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ABSTRACT and web applications. Strong consistency (i.e., linearizability) is es-

We design and implement LEGOStore, an erasure coding (EC) based
linearizable data store over geo-distributed public cloud data cen-
ters (DCs). For such a data store, the confluence of the following
factors opens up opportunities for EC to be latency-competitive
with replication: (a) the necessity of communicating with remote
DCs to tolerate entire DC failures and implement linearizability;
and (b) the emergence of DCs near most large population centers.
LEGOStore employs an optimization framework that, for a given ob-
ject, carefully chooses among replication and EC, as well as among
various DC placements to minimize overall costs. To handle work-
load dynamism, LEGOStore employs a novel agile reconfiguration
protocol. Our evaluation using a LEGOStore prototype spanning 9
Google Cloud Platform DCs demonstrates the efficacy of our ideas.
We observe cost savings ranging from moderate (5-20%) to signif-
icant (60%) over baselines representing the state of the art while
meeting tail latency SLOs. Our reconfiguration protocol is able to
transition key placements in 3 to 4 inter-DC RTTs (< 1s in our
experiments), allowing for agile adaptation to dynamic conditions.
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1 INTRODUCTION

Consistent geo-distributed key-value (KV) stores are crucial build-
ing blocks of modern Internet-scale services including databases
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pecially preferred by users for the ease of development and testing
it offers. As a case in point, the hugely popular S3 store from Ama-
zon Web Services (AWS), in essence a KV store with a GET/PUT
interface, was recently re-designed to switch its consistency model
from eventual to linearizable [72]. However, because of the inherent
lower bound in [12], linearizable KV stores inevitably incur signifi-
cant latency and cost overheads compared to weaker consistency
models such as causal and eventual consistency. These drawbacks
are particularly pronounced in the geo-distributed setting because
of the high inter-data center networking costs, and large network
latencies (see Table 2). To further exacerbate the problem, dynamic
phenomena such as shifts in arrival rates, appearance of clients
in new locations far from where data is stored, increase in net-
work delays, etc., can lead to gaps between predicted and actual
performance both in terms of costs and tail latencies.

We design LEGOStore, a geo-distributed linearizable KV store
(with the familiar GET/PUT or read/write API), meant for a global
user-base. LEGOStore procures its resources from a cloud provider’s
fleet of data centers (DCs) like many storage service providers [24,
56, 58]. Since an entire DC may become unavailable [27, 34, 58, 71],
LEGOStore employs redundancy across geo-distributed DCs to
operate despite such events. LEGOStore’s goal is to offer tail latency
service-level objectives (SLOs) that are predictable and robust in the
face of myriad sources of dynamism at a low cost. For achieving these
properties, LEGOStore is built upon the following three pillars:

1. Erasure Coding (EC) is a generalization of replication that
is more storage-efficient than replication for a given fault toler-
ance. A long line of research has helped establish EC’s efficacy
within a DC or for weaker consistency needs. However, EC’s effi-
cacy in the linearizable geo-distributed setting is relatively less well-
understood. Two recent works Giza [19] and Pando [67] demon-
strate some aspects of EC’s promise in the geo-distributed context.
In particular, because EC allows fragmenting the data and storing
it in a fault-tolerant manner, it leads to smaller storage costs and
(more importantly) smaller inter-DC networking costs. However,
the smaller-sized fragments inevitably require contacting more DCs
and, therefore, are thought to imply higher latencies in a first-order
estimation. By comprehensively exploring a wide gamut of work-
load features and SLOs, and careful design of the data placement



Table 1: Storage and VM prices for the 9 GCP data centers that our prototype spans. We use custom VMs with 1 core and 1 GB of RAM from General-purpose
machine type family to run the LEGOStore’s servers and Standard provisioned space for its storage [30].

GCP data center location

Tokyo Sydney Singapore Frankfurt London Virginia SaoPaulo Los Angeles Oregon
Storage ($/GB.Month) 0.052 0.054 0.044 0.048 0.048 0.044 0.06 0.048 0.04
Virtual machine ($/hour)  0.0261 0.0283 0.0253 0.0262 0.0262 0.0226 0.0310 0.0248 0.0215

Table 2: Diverse RTTs and network pricing for 9 chosen GCP data centers. The RTTs are measured between VMs placed within the DCs; they would be higher if one
of the VMs were external to GCP but not by enough to change the outcome of our optimizer. For the same general recipient location, the outbound network prices
are sometimes higher if the recipient is located outside of GCP (egress pricing) but these prices exhibit a similar geographical diversity [31].

User location

Tokyo Sydney Singapore Frankfurt London Virginia Sao Paulo Los Angeles Oregon

@ i) @ @ @ i) ) @ @

n/w & n/w E n/w E n/w E n/w & n/w & n/w E n/w £ n/w E

price % price % price % price & price % price % price % price & price oy

$/GB) 5 ($/GB) 5 ($/GB) & ($/GB) 5 ($/GB) 5 ($/GB) 5 ($/GB) S ($/GB) 5 ($/GB) B

5 5 5 5 5 5 5 5 5

Tokyo - 2 0.15 115 0.12 70 0.12 226 0.12 218 0.12 148 0.12 253 0.12 100 0.12 90
.. Sydney 0.15 115 = 2 0.15 94 0.15 289 0.15 277 0.15 204 0.15 291 0.15 139 0.15 162
*qé Singapore 0.09 72 0.15 94 - 2 0.09 202 0.09 203 0.09 214 0.09 319 0.09 165 0.09 166
8 Frankfurt 0.08 229 0.15 289 0.08 201 = 2 0.08 15 0.08 89 0.08 202 0.08 153 0.08 139
% London 0.08 222 0.15 280 0.08 204 0.08 15 - 2 0.08 79 0.08 192 0.08 141 0.08 131
: Virginia 0.08 146 0.15 204 0.08 214 0.08 90 0.08 79 - 2 0.08 116 0.08 68 0.08 58
O  Sao Paulo 0.08 252 0.15 292 0.08 317 0.08 202 0.08 192 0.08 117 - 1 0.08 155 0.08 172
o Los Angeles 0.08 101 0.15 139 0.08 180 0.08 153 0.08 142 0.08 67 0.08 155 = 2 0.08 26
Oregon 0.08 95 0.15 164 0.08 165 0.08 142 0.08 131 0.08 58 0.08 173 0.08 26 - 2

and EC parameters through an optimization framework, LEGOStore
brings out the full potential of EC in the geo-distributed setting.

2. LEGOStore adapts non blocking, leaderless, quorum based
linearizability protocols for both EC [16] and replication [9, 10].
When used with carefully optimized quorums, these protocols help
realize LEGOStore’s goal of predictable performance (i.e., meeting
latency SLOs with a very high likelihood as long as workload fea-
tures match their predicted values considered by our optimization).
A second important reason is that, when used in conjunction with
a well-designed resource autoscaling strategy, the latency resulting
from non-blocking protocols depends primarily on its inter-DC
latency and data transfer time components. This is in contrast with
the leader-based consensus used in Giza and Pando (see Figure 4 ).
While these works may be able to offer lower latencies for certain
workloads, they are susceptible to severe performance degradation
under concurrency-induced contention.

3. To offer robust SLOs in the face of dynamism, LEGOStore
implements an agile reconfiguration mechanism. LEGOStore
continually weighs the pros and cons of changing the configuration!
of a key or a group of keys via a cost-benefit analysis rooted in its
cost/performance modeling. If prompted by this analysis, it uses a
novel reconfiguration protocol to safely switch the configurations of
concerned keys without breaking linearizability. We have designed
this reconfiguration protocol carefully and specifically to work
alongside our GET/PUT protocols to keep its execution time small
which, in turn, allows us to limit the performance degradation
experienced by user requests issued during a reconfiguration.

!By the configuration of a key, we mean the following aspects of its placement: (i)
whether EC or replication is being used ; (ii) the EC parameters or replication degree
being used; and (iii) the DCs that comprise various quorums.

