neural networks can 
be applied to both categorical and continuous predictors and 
outcomes and scale well to large sample sizes. Model inter-
pretation, however, is difficult, and is often referred to as a 
”black box” (Castelvecchi, 2016) because model parameters 
are not inherently interpretable due to overparameterization. 
Montavon, Samek, & Müller (2018) provide methods for 
interpreting neural networks.

Decision trees  (Breiman et  al., 1984; Kass, 1980) are 
another popular method. A decision tree consists of a binary 
tree where each node has a threshold, determining which 
node is next traversed. The final, or terminal, node deter-
mines classification of a case. Decision trees are computa-
tionally fast for small to medium datasets, often accurate, 
and can be adapted as a regression tree when the outcome 
is continuous. In simple cases, decision trees are useful 
for visually understanding how different variables impact 
an outcome and provide useful interpretation since the top 
nodes in a tree are the most important variables in the clas-
sification process. In cases with many branches, or decisions, 
interpretability and accuracy is reduced. Finally, they are 
non-linear, allowing for less strong assumptions than regres-
sion techniques, and are potentially less sensitive to outliers 
than linear regression methods (Murthy, 1998).

Random forests  are an extension of decision trees that use 
the concept of bagging (i.e., getting the average model of 
several models) to improve model performance (Breiman, 
2001). Here, bootstrapping is performed to create decision 
trees from many random samples in the training set. Predic-
tion on a new data point is performed by predicting the class 
in every decision tree created, then averaging the results to 
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determine the final result. Random forests have many of 
the same properties as decision trees. They have a lower 
sensitivity to outliers, allow for identification of the most 
important features, and are computationally efficient. They 
improve upon decision trees by reducing overfitting, having 
robustness to noise, and improving classification accuracy 
(Breiman, 2001). One drawback, however, is that they bias 
categorical variables that have many levels (Strobl, Boul-
esteix, Zeileis, & Hothorn, 2007).

Naive Bayes  is another simple technique that relies on cal-
culations based on two probabilities, the probability of each 
class (y) and the conditional probability (y given x) (Lewis, 
1998; Rish & et al. 2001). Naive Bayes, however, comes 
with the strong assumption that all x values are independent. 
That all x values are independent is unlikely in the context 
of LMS behaviors where, according to learning theory, pre-
dictors will likely be dependent on one another. If naive 
Bayes, however, works well as a predictive algorithm, and 
prediction is the primary goal of the model, researchers may 
choose to ignore this assumption. Because of its computa-
tional simplicity, naive Bayes works well with large training 
sets and many predictor variables. Additionally, naive Bayes 
can be used in multi-class classification problems and works 
especially well when the predictor variables are categorical.

K‑nearest neighbors  (Cover and Hart, 1967) is a technique 
where prediction of a new case is determined by summa-
rization of the k nearest cases. In k-nearest neighbors, the 
algorithm is used on the entire data set, instead of a training 
and test set. Typically, closeness is determined by Euclidean 
distance (Zhang, 2016). K-nearest neighbors often requires 
dimensionality reduction prior to running the algorithm due 
to the difficulty of measuring distance with high numbers 
of dimensions (Beyer, Goldstein, Ramakrishnan, & Shaft, 
1999).

Support vector machines  (SVMs; Cortes & Vapnik, 1995) 
are a powerful modeling technique with high accuracy. 
SVMs work by finding the hyperplane, which can be linear 
or non-linear (e.g., a line in two-dimensional data), that best 
separates the data into classes. SVMs are optimized on the 
margin between the points closest to the hyperplane, where 
larger margins are optimal. SVMs are very efficient at clas-
sifying new data but slower to train than some of the other 
methods mentioned here (Cristianini, Shawe-Taylor, & et al. 
2000). Additionally, this technique does not make strong 
assumptions, unlike regression techniques and naive Bayes, 
and typically, does not result in overfitting due to regulari-
zation. One potential drawback, depending on the aims of 
the researcher, is that the standard SVM does not shrink 
low values to zero. Instead, all variables are included in the 
model, meaning that researchers will not have a reduced list 

of predictive variables that could be targeted via interven-
tion. If the aim is selection of relevant variables, regulari-
zation approaches or using regularization on the SVM are 
better suited.

Evaluating model performance

Performance measures are an important choice in machine 
learning. Again, which metric should be used often depends 
on the goal of the research. For example, if misclassifying a 
case as a false negative carries greater risk than misclassify-
ing a case as a false positive, one might choose to prioritize 
sensitivity over other measures. Relying solely on sensitiv-
ity, however, would result in a model where all individuals 
are classified in the positive group, which is not a practical 
or useful model. In this section, we review several meas-
ures of model performance and discuss the pros and cons 
of using each to choose the best model from a set of fitted 
models. Ultimately, one should run several models using 
several different performance measures, but choosing among 
the models can be aided by prioritizing certain performance 
measures over others.

