
Demystify Hyperparameters for Stochastic Optimization with
Transferable Representations

Jianhui Sun

University of Virginia, js9gu@virginia.edu

Mengdi Huai

University of Virginia, mh6ck@virginia.edu

Kishlay Jha

University of Virginia, kj6ww@virginia.edu

Aidong Zhang

University of Virginia, aidong@virginia.edu

ABSTRACT
This paper studies the convergence and generalization of a large

class of Stochastic Gradient Descent (SGD) momentum schemes, in

both learning from scratch and transferring representations with

fine-tuning. Momentum-based acceleration of SGD is the default

optimizer for many deep learning models. However, there is a lack

of general convergence guarantees for many existing momentum

variants in conjunction with stochastic gradient. It is also unclear

how the momentum methods may affect the generalization error. In
this paper, we give a unified analysis of several popular optimizers,

e.g., Polyak’s heavy ball momentum and Nesterov’s accelerated

gradient. Our contribution is threefold. First, we give a unified

convergence guarantee for a large class of momentum variants in

the stochastic setting. Notably, our results cover both convex and

nonconvex objectives. Second, we prove a generalization bound for

neural networks trained by momentum variants. We analyze how

hyperparameters affect the generalization bound and consequently

propose guidelines on how to tune these hyperparameters in vari-

ous momentum schemes to generalize well. We provide extensive

empirical evidence to our proposed guidelines. Third, this study

fills the vacancy of a formal analysis of fine-tuning in literature. To

our best knowledge, our work is the first systematic generalizabil-

ity analysis on momentum methods that cover both learning from

scratch and fine-tuning. Our codes are available
1
.

CCS CONCEPTS
• Theory of computation→ Sample complexity and gener-
alization bounds; •Mathematics of computing→ Nonconvex
optimization.

KEYWORDS
Deep Learning Optimization; Fine-tuning; Stochastic Gradient De-

scent; AutoML; Generalization Bound

1
https://github.com/jsycsjh/Demystify-Hyperparameters-for-Stochastic-

Optimization-with-Transferable-Representations

This work is licensed under a Creative Commons Attribution

International 4.0 License.

KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9385-0/22/08.

https://doi.org/10.1145/3534678.3539298

ACM Reference Format:
Jianhui Sun, Mengdi Huai, Kishlay Jha, and Aidong Zhang. 2022. Demystify

Hyperparameters for Stochastic Optimization with Transferable Representa-

tions. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining (KDD ’22), August 14–18, 2022, Washington, DC, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3534678.3539298

1 INTRODUCTION
Gradient based method in conjunction with a momentum term is

the optimizer of choice in many applications. On the one hand,

classical momentum methods (e.g. Polyak’s ’heavy ball’ momen-

tum [33] and Nesterov’s accelerated gradient [31]) are known to

achieve faster convergence guarantees than gradient descent for

smooth and strongly convex objectives with deterministic gradi-
ents (gradient computed on the full training dataset) [32, 34]. On

the other hand, stochastic gradient descent (SGD) possesses both

practical and theoretical appeals over batch gradient descent [3],

and has now played a central role in training deep learning models.

Therefore, momentum in conjunction with stochastic gradient has
been extensively used.

Since [40] first demonstrated the critical role of well-tuned sto-

chastic momentum method in deep learning optimization, stochas-

tic momentum has been used so pervasively that deep learning

models are usually optimized by SGD with momentum instead of

vanilla SGD by default. Notably, momentum has not only exhibited

convincing performances in accelerating training loss minimization,

it has also been reported to achieve better generalizability in over-

parameterized neural networks than adaptive gradient algorithms

[16, 42].

Apart from the classical stochastic variant of heavy ball momen-

tum (SHB) and Nesterov’s accelerated gradient (NAG), a growing

number of momentum variants in stochastic setting have been pro-

posed to train deep learning models to either accommodate objec-

tive functions with more general geometry, or to improve training

stability and generalization ability in specific settings
2
. Despite

empirical successes reported for many momentum variants in a

wide spectrum of tasks, how different forms of momentum variants

and their associated hyperparameters affect (1) the convergence

properties and (2) the generalization abilities, is largely an open

question in stochastic setting.
More importantly, a growing number of applications rely on

transferring representation pretrained from a source task where

labeled data is abundant and computational capacity is sufficient,

2
An incomplete list of momentum schemes will include Synthesized Nesterov Variants

(SNV) [19], PID control (PID) [1], Accelerated Stochastic Gradient Method (ASGD)

[18], Triple Momentum [41], and Quasi-Hyperbolic Momentum (QHM) [26].