Contributions: We design LEGOStore, a cost-effective KV store
with predictable tail latency that adapts to dynamism. We develop
an optimization framework that, for a group of keys with similar
suitable workload features, takes as input these features, and public
cloud characteristics and determines configurations that satisfy
SLOs at minimal cost. The configuration choice involves selecting
one from a family of linearizability protocols, and the protocol pa-
rameters that can include the degree of redundancy, DC placement,
quorum sizes, and EC parameters. In this manner it selectively uses
EC for its better storage/networking costs when allowed by latency
goals, and uses replication otherwise. A key’s storage method may
change over time based on changes in workload features. We de-
velop a safe reconfiguration protocol, and an accompanying heuris-
tic cost/benefit analysis that allows LEGOStore to control costs by
dynamically adapting configurations.

We build a prototype LEGOStore system. We carry out extensive
evaluations using our optimizer and prototype spanning 9 Google
Cloud Platform (GCP) DCs. We get insights from our evaluation to
make suitable modeling and protocol design choices. Because of our
design, our prototype has close match with the performance pre-
dicted by the optimizer. Potential cost savings over baselines based
on state-of-the-art works such as SPANStore [75] and Pando [67]
range from moderate (5-20%) to significant (up to 60%). The most
significant cost savings emerge from carefully avoiding the use of
DCs with high outbound network prices. Our work offers a number
of general trends and insights relating workload and infrastructure
properties to cost-effective realization of linearizability. Some of
our findings are perhaps non-intuitive: (i) smaller EC-fragments do
not always lead to lower costs (Section 4.2.4); (ii) there exists a sig-
nificant asymmetry between GETs and PUTs in terms of costs, and
read-heavy workloads lead to different choices than write-heavy



workloads (Section 4.2.3); (iii) we find scenarios where the optimizer
is able to exploit the lower costs of EC without a latency penalty
(Section 4.2.5); and (iv) even when a majority of the requests to a
key arise at a particular location, the DC near that location may
not necessarily be used for this key in our optimizer’s solution.

2 BACKGROUND

Public Cloud Latencies and Pricing: The lower bound of [11, 12]
implies that both GET and PUT operations in LEGOStore neces-
sarily involve inter-DC latencies and data transfers unlike with
weaker consistency models. The latencies between users and vari-
ous DCs of a public cloud provider span a large range. In Table 2
we depict our measurements of round-trip times (RTTs) between
pairs of DCs out of a set of 9 Google Cloud Platform (GCP) data
centers we use. The smallest RTTs are 15-20 msec while the largest
exceed 300 msec; RTTs between nodes within the same DC are
1-2 msec and pale in comparison. Similarly, the prices for storage,
computational, and network resources across DCs also exhibit ge-
ographical diversity as shown in Tables 1 and 2. This diversity is
the most prominent for data transfers—the cheapest per-byte trans-
fer is $0.08/GB (e.g., London to Tokyo), the costliest is $0.15/GB
(e.g., Sydney to Tokyo). LEGOStore’s design must carefully navigate
these sources of diversity to meet latency SLOs at minimum cost.

Our Choice of Consistent Storage Algorithms: Due to the lower
bound mentioned above, in leader-based protocols (e.g., Raft [53]),
for the geo-distributed scenario of interest to us, one round trip
time to the leader is inevitable. Using such leader-based protocols
can drive up latency when the workload is distributed over a wide
geographical area, and there is no leader node that is sufficiently
close to all DCs so as to satisfy the SLO requirements. Such a design
can also place excessive load on DCs that are more centrally located.
Therefore, as such, we choose algorithms with leaderless, quorum-
based protocols in our design and implementation. We describe
these protocols (ABD for replication and CAS for EC) next.

The ABD Algorithm:? Let N denote the degree of replication
(specifically, spanning N separate DCs) being used for the key un-
der discussion. In the ABD algorithm, for a given key, each of the
nodes (i.e., DCs) stores a (tag, value) pair, where the tag is a (logical
timestamp, client ID) pair. The node replaces this tuple when it
receives a value with a higher tag from a client operation. The PUT
operation consists of two phases. The first phase, which involves a
logical-time query, requires responses from a quorum of g; nodes,
and the second phase, which involves sending the new (tag, value)
pair requires acknowledgements from a quorum of gz nodes. The
GET operation also consists of two phases. The first phase again
involves logical-time queries from a quorum of ¢q; nodes and deter-
mining the highest of these tags. The second “write-back” phase
sends the (tag, value) pair chosen from the first-phase responses
to a quorum of g2 nodes. If g1 + g2 > N, then ABD guarantees
linearizability. If g1, g2 < N — f, then operations terminate so long
as the number of node failures is at most f. Note that this is a
stronger liveness guarantee as compared to Paxos; ABD circum-
vents FLP impossibility [26] because it implements a data type
(read/write memory) that is weaker than consensus (see also [52]
and Theorems 17.5, 17.9 in [47]). This liveness property translates

2The name “ABD” comes from the authors, Attya, Bar-Noy and Dolev [9, 10].

Table 3: Coarse cost comparison of replication (ABD) versus erasure coding
(CAS). Costs reported are per GET/PUT operation, and the per-server storage
cost. We assume that each value has B bits and the metadata size is negligible.
All quorum sizes are assumed to be (N + k) /2 for CAS and (N + 1) /2 for ABD;
N, k are assumed to be odd to ignore integer rounding. Latency is reported as
the number of round trips of the protocol.

PUT cost PUTlatency  GET cost  GET latency  Storage cost
CAS® % 3 rounds % 2 rounds 6%
ABD? NB 2 rounds (N-1)B 2 rounds 1

“With efficient garbage collection, § can be kept small; it is equal to 1 for keys with
sufficiently low arrival rates.
YABD has a higher communication cost vs. CAS for GETs, even if k = 1, since it
propagates values in the write-back phase, whereas CAS only propagates metadata.

into excellent robustness of operation latency (see Section 4.3). See
formal description of ABD in Appendix A of [82].

Whereas the above vanilla ABD requires two phases for all its
GET operations, a slight enhancement allows some (potentially
many) GET operations to complete in only one phase; we refer to
such a scenario as an “Optimized GET,” see details in [82].
Erasure Coding: Erasure coding (EC) is a generalization of repli-
cation that is attractive for modern storage systems because of its
potential cost savings over replication. An (N, K) Reed Solomon
Code stores a value over N nodes, with each node storing a code-
word symbol of size 1/K of the original value, unlike replication
where each node stores the entire value. The value can be decoded
from any K of the N nodes, so the code tolerates up to f = N — K
failures. On the other hand, replication duplicates the data N = f+1
times to tolerate f failures. For a fixed value of N, EC leads to a
K-fold reduction in storage cost compared to N-way replication for
the same fault-tolerance. It also leads to a K-fold reduction in com-
munication cost for PUTs, which can be significant because of the
inter-DC network transfer pricing. While this suggests that costs
reduce with increasing K, we will see that the actual dependence
of costs on K in LEGOStore is far more complex (see Section 4.2.4).

In EC-based protocols, GET operations require K > 1 nodes to
respond with codeword symbols for the same version of the key.
However, due to asynchrony, different nodes may store different
versions at a given time. Reconciling the different versions incurs
additional communication overheads for EC-based algorithms.
The CAS Algorithm: We use the coded atomic storage (CAS) algo-
rithm? of [16, 17], described in Appendix B of [82]. In CAS, servers
store a list of triples, each consisting of a tag, a codeword symbol,
and a label that can be ‘pre’ or ‘fin’. The GET protocol operates
in two phases like ABD; however, PUT operates in three phases.
Similar to ABD, the first phase of PUT acquires the latest tag. The
second phase sends an encoded value to servers, and servers store
this symbol with a ‘pre’ label. The third phase propagates the ‘fin’ la-
bel to servers, and servers which receive it update the label for that
tag. The three phases of PUT require quorums of g1, g2, g3, resp.,
responses to complete. Servers respond to queries from GETs/PUTs
only with latest tag labeled ‘fin’ in their lists. A GET operates in
two phases, the first phase to acquire the highest tag labeled ‘fin’
and the second to acquire the chunks for that tag, decode the value
and do a write-back. The two phases of GET require responses

3The algorithm in Appendix B of [82] is a modification the algorithm in [16, 17] to allow
for flexible quorum sizes, which in turn this exposes more cost-saving opportunities.