Before discussing the performance measures, we first 
define the following terms: true positive (TP), false positive 
(FP), true negative (TN), false negative (FN). A true positive 
is a case classified as positive that is also positive according 
to ground truth. Conversely, a false positive is a case clas-
sified as positive that is negative according to ground truth. 
For example, a student classified as being at risk for a lower 
grade who actually performed well in the course would be a 
false positive. Similarly, true negatives are cases classified 
as negative that are actually negative, and false negatives are 
cases classified as negative that are actually positive (i.e., a 
student classified as not being at risk for a lower grade who 
performs below threshold). Counts of these values factor 
into all performance measures we present here, though this 
is not an exhaustive list.

Accuracy and misclassification rate

Accuracy is interpreted as the proportion of correct clas-
sifications out of total classifications (Baratloo, Hosseini, 
Negida, & El Ashal, 2015). More specifically:

Users should be careful about interpreting high accuracy 
values with class imbalanced data. In data where there are 
few cases of the negative class, a model which predicts all 
cases to be in the negative class would achieve high accuracy 
but have no predictive value (Longadge & Dongre, 2013).

Misclassification rate, however, is the proportion of incor-
rect classifications out of total classifications.

(5)Accuracy =
TP + TN

TP + TN + FP + FN
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Care should also be taken in interpreting misclassification 
rate with class imbalanced data (Krzanowski, 2005).

Sensitivity and specificity

Sensitivity is defined as the proportion of positive cases cor-
rectly classified as positive. Sensitivity is sometimes also 
referred to as recall or the true-positive rate and is defined 
in equation form as:

Conversely, specificity is the proportion of negative 
cases correctly classified as negative. Specificity is some-
times referred to as selectivity or the true negative rate and 
is defined in equation form as:

A perfect classification model would have a sensitivity of 
100% with a specificity of 100%. Ideally, the chosen model 
would balance these two statistics. It would be easy to create 
a model with either 100% sensitivity or 100% specificity by 
classifying all cases as either positive or negative. However, 
this type of model would have no predictive value (Baratloo 
et al., 2015). In our work, we do not choose the model based 
on sensitivity or specificity because of this issue. We also do 
not select models based on misclassification rate because of 
the class imbalance issues. We do, however, use accuracy as 
a model selection measure in order to have one type of per-
formance measure from this class of performance measures.

Cohen’s kappa

Kappa (Cohen, 1960) is a useful measure for both multiclass 
solutions and imbalanced classes, where accuracy can be 
misleading (i.e., cases where one class is underrepresented 
in the sample). Kappa can be interpreted as a measure of 
how well the classifier is performing compared to a model 
that just classifies cases at random (Landis & Koch, 1977). 
Originally developed as a measure of interrater reliability, 
the formula for kappa is:

where po is the accuracy (i.e., agreement between ground 
truth and classifier) and pe is the expected agreement (i.e., 
accuracy if model classifies at random). The highest possible 
value of kappa is 1, where 1 represents perfect classification. 

(6)Misclassification =
FP + FN

TP + TN + FP + FN

(7)Sensitivity =
TP

TP + FN

(8)Specificity =
TN

TN + FP

(9)� = 1 −
1 − po

1 − pe

Cutoffs have been provided by Landis and Koch (1977), 
where 0–0.20 is slight agreement, 0.21–0.40 is fair agree-
ment, 0.41–0.60 is moderate agreement, 0.61–0.80 is sub-
stantial agreement, and 0.81–1 is almost perfect agreement. 
A negative value would indicate that the classification model 
is worse than random.

AUC‑ROC

The area under the receiver-operator characteristic curve 
(AUC-ROC; Melo, 2013) is a measure that balances the 
previously defined false- and true-positive rates. The ROC 
is a curve where the false-positive rate is plotted on the 
x-axis, and the true-positive rate is plotted on the y-axis. 
By exploring the ROC, one can determine how an increase 
in false-positives determines an increase in true-positives, 
the goal being to determine the probability of true positives 
at different thresholds of false positives. For example, we 
could have a true-positive rate of 100%, but in doing so, we 
would also have a false-positive rate of 100%. The AUC is 
the area under the ROC and ranges from 0.5 to 1. The closer 
the AUC is to 1, the better the model is at reducing both 
false-positives and false-negatives.

Algorithmic fairness

In addition to using these measures of model performance 
to assess overall model performance, we also suggest using 
these measures to explore model performance among sub-
groups within one’s dataset to determine if the model is per-
forming equitably among these subgroups. Kizilcec et al. 
(2021) described three definitions of algorithmic fairness 
across groups: independence, separation, and sufficiency. 
Independence means that algorithmic decisions should be 
independent of group status. To meet independence, the pro-
portion of individuals predicted to be in the positive class 
should be equal across groups. Separation means that the 
algorithmic decisions should be independent of group sta-
tus, conditional on true predictions. That is, true-positive 
(sensitivity) and false-positive rates should be equal across 
groups. Under sufficiency, the proportion predicted to be in 
the positive class for a given group should equal the pro-
portion that is actually in the positive class. Kizilcec and 
Lee (2021) described sufficiency as a ”weak” guarantee of 
algorithmic fairness.

