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Abstract  

We report atomistic simulation results which indicate that the location of shear banding in a 

metallic glass (MG) can be ascertained with reasonably high accuracy solely from the undeformed 

static structure. Correlation is observed between the location of the initiation of shear bands in a 

simulated MG and the initial distribution of the density of fertile sites (DFS) for stress-driven shear 

transformations identified a priori based on a deep learning model devised in our recent work [Fan 

and Ma, Nat. Commun. 12, 1506 (2021)]. In addition, we demonstrated that one can judge whether 

a glass is brittle or ductile solely based upon its initial DFS distribution. These validate that shear 

bands in MG arise from non-linear instabilities, and that the as-quenched glass structure contains 

inhomogeneities that influence these instabilities. This work also reveals an important subtlety 

regarding the non-deterministic nature of athermal quasistatic shear simulations.   
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Introduction.—The dominant flow and failure mode in metallic glasses (MGs) is shear banding, a 

plastic instability that localizes large amounts of shear strain within a narrow region when a MG 

is deformed [1-5], which is a non-local event. Understanding and controlling the shear banding 

behavior is of importance for enhancing the ductility of MGs, and thus, shear banding has been a 

research focus in the MG community over the past few decades [6-26]. However, owing to the 

disordered structure of MGs and the lack of well-defined topological defects like dislocations, it 

remains an open question whether one can identify a priori where shear bands will initiate solely 

based upon their as-quenched undeformed static structure. Also, it is not clear whether one can 

determine solely from a MG’s initial static structure if the MG is brittle or ductile. A number of 

investigations have been undertaken seeking to apply machine learning (ML) methodologies to 

this problem. These have included simulations of amorphous polymer nanopillars [27] where 

surface properties and features are crucial to determining the mode of failure [28]. Our work builds 

on prior investigations using a linear support vector machine (SVM) [29] and graph neural 

networks (GNN) [30] to analyze bulk glass structure, although these prior works did not focus on 

predicting shear band formation per se. We also compare our convolutional neural network (CNN) 

based approach to physically derived indicators. 

 

Previous research [15,16] has demonstrated that a shear band is formed by the coalescence of a 

series of adjacent shear transformation zones (STZs) [31], elementary plastic events that occur 

under externally applied stresses. Our conjecture is that one would be able to predict where shear 

bands initiate in MGs if one were to know which atoms would be involved in STZs under a specific 

loading condition a priori solely from the initial static structure. This would be consistent with 

models such as the STZ theory of amorphous plasticity wherein the shear banding instability arises 

from an underlying non-linear instability [32,33]. Over the years, much progress has been achieved 

in predicting elementary plastic events from initial structure in glasses [34,35]. Very recently, we 

demonstrated that even at 10% strain (around the yielding point) the atoms which will experience 

extremely large plastic rearrangement can be identified a priori with high accuracy solely from 

the static structure in the initial glassy sample before deformation [36]. This was achieved through 

the combination of a novel structural representation and a powerful deep learning method 

(convolutional neural network, CNN) [37]. In this letter, these atoms with high predicted plastic 

susceptibility (class probability > 0.5) via this method will be referred to as fertile sites for shear 
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transformation, and we will demonstrate that shear bands prefer to initiate around regions with a 

high density of such fertile sites in simulated Cu50Zr50 MGs. Besides, we will also show whether 

a glass is brittle or ductile can be determined solely based upon its initial distribution of the density 

of fertile sites. 

  

 
FIG. 1.   Location of shear bands in a MG. (a) and (b) show color maps where bright (dark) atoms 
represent large (small) D2min after athermal quasistatic shear to 20% strain is imposed on the same 
Cu50Zr50 MG sample under the same loading condition but from simulation runs in which the atom 
sequence is re-ordered. Plots (c) and (d) show the distribution of the fraction of atoms in the top 
1% of the D2min distribution in (a) and (b), respectively. The location of the distribution along the 
X axis (blue curve) was multiplied by -1 in order to differentiate it from that of the distribution 
along Y axis (pink curve).  
 