1706

https://github.com/jsycsjh/Demystify-Hyperparameters-for-Stochastic-Optimization-with-Transferable-Representations
https://github.com/jsycsjh/Demystify-Hyperparameters-for-Stochastic-Optimization-with-Transferable-Representations
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3534678.3539298
https://doi.org/10.1145/3534678.3539298

KDD ’22, August 14–18, 2022, Washington, DC, USA Jianhui Sun et al.

and then fine-tune on target task
3
. However, despite the enormous

popularity of transferring representation, there is a lack of rigor-

ous understanding of how well momentum variants converge and

generalize in transfer learning with fine-tuning.

To tackle the aforementioned problems, this paper studies a gen-

eral framework, the Quasi-Hyperbolic Momentum (QHM) method

[26] with constant momentum parameters, in the stochastic ap-

proximation setting (unbiased gradients with bounded variance),

in both training from scratch and fine-tuning paradigms. Note that

QHM has a general formulation that could cover a large family

of popular momentum methods, e.g., SHB, NAG, ASGD, and SNV.

Therefore, our unified analysis includes a large class of momentum

schemes as special cases.

Our main contributions could be summarized as follow:

• We derive a unified convergence guarantee for a family of

momentum methods, for both convex and nonconvex objec-

tives. Our nonconvex analysis does not require the restrictive

’bounded gradient’ assumption used in the existing litera-

ture.

• We prove a generalization bound for neural networks trained

by momentum variants. To our best knowledge, this is

the first systematic generalizability analysis of momentum

schemes. Based on the bound, we theoretically justify some

training heuristics from existing empirical works
4
, and fur-

ther motivate novel training guidelines to new momentum

methods (e.g., PID and SNV). Our empirical experiments test

across different data, models, and optimizers, which all verify

the effectiveness of our proposed guidelines.

• Our analysis is the first work that provides a rigorous under-

standing of how momentum methods converge and general-

ize in learning both with and without fine-tuning.

In Section 2, we formally introduce the definitions of learning

from scratch/fine-tuning, momentum schemes, and generalization

error, that are pertinent to this work. In Section 3, we provide the

convergence guarantee of QHM, for both strongly convex and gen-

eral nonconvex objective functions. In Section 4, we theoretically

connect the generalization error of momentum schemes with hy-

perparameters, both with and without fine-tuning. In Section 5, we

justify existing tuning heuristics and propose new tuning rules. We

conduct extensive experiments to verify our proposed guidelines

in Section 6. Related works are discussed in Section 7. Proofs of all

our theorems and corollaries are presented in Appendix (Section

9).

2 BACKGROUND
2.1 Learning from Scratch vs. Fine-tuning
Let 𝑋 be the input space and 𝐶 be the label space. Suppose ℎ𝑇 :

𝑋 ↦→ 𝐶 is the ground truth for the target task 𝑇 . The learning

goal is to find a hypothesis ℎ such that it minimizes the target risk

R𝑇 (ℎ) ≜ E𝑥∼𝑃𝑇 (𝑋)
[𝑙(ℎ𝑇 (𝑥), ℎ(𝑥))], where 𝑃𝑇 (𝑋) is the input data

distribution on target task, and 𝑙 is a loss function.

3
Examples of powerful pretrained models include Caffe Model Zoo [14] and BERT [4].

4
e.g., regularizing the distance between fine-tuned weights and the pre-trained weights,

linearly scaling batch size with learning rate, NAG generalizing better than SHB in

many experimental settings, and monotonically increasing momentum parameter

𝛽 → 1 [15, 36]

Figure 1: The workflow of fine-tuning. In most cases, a spe-
cialized classifier only containing the last output layer is
trained from scratch, while representation containing all pre-
vious layers is transferred from the source and fine-tuned.

Deep learning models generally first learn the disentangled fea-

tures of input. Suppose 𝑍 is the feature space, 𝐹 = {𝑓 : 𝑋 ↦→ 𝑍 } is a
class of representations, and𝐺 = {𝑔 : 𝑍 ↦→ 𝐶} is a class of specialized
classifiers. Any hypothesis is a composite of a representation and

specialized classifier, i.e. ℎ = 𝑔◦ 𝑓 : 𝑋 ↦→ 𝐶 , and the hypothesis class

is 𝐻 ≜ {ℎ : ∃𝑓 ∈ 𝐹, 𝑔 ∈ 𝐺, such that, ℎ = 𝑔 ◦ 𝑓 }. Each hypothesis is

parameterized by 𝜃 = (𝜃 𝑓 , 𝜃𝑔). Figure 1 describes the workflow of

fine-tuning.