Oversampling

Oversampling is used when one of the outcome categories is 
much larger than the other, such as when researchers would 
like to increase the weight of the smaller population. In data 
where one of the predictive categories is rare, it is possible 
that machine learning approaches return models where all 
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individuals are assigned to one class, resulting in either high 
specificity with poor sensitivity or poor specificity with high 
sensitivity. If the sample is balanced, it is likely that over-
sampling is not necessary. As with the above analytic over-
views, we do not intend this review to be exhaustive - rather, 
we sought to provide researchers with enough understand-
ing to know how to consider emerging approaches. When 
using any oversampling method, oversampling should only 
be completed on the training set and not the entire data set. 
If oversampling is completed on the entire set, synthetic data 
points that are already in the training set may also be cre-
ated in the test set, potentially leading to overfitting (Kovács, 
2019).

Random oversampling is a ’naive’ oversampling method 
in which random cases from the minority class are dupli-
cated in the training set (Ling & Li, 1998). Because the data 
is being duplicated in the training set, it is possible this tech-
nique leads to overfitting of the minority class (i.e., model 
performance is better in the training set but worse in the 
test set because the model is being fit to data with a larger 
n in the smaller class than actually exists). When using this 
method, we recommend comparing the performance of the 
model obtained from oversampled data to the original data 
in both the training and the test set to determine if overfitting 
is an issue (Japkowicz & et al. 2000).

Synthetic Minority Oversampling TEchnique (SMOTe; 
Chawla, Bowyer, Hall, & Kegelmeyer, 2002) is one of the 
most commonly used methods for oversampling data where 
at least one of the predictor or outcome categories is under-
represented. With SMOTe, overfitting is still possible but 
less likely than with random oversampling because SMOTe 
is not simply duplicating existing data. SMOTe creates new, 
synthetic data points using information from existing data 
points in the underrepresented categories. Conceptually, 
SMOTe creates new, synthetic data points between existing 
real data points in the minority class. This is done by creat-
ing a vector between k-nearest neighbors of each minority 
data point and generating synthetic data points on these vec-
tors. There are two tuning parameters for SMOTe, k and n. 
K is the number of neighbors to connect to each data point, 
and n is the number of times to duplicate that data point. In 
R (Torgo & Torgo, 2013), the default for k is five nearest 
neighbors. Additionally, the minority class is oversampled 
at a rate of 200% and the majority class is undersampled at 
a rate of 200%.

Empirical example

Here, we use an empirical example to illustrate the ideas 
and recommendations presented above. After selecting 
a model, oversampling, and evaluation methods, we can 

proceed with a feature selection process that is guided 
by learning so that our model can be both predictive of 
learning outcomes and potentially informative for a future 
intervention effort. For our empirical example, data were 
collected from students across multiple sections and 
semesters of an introductory biology course. All course 
sections utilized the same syllabus and LMS course site 
designs. Course instructors employed flipped classroom 
(i.e., students address topic content and assignments before 
the related class session) and active-learning (i.e., in-class 
individual and group activities and formative assessments) 
pedagogies delivered via a blended learning format (i.e., 
online resources and assignments coupled with in-person 
instruction). For each of 24 topic lessons, students were 
tasked with completing guided reading assignments and 
an online homework module before the related class ses-
sion where formative assessment questions are interwoven 
into lecture presentations. Additionally, a prior knowledge 
assessment on the first day of class, seven multi-topic 
quizzes, three unit midterm exams, and a cumulative final 
exam were administered. Our behavioral data came from 
multiple sources: (1) LMS interactions; (2) use of the text-
book publisher’s online assignment platform; (3) use of 
the course section’s forum site; (4) attendance logs for 
instructor office hours; (5) use of peer mentoring, and (6) 
use of learning center services. Any time a student took 
an action such as submitting assignments, downloading 
documents, clicking links to external websites, creating 
or replying to forum posts, or scheduling office hours, a 
timestamped log entry was created. Static data consisted of 
institutional data about the learner including demographic 
information and prior performance (i.e., not used in the 
model) and gradebook data about their performance in the 
course (i.e., used to produce the criterion variable.)

In its raw form, the data represent individual actions 
to access a single piece of content, respond to a single 
interactive exercise, or to subscribe to a single service. 
These events may afford predictive power in isolation, but 
they are voluminous to consider, and the specific combina-
tion of these very fine-grained events that are predictive 
for one sample may be less apt to retain their predictive 
accuracy when applied to future samples. Thus, we rely 
upon our understanding of the learning context and the 
instructional design intentions that motivated the provi-
sion of these resources to guide our feature engineering. 
That is, we aggregate events involving like objects into 
classes of resource type use, and where possible, tag these 
with the learning processes those objects were designed to 
afford. For this example, we utilize data collected during 
one semester of an introductory level course to provide 
concrete illustration of the types of features one might 
have access to from LMS trace data. We also leverage this 
data to demonstrate the differential predictive ability that 
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behaviors can have based on how researchers choose to 
quantify and code them.