 
Initiation sites of shear bands in a MG.—A recent study by Golkia, et al. [38] revealed that for 

identical Lennard-Jones glass models that were quenched instantaneously from supercooled 

liquids and then annealed, small changes in the deformation protocol, such as the use of different 

initial random numbers for the thermostat, changed the flow patterns from vertical to horizontal 

bands, and could result in horizontal bands arising at different locations. This occurred even though 

the shear deformation was conducted at very low temperature. From this the authors concluded 

that the initial undeformed glass sample does not determine whether and where shear bands will 

form. Rather, they assert that the formation of shear band is entirely stochastic. We have also 

studied deformation under athermal quasi-static shear (AQS) [39,40], a methodology that is 

usually considered to be deterministic since deformation is imposed in small shear increments 
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followed by energy minimization operations. In our prior study we discovered that the AQS result 

varies if the atom sequence in the initial configuration file is reordered while keeping all atom 

positions and deformation conditions the same. Furthermore, the larger the strain, the larger the 

difference between simulations with different atom sequences [36]. This unexpected stochasticity 

appears to arise from the effect of numerical noise on the conjugate gradient minimization within 

the high-dimensional energy landscape of the glass, although other minimization algorithms were 

also tried and the similar stochasticity was observed. In this study we examine the degree to which 

shear banding in a relatively slowly quenched glass is stochastic with respect to location and 

orientation. We wish to ascertain whether the result of Golkia, et al. [38] is specific to the way 

their systems were prepared and simulated. 

 

To this end, we simulate the identical Cu50Zr50 MG system consisting of 32,000 atoms in a cubic 

simulation cell with an edge length of approximately 82 Å. This initial condition was prepared by 

a quench at an effective cooling rate of 1010 K/s (other details regarding the sample preparation 

are the same as that in Ref. [36]). The system was sheared 100 times under exactly the same 

loading conditions using the AQS method on the same computer. The only difference among the 

100 deformation simulations is the atom sequence in the file of the initial undeformed 

configuration. In this way we hope to determine the reproducibility of the shear band location and 

orientation. 

 

Fig. 1(a) and (b) show the field of deviation from affine displacement (D2min) [31] at 20 % strain 

for two typical simulations among the 100 performed (Both the calculation and visualization of 

D2min field were performed using the OVITO package [41]). As can been seen from the two D2min 

fields, a horizontal shear band (the bright region in Fig. 1(a), parallel to X axis along the shear 

direction) formed in one simulation while a vertical shear band (the bright region in Fig. 1(b), 

parallel to the Y axis perpendicular to the shear direction) formed in another simulation. This 

demonstrates that the location of a shear band is not fully reproducible for the same MG model 

even under AQS simulation. However, one cannot reach the conclusion that the formation of shear 

bands is fully stochastic with respect to location for the slowly quenched glass subjected to AQS 

by considering select cases. The entire data bank generated of 100 simulations must be examined 

in a proper statistical analysis, as will be done in the next section. 
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In order to determine the center position of each shear band, since only one shear band occurs in 

each of the simulated samples, we calculate the locations of the atoms in the top 1% (=ftop) of the 

D2min distribution at 20% shear strain. We will refer to these atoms as the “highly deformed atoms.” 

As the shear bands have two possible orientations (horizontal or vertical), the distribution along 

both X and Y axes are examined. We calculate the fraction of highly deformed atoms within 

parallelepipeds that have a width along the X axis 𝜔!" = 19	Å  . The length along all other 

dimensions are equal to that of the simulation box. We will denote the middle point of each 

parallelepiped aligned with the X axis as x. Similarly, we calculate the fraction of highly deformed 

atoms along the Y axis at the locations denoted y.  

 

To differentiate the locations along the X and Y axes, the coordinate along the X axis was 

multiplied by -1 in all figures. Thus, for a horizontal shear band, the peak position of the 

distribution should be positive while the peak position is negative for a vertical shear band. Fig. 

1(c) and (d) display the distribution of the fraction of highly deformed atoms corresponding to Fig. 

1(a) and (b), respectively. Systematically varying the values for both ftop and 𝜔!"	does not result 

in significant change in the center position, see Figs. S1 and S2 of the Supplemental Material. 