Suppose (𝑥,𝑦) is a labeled data instance, and 𝑁 is the number of

labeled data points in the target task. The traditional Frequentist

learning paradigm views model parameter 𝜃 as fixed but unknown

values and do not attach any probabilities to these learnable pa-

rameters. In contrast, the Bayesian perspective shifts to studying

a distribution of every possible setting of parameters instead of

betting on one single setting of parameters to manage model uncer-

tainty, and has proven to be increasingly powerful in many settings.

In the Bayesian framework, 𝜃 is assumed to follow some prior dis-

tribution 𝑃 (reflects our prior knowledge of model parameters), and

through the iterative optimization, the distribution of 𝜃 shifts to

{𝑄𝑘 }𝑘≥0
, and converges to posterior distribution 𝑄 (reflects our

knowledge of model parameters after learning with 𝑁 data points).

The mode of the posterior distribution is typically regarded as the

final model parameter.

The generalization bound could therefore be defined as follows:

E ≜ |R(𝑄) − ˆR(𝑄)|. (1)

where R(𝑄) ≜ E𝜃∼𝑄E𝑥∼𝑃𝑇 (𝑋)
𝑙(ℎ𝜃 (𝑥), 𝑦), and

ˆR(𝑄) ≜

E𝜃∼𝑄
1

𝑁

∑𝑁
𝑗=1

𝑙 (ℎ𝜃 (𝑥 𝑗), 𝑦 𝑗).

In the Bayesian framework, the stochastic hypothesis
˜ℎ𝑔◦𝑓 is

a distribution over hypothesis class 𝐻 and is associated with the

Frequentist hypothesis ℎ = 𝑔 ◦ 𝑓 (i.e., the mode of
˜ℎ𝑔◦𝑓 is 𝑔 ◦ 𝑓); the

stochastic hypothesis class is 𝐻̃𝐺◦𝐹 ≜ { ˜ℎ𝑔◦𝑓 : ∃𝑓 ∈ 𝐹, 𝑔 ∈ 𝐺}. Let
us introduce the two learning paradigms that we consider in this

paper.

Learning from ScratchWhen 𝑁 is sufficiently large, we do not

need to leverage any external information in learning and could

directly train from scratch.Wewould start from some random initial

stochastic hypothesis
˜ℎ𝑔0◦𝑓0 (i.e., a distribution centered around

random initial hypothesis 𝑔0 ◦ 𝑓0), and pose no restriction over the

1707

Demystify Hyperparameters for Stochastic Optimization with Transferable Representations KDD ’22, August 14–18, 2022, Washington, DC, USA

search space 𝐻̃𝐺◦𝐹 ≜ { ˜ℎ𝑔◦𝑓 : ∃𝑓 ∈ 𝐹, 𝑔 ∈ 𝐺 . We would search in

𝐻̃𝐺◦𝐹 with any optimizer minimizing the target risk 𝑅𝑇 .

Fine-tuning When target data amount 𝑁 is not sufficiently large,

while there is a source task where labeled data is abundant and

we believe these tasks share similar intermediate representation,

we could transfer representations learned from a source task to

the target task. Formally, we have source task 𝑆 and the number

of labeled data 𝑁𝑆 is typically much larger than 𝑁 . Source risk

is defined similarly as R𝑆 (ℎ) ≜ E𝑥∼𝑃𝑆 (𝑋)
[ℎ𝑆 (𝑥) ̸= ℎ(𝑥)], where ℎ𝑆

and 𝑃𝑆 are the ground truth and input data distribution in source

task, respectively. We obtain a minimizer of 𝑅𝑆 as 𝑔𝑆 ◦ ˆ𝑓𝑆 with

some optimizer. As we believe target task is similar in internal

representation as source task,
˜ℎ
𝑔𝑆◦ ˆ𝑓𝑆

is thus a much better starting

point than random initialization
˜ℎ𝑔0◦𝑓0 . Furthermore, representation

in source task is believed to approximate
ˆ𝑓𝑆 , and therefore, we will

search in 𝐻̃
𝐺◦𝐹 ≜ { ˜ℎ𝑔◦𝑓 : ∃𝑓 ∈ 𝐹, 𝑔 ∈ 𝐺 . 𝐹 ⊆ 𝐹 and is a region

around
ˆ𝑓𝑆 (such restriction is enforced through a penalty term of

distance between 𝑓 and ˆ𝑓𝑆). As 𝑔 is the specialized classifier specific

to the task, and typically takes only a small proportion of all model

parameters, no restriction will be posed on function class 𝐺 .