Feature generation

As discussed in our earlier section on predictor variables, 
an important aspect of feature generation from trace data is 
deciding how to create predictive and theoretically mean-
ingful features from raw user log data. We use this example 
to illustrate the many decisions involved. Specifically, we 
discuss the window of prediction, the use of counts ver-
sus dichotomous features, aggregation across time, and the 
specificity of course unit metadata. We do not go into detail 
regarding the data themselves as these are highly specific 
to the course and instructors. Thus, they may have lim-
ited generalizability. The process we use here, however, is 
generalizable.

Window of prediction

Like most decisions we discuss here, deciding which actions 
to extract from user logs depends on the research question. 
In many studies where researchers aimed to develop pre-
diction models, researchers used the first 6 weeks of data, 
but there was also substantial variance in that range, with 
some studies limiting data collection down to the first 
week, whereas others continued data collection through-
out a 16-week semester. If the goal is to implement a mid-
semester intervention aimed at identifying students who are 
less likely to succeed, modeling the whole semester of data 
would not be useful. A better decision would be to model 
the early weeks of the course to provide a sufficiently timely 
prediction and to preserve an opportunity to intervene before 
an assessment that is critical to succeeding in a course. In 
the current study, we sought to build a model that produced 
an accurate prediction with time to intervene before the very 
first assessment in the course and explored using either the 
first 3 weeks or the first 4 weeks of the semester in order to 
determine if fewer weeks of data retained similar predictive 
value to more weeks of data.

Counts versus dichotomous variables

Next, we considered how to code information from our 
given window of prediction. In the current study, we coded 
variables as counts or dichotomous depending on how 
we expected a predictor to relate to the outcome. Specifi-
cally, we considered the type of event that was observed 
and whether that event would confer ongoing benefits, or 
whether a single instance of the event might be sufficient to 
confer benefit, with additional instances providing no clear 
advantage to the learner. A common distinction we made 
was between access of downloadable content where a single 

access would suffice to afford enduring use of a file versus 
visits to an interactive object, such as a practice quiz that 
afforded repeated self-testing or a forum that afforded ongo-
ing engagement with peers. For this reason, we ran mod-
els containing solely count values and models containing 
a mixture of count and dichotomized variables. First, we 
categorized event types as best represented as dichotomous 
when a single instance made sense and repeated instance did 
not, and as continuous when ongoing use afforded ongoing 
benefit. Then, we examined a thresholding approach where 
use or disuse of a class of resources might serve as a cat-
egorical descriptor of an individual’s approach to learning in 
the course. These dichotomous features described a learner 
as one who did or did not engage in a variety of events, 
and at times provided additional predictive power to mod-
els when provided as candidate features. Some examples of 
categorical variables that explained variance over and above 
continuous versions included: submitting a forum question, 
attending a review session, attending tutoring, meeting with 
a writing coach, downloading class 0 lecture notes, submit-
ting guided reading questionnaire at different points in the 
semester (GRQ; required homework item) 4, downloading 
GRQ 7, submitting a revised GRQ 1, submitting a revised 
GRQ 4, saving a GRQ 1, downloading lecture 0 slides, and 
downloading lecture 3 slides. These categorical variables 
describe a distinct tendency to engage in a particular behav-
ior, and categorical tendency to engage vs. not engage in a 
behavior can be a more important piece of information that a 
representation that assumes a linear effect where each addi-
tional engagement in a behavior confers increasing benefit.

Aggregation across time

Similar to our method of aggregating use of similar objects 
into counts of access of resources that reflect a theoretically 
interpretable learning behavior, we also aggregated events 
into contextually meaningful periods of time in which they 
occurred. That is, university courses are often organized into 
content units, and those units are further broken down into 
activities that conform to a weekly rhythm where students 
engage with a prescribed set of content in each semester 
week. Thus, we considered whether individuals’ summa-
tive effort through the prediction window would predict 
their performance and whether disaggregating such effort 
into semester weeks might further decompose variance in 
the timing of these events in ways that provide additional 
predictive power. If we are looking at the first 4 weeks of 
data, do we want to get a count of each action for each week 
or a count that aggregates across the entire 3-week time 
period? If there is reason to believe that week 1 behavior 
would be differentially predictive than week 3 behavior, it 
would make sense to aggregate on a weekly basis rather than 
across all 3 weeks. We might hypothesize that a download of 
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the syllabus in the first week of a course might be positively 
associated with strong performance in a course, whereas the 
same download conducted in the third week of the course 
might be minimally or even negatively associated with per-
formance. If, however, parsimony is important and break-
ing the data down by week is not expected to add much 
value, simply aggregating across the entire 3-week period 
may be preferred. We explored both methods of aggregation 
along with the combination of both methods of aggregation 
to determine which led to better prediction in the current 
data set.

Specificity of features

As mentioned in the section on predictor variables, behaviors 
can be coded at varying levels of specificity. A researcher 
can choose to create features with behaviors as broad as a 
download of any resource to as specific as a download of 
Unit 3 lecture materials (in our course, topics were sepa-
rated into units). We explored the use of features with three 
levels of specificity: (1) unit-specific; (2) common events; 
and (3) theory-driven behaviors (i.e., a further aggregation 
of common events that are consistently reflective of a learn-
ing strategy).