from quorums of size g1, g4, resp. In the write-back phase, CAS
only sends a ‘fin’ label with the tag, unlike ABD which sends the
entire value. In fact, the structural differences between ABD and
CAS protocols translates to lower communication costs for CAS
even if k = 1 (i.e,, replication) is used as compared to ABD, with the
penalty of incurring higher PUT latency due to the additional phase
(See Table 3). This variation between ABD and CAS offers LEGOS-
tore further flexibility in adapting to workloads as demonstrated in
Section 4.2. Similar to ABD, we also employ an "Optimized GET"
for CAS that enables some (potentially many) GET operations to
complete in only one phase. This optimized GET is based on a
client-side cache (recall a client is different from a user, cf. Sec-
tion 3) for the value computed in second phase of GET. LEGOStore
exploits these differences to reduce costs based on if the workload
is read- or write-intensive. On the server-side protocol, unlike ABD
where a server simply replaces a value with a higher tagged value,
CAS requires servers to store a history of the codeword symbols
corresponding to multiple versions, and then garbage collect (GC)
older versions at a later point. However, in practice, the overhead
is negligible for the workloads we study (see Appendix F in [82],
also remarks in Table 3.). The preliminary cost comparison of ABD
and CAS in Table 3 ignores several important aspects of practical
key-value stores, in particular the spatial diversity of pricing and
latency, flexibility of choosing quorum sizes and locations, and the
impact of arrival rates. Our paper refines the insights of Table 3 in
the context of LEGOStore (See Section 3.2 for details).

3 LEGOSTORE SYSTEM DESIGN

3.1 Interface and Components

LEGOStore is a linearizable key-value store spanning a set D of
D DCs of a public cloud provider.Applications using LEGOStore
("users") link the LEGOStore library that offers them an API com-
prising the following linearizable operations:

e CREATE(k,v): creates the key k using default configuration c (we
will define a configuration momentarily) if it doesn’t already exist
and stores (k,c) in the local meta-data server (MDS); returns an
error if the key already exists.*

o GET(k): returns value for k if k exists; else returns an error.

e PUT(k,v): sets value of k to v; returns error if k doesn’t exist.

e DELETE(k): removes k; returns error if k doesn’t exist.

To service these operations, the library issues RPCs to a LEGOS-
tore "client" within a DC in ©. A LEGOStore client implements the
client-end of LEGOStore’s consistency protocols. A user resident
within a DC in D would be assisted by a client within the same
DC. For users outside of 9, a natural choice would be a client in
the nearest DC. The client assisting a user may change over time
(e.g., due to user movement) but only across operations. Since the
user-client delay is negligible compared to other RTTs involved in
request servicing (recall Table 2), we will ignore it in our modeling.

In order to service a GET or a PUT request for a key k, a client
first determines the "configuration" for k which consists of the
following elements: (i) replication or erasure coding to be used
(and, correspondingly, ABD or CAS); (ii) the DCs that comprise

4A default configuration uses the nearest DCs for various quorums in terms of their
RTTs from the client.

relevant quorums; and (iii) the identities of the LEGOStore "prox-
ies" within each of these DCs. Having obtained the configuration,
a client issues protocol-specific Remote Procedure Calls (RPCs)
to proxies in relevant quorums to service the user request. Each
DC’s proxy serves as the intermediary between the client and the
compute/storage servers that (a) implement the server-end of our
consistency protocols and (b) store actual data (replicas for ABD,
EC chunks for CAS) along with appropriate tags.

3.2 Finding Cost-Effective Configurations

We develop an optimization that determines cost-effective con-
figurations assuming perfect knowledge of workload and system
properties. Since our protocols operate at a per-key granularity due
to the composability of linearizability [36]—notice how the ABD
and CAS algorithms in Appendix A and B of [82] are described for
a generic key—we can decompose our datastore-wide optimization
into smaller optimization problems, one per key.’

Inputs (See Table 4): We assume that LEGOStore spans D geo-
distributed DCs numbered 1, ..., D. We assume that the following
are available at a per-key granularity: (i) overall request arrival rate;
(ii) geographical distribution of requests (specifically, fractions of
the overall arrival rate emerging in/near each DC); (iii) fraction
of requests that are GET operations; (iv) average object size and
meta-data® size; (v) GET and PUT latency SLOs. We assume that
SLOs are in terms of 994/ percentile latencies. We assume that the
availability requirement is expressed via the single parameter f>
0; LEGOStore must continue servicing requests despite up to f DC
failures. The system properties considered in our formulation are:
(i) inter-DC latencies and prices for network traffic between clients
and servers; (ii) storage; (iii) computational resources in the form
of virtual machines (VMs).

Decision Variables: Our decision variables, as described at the
bottom of Table 4, help capture all aspects of a valid configuration.
These include: (i) boolean variable e; whether this key would be
served using ABD, and (ii) variables iqlgc which DCs constitute
various quorums that the chosen algorithm (2 and 4 quorums, resp.,
for ABD and CAS) requires (see variable iq’gC in Table 4).
Optimization: Our optimization tries to minimize the cost of op-
erating key g € G in the next epoch — a period of relative stability
in workload features. Our objective for key g € G, which is cost
per unit time during the epoch being considered, is expressed as:

minimize (Cyger + Cypur + Cy,storage + C VM)

s.t. (11) — (29) in Appendix C of [82]. W

The first two components of the objective with put and get in
their subscripts denote the networking costs per unit time of PUT
and GET operations, resp., for key g while the last two denote costs
per unit time spent towards storage and computation, resp. The
details of the optimization are in Appendix C of [82], we reproduce
some representative constraints and equations here.

5 Although we design our optimizer for individual keys, aggregating keys with similar
workload features and considering such a "group” of keys in the optimizer may be
useful (perhaps even necessary) for LEGOStore to scale to large number of keys.

®Meta-data transferred over the network can have non-negligible cost/latency im-
plications and that is what we explicitly capture. On the other hand, the storage of
meta-data contributes relatively negligibly to costs and we do not consider those costs.



Table 4: Input and decision variables used by LEGOStore’s optimization.

[ Input | Interpretation [ Type |
D Number of data centers integer
D Set of data centers numbered 1, ..., D set
Lij Latency from DC i to DC j (RTT/2) real
Bij Bandwidth between DC i and DC j real
G Set of keys set
Ag Aggregate request arrival rate forkey g € G integer
Py Read-write ratio for g real [0,1]
Qig Fraction of requests originating at/near DC i for key g | real
og Average object size, including protocol-specific meta- | integer

data exchanged between a client and a server
Om Average protocol-specific metadata exchanged between | integer
a client and a server for each phase
lger GET latency SLO real
Lpur PUT latency SLO real
Availability requirement (i.e., number of failed DCs to | integer
tolerate)
r; Storage price (per byte per unit time) for DC i € D real
p;‘j Network price per byte from location i to location j real
py VM price at DC i (simplifying assumption: all VMs of | real

a single size)
6° This quantity multiplied by the request arrival rate at | real
DC i captures the VM capacity required at i

[ Var. [ Interpretation | Type |
ey Protocol (0 for ABD, 1 for CAS) for key g boolean
mg Length of code (replication factor for ABD) integer
kg Dimension of code (equals 1 for replication) integer
Qig Quorum size for i™ quorum of key g integer
0; Capacity of VMs at DC i real
iqz Indicator for data placement for k™ quorum of key g. | boolean

iqug = 1iff DC j in k'™ quorum of clients in/near DC
i

The networking cost per unit time of PUTs for key g must be

represented differently based on whether ABD or CAS is used:

Cg,put = ¢ Cg,put,CAS +(1- eg) ' Cg,put,ABD, where,

n/w cost if CAS chosen  n/w cost if ABD chosen

D D
Cyput,ABD = (1= pg) + Ag Z “ig( Om Zp;li igijg+
i=1 i=1

n/w cost for phase 1

D
n .2
0g Zpik “Uikg )
k=1

n/w cost for phase 2

D D
;1
Cg,put,CAS = (1 - Pg) ' /19 Z (Zig(Om( Z p;ll ’ lqijg +
i=1 Jj=1
—
phase 1
b b @
no .3 99 n o .2
Pik lqikg + k_ Pim Wimg |-
k=1 9 m=1
phase3 phase2