Both source task and target task are optimized with an optimizer,

and in this paper, we focus on Stochastic Gradient Descent (SGD)

momentum and its variants.

2.2 Gradient Descent Algorithm and Its Variants
This paper studies a large class of first-order gradient descent algo-

rithms. Recall 𝜃 is the parameter to be optimized in the hypothesis,

andR is the risk function. Let 𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖) represents a single data in-

stance.R𝜁 is the empirical risk evaluated by a mini-batch of random

samples, R𝜁 ≜ 1

𝑛𝑏

∑
𝑗 ∈𝜁 R 𝑗 , where R 𝑗 ≜ 𝑙𝜃 (𝑧 𝑗) is the contribution

to risk from 𝑗-th data point. 𝜁 represents a mini-batch of random

samples and 𝑛𝑏 ≜ |𝜁 | represents the batch size. 𝑔(𝜃) ≜ ∇𝜃R𝜁 is the

empirical gradient of risk with respect to 𝜃 .

We start from the formula of Stochastic Gradient Descent (SGD):

𝜃𝑘+1
= 𝜃𝑘 − 𝛼𝑘𝑑𝑘 (2)

where 𝛼𝑘 and 𝑑𝑘 are the learning rate and search direction at 𝑘-th

step, respectively. (mini-batch) SGD
5
uses 𝑔𝑘 ≜ 𝑔(𝜃𝑘) as 𝑑𝑘 .

We focus on Quasi-Hyperbolic Momentum methods [26], which

could be formulated as:

𝑑𝑘+1
= (1 − 𝛽𝑘)𝑔𝑘 + 𝛽𝑘𝑑𝑘

𝜃𝑘+1
= 𝜃𝑘 − 𝛼𝑘 [(1 − 𝜈𝑘)𝑔𝑘 + 𝜈𝑘𝑑𝑘]

(3)

More specifically, in this paper, we study QHM with constant pa-

rameters, i.e., 𝛼𝑘 = 𝛼, 𝛽𝑘 = 𝛽, 𝜈𝑘 = 𝜈 .

Note that the formulation of Quasi-Hyperbolic Momentum

method is very general, and could recover many momentum meth-

ods with different specifications of (𝛼, 𝛽, 𝜈). For example, QHM

recovers plain SGD when 𝜈 = 0.

If 𝜈 = 1, QHM recovers SHB:

𝑑𝑘+1
= (1 − 𝛽)𝑔𝑘 + 𝛽𝑑𝑘 𝜃𝑘+1

= 𝜃𝑘 − 𝛼𝑑𝑘 (4)

5
As mini-batch GD contains ’one-instance’ SGD as a special case, we use ’SGD’ to

refer to mini-batch GD throughout this paper unless otherwise specified.

where variable 𝑑 is commonly referred to as the ’momentum buffer’.

The exponential discount factor 𝛽 controls how slowly the momen-

tum buffer is updated.

If 𝜈 = 𝛽 , QHM recovers NAG:

𝑑𝑘+1
= (1 − 𝛽)𝑔𝑘 + 𝛽𝑑𝑘

𝜃𝑘+1
= 𝜃𝑘 − 𝛼[(1 − 𝛽)𝑔𝑘 + 𝛽𝑑𝑘]

(5)

From the connection between QHM and SHB (NAG), QHM could

be interpreted as a 𝜈-weighted average of the momentum update

step and the plain SGD update step. We refer 𝜈 as the immediate

discount factor.

[26] showed that QHM could recover many other popular mo-

mentum schemes, e.g., PID control (PID), Synthesized Nesterov

Variants (SNV), Accelerated Stochastic Gradient Method (ASGD),

and Triple Momentum, with different 𝛼, 𝛽, 𝜈 specifications. There-

fore, our analysis based on QHM could cover a family of momentum

methods as special cases.

3 CONVERGENCE OF MOMENTUM SCHEMES
IN STOCHASTIC APPROXIMATION
SETTING

In this section, we will discuss the dynamics and convergence of the

iterates produced by momentum schemes, for both strongly convex

and nonconvex objectives. All proofs are deferred to Appendix

(Section 9) unless specified otherwise.