 

 
FIG. 2.   Connection between initial distribution of density of fertile sites and final location of a 
shear band in a Cu50Zr50 MG. (a) and (b) are for two independent samples, respectively. In each 
plot, the red curve (left vertical axis) displays the initial distribution of CNN-predicted density of 
fertile sites (DFS), and the blue curve (right vertical axis) shows the number of shear bands 
initiated at each position obtained by shearing the same MG configuration 100 times under exactly 
the same loading condition but with different atom sequences.   
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Predicting shear band locations from initial density of fertile sites.— If the location of the initiation 

of a shear band is determined by the glass structure, deforming the same glassy sample multiple 

times under identical loading condition should result in repeated shear band initiation at highly 

correlated locations. To test whether this is the case, we count the number of shear bands initiated 

at each position for the 100 shearing simulations conducted on the same Cu50Zr50 MG sample 

under identical loading condition using the AQS method. As previously noted, before each 

simulation run the atom sequence was reshuffled. For the sample shown in Fig. 2(a) shear bands 

are observed to initiate predominately around two regions, and 48 out of the 100 shear bands are 

horizontal while the remaining 52 shear bands are vertical. We also sheared another independent 

Cu50Zr50 MG sample with identical processing history 100 times under the same protocol and 

found that for this initial condition 99 out of the 100 shear bands are horizontal and most of them 

initiated in the same region, while only 1 results in a vertical shear band, as shown in the blue 

curve (right vertical axis) in Fig. 2(b). These observations indicate that the shear band location is 

strongly determined by the initial static structure in these relatively gradually quenched glasses, 

and that the strain localization process is actually not purely stochastic. Based on the reasoning 

presented in the Introduction section, we anticipate that the density of fertile sites (DFS) predicted 

by the CNN model introduced in Ref. [36] should be higher around the peak positions of the blue 

curves shown in Fig. 2 relative to other regions.  

 

To test this hypothesis, we took an approach similar to that used to determine the center position 

of the shear bands. We calculated the distribution of the DFS in the two independent samples 

before deformation, i.e., fraction of atoms with class probability > 0.5 in each of the parallelepiped 

regions. Here we again chose a value of 19	Å	for 𝜔#$!, the width of the parallelepiped along the 

X (or Y) dimension. This value of 𝜔#$!	optimizes the correlation between the initial distribution 

of the DFS and the location of shear band initiations as shown in Fig. S3 of the Supplemental 

Material. The red curve (left vertical axis) in each panel of Fig. 2 displays the initial distribution 

of the DFS in the two independent samples, respectively. Indeed, the peak positions of the 

distribution of the DFS generally overlap with the peaks of the corresponding blue curve in Fig. 2, 

which is consistent with our expectation and suggests there is correlation between the initial static 

structure, i.e. the DFS predicted with our CNN model, and the sites of shear band initiation in 
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MGs. We note that the overlap in Fig. 2(a) is much more obvious than that in Fig. 2(b) where the 

predominant location of shear banding is near the second highest peak for horizontal bands, which 

is significantly smaller than the peak for vertical bands. This suggests that the structural order 

revealed by the DFS is likely only one of a number of factors that contributes to determine the 

location of the shear band.  

 

We also note that, as evident from Fig. 2, sometimes no shear band coincides with the peak of 

DFS. This implies that the correlation revealed here is only statistically meaningful. In other words, 

while we can determine that some regions have higher propensity for shear band initiation, it 

remains difficult to predict the exact position of shear band initiation in a MG solely based on the 

initial static structure. This is because shear band initiation in MGs is a stochastic process, and this 

is true even in simulations of athermal deformation due to the numerical noise. Similar randomness 

is also expected to exist in real MG samples primarily due to thermal fluctuation. How best to 

characterize this stochasticity warrants further investigation.  

