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ABSTRACT: Near-infrared (NIR) spectroscopy is a promising technique for field
identification of substandard and falsified drugs because it is portable, rapid,
nondestructive, and can differentiate many formulated pharmaceutical products.
Portable NIR spectrometers rely heavily on chemometric analyses based on libraries
of NIR spectra from authentic pharmaceutical samples. However, it is difficult to
build comprehensive product libraries in many low- and middle-income countries
due to the large numbers of manufacturers who supply these markets, frequent
unreported changes in materials sourcing and product formulation by the manufacturers, and general lack of cooperation in
providing authentic samples. In this work, we show that a simple library of lab-formulated binary mixtures of an active
pharmaceutical ingredient (API) with two diluents gave good performance on field screening tasks, such as discriminating
substandard and falsified formulations of the API. Six data analysis models, including principal component analysis and support-
vector machine classification and regression methods and convolutional neural networks, were trained on binary mixtures of
acetaminophen with either lactose or ascorbic acid. While the models all performed strongly in cross-validation (on formulations
similar to their training set), they individually showed poor robustness for formulations outside the training set. However, a
predictive algorithm based on the six models, trained only on binary samples, accurately predicts whether the correct amount of
acetaminophen is present in ternary mixtures, genuine acetaminophen formulations, adulterated acetaminophen formulations, and
falsified formulations containing substitute APIs. This data analytics approach may extend the utility of NIR spectrometers for
analysis of pharmaceuticals in low-resource settings.

1. INTRODUCTION
Detection of substandard and falsified pharmaceuticals (SFPs)
in field settings is a still unmet challenge for analytical
chemistry, particularly in locations where regulatory resources
are inadequate or where individuals or organizations have
developed strong networks to bypass regulatory authorities.
The impact of SFPs on patient health and medical systems
costs is enormous.1−3 These products may be directly harmful
to patients or may lack efficacy in treating illness, leading to
poor clinical outcomes; they also contribute to the develop-
ment of antimicrobial resistance and reduce trust in the entire
medical system.4 In low- and middle-income countries
(LMICs), the World Health Organization (WHO) estimates
that one in ten products sold is an SFP, constituting a
significant fraction of health care expenditures.5−8 While
pharmaceutical companies, distributors, and regulators are
making efforts to ensure a proper and secure supply chain for
the safe delivery of drugs to end users, the fight against SFPs
remains a great threat to public health.9−11

One strategy for the detection of SFPs involves empowering
stakeholders (regulators, pharmacists, or even patients)
through point-of-use technology that can presumptively
identify low-quality products. The most widely available
point-of-use devices are portable spectrophotometers, which

conduct Raman, infrared, or near-infrared (NIR) analysis of
the vibrational modes of the substances found in pharmaceut-
ical products. The suitability of these technologies for
detection of SFPs in field settings has been reviewed recently
by Kovacs et al. and Roth et al.9,12 In a multistage study, Caillet
et al. evaluated 41 technologies for detection of SFP
antimalarial drugs; 12 were selected for laboratory testing,
and the most promising 6 were tested in a simulated LMIC
pharmacy setting. Of the 12 devices that were selected for
laboratory evaluation, three were NIR spectrometers. Diffi-
culties in building suitable reference libraries for the NIR
spectrometers were commonly cited disadvantages of this
technology both in lab settings13,14 and for field use: “...
reference library creation and updates will incur significant
costs ... some ‘reference’ samples contained API content
outside pharmacopeial limits, despite being procured from
what were thought to be reliable sources.”15 In the field, users
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often chose the incorrect reference libraries from options
provided on the NIR spectrometer software, which could cause
false classification of good-quality products as fakes, “There
appeared to be a lack of awareness that different brands of the
same API may contain different excipients, resulting in need
for different reference libraries.”16