Note the role played by the key boolean decision variable iq{.‘jg

whose interpretation is: iq{?.g=1 iff data center j is in the k*" quorum

for clients in/near data center i. In the above expressions, (1 - py) -

Ag - @ig captures the PUT request rate arising at/near data center i
and the o, and o4 multipliers convert this into bytes per unit time.
The terms within the braces model the per-byte network transfer
prices. The first term represents network transfer prices that apply
to the first phase of the ABD PUT protocol whereas the second term
does the same for ABD PUT’s second phase. The term p}’i - iq%jg
should be understood as follows: since ABD’s first phase involves
clients in/near data center i sending relatively small-sized write-
query messages to all servers in their quorum (i.e., quorum 1, hence
the 1 in the superscript of iq) followed by these servers responding
with their (tag, value) pairs, the subscript in p}’i is selected to denote
the price of data transfer from j (for the server at data center j) to i
(for clients located in/near data center i).The network cost per unit
time for CAS is similar, with the number of phases being 3 and the
network cost savings offered by CAS reflected in phase 3, where
the value size o4 is divided by the parameter k. The networking
costs for GET are presented in Appendix C in [82].

The storage cost is modeled as: Cy,storage = p° - (eg “mg - Z—Z +

(1-eg)-my- og), see [82] for explanations. Finally, we consider the
VM costs per unit time for key g. Our assumptions on modeling
VM costs include: ability of procurement of VMs at fine granularity
(see, e.g., [29]) and VM autoscaling [13, 32] to ensure satisfactory
provisioning of VM capacity at each DC. We assume that this suit-
able VM capacity chosen by such an autoscaling policy is propor-
tional to the total request arrival rate at data center i for key g.
With these assumptions, the VM cost for key g at data center i is:
Cyvm =07 ~§1 p;.’ Ag+ _gl aig+k§‘,l iq{.cjg, where 0? is an empirically
= 1= =

determined rjnultiplier that estimates VM capacity needed to serve
the the request rate arriving at data center j for g.

Constraints: Our optimization needs to capture the 3 types of
constraints related to: (i) ensuring linearizability; (ii) meeting avail-
ability guarantees corresponding to the parameter f; and (iii) meet-
ing latency SLOs. The key modeling choices we make are: (i) to
use worst-case latency as a "proxy" for tail latency; and (ii) ignore
latency contributors within a data center other than data trans-
fer time (e.g., queuing delays, encoding/ decoding time). For PUT
operations in CAS, the constraints are Vi, j, k € D,:

0g/ky

m

ighjg - (1 + i+ ](;_Jm) g (i 5L ) +

Latency of first phase of PUT ~ Latency of second phase of PUT 3)
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See Appendix C in [82] for explanations, and for constraints for
PUT operations of ABD, and for GETs. Linearizability and avail-
ability targets manifest as constraints on quorum sizes.

3.3 How to Reconfigure?

LEGOStore uses a reconfiguration protocol that transitions cho-
sen keys from their old configurations to their new configurations
without violating linearizability. Unlike our approach, consensus-
based protocols such as Raft and Viewstamped Replication [44, 55],



implement the key-value store as a log of commands applied se-
quentially to a replicated state machine. These solutions implement
reconfiguration by adding it as a special command to this log. Thus,
when a reconfiguration request is issued, the commands that are
issued before the reconfiguration request are first applied to the
state machine before executing the reconfiguration. To execute the
reconfiguration, the leader transfers the state to the new configura-
tion. After the transfer, it resumes handling of client commands that
are serialized after the reconfiguration request, but replicating the
state machine in the new configuration. While our approach does
not involve a replicated log’, it is possible to develop an approach
that inherits the essential idea of consensus-based reconfiguration
as follows: (i) On receiving a reconfiguration request, wait for all
ongoing operations to complete, and pause all new operations; (ii)
Perform the reconfiguration by transferring state from the old to
the new configurations; (iii) Resume all operations.

Under the reasonable assumption that reconfigurations of a given
key are performed relatively infrequently,® our design goal is to
ensure that user performance is not degraded in the common case
where the configurations remain static. For this, it is crucial that user
operations that are not concurrent with reconfigurations follow the
baseline static protocols without requiring additional steps/phases
(such as contacting a controller). Our protocol does not assume
any special relation between the old and new configurations. It can
handle all types transitions, including changing of the replication
factor, EC parameters, quorum structure, and the protocol itself.

We wish to keep the number of communication phases as well as
the number of operations affected as small as possible. Towards this,
LEGOStore’s reconfiguration protocol improves upon steps (i)-(iii)
above. Reconfigurations are conducted by a controller that reads
data from the old configuration and transfers it to the new configu-
ration. On detecting a workload or system change (See Section 3.4
for details), the controller immediately performs the reconfigura-
tion without having to wait for all ongoing operations to complete,
i.e., without having to perform step (i). This enables LEGOStore to
adapt quickly to workload changes. Furthermore, steps (ii),(iii) are
conducted jointly through a single round of messaging. In particu-
lar, LEGOStore’s protocol integrates with the underlying protocols
of CAS and ABD and piggybacks the reconfiguration requests from
the controller along with the actions that read or transfer the data.
LEGOStore’s algorithm is provably linearizable (Appendix D of [82]),
and therefore, preserves the correctness of the overall data store.
The algorithm blocks certain concurrent operations and then re-
sumes them on completing the reconfiguration.

The reconfiguration protocol is described formally in Appendix
D of [82]. We assume that reconfigurations are applied sequentially
by the reconfiguration controller (or simply controller). The con-
troller sends a reconfig_query message to all the servers in the
old configuration. The reconfig_query message serves to both
signal a change in configuration, as well as an internal ‘get’ request
for the controller to read a consistent value in order to transfer it to
the new configuration. On receiving this message, the servers pause

Rather than a replicated log, we simply have a replicated single read/write variable
per key, which is updated on receiving new values.

8More precisely, we assume that reconfigurations to a key are separated in time by
periods that are much longer (several minutes to hours or even longer) than the time
it takes to reconfigure (sub-second to a second, see measurements in Section 4.4).

all the ongoing operations and respond with the latest value if the
old configuration is performing ABD, or the highest tag labeled
‘fin’ if it is performing CAS. The controller waits for a quorum
to respond from the old configuration. If the old configuration
is performing CAS, then the reconfiguration controller sends a
reconfiguration_get message to servers in the old configuration
with the highest tag among the messages received from the quorum
(the quorum size is N — go + 1 if the old configuration is performing
ABD and N — min(gs, q4) + 1 if it is performing CAS). A server that
receives the reconfiguration_get message with tag t sends a
codeword symbol corresponding to that tag, if it is available locally;
else it responds with an acknowledgement. The reconfiguration
controller then obtains responses from a quorum of g4 messages and
decodes the value from the responses.The controller then proceeds
to write the (tag, value) pair to the new configuration, performing
encoding if the new configuration involves CAS. On completing
writing the value to the new configuration, the controller sends a
finish_reconfig message to servers in the old configuration. On
receiving these messages, the servers complete all operations with
tag less than or equal to f;gpes; and send operation_fail mes-
sages along with information of new configuration to other pending
operations that were paused. On receiving operation_fail mes-
sages, the clients restart the operation in the new configuration.

3.4 When and What to Reconfigure?

At the heart of our strategy are these questions: (i) is a key config-
ured poorly for its current or upcoming workload? (ii) if yes, should
it be stored using a different configuration? While our discussion
focuses on workload dynamism, our ideas also apply to changes in
system/infrastructure properties.