 

Figure of merit for the correlation.—In the preceding section, we showed that the shear band 

location is potentially predictable solely based on the initial DFS distribution in a MG. In this 

section, we evaluate the predictive power of this approach by surveying 480 cases. To do this we 

prepared 20 Cu50Zr50 MG samples (not used in the training of our CNN model) and then sheared 

each of the 20 samples to 20% strain with the AQS method along 24 loading orientations using 

the strategy introduced in Ref. [36]. For each sample in each loading orientation, we first map out 

the CNN-predicted DFS along both the X and Y dimensions. Inspired by the methodology 

introduced in Ref. [42], we then define a parameter 𝛾	as a figure of merit, the fraction of locations 

at which the DFS is lower than or equal to, that at the location of the shear band. If the shear band 

preferentially initiates in the region having the highest DFS, 𝛾 would approach 1.0 for all cases, 

and the cumulative distribution function 𝐶(𝛾)	of 𝛾 would be a step function: 𝐶(𝛾) = 1 for 𝛾 =1 

and 0 otherwise. At the other extreme, if there is no correlation between the DFS and the location 

of shear band initiation, the value of  𝛾 should be stochastic and 𝐶(𝛾)	should be close to a straight 

line, i.e. the dashed diagonal line in Fig. 3(a). The resulting 𝐶(𝛾) data are denoted by the red curve 

shown in Fig. 3(a), revealing a positive correlation.  
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FIG. 3.    Quantifying and comparing the predictive power of different methods in regards to shear 
band formation. (a) shows the cumulative distribution function 𝐶(𝛾)  of 𝛾  (see text) for the 
predictions based on six different methods: CNN, graph neural network (GNN), linear support 
vector machine (SVM), flexibility volume (vflex), five-fold bonds (FFB) and volume density of 
atoms (𝜌%). The diagonal dashed line represents random distribution with no correlation. A perfect 
prediction would entail 𝐶(𝛾) = 1 for 𝛾 =1 and 0 otherwise. (b) shows 𝛾̅ (arithmetic mean of 𝛾) for 
the prediction based on the six methods. 𝛾̅ = 0.5 means no predictive power and 𝛾̅ = 1.0 perfect 
predictive power.  

 
 

To show the advantage of our CNN-predicted DFS, we compare with predictions based on other 

data-driven models such as that derived from a graph neural network (GNN) [30], a linear support 

vector machine (SVM) [29], and three methods based on physical parameters, flexibility volume 

(vflex) [43], fraction of five-fold bonds (FFB) [44] and the atomic density in the local region (𝜌%, 

an analog for free volume [45,46]). These metrics were all previously used in attempts to predict 

stress-driven shear transformations. Specifically, the fertile sites are defined as those atoms with 
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GNN-predicted class probability > 0.5, or SVM-predicted distance to the separation boundary > 

0, or within the top 20% of the values of vflex (we tried different thresholds for vflex but did not see 

obvious difference; average vflex within each band was tried as well and the resultant predictive 

power is slightly lower). For FFB and 𝜌%, a lower value is expected to be more favorable for shear 

band initiation; we therefore modify 𝛾	as the fraction of locations at which the density of FFBs or 

𝜌% is higher than or equal to that in the region where a shear band is initiated. As seen from Fig. 

3(a), the prediction based on our CNN-predicted DFS is superior to those from all the other five 

methods.  

 

We also can use 𝛾̅	(the arithmetic mean of 𝛾) to quantify the predictive power for these methods 

as 𝛾̅ = 1.0	corresponds to perfect prediction and 𝛾̅ = 0.5	would imply no correlation. As seen 

from the bar chart shown in Fig. 3(b), the 𝛾̅	of 0.712 for our CNN-based prediction is the highest. 

The advantage of our CNN over other ML methods is due to: i) the completeness of our new 

structural representation, the spatial density map (SDM); ii) the stronger learning capability of the 

CNN models, compared to the SVM models and GNN models used in previous studies; and iii) 

the anisotropy of local mechanical response of glasses has been taken into account in the CNN 

framework but ignored in all previous ML methods, see more discussion in Ref. [36]. Other ML 

methods such as conventional neural networks and the one proposed in Ref. [47] have been found 

to be comparable to the SVM method [35].  