The complexity often associated with pharmaceutical
products has been a major challenge toward building a robust
model for point of use technology in global assessment of
SFPs. NIR is attractive for applications in pharmaceutical and
medical fields because it is nondestructive, requires little to no
sample preparation, and is very fast to operate.17 Pasquini and
Roggo et al. recognized the unique ability of NIR to give useful
information about complex samples including petroleum oil,
wood, polymers, and pharmaceuticals.18−20 This information
ranges from classification, authentication, or identification to
quantification of target analytes in complex matrices.21

Unlike IR spectra, which can be associated with fundamental
vibrational modes of small groups of atoms, NIR spectra
consist of overlapping bands arising from overtones and
combinations of bond vibrations. The spectra are also affected
by intermolecular interactions. The strength of the vibrational
excitations depends on the polarizability of the dipole moment
and its degree of anharmonicity, so bonds between hydrogen
and heavier elements such as S, O, N, and C contribute to
high-intensity peaks in the NIR. Extraction of chemical
information from the raw NIR spectra requires a chemometric
treatment of the data, which can in some cases predict the
chemical composition of a sample as well as the concentration
of its constituents based on the wavelength and intensities of
NIR peaks.22−25

Conventional model-building approaches such as partial
least-squares and principal component regressions have been
used extensively to gather useful information from NIR
data.25−27 While diverse properties of the targets have been
studied using these approaches, the emergence of machine
learning (ML) has brought a new dimension to the
advancement of NIR technology.28−32

The chemometric analysis of pharmaceutical formulations
classically relies on models that are trained to recognize specific
brands of a pharmaceutical product using proprietary libraries
and algorithms to identify targets. The brand-specific approach
maximizes accuracy at the cost of robustness. These models are
useful for product authentication21,33−36 or manufacturing
process control,27,37,38 but they are not optimal for detection of
SFPs because they tend to give false alarms for formulations or
brands outside their training set.39,40 The reliance on libraries
of authentic products is a major barrier to the SFP use
case.19,28,33,34 Problems can arise when manufacturers use
different excipients, forms of the API (e.g., different crystal
polymorphs and particle sizes), and formulation technologies
(e.g., coated vs noncoated tablets) in different brands of the
same product, or even in different batches of the same brand.
These formulation differences can create differences in the
NIR spectra that result in identification of a good quality
product as an SFP. In theory, manufacturers of pharmaceut-
icals and portable spectrophotometers could cooperate to build
and update comprehensive libraries. In practice, there are
thousands of manufacturers and hundreds of portable
spectrophotometer brands, and the necessary cooperation
has not coalesced. In some cases, “authentic products”
provided for a library have been found to be substandard or
falsified.41

In this work, we aimed to maximize the robustness of NIR
identification of formulations of acetaminophen corresponding
to SFPs, without needing to build brand-specific libraries.
Acetaminophen, or paracetamol, is an inexpensive analgesic
and antipyretic on the WHO list of essential medicines, which
has been a target of falsification.42,43 A group of chemometrics
approaches and convolutional neural networks (CNNs) were
trained on simple lab-formulated binary mixtures, and we then
attempted to evaluate the strengths and weaknesses of each of
these methods for analysis of samples from outside the training
sets. Next, we combined the methods into an algorithm to
answer the types of presumptive questions that a drug
regulator might ask during postmarket surveillance activities:
is this product likely to be falsified? Is it likely to be
substandard? The final algorithm was then tested with samples
from outside the training set, including commercial acetami-
nophen products adulterated with an inert filler; lab-made
samples that simulated good, substandard, and falsified
acetaminophen formulations; and 20 other pharmaceuticals.