Is a Key Configured Sub-Optimally? Some workload changes
can be predicted (e.g., cyclical temporal patterns or domain-specific
insights from users) while others can only be determined after
they have occurred. Generally speaking, a system such as LEGO-
Store would employ a combination of predictive and reactive ap-
proaches for detecting workload changes [13, 63, 69]. In this paper,
we pursue a purely reactive approach. We employ two types of
reactive rules that are indicative of a key being configured poorly:
o SLO violations: If SLO violations for a key are observed for more
than a threshold duration or during a window containing a thresh-
old number of requests, LEGOStore chooses to reconfigure it. Sec-
tion 4.4, 4.5 show that LEGOStore’s reconfiguration occurs within 1
sec; the threshold should be set sufficiently larger than this to avoid
harmful oscillatory behavior over-optimizing for transient phenom-
ena. If, in addition to SLO violations, some quorum members are
suspected of being slow or having failed, these nodes are removed
from consideration when determining the next configuration.

o Cost sub-optimality: Alternatively, a key’s configuration might

meet the SLO but the estimated running cost might exceed the
expected cost. We consider such sub-optimality to have occurred if
the observed cost exceeds modeled cost by more than a threshold
percentage as assessed over a window of a certain duration.” Having
determined the need for a change, LEGOStore reconfigures the key
based on our cost-benefit analysis described below.

9Detailed exploration of the impact of the thresholds on performance is future work.



Should Such a Key be Reconfigured? For the case of SLO viola-
tions, LEGOStore will reconfigure as we consider SLO maintenance
to be sacrosanct. In the rest of the discussion, we focus on the
case of cost sub-optimality. We assume that such a key’s work-
load features can be predicted for the near term. In the absence of
such predictability—and this applies more generally to any similar
system—LEGOStore’s options are limited to using a state-of-the-art
latency-oriented optimization (see our baselines ABD Nearest and
CAS Nearest in Section 4.1) that is likely to be able to meet the SLO;
the impact of such a heuristic on cost is examined in Section 4.2.

Assuming predictability, LEGOStore computes the new config-
uration with the updated workload characteristics using the opti-
mization framework from Section 3.2. For an illustrative instance of
such decision-making, denote this newly computed configuration
as cpew and the existing configuration as cexis;. Let us denote by
Cost(c) the per time unit cost incurred when using configuration
c. We assume an additional predicted feature T4y, the minimum
duration for which the predicted workload properties will endure
before changing. LEGOStore compares the cost involved in recon-
figuring with potential cost savings arising due to it. Reconfiguring
a key entails (a) explicit costs arising from the addtional data trans-
fer; and (b) implicit costs resulting from requests that are slowed
down or rejected. An evaluation (see Section 4.4 for details) of our
reconfiguration protocol suggests that the number of operations
experiencing slowdown is small. Therefore, we consider only (a).

LEGOStore’s cost-benefit analysis is simple. A reconfiguration to
Cnew is carried out if the potential (minimum) cost savings Tpewy -
(Cost(cexist)—Cost(cneW)) significantly outweigh the explicit cost
of reconfiguration as captured by ReCost(cyq, Cexist) - (1 + a).
ReCost(.,.) is the cost of network transfer induced by our reconfig-
uration and its calculation involves ideas similar to those presented
in our optimizer (see Appendix C of [82]). The (1 + @) multiplier
(e > 0) serves to capture how aggressive or conservative LEGO-
Store wishes to be. The efficacy of our heuristics depends on the
predictability in workload features and the parameter Tjeqy.

Algorithms 1, 2 of [82] show that the time to complete a recon-
figuration (call it T;.) is largely dictated by the RTTs between the
controller and the servers farthest from it in the quorums involved
in various phases of the reconfiguration protocol. Figure 10 of [82]
highlights this period when both the old and the new configurations
use ABD.

4 EVALUATION

We implement a prototype LEGOStore on the Google Compute
Engine (GCE) public cloud and make the code for our prototype
as well as the optimizer available under the Apache license 2.0
at github.com/shahrooz1997/LEGOstore. Details of our prototype
implementation may be found in Appendix H of [82]. We evaluate
LEGOStore in terms of its ability to (i) lower costs compared to the
state-of-the-art; and (ii) meet latency SLOs. We use Porcupine [8]
for verifying linearizability of execution histories of our prototype.
To reproduce the artifacts, please refer to the LEGOStore repository.

4.1 Experimental Setup

Prototype Setup: We deploy our LEGOStore prototype across 9
Google Cloud Platform (GCP) DCs with locations, pairwise RTTs,

and resource pricing shown in Tables 1 and 2. We locate our users
within these data centers as well for the experiments. We conduct
extensive validation of the efficacy of the latency and cost modeling
underlying our optimizer (Appendix G.1 of [82]).

Workloads: We employ a custom-built workload'? generator which
emulates a user application with an assumption that it sends re-
quests as per a Poisson process. We explore a large workload space
by systematically varying our workload parameters as follows.

o 3 per-key sizes in KB: (i) 1, (ii) 10, and (iii) 100;

e 3 per-key read ratios for high-read (HR), read-write (RW), and

high-write (HW) workloads, resp.: (i) 30:1, (ii) 1:1, and (iii) 1:30;
o 3 per-key arrival rates in requests/sec: (i) 50, (ii) 200, and (iii) 500;
e 3 sizes for the overall data: (i) 100 GB, (ii) 1 TB, and (iii) 10 TB.
o 7 different client distributions: (i) Oregon, (ii) Los Angeles, (iii)

Tokyo, (iv) Sydney, (v) Los Angeles and Oregon, (vi) Sydney and

Singapore, and (vii) Sydney and Tokyo.

This gives us a total of 567 diverse basic workloads for a given
availability target and latency SLO. Finally, we also vary the avail-
ability target (f=1 in this section and f=2 in Appendix G of [82])
and latency SLO (in the range 200 ms—1 sec) in our experiments.
Additionally, we use the following customized workloads to explore
particular performance related phenomena: (i) a uniform client dis-
tribution across all 9 locations; (ii) workloads related to Figures 3-5;
we describe these in the text accompanying these figures. Finally,
while our exact metadata size varies slightly between ABD and
CAS, we round it up to an overestimated 100 B.

Baselines: We would like to compare LEGOStore’s efficacy to
the most important state-of-the-art approaches. To enable such
comparison, we construct the following baselines:

e ABD Fixed and CAS Fixed: These baselines use only ABD or
only CAS, respectively. The baseline employs either a fixed degree
of replication or a fixed set of CAS parameters. These parameter
values (3 for ABD and (5, 3) for CAS) are the ones chosen most
frequently by our optimizer across our large set of experiments
described in Section 4.2. For these fixed parameters, these baselines
pick the DCs with the smallest average network prices for their
quorums, where the average for a DC i is calculated over the price
of transferring data to all user locations. A comparison with these
baselines demonstrates that merely knowing the right parameters
does not suffice—one must pick the actual DCs judiciously.

e ABD Nearest and CAS Nearest: These baselines also use only
ABD or only CAS. However, they do not a priori fix the degree of
replication or the EC parameters. Instead, we pick the optimized
value for each parameter and choose quorums that result in the
smallest latencies for the GET/PUT operations ignoring cost con-
cerns. They solve a variant of our optimizer where the objective
is latency minimization, expressions involving costs are not con-
sidered, and all other constraints are the same. These baselines
serve as representatives of existing works (e.g., Volley [4] and [62])
that primarily focus on latency reduction. While the baselines are
admittedly not as sophisticated as Volley, our results demonstrate
that unbridled focus on latency can lead to high costs.

e ABD Only Optimal and CAS Only Optimal: These are our
most sophisticated baselines meant to represent state-of-the-art

1OWe do not use an existing workload generator such as YCSB [79] because we wish
to explore a wider workload feature space than covered by available tools.
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Figure 1: Cumulative count of the normalized cost of our baselines (for our 567 basic workloads) with f = 1 and two extreme latency SLOs.

approaches. ABD Only Optimal and CAS Only Optimal are repre-
sentative of works that optimize replication-based systems such as
SPANStore [75] or EC-based systems such as Pando [67].

It is instructive to note that our baselines are quite powerful. In
fact, our optimizer picks the lower cost feasible solution among
ABD Only Optimal and CAS Only Optimal, so we expect at least
one of these baselines to be competitive for any given workload. Yet,
we will demonstrate that: (i) these baselines individually perform
poorly for many of our workloads; and (ii) the choice of which of
the two is better for a particular workload is highly non-trivial.