Unit-specific events tie the action to the content being 
learned. Thus, there can be a downloading lecture slides 
feature for each unit in the course, forum contribution for 
each unit in the course, and so on. A common event is an 
event that summarizes the use of a particular learning object 
type (e.g., access a course outline), and ignores the specific 
topic to which it pertains (e.g., chapter 3). Other examples of 
common events are downloading lecture slides, contributing 
to a forum, or completing a quiz. Finally, researchers can 
look to theory to guide how trace data can be transformed 
into useful features. Within the scholarship on STEM learn-
ing, researchers have often turned to self-regulated learning 
(SRL; Greene, Deekens, Copeland, & Yu, 2018; Hadwin, 
Järvelä, & Miller, 2011) theory to understand and intervene 
upon student behaviors. The primary tenets of SRL theory 
(e.g., course success requires students’ active and thought-
ful pursuit of learning goals and such pursuit requires self-
knowledge and the ability to monitor learning and adjust 
as needed; Pintrich, 2000) can be used to create predictive 
features. For example, syllabus access can indicate student 
identification of learning goals, students’ views of and 
responses to quiz feedback can indicate monitoring, and 
particular contingencies among behaviors (e.g., monitoring 
learning by accessing feedback and then adjusting learning 
by rereading sections of a course text) can be used to infer 
the kinds of adaptations that indicate effective self-regu-
lation and higher likelihood of student success (Bernacki, 
2018; Binbasaran Tuysuzoglu & Greene, 2015).

Analysis

Each feature set was split into a training set (75% of obser-
vations = 265 students) and a test set (25% of observations 
= 88 students). Logistic regression with elastic net penalty 
was then applied to each data set to predict outcomes on 
Exam 4, a summative final exam that serves as a criterion 
variable representing mastery of topics covered throughout 
the semester. Each outcome was binarized using a ”C+” 
threshold. A score greater than or equal to 80 was above a 
”C+” (per syllabus) and coded 0 here, while scores lower 
than 80 were considered ”C+ and below” and coded 1. This 
grade was chosen as it serves as a pragmatic discriminator 
where those who tend to earn grades in the A to B range 
move forward in their program of study, whereas those who 
earn grades in the C range or worse often repeat the course, 
either as a requirement of their degree program, or because 
future employers or degree programs require an A or a B for 
acceptance into jobs or programs.

All predictors in the test and train sets were standardized 
separately by mean-centering and dividing by the standard 
deviation. Tenfold cross-validation was used to identify the 
best regularization/model hyperparameters. Three different 
sampling techniques were used: no oversampling, random 
oversampling, and SMOTe. Additionally, each analysis was 
conducted choosing the best model on either accuracy or 
Cohen’s kappa. In total, 132 models were run. An ANOVA 
with all main effects and relevant two-way interactions was 
run to compare the kappa value of each model. We chose to 
look at kappa values to assess model performance regardless 
of the performance measure used in model selection during 
the model building stage. In addition to obtaining the accu-
racy, kappa, and sensitivity for each model, we also report 
performance measures across first-generation status, minor-
ity status, gender, honors student status, student’s major, and 
course section to determine the level of algorithmic fair-
ness across groups. We also report additional statistics on 
independence (proportion of each group predicted to be in 
positive class) and separation (false-positive rates) as sug-
gested by Kizilcec et al. (2021). Important to note is that 
the models with dichotomous variables only included unit-
specific features. Including common features would result 
in the same results.

Results

Comparison of models

An ANOVA with all main effects and a two-way interaction 
between specificity of feature and method of aggregation 
was completed to uncover differences in kappa depending on 
model performance measure, oversampling method, window 
of prediction, specificity of feature, whether some variables 
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were dichotomized, and aggregation method. The single 
two-way interaction was included based on a preliminary 
model of only main effects. Results from the ANOVA are 
reported in Table 2.

Results indicate statistically significant relations between 
the kappa value of the models run and the main effects of 
window of prediction (p < .05), specificity of feature (p < 

.01), and method of aggregation (p < .001). Additionally, 
there was a statistically significant interaction effect between 
specificity of feature and aggregation method (p < .01). Type 
of performance measure (p = .51) and whether or not some 
variables were dichotomized (p = .21) were not statistically 
significant predictors.

A heatmap in Fig. 1 shows differences in Cohen’s kappa 
depending on model specifications. Models with common 
event features aggregated weekly across 3 weeks of data 
and with either no oversampling or SMOTe oversampling 
performed best according to kappa. Models with non-dichot-
omized, unit-specific features aggregated across a 4-week 
period and using SMOTe oversampling performed the most 
poorly. Overall, the models where the features were common 
events appeared to be the highest performing. Additionally, 
weekly aggregation in this sample provided better perfor-
mance with aggregation across the entire 3 or 4-week period 
performing more poorly, indicating that a more granular 
count leads to better model performance.

Winning model

Here, we present results from the winning model. Those 
interested in viewing full results from the full set of 

Table 2   ANOVA comparing kappa values of models

Results indicate that the window of prediction, the specificity of the 
feature, the aggregation method, and the interaction of feature speci-
ficity and aggregation method were significantly associated with 
model kappa. Signif. codes: 0′∗∗∗′0.001′∗∗′0.01′∗′0.05.