3.1 Strongly Convex Objective
Assumption 1 (LocallyQuadratic Risk Function

6
). Suppose

the risk function is approximately convex and 2-order differentiable,
in the region close to minimum, i.e., there exists a 𝛿0 > 0, such that
R(𝜃) =

1

2
(𝜃 −𝜃∗)𝑇𝐴(𝜃 −𝜃∗) if ∥𝜃 −𝜃∗∥ ≤ 𝛿0, where 𝜃∗ is a minimizer

of R(𝜃). Here 𝐴 is the Hessian matrix ∇2

𝜃
R around minimizer and is

positive definite. Without loss of generality, we assume a minimizer
of the risk is zero, i.e., 𝜃∗ = 0.

Let us denote the suboptimality of the current iterate as 𝑟𝑘 ≜
𝜃𝑘 − 𝜃∗. Following from Assumption 1, the risk function is 2-order

differentiable. We denote the Hessian as ∇2R(𝜃) in a local region

around minimizer 𝜃∗, and the Hessian is positive definite. Let 𝐴𝑘 ≜∫
1

0
∇2R(𝜃∗ + 𝑡𝑟𝑘)𝑑𝑡 . Denote the gradient noise at iteration 𝑘 as

𝜉𝑘 ≜ ∆𝑔(𝜃𝑘), where ∆𝑔(𝜃𝑘) = 𝑔(𝜃𝑘) − 𝑔(𝜃𝑘). Suppose at each step 𝑘 ,

gradient noise is Gaussian (the stochastic gradient is a sum of 𝑛𝑏
independent, uniformly sampled contributions. Invoking the central

limit theorem, we assume that the gradient noise is Gaussian) with

mean 0 and covariance
1

𝑛𝑏
Σ. We know ∆𝑔(𝜃𝑘) is a random variable

with mean 0 and bounded variance 𝜎2
, i.e., E[𝜉𝑘] = 0 and E∥𝜉𝑘 ∥2 ≤

𝜎2
. Here 𝜎2

could be ∥Σ∥. By the fundamental theorem of calculus,

we know:

𝑔(𝜃𝑘) = 𝐴𝑘 𝑟𝑘 + 𝜉𝑘 (6)

6
Though here we assume quadratic form of risk function, all our results apply to

locally smooth and strongly convex objectives. Note that the assumption on locally

quadratic structure of loss function, even for extremely nonconvex objectives, could be

justified empirically. [21] visualized the loss surfaces for deep structures like ResNet

[9] and DenseNet [12], observing quadratic geometry around local minimum in both

cases. And certain network architecture designs (e.g., skip connections) could further

make neural loss geometry show no noticeable nonconvexity.

1708

KDD ’22, August 14–18, 2022, Washington, DC, USA Jianhui Sun et al.

Recall the QHM formulation in Equation (3) and apply Equation

(6), we could write the recursive pattern of QHM as follows:[
𝑑𝑘
𝑟𝑘+1

]
= 𝑇𝑘

[
𝑑𝑘−1

𝑟𝑘

]
+ 𝑆𝜉𝑘 (7)

where 𝑇𝑘 and 𝑆 are functions of (𝛼, 𝛽, 𝜈) and 𝐴𝑘 :

𝑇𝑘 =

[
𝛽𝐼 (1 − 𝛽)𝐴𝑘
−𝛼𝜈𝛽𝐼 𝐼 − 𝛼(1 − 𝜈𝛽)𝐴𝑘

]
, 𝑆 =

[
(1 − 𝛽)𝐼

−𝛼(1 − 𝜈𝛽)𝐼

]
With the assumption of locally quadratic risk function, we know

𝐴𝑘 = 𝐴 for all 𝑘 .

Unrolling the recursion in (7), we have the following:[
𝑑𝑘−1

𝑟𝑘

]
= 𝑇𝑘

[
𝑑−1

𝑟0

]
+

𝑘∑︁
𝑗=1

𝑇𝑘−𝑗𝑆𝜉 𝑗 (8)

where 𝑑−1 is 0 by default. With Equation (8), we present the con-

vergence result for quadratic functions:

Theorem 1. Denote the spectral radius of𝑇 as 𝜌(𝑇). Let the small-
est and largest eigenvalues of Hessian matrix as: 𝜇 = min𝑖 𝜆𝑖 (𝐴) and
𝐿 = max𝑖 𝜆𝑖 (𝐴). Let ∆𝜆 ≜ (1 + 𝛽 − 𝛼𝜆 + 𝛼𝜈𝛽𝜆)