2. EXPERIMENTAL SECTION
2.1. Materials and Methods. Pure acetaminophen (AC)

was purchased from Sigma-Aldrich. Alpha lactose monohy-
drate (LA) with purity greater than 99% and isoniazid (IS)
with purity greater than 99% were obtained from Sigma-
Aldrich, while USP-grade L-ascorbic acid (AA) was purchased
from VWR Life Science. Compositions of binary and ternary
mixtures are shown in Table S1. Acetaminophen is a common
API for pain relief, lactose is a common excipient within the
pharmaceutical industry, while ascorbic acid has antioxidant
properties and is an ingredient in some cold-relief medicines.
The acetaminophen dosage forms were Tylenol and

TopCare brands purchased at a Martin’s supermarket in
South Bend, Indiana, in 2021. They are TopCare Extra
Strength Sweet Coat (TCESSC), TopCare Regular Strength
(TCRES), Tylenol Extra Strength (TEXST), Tylenol Rapid
Release (TRARE), Tylenol Regular Strength (TREST).
Double “00” gelatin caps (NOW, IL) were bought online
from Amazon. High-performance liquid chromatography
(HPLC) assays (Figure S1) showed all were of good quality.
Since dosage forms contain excipients in addition to API, it is
common to see API content that goes above 100% of the
number of milligrams stated on the package. These branded
products were “adulterated” as shown in Table S2.
Twenty APIs and excipients were assessed in these studies:

antipyrine, cefuroxime axetil, chloramphenicol, chloroquine,
dapsone, digoxin, D-penicillamine, hydrochlorothiazide, isatin,
L-citrulline, levofloxacin, lovastatin, metformin hydrochloride,
pravastatin, simvastatin, spironolactone, sulfamethoxazole,
tetracycline hydrochloride, uric acid, and Verapamil hydro-
chloride.
2.2. Instrumentation. All spectra were acquired on an

LMMI58000060 USB-powered portable NIR spectrophotom-
eter manufactured by InnoSpectra Corporation, Hsinchu,
Taiwan. Data were collected from 900 to 1700 nm with a
digital resolution of about 4 nm/data point, using 20 scans;
acquisition of a spectrum took 20 s. Each spectrum contained
228 data points generated from ISC NIRScan Winform GUI
software.
2.3. Data Analysis. The NIR spectrophotometer produces

data files with a header section containing sample and
spectrum metadata and a list of wavelength and absorption
data (an example is the data file labeled exrawdataspec in our
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GitHub repository.44 The raw data files were saved in a folder
and transformed to a worksheet containing the key parameters
of each spectrum. A macro of this transformation (NIRMacro-
Transformation) is in a folder tagged R-PLAYING.44 The NIR
intensity versus wavelength data are saved as RawNIRData.
Other key parameters necessary for the different quantitative
and qualitative analysis methods are in a csv file named Sample
Info. The data files, SampleInfo and RawNIRData, were
merged and imported to a multivariate analysis software
package, The Unscrambler X version 10.4 (Camo Software,
Oslo, Norway). Our raw data, code, and step-by-step
directions for data pretreatment, chemometric analysis, and
machine learning analysis are archived in our GitHub
repository.44

3. RESULTS AND DISCUSSION
3.1. Overall Strategy. Nine hundred NIR spectra were

generated to train a range of different chemometric models.
The spectra included pure acetaminophen, lactose, ascorbic
acid, and binary mixtures of acetaminophen with either lactose
or ascorbic acid. Each set of spectra was divided into a training
set (70%), a validation set for optimizing the training (15%),
and a test set (15%) that was reserved for evaluating the
performance of the trained and optimized models. After this
initial assessment, each model was applied to 400 spectra of
ternary mixtures of the same three compounds to evaluate how
well it performed with samples outside the boundaries of its
training set.
An algorithm combining six of the models trained on the

binary mixture data set was developed. Our hypothesis was
that the algorithm would be more accurate in quantifying
acetaminophen and more specific in rejecting samples that
were significantly different from acetaminophen than any of
the component models alone. In practical terms, the first
capability is related to identification of pharmaceutical
products that are substandard due to dilution with an expected
excipient, while the second capability is closer to the task of
identifying falsified products, degraded products, or ones that
are “cut” with an unexpected filler.
To gauge the robustness of the algorithm and the