Df Sum Sq Mean Sq F-value Pr(>F)

Model Perf. Eval. 1 0.00 0.00 0.44 0.508
Oversampling Method 2 0.01 0.01 2.42 0.093
Window of Prediction 1 0.01 0.01 4.12 0.045*
Specificity of Feature 2 0.05 0.03 9.41 < 0.001***
Aggregation Method 2 0.31 0.16 58.58 < 0.001***
Dichotomized 1 0.00 0.00 1.58 0.212
Specificity of Feature: 
   Aggregation Method

3 0.04 0.01 5.24 0.002**

Residuals 119 0.32 0.00

Note. Models with common event features aggregated weekly across 3 weeks of data and with either no oversampling or SMOTe oversampling
performed best according to kappa. Models with non-dichotomized, unit-specific features aggregated across a 4-week period and using SMOTe 
oversampling performed the most poorly. Models where the features are common events are the highest performing models. Weekly aggregation
in this sample provided better performance with aggregation across the entire 3- or 4-week period performing more poorly.

Fig. 1   Differences in model kappa according to different model specifications
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models tested can look in the supplemental materials at 
https://​osf.​io/​mj4ah/. The model we present here worked 
best in all scenarios and for our objectives of having a pre-
dictable and interpretable model. This winning model used 
data from the first 4 weeks of the semester. No oversam-
pling was completed, and the performance measure was 
accuracy. Unit-specific feature types, aggregated across 
both the entire 4-week period and by each week, were 
used in the model. No counts were dichotomized, and there 
were a total of 139 potential features.

Model prediction performance  The overall best-performing 
model achieved an accuracy of 0.75, a Cohen’s kappa of 
0.49, a sensitivity of 0.74 , and an AUC-ROC of 0.75. In 
other words, the model was successful in classifying 75% of 
students into classes based on prediction of their earning of 
a C+ or worse or a B- or better on a final exam. The model 
performed 49% better than a model that would have classi-
fied all students as C+ or worse earners (i.e., assigning this 
label to all cases based on it being the more populous class). 
Most importantly, for the purposes of prediction, a sensitiv-
ity of 0.74 means that the model successfully identified 3 out 
of 4 students who would ultimately earn a C+ or worse on a 
final exam, using only those data gathered prior to the first 
unit exam. The model thus provides an accurate prediction 
at a timely moment when these students could be provided 
with learning support that could help them avoid having 
to repeat the course due to earning a C+ or worse on an 
early exam that contributes substantially to their final grade 
and which can delay or derail STEM degree attainment and 
workforce entry. Group distributions and model performance 
metrics for each group can be found in Table 3.

Model equity performance  There was variability in model 
accuracy and kappa across subgroups. That said, except for 
first-generation students, we attained accuracy greater than 
or equal to 0.70 and Kappa greater than or equal to 0.30 
across all groups. In general, the model performed similarly 
across course sections and across biology majors and non-
biology majors, with slightly better performance in section 2 
and for biology majors according to accuracy and kappa 
values. The model performed perfectly among honors stu-
dents (i.e., all students were correctly classified). However, 
there were only six honors students, and non-honors clas-
sification performed well. Concerning demographic groups, 
we observed slightly better model performance based on 
accuracy and kappa in groups traditionally overrepresented 
in STEM. There was also better model performance in non-
female students. Overall model performance for members of 
underrepresented racial minority groups (accuracy = 0.71, 
κ = 0.30) and among female students (accuracy = 0.70, κ 
= 0.39), however, was good. In constract, the model achieved 
only moderate performance for first generation students, 
indicating a deficit in the model (accuracy = 0.65, κ = 0.16) .

Based on the sensitivity, false-positive rates, and percent 
of individuals predicted to be in the positive class, there 
was variability in our model regarding the requirements of 
independence and separation. The greatest discrepancies 
(excluding the honors student comparisons) were between 
first-generation and continuing-generation students and 
between underrepresented racial minority groups and those 
in the majority group. The deficit in model performance 
combined with the lack of independence and separation 
indicate a need to investigate different ways of predicting 

Table 3   Model performance broken down by demographic groups and course sections

 Model performance was similar across course sections and across biology majors and non-biology majors, with slightly better performance in 
section 2 and in biology majors. The model performed perfectly among honors students. There is slightly better performance in non-minorities. 
There is also better performance in non-female students. Finally, there is moderate performance of the model for first generation students, indi-
cating a deficit in the model to classify first generation students.