2 − 4𝛽(1 − 𝛼𝜆 + 𝛼𝜆𝜈).
Let {𝜃𝑘 }𝑘∈N as the sequence from QHM. There exists a vanishing
sequence of {𝜖𝑘 }, i.e., lim𝑘→∞ 𝜖𝑘 = 0, such that for all 𝑘 , the expected
optimality gap satisfies,

E∥𝜃𝑘 − 𝜃∗∥2 ≤ 𝜀d + 𝜀s

𝜀d = (𝜌(𝑇) + 𝜖𝑘)
2𝑘 ∥𝜃0 − 𝜃∗∥2

𝜀s =

1 − 𝛽2
+ 𝛼2

(1 − 𝜈𝛽)
2

1 − (𝜌(𝑇) + 𝜖𝑘)
2

𝜎2

where 𝜌(𝑇) = max{𝜌𝜇 , 𝜌𝐿}, with:

𝜌𝜆 =

{
1

2
|1 + 𝛽 − 𝛼𝜆 + 𝛼𝜈𝛽𝜆 | + 1

2

√︁
∆𝜆, if ∆𝜆 ≥ 0√︁

𝛽(1 − 𝛼𝜆 + 𝛼𝜆𝜈), otherwise

𝜀
d
and 𝜀s reflect two sources of expected optimality gap, 𝜀

d
is the

deterministic approximation error, representing the rate of conver-

gence to local region around minimizer, while 𝜀s is the stochastic

error, describing the irreducible fluctuation around the minimizer

due to gradient noise. Both 𝜀
d
and 𝜀s are important in determining

the dynamics of QHM. Based on 𝜀
d
, the condition to converge to

local region of minimizer is 𝜌(𝑇) < 1 as lim𝑘→∞(𝜌(𝑇) + 𝜖𝑘) = 𝜌(𝑇).

Based on 𝜀s, the fluctuation is a constant factor multiplying noise 𝜎2
,

where the constant factor depends on (𝛼, 𝛽, 𝜈). Our result extends

the deterministic analysis in [6] to stochastic setting. In the deter-

ministic analysis, the second term

∑𝑘
𝑗=1

𝑇𝑘−𝑗𝑆𝜉 𝑗 in (8) is ignored.

Remark 3.1 (Connection to Convergence Result in NAG).

Set 𝛽 = 𝜈 , and re-scale 𝛼 → 𝛼
(1−𝛽)

, Theorem 1 will recover the conver-

gence guarantee for stochastic NAG (see Theorem 1 in [2]) 7.

Remark 3.2 (Estimation of Variance factor). In Theorem 1,
𝜀d is easier to handle as we know it is dominated by 𝜌(𝑇). Let us denote

𝐶(𝜖) ≜
1−𝛽2

+𝛼2
(1−𝜈𝛽)

2

1−(𝜌(𝑇)+𝜖𝑘)
2

, i.e., 𝜀s = 𝐶(𝜖)𝜎2. We conduct simulation stud-
ies and show how 𝐶(𝜖) changes w.r.t. different model specifications.
Specifically, we optimize quadratic functions with QHM. The dimen-
sion of parameters is set to be 𝑑 = 20. The Gaussian noise we add is
7
The exact formulation of NAG is different in [2], as the learning rate in our QHM

formulation re-scales their learning rate: 𝛼 → 𝛼
(1−𝛽)

.

Figure 2:𝐶(𝜖) in simulation studies. Upper row represents qua-
dratic function with 𝑄 = 100.0, and lower row represents qua-
dratic function with 𝑄 = 60.0. We test QHM with 𝜈 = 1.0, 0.5.
Each pixel represents one single run of QHM with specific
𝛼 and 𝛽. Red line denotes the condition of convergence in
Theorem 1. From this figure, we could see QHM is easier to
converge with flatter geometry and 𝛽 → 1 will improve the
variance constant factor.

𝑐 · 𝐼𝑑 , and 𝑐 is fixed at 0.03. 𝑄 is the ratio of the largest eigenvalue to
the smallest eigenvalue for this quadratic function, i.e., 𝑄 ≜ 𝐿

𝜇 . 𝑄 is
a measure of ’sharpness’ at minimum. Figure 2 shows the result of
our simulation studies. As we could observe from Figure 2, variance
constant factor is smaller when 𝛽 → 1 in both cases. This partially
verifies our training heuristic: move 𝛽 to 1 under the condition of con-
vergence. And we could see that if𝑄 is smaller, the convergence region
is larger in area. As smaller 𝑄 represents flatter geometry around
minimum, it indicates QHM is easier to converge with flatter local
geometry.