 

The structural representation and training procedure for all deep or machine learning methods in 

the current work also follow the procedures detailed in Ref. [36]. In this work, the fertile sites were 

predicted using the CNN, GNN or SVM model, each of which was trained at a strain of 10% with 

fthres=5.0% based on the results shown in Figs. S4 and S5 of the Supplemental Material.  
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FIG. 4.    The 𝛾̅	achieved with the CNN model on glasses with different processing histories or at 
different compositions (denoted on each bar). 
 

The transferability of CNN models to different processing histories or compositions within the 

same alloy system has been demonstrated when predicting elementary plastic events in other recent 

work [36]. Therefore, success at one composition and processing history give us reason to expect 

that the CNN-based predicted DFS distribution can be used to predict the location of shear band 

initiation of glasses with different processing histories or at different compositions within the same 

alloy system. We have undertaken a number of simulations to confirm this, as shown in Fig. 4. We 

note that the 𝛾̅	achieved on a more quickly quenched glass is higher, which may be because 

deformation is more evenly distributed in such as system.  

 
Brittle versus ductile.—The results above demonstrate that shear bands prefer to initiate at 

locations with higher CNN-based predicted DFS. This implies that plastic flow will not localize 

into a narrow region but will instead distribute over the entire sample, i.e., its deformation would 

be ductile, if the difference of DFS is small within a glass. Thus, it may be possible for us to judge 

if a glass would be brittle or ductile, which is another problem of interest to the community [48], 

based on the degree of fluctuation of the initial DFS distribution.  

 

To verify this conjecture, we slowly reduce the temperature of a Cu50Zr50 liquid model containing 

31,250 atoms from 2,500 K to various temperatures (Tq) at a constant rate of 1×1010 K/s and then 
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instantly quench them to 0 K via energy minimization. Next, we calculate the CNN-based 

predicted DFS distribution of these glasses with different Tq, and use the difference between the 

largest and smallest value of DFS distribution to denote the degree of fluctuation of the initial DFS 

distribution (∆). As seen from Fig. 5, it is easy to find a critical ∆	value (6.0% denoted by the red 

dashed line in Fig. 5) that separates these glasses into low and high Tq regimes. By shearing these 

glasses via the AQS method, we confirmed that a shear band was formed in almost all glasses with 

∆	> 6% (The only exception is the glass with Tq = 850 K) and no shear band appeared in glasses 

with ∆	< 6%. Fig. S6 in the Supplemental Material shows the projection of the D2min field on the 

XY plane for all of these glasses after strained to 20%. Two typical snapshots are shown as the 

insets in Fig. 5. These results confirmed that one can determine whether a glass is brittle or ductile 

based on its initial static structural information, i.e., the degree of fluctuation of CNN-based 

predicted DFS distribution. 

 

 

FIG. 5.    Brittle versus ductile. The degree of fluctuation of CNN-based predicted DFS distribution 
(∆) as a function of Tq. The red dashed line denotes the critical value of ∆	we suggested to separate 
brittle and ductile glasses. The right upper (left lower) inset shows the D2min filed of a brittle 
(ductile) glass. Bright and dark color correspond to large and small D2min, respectively.  
 
 
 

Conclusions.—In summary, we sheared the same simulated (gradually quenched) MG sample 

under the same loading condition using the AQS method and varying atom sequence in the initial 

configuration. We found that shear bands initiate along one of the two maximum-shear planes, 
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but, in doing so, prefer to initiate at locations with higher CNN-based predicted DFS, although this 

correlation is not perfect. We defined a figure of merit to quantify the correlation strength between 

CNN-based predicted DFS and the shear band initiation in the MG samples. We find that this 

indicator is superior in making this prediction when compared to a number of other structural 

indicators suggested previously. To the best of our knowledge, this is the first evidence of 

correlation between the initial static structure and shear band locations in simulated MGs. We also 

demonstrated whether a glass is brittle or ductile can be ascertained solely based upon its initial 

DFS distribution. The demonstrated correlation may be useful for establishing robust physical 

models of plastic behavior in amorphous solids. It also provides some optimism for controlling 

shear banding behavior and thus optimizing mechanical properties of MGs via the tuning of their 

initial structural state before deformation. At the same time, this work points to the need to better 

understand the stochasticity of the strain localization process as well as factors other than DFS that 

may play a role in determining how and where these bands develop. 
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