4.2 Insights from Our Optimization

4.2.1 The Extent and Nature of Cost Savings. In Figure 1, we express
our optimizer’s cost savings over our baselines via each baseline’s
normalized cost (cost offered by baseline / cost offered by our opti-
mizer); note that our optimizer has the lowest cost among all the
baselines, so this ratio is at least 1. We consider our collection of
567 basic workloads with f=1 and (a) a relaxed SLO of 1 sec and
(b) a more stringent SLO of 200 msec. At least one of the baselines
- and consequently, our optimizer - meet the SLOs for all the 567
workloads chosen. We begin by contrasting the first-order strengths
and weaknesses of ABD and CAS as they are understood in con-
ventional wisdom. For the relatively relaxed latency SLO of 1 sec in
Figure 1(a), we find that ABD Only Optimal (and other ABD-based
variants) have more than twice the cost of our optimizer for more
than 300 (i.e, more than half) of our workloads. On the other hand,
CAS Only Optimal closely tracks our optimizer’s cost.That is, as
widely held, if high latencies are tolerable, EC can save storage and
networking costs. Figure 1(b), with its far more stringent SLO of 200
msec, confirms another aspect of conventional wisdom. CAS only
optimal is now simply unable to meet the SLO for many workloads
(324 out of 567). This is expected given its 3-phase PUT opera-
tions and larger quorums. (See similar results with f=2 in Figure 12
of [82])). What is surprising, however, is that when we focus on the
subset of 243 workloads for which CAS Only Optimal is feasible,
it proves to be the cost-effective choice—nearly all workloads for
which CAS Only Optimal is feasible have a normalized cost of 1.
So, even for stringent SLOs, EC does hold the potential of saving
costs. Unlike in Figure 1(a), however, CAS Fixed or CAS Nearest
are nowhere close to being as effective as CAS Only Optimal. That
is, while EC can be cost-effective for these workloads, its quorums

need to be chosen carefully rather than via simple greedy heuris-
tics.!1 Replication tends to be the less preferred choice for more
relaxed SLOs but, again, there are exceptions.

4.2.2  Sensitivity to Latency SLO. We focus on how the cost-efficacy
of ABD vs. CAS depends on the latency SLO by examining the entire
range of latencies from 50 msec to 1 sec. Furthermore, we separate
out this dependence based on read ratio, availability target and
object size. Our selected results are shown in Figure 2. As expected,
as one moves towards more relaxed SLOs, the optimizer’s choice
tends to shift from ABD to CAS (recall the 3-phase PUTs and larger
quorums in CAS). The complexity that the figures bring out is when
this transition from replication to EC occurs—we see that, depend-
ing on workload features, this transition may never occur (e.g., HW
in Figure 2(a)) or may occur at a relatively high latency (e.g., at 575
msec for the uniform user distribution for RW/HR).'? In particular,
more spatially distributed workloads correspond to a tendency to
choose replication over EC; for instance, for workloads with uni-
formly distributed users, SLOs smaller than 300 msec are infeasible
due to a natural lower bound implied by the inter-DC latencies. We
find that f also has a complex impact on the optimizer’s choice; see
results with f=2 in Figure 13, Appendix G in [82].

4.2.3 Read- vs. Write-Intensive Workloads. One phenomenon that
visibly stands out in Figure 2 is how write-intensive workloads for
the relatively small object sizes (HW in Figure 2(a)) prefer ABD
even for the more relaxed SLOs. This preference of ABD over CAS
becomes less pronounced when we increase the object size to 10KB
in Figure 2(b). Finally, we also observe that read-intensive/moderate
workloads tend to prefer CAS (K=1) over ABD, even when replica-
tion is used. To understand this asymmetry, note the following:

e Reads: Whereas both ABD and CAS have a “write-back” phase for
read operations, ABD’s write-back phase carries data, while CAS’s
only carries metadata, and thereby incurs much lower network cost.
Thus, our optimizer tends to prefer CAS for HR workloads.

e Writes: For writes, CAS involves 3 phases whereas ABD only
requires 2. Since each phase incurs an additional overhead in terms
of metadata, the metadata costs for write operations are higher for

11 A5 a further nuance, only 3 workloads out of 243 use CAS with k=1.

12The reader might be intrigued by the portions of Figure 2 highlighted using ovals.
Here, our optimizer’s choice shifts from ABD to CAS as the latency SLO is relaxed (as
expected) but then it shifts back to ABD! We consider this to be a quirk of the heuristics
embedded in our optimizer rather than a fundamental property of the optimal solution.
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Figure 2: Sensitivity of the optimizer’s choice to the latency SLO. We consider 2 object sizes (1KB and 10KB), 8 different client distributions, arrival rate=500 req/sec,
and f=1. We consider 3 different read ratios (HW, RW, HR defined in Section 4.1).

CAS. Therefore, especially for small object sizes (Figure 2(a)) and
write-heavy workloads, our optimizer will tend to prefer ABD.

Collectively, the results in Figure 2 convey the significant com-
plexity of choosing between ABD and CAS. Within CAS-friendly
workloads, there is further substantial complexity in how the pa-
rameter K depends on workload features.

4.2.4  Factors Affecting Optimal Code Dimension K. We illustrate
our findings using the representative results in Figure 3(a)-(c) based
on a workload with the following features for which CAS is the
cost-effective choice: object size=1KB; datastore size=1TB; arrival
rate=200 req/sec; read ratio= RW (50%); user locations are Sydney
and Tokyo; latency SLO=1 sec. To understand the effects in Fig-
ure 3(a)-(c), we develop a simple analytical model based on the
empirical results (details in Appendix E, [82]). Our model relates
cost to K, object size (0), arrival rate (1), and f as follows:
cost=(cl-A-K+cz-o‘A-£+03~o-%+E4). (4)
Here, c1, ¢z, c3 are system-specific constants VM cost, network cost,
and storage cost, respectively!3. Our model captures and helps
understand the non-monotonicity of cost in K seen in Figure 3(a).
This behavior emerges because the following cost components
move in opposite directions with growing K: network and storage
costs decrease due to reduction in object size, while VM costs in-
crease due to increase in quorum sizes. Fundamentally, this implies
that even under very relaxed latency constraints, the highest value
of K is not necessarily optimal (contrary to the coarse analysis
of Table 3). Our model yields the following optimal value of K:

_ [o-f-(ca-A+2c3)
KOPt - c1-A

size!*, which is in agreement with Figure 3(b). We observe a similar
qualitative match between our model-predicted dependence of Ko
on arrival rate and that in Figure 3(c). Kop; is a decreasing function
of the arrival rate A, and saturates to a constant K* when A — oo,
i.e., when the storage cost becomes a negligible component of the

. Observe that K,y increases with object

132, is a constant and does not affect Kopt-

14 A qualification to note is that the phenomenon is connected to our modeling choice
of having VM cost independent of the object size o. E.g., if the VM cost were chosen
as an affine function of o, then the dependence of Ky on 0 would diminish.

overall cost. Interestingly, even for A — oo, the system does not
revert to replication, i.e., K* is not necessarily 1.

4.25 Does EC Necessarily Have Higher Latency Than Replication?
Conventional wisdom dictates that EC has lower costs than replica-
tion but suffers from higher latency. We show that perhaps surpris-
ingly, this insight does not always lead to the right choices in the
geo-distributed setting. Note that for a linearizable store, requests
cannot be local [12], and so even with replication, requests need to
contact multiple DCs and the overall latency corresponds to the re-
sponse time of the farthest DC. Thus, in a geo-distributed scenario
where there are multiple DCs at similar distances as the farthest
DC in a replication-based system, EC can offer comparable latency
at a lower cost. Our optimizer corroborates this insight. Consider a
workload where requests to a million objects of 1 KB come from
users in Tokyo. The workload is HR (read ratio of 97%) with an
arrival rate of 500 req/sec. To tolerate f=1 failure, the lowest GET
latency achievable via ABD is 139 msec at a cost of $1.057 per hour,
whereas using CAS achieves a GET latency of 160 msec at a cost of
$0.704 per hour - a cost saving of 33% for a mere 21 msec of latency
gap. To tolerate f=2 failures for the same workload, the lowest GET
latency with ABD is 180 msec at a cost of $1.254 per hour, whereas
CAS offers a GET latency of 190 msec at a cost of $0.773 per hour -
38% lower cost for a mere 10 msec latency increase.