3.2 Nonconvex Objective
Assumption 1 (i.e., locally quadratic assumption) in Section 3.1 may

not hold for highly over-parameterized neural networks (see e.g.

[23]: the set of local minima is often a low-dimensional manifold,

instead of isolated points, in the parameter space; and as long as

the manifold is not linear, there should be no locally convex region).

Therefore, we provide the following convergence guarantee for

QHM when optimizing nonconvex functions.

Theorem 2. SupposeR(𝜃) is 𝐿-smooth and not necessarily strongly
convex. Denote the expected gradient square as {G𝑘 ≜ E[∥𝑔𝑘 ∥2]}𝑘∈N
and ¯G ≜ 1

𝑘
Σ
𝑘
𝑖=1
G𝑘 . We have: ¯G ≤ 𝜀d + 𝜀s, where,

𝜀d =

2

(
R(𝜃1) − R∗

)
𝑘𝛼

𝜀s =

(
1 +

𝛽2𝜈2

1 + 𝛽
+

1 − 𝛽
1 + 𝛽

𝛽2𝜈6
+ (1 − 𝛽𝜈)

2𝜈4

)
𝐿𝛼𝜎2

(9)

if 𝛼 ≤ min{ 1−𝛽
(3+2𝛽2𝜈2

+2𝜈4
)𝐿
,
𝜈(1−𝛽)

√
1−𝛽

2

√
2

√
𝛽+𝛽2𝐿

}.

Remark 3.3 (Rolel of (𝛽, 𝜈)). In Theorem 2, we do not require the
’bounded gradient’ assumption ∥𝑔∥ ≤ 𝐺 for some 𝐺 > 0 [44]. Speci-
fications of (𝛽, 𝜈) mainly affect the radius of stationary distribution
𝜀s.

Please refer to Appendix (Section 9) for proof.

1709

Demystify Hyperparameters for Stochastic Optimization with Transferable Representations KDD ’22, August 14–18, 2022, Washington, DC, USA

4 GENERALIZATION OF MOMENTUMWITH
ANDWITHOUT FINE-TUNING

In this section, we introduce our main theorem to explain the role

of momentum in closing the generalization gap in both learning

from scratch and fine-tuning. We will also discuss how the theorem

guides practical model training with SGD momentum variants. All

proofs are deferred to Appendix (Section 9).

We first introduce the following lemma that describes the limit-

ing behavior of SGD momentum variants.

Lemma 1. 𝜃 optimized by QHM will converge to a stationary dis-
tribution ˜ℎ = exp{− 1

2
𝜃𝑇 Σ𝜃𝜃 }. Furthermore, the trace tr(Σ𝜃) and

determinant det(Σ𝜃) of Σ𝜃 fulfill the following equalities, tr(Σ𝜃) =

𝛼
2𝑏
tr(Σ𝐴−1

)+
𝛼2

2𝑏

(
𝜈𝛽

1−𝛽 (1− 2(1+𝛽−𝜈𝛽)

1+𝛽
+

1

2
)

)
tr(Σ)+𝑂(𝛼3

), and det(Σ𝜃) =

(
𝛼
2𝑏

)
𝑑

det(Σ𝐴−1
) +𝑂(𝛼2

).

With this lemma, we are prepared to give our main theorem.

Theorem 3. Assume the target task has𝑛𝑇 training data instances.
Assume the risk function is locally quadratic, and gradient noise is
Gaussian. Suppose the prior distribution of parameters is ˜ℎ0 and
posterior distribution is ˜ℎ, both of which are some distributions on
hypothesis class parameterized by 𝜃 . For any positive real 𝜖 ∈ (0, 1),
the following inequality holds with probability at least 1 − 𝜖 ,

R(𝑄) ≤ ˆR(𝑄) +

√︄
KL(

˜ℎ | | ˜ℎ0) + log
1

𝜖 + log𝑛𝑇 + 2

2𝑛𝑇 − 1

Learning from Scratch: ˜ℎ0 = N (𝜃0, 𝜆0𝐼𝑑), where 𝜃0 = (𝜃
0,𝑓 , 𝜃0,𝑔) is

some random initialization for ℎ = 𝑔◦ 𝑓 . 𝜆0 represents the uncertainty
in the Gaussian initialization, where 𝑑 represents the dimension of
parameters.
Fine-tuning: ˜ℎ0 =

˜ℎ
𝑔𝑆◦ ˆ𝑓𝑆

= N ((𝜃𝑆,𝑓 , 𝜃𝑆,𝑔), 𝜆0𝐼𝑑).