Accuracy Kappa Sensitivity FP Rate Predicted 
Positive

First generation (n = 17) 0.65 0.16 0.69 67% 76%
Other generation (n = 62) 0.76 0.52 0.74 20% 44%
Underrepresented minority (n = 21) 0.71 0.30 0.80 50% 71%
Non-minority (n = 55) 0.75 0.48 0.70 22% 42%
Female (n = 56) 0.70 0.39 0.70 32% 52%
Other (n = 33) 0.83 0.66 0.82 15% 33%
Honors student (n = 6) 1.00 1.00 1.00 0% 0%
Non-honors student (n = 74) 0.72 0.43 0.70 29% 50%
Biology major (n = 18) 0.78 0.53 0.82 29% 61%
Non-biology major (n = 62) 0.73 0.45 0.69 26% 47%
Section 1 (n = 51) 0.73 0.42 0.65 23% 39%
Section 2 (n = 36) 0.78 0.53 0.82 29% 61%

https://osf.io/mj4ah/
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the success of first-generation students as well as under-
represented minorities.

Important features

In the winning model, 58 features were selected for inclu-
sion in the model. A summary of presence of feature and 
strength of relationship with exam 4 outcome are presented 
in Fig. 2. An inspection of the features reveals the kinds of 
approaches to learning that were associated with successful 
or poorer performance, and these insights can inform future 
methods to support learners. For the majority of features 
selected, higher counts of engagement with a given action 
resulted in a lower likelihood (i.e., negative coefficient) of 
the student being classified as performing poorly in the class. 
Examples of the most important types of engagement (i.e., 
those with high absolute coefficient values) for this increased 
likelihood of acceptable academic performance in the course 
were increased counts of: downloading additional course 
information prior to the start of the course, downloading 
the lecture slides for lesson three, accessing the course cal-
endar, and attending tutoring. Performance on the pretest 
had the greatest impact, indicating that prior knowledge is 
important to course outcome. For a few variables, greater 
engagement was associated with a higher likelihood of poor 
performance in the course. Examples of engagement associ-
ated with increased risk were increased counts of: download-
ing lecture notes for lesson 1, saving GRQ submission for 
lesson 2, making an office hours appointment, and editing 
calendar events.

Discussion

Our main goal was to create a guide for behavioral research-
ers interested in using digital trace data. We did this by pro-
viding a primer on methods for analysis and feature genera-
tion. We also set out to examine how different prediction 
modeling decisions would impact the accuracy obtained by 
modeling students’ early behaviors as predictors of success 
on a cumulative final exam in a high enrollment, gateway, 
science course. Overall, model performance was improved 
when we aggregated features on a weekly basis rather than 
across the entire 3- or 4-week period. This indicates that 
the granularity and timing of when a student completes an 
action is important to predicting their success. This finding 
follows logic, as completing assignments early or download-
ing the syllabus early in the semester may be associated with 
proactive behavior in general, thus leading to greater likeli-
hood of success.

A third key aim of the paper was to not only accurately 
predict student achievement using an optimal method of 

modeling using learning behaviors, but also to reserve the 
demographic data often used to predict achievement instead 
as a lens to appraise the equity of model accuracy. This 
method allowed us to avoid perpetuating biases induced by 
use of person-level characteristics as indicative of future suc-
cess, ensured that all variance explained by a model would 
owe to behaviors that could be conducted by any student and 
observed by researchers, and potentially inform efforts to 
support those predicted to perform poorly. Our best model 
achieved accuracy above that typically achieved by prior 
researchers including those who relied upon demographic 
variables as predictors, and this accuracy was retained for 
all groups to whom the model was applied during testing. 
This confirms that the model could be applied with the 
confidence that it not only avoids perpetuating biases, but 
also affords an equitably accurate projection of a students’ 
performance based only on their learning behavior for both 
those adequately- and under-represented in science-learning 
contexts and fields.

The fourth aim of the paper was to confirm that the pre-
dictive accuracy was sufficient for the subclass of students 
who performed poorly on the exam that served as our crite-
rion variable. Our most accurate model was able to identify 
three out of four students who would ultimately go on to 
earn a C+ or worse on their cumulative final exam - solely 
based on behaviors in the course obtained prior to the first 
exam. In doing so, the model demonstrated a sufficient sen-
sitivity to detect such students at a time when they had yet 
to begin achieving poor outcomes on assessments, and the 
behavior-based predictions provided some transparency into 
the kinds of learning behaviors that might contribute to poor 
outcomes and could be addressed by intervention.

Non‑malleable factors

In the field of learning analytics, the decision whether to 
include person-level demographic variables and other char-
acteristics of the individual that are not amenable to inter-
vention is the focus of ongoing discussion (Buckingham 
Shum, 2020) Those who advocate for their inclusion tout 
the contribution to the accuracy of prediction, and the expla-
nation of variance in outcome variables based on known 
sociological factors. However, others argue that including 
these variables has the potential to overassign likelihood of 
a particular outcome to individuals based on factors that are 
entirely unrelated to the ways that a particular individual 
engages in learning. The inclusion of such variables has the 
potential to subsume variance that could be more coher-
ently explained if it remained available to the collection of 
behavioral variables that might combine to explain similar 
amounts of variance and produce a far more interpretable 
model (Bernacki et al., 2020). This latter approach, while it 
may produce slightly less accurate prediction, may provide 
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Negative values indicate a lower likelihood of being in the at-risk group. Students’ score on the pretest was the strongest predictor.