4.2.6 Are Nearest DCs Always the Right Choice? Our optimizer
reveals that, perhaps surprisingly, the naturally appealing approach
of using DCs nearest to user locations [4] can lead to wasted costs.
We describe one such finding in Appendix G.2 of [82].

4.3 Scalable Concurrency Handling

A distinguishing feature of LEGOStore is that it is designed to
provide reliable tail latency even in the face of highly concurrent
access to a key. For consensus-based protocols that apply operations
sequentially to a replicated state machines one after another, even
in the optimistic case where all operations are issued at a leader
that does not fail, the latency is expected to grow linearly with
the amount of concurrency. Furthermore, in distributed consensus,
due to FLP impossibility [26], concurrent operations may endure
several (in theory, unbounded) rounds of communication.



(a)

(b)

9 9
Il Storage cost 8 8
B M cost 7 7
- PUT cost 6 6|
W GET cost gS ;;15
¥4 ¥ 4
3 3 B
2 2
1 1
07568 KB KB T6KB 64KB 050 150 250 350 450 550
Object size Arrival rate (reg/sec)

(©

Figure 3: For CAS-based solutions, cost is non-monotonic in K and K,,; has a complex relation with object size and arrival rate. Latency SLO is 1 sec.

— » = 5

5600 5600

L E e

>400 ~400

g 2

S 5 o | 5 5 5

£200 e put99% ¢ get99% £200 e put99% e+ get99%

— o putavg o getavg — o putavg o getavg
02040 80 100 02020 100

Arrival rate (reg/sec)

(a) Read ratio=50%.

60 0
Arrival rate (req/sec)

(b) Read ratio=3.2%.

Figure 4: LEGOStore is able to ensure that latency offered to a key is robust
even at for highly concurrent accesses. Here we plot the latency experienced
by clients at the Tokyo location for arrival rates in [20-100] req/sec.

To validate our expectation of robust tail latency even under
high concurrency, we increase the arrival rate for the same key
with object size 1 KB. The object is configured to use CAS(5, 3) with
DCs in Singapore, Frankfurt, Virginia, California, and Oregon. In
particular, requests from uniformly-distributed user locations come
to the single key. We run the experiments for both HW and RW
for a period of 1 minute for each arrival rate. We plot the latency
experienced by clients at the Tokyo location against arrival rate in
Figure 4. LEGOStore demonstrates a remarkable robustness of the
latency of operations. Even for an arrival rate of 100 req/sec to the
same key, every operation completes and we see no degradation
in performance for the average and tail latencies. We recorded a
maximum concurrency of 142 write operations on one key for an
arrival rate of 100 req/sec and 30:1 write ratio. Little’s law suggests
an average concurrency of around 60 operations for this experiment.
Note the contrast with consensus-based protocols, where the tail
latency is crucially dependent on limited concurrency for a given
key. E.g., in [67] Figure 13, even with somewhat limited concurrency,
the latency of only “successful” writes can grow up to 30s without
leader fallback, and at least doubles with leader fallback.

The similarity of the latency in Figure 4(b) which has a HW work-
load as compared with the RW workload in Figure 4(a) indicates
that our latencies remain robust even if the workload is write heavy.
It is also worth noting that Figure 4 is a further corroboration of the
robustness of our modeling in Section 3.2. Specifically, our model
ignores intra-DC phenomena such as queuing, and the robustness
of latency despite a high arrival rate shows the overwhelming sig-
nificance of the inter-DC RTTs in determining response times.

4.4 Reconfiguration to Handle Load Change

In this subsection and the next, we explore LEGOStore’s ability
to perform fast reconfiguration in line with the expectations set

in Section 3.3. We consider a set of 20 keys with similar work-
loads, each with an object size of 1 KB and f=1 to which RW (i.e.,
read ratio of 50%) requests arrive from 4 locations with the follow-
ing distribution: Tokyo (30%), Sydney (30%), Singapore (30%), and
Frankfurt (10%). Each user issues one request every 2 seconds on
average. Our latency SLOs are 700 msec and 800 msec for GETs
and PUTs, respectively. As seen in Figure 5, till £=200 sec, requests
arrive at a total rate of 100 req/sec (i.e., 200 users) from the 4 lo-
cations. LEGOStore employs configurations with CAS(5,3) for our
keys with DCs in Tokyo, Sydney, Singapore, Virginia, and Oregon.
The figure plots the latency experienced by users at Sydney and
Frankfurt; users at Singapore and Tokyo experience similar SLO
adherence. LEGOStore successfully meets SLOs. In fact, a small
number of GET requests (shown using a right-facing arrow) see su-
perior performance as they are "optimized" GETs (recall Section 2).
At t=200 sec, the collective request arrival rate increases 4-fold to
400 req/sec (i.e., 800 users) while all other workload features remain
unchanged. We assume that the controller located at LA issues a
reconfiguration without delay on detecting this workload change.
For the new workload, LEGOStore’s optimizer recommends a new
configuration performing ABD with replication factor of 3 over DCs
in Tokyo, Sydney, and Singapore. Across multiple measurements,
we find that reconfiguration concludes in less than 1 sec. The break-
down of overall reconfiguration for a sample instance that takes
717 msec is: (i) reconfig query=68 msec; (ii) reconfig finalize=208
msec; (iii) reconfig write=139 msec; (iv) updating metadata=163;
and (v) reconfig finish=139 msec.

We examine user experience during and in the immediate after-
math of reconfiguration. We show the latencies experienced by all
the users each at the Sydney and Frankfurt locations to isolate the
performance degradation experienced at each user location more
clearly.A user request experiences one of two types of degradation
which mainly depends on when it arrives in relation to the recon-
figuration. Type (i) A small number of requests (small due to how
quick the reconfiguration is) is blocked at the old configuration
servers with the possibility of either getting eventually serviced
by these old servers or having to restart in the new configuration
(see Section 3.3). These are the requests experiencing latencies in
the 750 msec - 1 sec range and highlighted using boxes for the
GET requests. Type (ii) A second possibility applies to all other
requests that do not get blocked at the old configuration servers.
These requests incur an additional delay of about 200 msec (users in
Sydney) and 250 msec (Frankfurt) to acquire the new configuration
from LA and are shown using an ovals for the GET requests. This
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Figure 5: The efficacy and performance impact of two reconfigurations is shown for one of 20 keys with similar workloads. The first reconfiguration occurs in
response to a 4-fold increase in request arrival rate at =200 sec. The second reconfiguration occurs at t=400 sec in response to the Singapore DC failing at =360
sec. The arrows show the optimized GET operations while the squares and ovals respectively highlight two types of performance degradation associated with
reconfiguration: (i) requests blocked in the old configuration, and (ii) first request issued by a user after the reconfiguration which needs to acquire the new
configuration from the controller at LA. The different colors for the latency dots represent different users.
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Figure 6: The efficacy and performance impact of a reconfiguration (at t=10
min) is shown for a key that we derive from the Wikipedia dataset.

increase in latency happens because the users do not know that a
reconfiguration has occurred and try to do an operation with the
old configuration, e.g., see requests at ¢ ~ 200 sec experiencing a
slight degradation among GET operations from Sydney users.

4.5 Reconfiguration to Handle DC Failure

When a DC in one of the quorums fails, LEGOStore will send the
request to all other DCs participating in the configuration that
are not in the quorum. This will in general be sub-optimal cost-
wise and may also fail to meet the SLO. In Appendix G.3 Figure 11
in [82], we show a sample result where a DC failure results in
such SLO violation. To alleviate this, upon detecting a failure,!®
LEGOStore invokes its optimizer to determine a new cost-effective
configuration that discounts the failed DC and then transitions
to this new configuration. Figure 5 depicts a scenario where the
Singapore DC, a member of both ABD quorums, fails at =360
sec. We assume that this failure is detected and remediated via
a transition to a new configuration using CAS(4,2) at t=400 sec.
Again, we find that the transition occurs within a second and has
a small adverse impact on request latency— most requests whose
latency exceeds the SLO are of the unavoidable Type (ii).