component models on more realistic pharmaceutical samples,
we evaluated NIR spectra from five brands of acetaminophen
capsules and tablets as well as samples of these dosage forms
that had been diluted with lactose. We further challenged the
algorithm with a set of blinded lab-made samples that included
formulations corresponding to good quality, substandard, and

falsified acetaminophen. Lastly, we generated 20 samples from
laboratory-grade APIs to test whether the algorithm could
reliably reject these substitute pharmaceuticals. For all these
experiments, the algorithm and the underlying setups of the
models that contributed to the algorithm (e.g., the PCA
loadings, SIMCA hyperplane coordinates, and CNN loadings)
were held constant based on the original binary mixture
training.
Our experimental design incorporated both quantitative and

qualitative approaches by exploring molar ratio and percentage
of the API and excipients formulated in the lab as a metric for
quantitative and qualitative assessments of APIs in actual
formulations. We have not optimized the algorithm for
accurate concentration determination yet, because the main
question for detection of SFPs is whether a substance meets or
fails the API content standards.
3.2. Raw Spectra and Data Pretreatment. Raw spectra

were generated from the NIR spectrometer enclosed in a
three-dimensional (3D) printed case (Figure S3) with a holder
for a gel capsule filled with samples.45−48 A preliminary study
(Figure S5) suggested that 100 spectra of a given sample would
be sufficient to classify or quantify unknown samples in a
supervised learning algorithm. We introduced variability in the
samples and sample measurements by generating the 100
spectra of each sample using 10 gelatin capsules filled with a
portion of the sample, each repositioned and measured 10
times. The spectra generated for acetaminophen (AC), lactose
(LA), and ascorbic acid (AA) were significantly different by
visual inspection, and mixtures of these compounds gave
additive spectra (Figures 1A & S6).
The raw spectra were normalized and smoothed (Figure

1B). To remove offsets and multiplicative effects, we applied
standard normal variate (SNV) preprocessing,19,49−51 ensuring
that every spectrum had a standard deviation of one and a
mean of zero (Figure S6). Noise was reduced through
Savitzky-Golay smoothing (SG) yielding second-derivative
spectra (Figures 1B & S7B) that were subjected to data
analysis.50−52 SG smoothing may distort the shape and the
intensity of the spectral bands thereby limiting the optimal
model performance.53−55 However, preliminary studies and
exploratory data analysis were carried out to ensure an
optimized outcome. Figure S8 shows the scores of the SNV-
only (A) treatment, raw data (B), and SNV plus SG (C)
treatment of the sample data. SNV plus SG gave superior
separation of the samples.

Figure 1. Original spectra (A) and the transformed spectra (B) of pure AC, LA, and AA. This signal processing treatment substitutes each data
point with a smoothed estimate resulting from a polynomial regression transformation.
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3.3. Classification and Regression Analysis for
Qualitative and Quantitative Assessment and Predic-
tions. 3.3.1. Classification. To answer questions that are
relevant for end users or regulators of pharmaceutical products
such as acetaminophen, we approached the classification with
two questions in mind. In case 1, is the formulation consistent
with authentic product (authentic), or not consistent with
authentic product (suspicious)? And in case 2, is the sample’s
AC content within the allowed threshold provided by the
regulators (meets the 90−110% API content standard, OK),
present but below the required threshold (substandard, SUB),
or not determined (No API or a substitute API, FAIL)? After
training and optimizing the PCA/SIMCA (Figure 2B) and
SVM models on 85% of the 900 pure and binary mixture
spectra, the classification accuracies of each model on the Case
1 and Case 2 tasks were evaluated using the remaining 15% of
the spectra.
Not surprisingly, both models performed well when tested

against samples similar to their training set. The more
computationally intensive SVM model gave a validation
accuracy of 100% in case 1 and 99.9% in case 2. SIMCA
based on PC scores gave a validation accuracy of 100% in case
1 and 89% in case 2. However, all SIMCA’s misclassifications
in case 2 were due to the SIMCA algorithm classifying FAIL
samples as SUB. Since both categories would fail to meet the
regulatory standard for API content, the accuracy for
discriminating between samples that fail or meet the standard
was 100%.
Next, without any additional training, the models were