Fig. 2   Coefficient strength and direction for winning model
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sufficient model performance to afford intervention, and fur-
ther offer to intervene to support learners, based on the types 
of behaviors that they may (fail to) conduct and which are 
predictive of poorer outcomes.

Implications

There are several implications to be taken from this work. 
First, there are many combinations of analytic and feature 
generation methods that a researcher could take when ana-
lyzing digital trace data. Selection of methods is going to be 
context specific, and the goals of the research should be well 
thought out. Throughout the paper, we discussed:

•	 the trade-off between prediction and interpretation
•	 the presence of class imbalance and how that should be 

addressed when selecting model performance techniques 
and oversampling methods

•	 choice of model considering computational efficiency, 
sample size, types of predictors and outcomes, and inter-
pretability

•	 the decision of whether to include demographic variables
•	 the granularity at which features are generated
•	 assessing equity across groups

Our results suggest that regression with the elastic net 
penalty provides a model that achieves predictive power, 
while also allowing for simple interpretation in the regres-
sion framework. Because we achieved the best model per-
formance with counts aggregated weekly, it may suggest 
that researchers could benefit from creating more granular 
features. With regards to other modeling hyperparameters 
we discussed, we suggest researchers try them all when cre-
ating predictive models to determine which ones provide 
the best model performance. Decisions about quantitative 
methods should also be made with an ethical lens (Panter 
& Sterba, 2011). Also, we suggest that researchers evaluate 
model performance based on how the model performs across 
demographic subgroups to ensure model equity.

Limitations

All prediction models are necessarily context specific. They 
are defined by the target outcome adopted as a criterion vari-
able. The model that is produced is predicated on the can-
didate features provided by the learning environment and 
the selection of a sample of learners who engage within it. 
In that sense, this study is thus limited to a single course 
at a single institution, and the sample that could be drawn 
from a pair of sections of a Biology 101 course. With that in 
mind, the course is a reasonable exemplar of the high enroll-
ment gateway courses in institutes of higher education. Such 
work is context specific, should be replicated in additional 

contexts, and future researchers should experiment with ele-
ments of the design with an aim to improve upon them.

Our models generally delivered equitable accuracy to 
nearly all student groups, but one group whose perfor-
mance the model struggled to accurately classify was first 
generation college students. It may be the case that these 
students engaged with the learning resources in ways that 
differed from those who may have benefited from the social 
influence of others who had attended university. Additional 
research will need to be conducted to derive larger samples 
and examine differences in the behaviors and potentially the 
intentions across first- and continuing-generation students. It 
is possible that first-generation students use different strate-
gies for success or that certain strategies work better for 
them because of differing prior knowledge. To ensure that 
we provide equitable assistance to students who are likely to 
perform poorly academically, we need to better understand 
these differences.

In this study, we did not consider modeling techniques 
that may have better predictive value but offer little in terms 
of interpretation. Our priority was to obtain predictive accu-
racy but to also ensure that the model derived accuracy from 
interpretable features that could provide insight to the design 
of future intervention. If we only cared about prediction, we 
would want to include other models in the selection process 
(e.g., NNs, SVMs, etc.). These models have the capacity to 
outperform the models reported in this paper, and could be 
useful in future prediction efforts, especially if intervention 
methods have already been prepared.

Conclusions and future directions

In this paper, we aimed to probe the optimal design choices 
to produce accurate and equitable prediction of student suc-
cess that afforded opportunity for and insight into interven-
tion. We achieved model accuracy superior to typical levels 
reported in the literature and further confirmed that this 
level of accuracy was achieved for both well- and under-
represented groups in STEM, who are often at a disadvan-
tage in STEM learning contexts and who are often further 
disadvantaged by AI decisions that perpetuate biases. We 
avoided such perpetuation by developing a model without 
person-level data describing students’ demographic charac-
teristics, demonstrating that it is possible to model student 
success agnostic to a student’s background, and that focus-
ing on their behavior can provide equitable opportunities 
for supporting learnings and insight into how best to do so.

In addition, we explored a wide range of feature mapping 
possibilities. Future research could expand upon the current 
paper by considering alternative methods of feature genera-
tion. Here, we represented features as counts of actions in a 
given unit, aggregated across the predictive window. There 
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are endless other options to explore. Of particular interest is 
the use of factor analysis and other profiling methods.

Factor analysis, among other clustering and profiling 
methods, would provide an avenue to reduce dimensional-
ity and to reduce error in measurement. It may also be a way 
to model relationships more aligned with learning theory 
and create more intuitive interpretations of the model. For 
example, knowing that downloading the syllabus early in 
the semester is associated with higher likelihood of success 
is only useful if we can understand the underlying charac-
teristics that lead to such measurable behaviors. Combin-
ing indicator variables to measure proactiveness, however, 
would be more informative for developing generalizable 
interventions not tied to the specifics of the course modeled 
in the current study.

Because of the sensitive nature of the data, none of the 
raw data is available. We provide the code we used along 
with synthetic data for illustrative purposes at https://osf.
io/mj4ah/. We also have the results and code for the model 
comparisons reported in the paper. None of the models were 
preregistered.
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