ISLEGOStore can work with any existing approach for failure detection.

4.6 LEGOStore for a Real-World Workload

In this subsection, we construct our workload using a publicly avail-
able dataset collected from Wikipedia’s web server [68]. This is a
read-mostly workload with a highly skewed popularity distribu-
tion. We extract arrival time and request size information from the
dataset and interpret each request as a GET or a PUT based on
its type. We sample a set of 1550 distinct objects (each interpreted
as a key) from the dataset whose aggregate arrival rate can be ac-
commodated by our prototype. We consider workload features for
this set of keys over two 1-hour long periods (call these T; and T>).
Since the workload itself does not reveal a distribution of clients,
we assume a uniform distribution of clients among 5 of our DCs
(Tokyo, Sydney, Singapore, Frankfurt, London) for T; and a uni-
form distribution among all 9 DCs for T>. We use our optimizer to
determine cost-effective configurations for each of these keys for
both of our 1-hour periods. We choose a latency SLO of 750 msec.
Our findings demonstrate that LEGOStore offers cost savings
over baselines for the Wikipedia workload. We compare the cost
offered by the optimizer against our various baselines for all of the
1550 keys in Figure 15 of [82]. Even for a fixed duration, the results
highlight the importance of the optimizer as a variety of different
configurations are chosen for different objects - this includes both
replication and CAS and different parameters for CAS. Further, with
change in client distribution for a given key, LEGOStore’s reconfig-
uration and optimizer couple to ensure sustained cost effectiveness
and improvement over baselines. In Figure 6, we highlight an illus-
trative key’s performance in our LEGOStore prototype over a 20
minute period with the first 10 minutes from T; and the second 10
minutes from Ty. The arrival rate to this key changes from 16 to
35 req/sec.Our optimizer chooses CAS (m=5, k=1) for T; and CAS
(m=8, k=1) for T. The latter yields a 20% cost reduction over the
former and triggers a reconfiguration. Figure 6 is centered around
the reconfiguration LEGOStore carries out for this key at t=10 min.
Similar to earlier experiments, our prototype accomplishes the re-
configuration within 1.96 seconds with an increase in response
times for a small number of requests during the reconfiguration.
We find that our optimizer, itself executed on public cloud VMs,
contributes negligibly to the operational cost of LEGOStore. As an



illustrative calculation, for the workload in this section we consider
extremely frequent reconfigurations occurring once every 5 min-
utes for the key with the highest arrival rate of 20.16 req/sec. Each
invocation of our optimizer costs about $0.0001 on average (the
average optimizer execution time is 18 sec, see Appendix H). This
turns out to be a mere 0.48% the overall costs for this key.

5 RELATED WORK

EC Based Data Storage: Several papers have studied the design
of in-memory KV stores [2, 18, 22, 45, 57, 60, 74, 77, 84]. A sig-
nificant body of work focuses on minimizing repair costs and en-
coding/decoding [14, 22, 41-43, 49, 65, 70, 73, 76, 78, 80]. The cost
savings offered by EC have motivated its use particularly in produc-
tion archival (i.e., write-once/rarely) systems [38, 50]. These papers
do not focus on consistency aspects that are relevant to workloads
with both reads and writes, nor do they study the geo-distributed
setting; therefore, the key factors governing their performance are
different from us. Strongly consistent EC-based algorithms and KV
stores are developed in [1, 21, 23, 35, 59]; however, none of these
works study the geo-distributed setting or the public cloud.
Strongly Consistent Geo-Distributed Storage: There are several
strongly consistent geo-distributed KV stores [19, 20, 33, 67, 75, 83].
SpanStore [75] develops an optimization to minimize costs while
satisfying latencies for a strongly consistent geo-distributed store
on the public cloud. While there are several technical differences
(e.g., SpanStore uses a blocking protocol via locks), the most im-
portant advance made by LEGOStore is its integration of EC into
the picture. Besides tuning EC parameters, LEGOStore integrates
the constraints of structurally more complex EC-based protocols to
enable cost savings. Most closely related to our work are Giza [19]
and Pando [67], which are both strongly consistent EC-based geo-
distributed data stores. Both data stores modify consensus protocols
(Paxos and Fast Paxos) to utilize EC and minimize latency. The most
notable difference between these works and LEGOStore is that LEGO-
Store is designed to keep tail latency predictable and robust and
keep costs low in the face of dynamism. Since Giza and Pando are
based on consensus, they will tend to have higher latency under
concurrent writes, e.g., for hot objects with high arrival rates. Fur-
thermore, neither Pando nor Giza have an explicit reconfiguration
algorithm. On the other hand, since Giza and Pando use consensus,
they offer more complex primitives such as Read-Modify-Writes
and versioned objects. A noteworthy comparison point vs. Giza is
that it does not operate in the public cloud and does not contain an
optimization framework for cost minimization.
Reconfiguration: There is a growing body of work that develops
non-blocking algorithms for reconfiguration [6, 51]. Algorithms
in [6, 51] require an additional phase of a client to contact a con-
troller/configuration service in the critical path of every operation.
In LEGOStore, for the common case of operations that are not con-
current with a reconfiguration, the number of phases (and therefore
the latency, costs) are identical to the baseline static protocol. Our
algorithm has a resemblance to an adaptation of [46] in the tutorial
[5]. That algorithm works mainly for replication and requires clients
to propagate values to the new configuration rather than the con-
troller, which can incur larger costs. Our reconfiguration algorithm

utilizes concepts/structures that appear in previous algorithms; our
main contribution is to adapt the existing algorithms specifically to

ABD and CAS in order to keep the reconfiguration latency/costs low
and predictable. In particular, our algorithm piggybacks read/write
requests for the reconfiguration along with messages that are sent
to block ongoing operations, and makes careful choices on oper-
ations that can be completed in older configurations to provably
ensure linearizability. Several works [4, 7, 62] design heuristics to
determine when and which objects to reconfigure. Sharov et. al [62]
give a method for optimizing the configuration of quorum-based
replication schemes, including the placement of the leaders and
replica locations for read and write operations as well as transac-
tions. The paper shares conceptual similarities with LEGOStore’s
optimization, but was limited to replication-based schemes and
focused solely on minimizing latency for placement, whereas we
focus on erasure-coded schemes and include costs in our placement
decisions; on the other hand, our methods do not readily apply to
systems that support transactions. A similar comparison applies
to the replication-oriented optimizers described in [3, 28, 81]. Vol-
ley [4] describes techniques for dynamically migrating data among
Microsoft’s geo-distributed data centers to keep content closer to
users and keeping server loads well-balanced.

Data Placement and Optimization for Public Cloud: There is a
rich area of data placement and tuning of consistency parameters for
replication based geo-distributed stores [2, 7, 39, 48, 61, 64, 66, 75].
These works expose the role of diverse workloads and costs in
system design, and our optimization framework is inspired by this
body of work. However, most of these references [7, 39, 61, 66, 75]
only consider replication. Reference [2] studied placement and
parameter optimization for EC within a DC; while some insights
are qualitatively similar, our geo-distributed setting along with
its diversity makes the salient factors that govern performance
different. From an optimization viewpoint, closest are [48, 64] which
study EC over geo-distributed public clouds; however, they do not
consider consistency and related quorums constraints and costs.

6 CONCLUSION

We developed LEGOStore, a linearizable geo-distributed key-value
store which procured resources from a public cloud provider. LEGO-
Store’s goal was to offer tail latency SLOs that were predictable and
robust in the face of dynamism. We focused on salient aspects of
EC’s benefits for LEGOStore. Several additional aspects of key-value
store design constitute interesting future directions. For instance,
LEGOStore’s effectiveness depends on a module that detects work-
load change and then reconfigures based on the detected changes.
Additionally, we focused on read/write operations and have not
implemented read/modify/write (RMW) operations [40], which in-
evitably suffer from less robust tail-latency due to FLP impossibility.
The recent paper Gryff [15] designs a provably strongly consistent
data store with RMW operations and yet provides the favorable
tail-latency properties of ABD for read and write operations. Gryff
is based on replication, and the development of a similar system
that uses EC is an interesting area of future research.
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