tested with 400 spectra of lab-formulated ternary mixtures of
AC mixed with both LA and AA. The prediction accuracy for
both classes was 100% for SIMCA, while SVM was 100% in
case 1 and 96% in case 2.
The traditional approach to NIR data analysis is to generate

spectra from authentic samples of the products that are being
analyzed in the field setting and use these to train various data
analytics models. These models give excellent results for
samples that fall into their training set but may fail for samples
outside the training set. We followed this traditional approach
to build PCA and SVM models for three Tylenol and two

TopCare brands of acetaminophen tablets and capsules. Each
of the five brands is designated as 100% in “brand content.”
Mixtures were then prepared in varying proportions with
lactose (LA, w/w) to simulate adulteration of the branded
products. In addition to the branded product, samples were
prepared with 90%, 50%, or 10% brand content. Five SIMCA
and five SVM models were trained, one for each brand; test
results gave classification accuracies of 96−100%. However,
when each model trained on one brand of acetaminophen was
tested on the reserved samples from the other brands of
acetaminophen, the classification accuracies dropped to 60−
76% for the SIMCA models and 98−100% for the SVM
models.
Each model was then tested on binary mixtures of

acetaminophen with lactose or ascorbic acid. While SVM
performed well in detecting falsified samples (case 1) with
classification accuracy of 100%, its accuracy for detection of
substandard samples (case 2) was between 79% and 87%,
depending on which brand the model had been trained on.
SIMCA’s classification accuracy was 100% for all the binary
samples in both cases. Next, we tested each of the branded
models on ternary mixtures of acetaminophen with lactose and
ascorbic acid. SVM yielded classification accuracy of between
70 and 75% for both case 1 and case 2 classifications, while
SIMCA failed to classify any of the samples correctly. Here we
observed that, when the test samples possess similar character-
istics to the training samples, SIMCA offers a better
performance, while analysis involving different matrices yielded
better performance with the SVM algorithm. This finding
aligned with Ŕacz et al.’s work on SIMCA exploration in
classification as an algorithm that anchors on similarities
among samples within the same class/group rather than on the
differences between the groups, making it more effective as a
classification method for identical samples.56

Since the models that were trained on lab-produced binary
mixtures gave better performance for classification of ternary
mixtures than the models that were trained on specific brands,
we used lab-produced binary mixtures for the next sets of
experiments, which focused on semiquantitative assessment.

Figure 2. NIR spectra of mixtures of acetaminophen (AC) with lactose (LA) and/or ascorbic acid (AA) were used to train and evaluate the data
analysis models. (a) Compositions of the binary and ternary (circled) mixtures in mole%. (b) PC scores for principal components 1 and 2, showing
the clustering of NIR spectra corresponding to different binary formulations.
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3.3.2. Regression. We developed regression models based
on PC and SVM in order to detect substandard products.
Because our experimental data do not span the concentration
space evenly but focus on the regulatory threshold level near
90% API content, the resulting regression models should not
be seen as tools for quantitative assay, particularly for API
levels that are different from the regulatory threshold levels.
Partial least-squares regression (PLS-R) creates a linear

model in reduced dimensions through which the observables
can be used to predict concentration values for unknown
samples. SVM-R, a nonparametric technique, uses support
vectors and kernel functions in its predictions.19 The PLS-R
and SVM-R models were again trained using 85% (70%
training set and 15% validation set) of the 900 spectra
generated from the binary mixtures; some of the binary
mixtures were diluted with lactose and others with ascorbic
acid, but the models were trained only to predict the
concentration of the acetaminophen component. The
regression accuracies for these models were evaluated using
the 15% of the spectra that had not been used in the training.
The prediction accuracy for these regressions is defined as the
predicted API content divided by the actual API content. PLS-
R yielded a prediction accuracy of 98%, while SVM-R yielded a
prediction accuracy of 99%.
The models trained on the binary mixtures were then

employed to quantify acetaminophen in the lab-formulated
ternary mixtures. PLS-R and SVM-R performed exceptionally
well in the quantitation of the API, as the predicted values are
all within the expected quantity with prediction accuracy of
greater than 96%. These findings are important because the
most encountered types of bad-quality pharmaceuticals are
substandard products, and existing field screening devices are
generally bad at detecting these.
As expected, regression models trained on specific brands

performed better in analysis of those brands than models
trained on the binary mixtures.
PLS-R and SVM-R models were developed by training the

models on each brand’s product either pure or adulterated with
varying amounts of lactose, LA, and then, their performances
were evaluated. The prediction accuracies of all five models
ranged from 96% to 99%. SVM-R performed slightly better
than PLS-R (Table S3) with better root-mean-square error
(RMSEV) and correlation coefficients.
Although the SVM-R and PLS-R models that had been

trained on specific brands gave superior performance in
analysis of those brands, when they were used to evaluate
acetaminophen content in ternary mixture samples, their
performance dropped significantly, to 85 and 82% prediction
accuracy, respectively.
3.3.3. Convolutional Neural Networks. Neural networks

have been setting new benchmarks for regression and
classification tasks in many fields for the past decade.57−60

Zhang et al. used multimodal convolutional neural networks
(CNNs) to classify NIR data of tobacco samples from four

different countries.61 We explored a similar approach for
acetaminophen samples. One major difference of our work in
comparison with that of Zhang et al. is that we trained our
CNN models for regression tasks instead of classification. With
a regression objective, the model can focus on predicting the
molar or mass content of AC instead of forcibly classifying a
data sample into one of the class labels. CNN has been
explored both in data and image analysis. In this work, our goal
was to use CNN to broaden the conventional “linear”
approaches, which was why we tried multiple neural network
(NN) designs, including two-dimensional (2D) CNN. We
tried several CNN designs; a more detailed discussion of the
network architectures, model parameters, and optimization can
be found in the Supporting Information. The NIR data can be
viewed either as a one-dimensional (1D) vector that can be
analyzed with 1D-CNN or as a grayscale image that can be
analyzed with 2D-CNN (Figure S4). We varied the network
architecture31,59,60 of both the 1D and 2D models (Table S4)
to optimize their performance.
Each of the models was trained using 85% (70% training set

and 15% validation set) of the NIR spectra from the lab-
formulated binary mixtures of AC with AA or LA. The models
were then tested on the remaining 15% of the NIR spectra. All
the CNN models performed above 96% prediction accuracy
when tested on the lab-formulated binary samples, with root-
mean-square error of prediction (RMSEP) values less than 5%.
This confirms that neural networks are generally robust for
detecting pharmaceutical products that are substandard due to
dilution with an expected component. However, substandard
pharmaceutical products often contain unexpected compo-
nents, and neural networks are notoriously fragile when
confronted with data from outside their training sets,62 so we
next tested them with the ternary mixture data. Each model
showed good robustness despite the common weakness of
supervised learning algorithms in external validations.63 The
RMSEP of each model was surprisingly less than 10% (Table
S4). However, when the CNN models were used to analyze
the blinded samples (see Supporting Information) correspond-
ing to good quality, substandard, or falsified acetaminophen
formulations, their performances were poor for the falsified
formulations, leading to average RMSEP errors for the
acetaminophen concentrations greater than 30% (Table S4).
The CNN models failed completely for the blinded samples
containing isoniazid (IS) (whose NIR spectrum resembles that
of acetaminophen, see Figure 3) whereas they performed well
for starch (a polysaccharide whose functional groups are
similar to those found in lactose).
3.4. Integration of PCA, SVM, and CNN Models. In

order to maximize the robustness of detection of SFPs, we
developed an algorithm that combines the strengths of six of
the models described in sections 3.3.1, 3.3.2, and 3.3.3. The
models included SIMCA and SVM classification, PLS and
SVM regressions, and LeNet and 2D CNN models (the CNNs
that gave the best RMSEP for the “blinded” samples, Table

Figure 3. SNV transformed spectra of acetaminophen, AC (A), spectra plots (B), and isoniazid, IS (C).
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S4). All models in the algorithm use the lab-produced binary
mixture data set as their training set.
The goal of the algorithm is to classify an NIR spectrum of

an unknown pharmaceutical sample as “OK” (meets standard),
“SUB” (substandard), or “FAIL” (implies an unexpected
component is present or the acetaminophen concentration is
less than 10%). The algorithm prediction pathway is shown in
Figure 4. Five “cells” each contribute one vote toward the final

prediction. The first step in the algorithm is to compare the
classes assigned by the two classification models SVM-C and
SIMCA. If these classes (OK/SUB/FAIL) agree, the content
of the “classification” cell is set to that value. If the SVM-C and
SIMCA models do not agree, the classification cell content is

set to FAIL. The next step is to model the acetaminophen
content using the four regression models (PLS-R, SVM-R,
LeNet, and 2D-CNN). Each of these models has an individual
voting cell. If the value of a model’s predicted concentration of
acetaminophen is between 0.80 and 1.20, the model votes OK,
and if the predicted concentration is less than 0.8 or greater
than 1.20, the model votes SUB. If the model predicts a
concentration that is less than 0.30, the model’s vote switches
to FAIL. Finally, the algorithm counts the votes. The
algorithmic prediction is the result found in at least three of
the voting cells in a majority rule approach. If there is no
majority vote, the algorithmic prediction is set to FAIL.
The algorithm was tested on NIR spectra from three classes

of validation samples, including (a) binary mixtures that
covered the training set compositions and extended to totally
unfamiliar compositions (these samples were independent
from the original binary training/testing set), (b) five authentic
acetaminophen formulations, some of which were intentionally
adulterated with lactose, and (c) 20 other common
pharmaceuticals.
3.4.1. Algorithm Performance on “Lab-Made” Samples.

To see if the algorithm could distinguish samples from both
inside and outside its training set, it was used to classify 140
spectra corresponding to binary and ternary mixtures of pure
acetaminophen and lactose or ascorbic acid as well as pure
isoniazid (IS), an isoniazid/acetaminophen mixture, and
cornstarch. Isoniazid was selected because several regions of
the AC and IS spectra are superficially similar (Figure 3), and
starch is a polysaccharide whose NIR spectrum mimics that of
lactose to some degree. The algorithm correctly identified the
three samples that met the monograph API content standard
(Table S8), correctly identified the two binary mixtures whose
API content was substandard, identified both binary mixtures

Figure 4. Flowchart for the algorithm. If the two classification models
disagree, their vote is set to FAIL; if they agree, their vote is set to that
value. For the regression models, predictions between 0.80 and 1.20
are set to OK, predictions at most 0.30 are classified as FAIL, and
predictions between 0.30 and 0.80 or greater than 1.20 are classified
as SUB.

Figure 5. Summary of the model and algorithm predictions for binary and ternary mixtures of acetaminophen with lactose and ascorbic acid,
branded acetaminophen products with lactose diluent, and other pharmaceuticals.
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with 10% API content as falsified, and could not classify the
samples containing either isoniazid or starch, correctly
indicating that an unexpected NIR-active substance was
present in each for a classification of falsified. Three ternary
mixtures were correctly classified as substandard, and the
fourth (containing just 10% acetaminophen) was classified as
falsified (Figure 5, Table S7). No individual model performed
better than the algorithm in classification of the binary and
ternary samples.
3.4.2. Algorithm Performance on Acetaminophen Dosage

Forms. The algorithm was then challenged with NIR spectra
generated from five brands of acetaminophen tablets, some cut
with lactose to simulate substandard or falsified products.
These samples were either good quality (OK, API content >
90%), substandard (SUB, 90% > API content > 10%), or
falsified (FAIL, API content < 10%). The algorithm identified
all the good quality and substandard formulations correctly;
three falsified formulations containing slightly less than 10%
API were identified as substandard. SIMCA classified 617 out
of the 1249 spectra correctly, including identifying all the
seriously adulterated samples (containing less than 90% of
brand content) as substandard (SUB). However, SIMCA was
unable to classify three of the branded drugs (TREST,
TRARE, and TEXST) with 10% lactose content (Table S5).
This created a vote of FAIL from the classification cell, which
was overridden by the SUB votes from the regression cells in
the next step of the algorithm. The more computationally
intensive SVM-C model classified all the samples correctly.
SVM-R performed poorly by predicting most spectra of
samples that had been cut to 50% AC content as good quality.
LeNet and the 2DCNN model mistakenly identified several of
the branded products as substandard, not surprising given the
unfamiliar matrix of these products, but were outvoted by the
classification cell and the other two regression models.
3.4.3. Algorithm performance on other pharmaceuticals.

Finally, we investigated the ability of the algorithm to
discriminate acetaminophen from other APIs. Twenty
common pharmaceuticals containing a broad range of
functional groups were selected, and five NIR spectra were
acquired from each substance. The algorithm then classified
each spectrum as either FAIL, SUB, or OK; all the samples
were appropriately classified as falsified (FAIL) except for uric
acid, which was classified as substandard (Table S6).

4. CONCLUSION
Portable NIR spectrometers could be a game-changing
technology for uncovering SFP products in low-resource
settings, but the need to build libraries of spectra from
authentic samples of the products that are to be analyzed has
hampered their implementation in low- and middle-income
countries. Efforts have been made to identify counterfeit
acetaminophen products in the past, but most of the
approaches used a brand-specific library in training the
algorithm.64,65 Here, we trained six models using NIR spectra
that were generated from lab-prepared binary mixtures of
acetaminophen and two cutting agents. All the models
performed very well when evaluated individually through the
normal validation process. However, when we challenged each
model to evaluate the quality of NIR spectra in 54 samples that
were different from the training samples, each model had weak
spots. For example, the classification voting cell erred in 17% of
the cases because these methods tended to identify samples
with unfamiliar excipients as substandard or falsified. The two

regression models erred in 27% of the cases; they had trouble
identifying substandard products unless the API content was
below 50% and mistook several of the substitute APIs for
substandard acetaminophen. The two neural nets erred in 32%
of the cases; both misidentified isoniazid or acetaminophen/
isoniazid mixtures as good quality acetaminophen and
misidentified three good quality acetaminophen products as
substandard.
A simple voting algorithm was used to combine the

strengths of the six models. The algorithm predicted the
correct classification in 93% of the cases. The improved
robustness of the NIR data analysis with a simple combination
of six models is encouraging. Much future work will be
required to optimize the choice of the classification/regression
methods in the ensemble, minimize the computational
overhead, and weight the contributions of individual models
to the overall decision. This is outside the scope of this work,
but it is important to investigate. To support that work, we are
building up a data set that includes more pharmaceuticals, a
wider range of dosage forms, and possibly, other types of
spectroscopic data such as IR. We do not yet know whether
the selection of the diluents used in the binary mixtures needs
to be optimized for the algorithm to recognize other active
pharmaceutical ingredients, and it is possible that different data
analysis models or different weighting of the individual models
in the algorithm could further improve the overall perform-
ance. Further work is in progress to broaden these
investigations to other active pharmaceutical ingredients that
are used in medicines on the WHO essential medicines list and
to evaluate the performance of the NIR analysis on a wide
range of pharmaceutical products from many manufacturers
across the globe.
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