Invoking Lemma 1, we will have KL(
˜ℎ | | ˜ℎ0) = E1 + E2, where, E1 =

1

2𝜆0

∥𝜃0∥2
2

+
1

2
𝑑 log 𝜆0− 1

2
𝑑 , and E2 = − 1

2
log det(Σ𝐴−1

)− 1

2
𝑑 log

𝛼
2𝑛𝑏

+

𝛼tr(Σ𝐴−1
)

4𝜆0𝑛𝑏
+
𝛼2tr(Σ)

4𝜆0𝑛𝑏

(4𝜈2−2𝜈−1)𝛽2−2𝜈𝛽+1

2(1−𝛽2
)

.

Proof. Please refer to Appendix (Section 9) for proof. □

Let us denote:

𝐾 ≜
𝛼2

tr(Σ)

4𝜆0𝑛𝑏

(4𝜈2 − 2𝜈 − 1)𝛽2 − 2𝜈𝛽 + 1

2(1 − 𝛽2
)

In the rest of the paper, when we study how (𝛽, 𝜈) affects the gener-

alization bound, we would focus on how 𝐾 changes with different

settings of (𝛽, 𝜈), as it is the only term in Theorem 3 containing

(𝛽, 𝜈).

Remark 4.1 (Connection to Generalization Error in SGD).

Generalization error with respect to momentum is less understood,
but there are some existing results on vanilla SGD. To recover the
generalization error in SGD, we just need to set 𝜈 = 0 in Theorem 3.
We immediately have the following corollary:

Corollary 4.1. Replace E2 in Theorem 3 with the following for-
mulation will give us the PAC-Bayesian generalization bound for
vanilla SGD:

E2 = −1

2

𝑑 log

𝛼

2𝑛𝑏
− 1

2

log det(Σ𝐴−1
) +

𝛼tr(Σ𝐴−1
)

4𝜆0𝑛𝑏
+

𝛼2tr(Σ)

8𝜆0𝑛𝑏

Note that [8] proved a similar PAC-Bayesian bound for vanilla
SGD. However, our bound in this corollary has a nontrivial difference
than theirs. Specifically, their bound only includes a first-order term of

learning rate, while ours includes one extra second-order term 𝛼2tr(Σ)

8𝜆0𝑛𝑏
.

The difference is important, in that it incurs the following corollary
that could not be derived from their first order bound:

Corollary 4.2. We give the following two statements about the
relationship between learning rate and generalization when training
deep learning models with sufficiently large 𝑑 (see Corollary 5.1 for
exact size of 𝑑):
• Increasing learning rate (under the condition of convergence)
will give us a better (smaller) generalization bound.
• But if we hold the ratio of batch size to learning rate constant,
the generalization bound will get worse (larger) if we increase
the learning rate.

This second statement is obvious from our second order bound.
However, with their first order bound, the generalization bound re-
mains constant if fixing the ratio 𝑛𝑏𝛼 . Our experimental results (see
e.g., Table 2) verifies our theoretical findings.

The practical implication is important as a popular training heuris-
tic is to scale batch size 𝑛𝑏 ∝ 𝛼 [36]. Controlling the ratio is a good
strategy, but our result warns that we still need to restrict the learning
rate.

5 GUIDELINES TO IMPROVE
GENERALIZATION

With the above Theorem 3, we are ready to provide several useful

training heuristics to improve generalization performance.

5.1 Enforce 𝜃 𝑓 ,𝑇 to be close to 𝜃 𝑓 ,𝑆
As KL(

˜ℎ | | ˜ℎ0) is the main factor that controls the generalization

error, the typical 𝐿2 regularization ∥𝜃 ∥2
2
is insufficient for fine-

tuning. KL(
˜ℎ | | ˜ℎ0) is determined by 𝜃𝑆 − 𝜃𝑇 , where 𝜃𝑇 and 𝜃𝑆 are

parameters in target task and source task, respectively. Each set of 𝜃

is a composition of 𝜃 𝑓 and 𝜃𝑔 , where 𝜃 𝑓 encodes the representation

we expect the tasks to share, and 𝜃𝑔 is task-specific parameters.

Add the following regularization is guaranteed to improve the

generalization performance according to Theorem 3,

𝜑1∥𝜃 𝑓 ,𝑆 − 𝜃 𝑓 ,𝑇 ∥22 + 𝜑2∥𝜃𝑔,𝑇 ∥22 (10)

where 𝜑1 and 𝜑2 are two hyperparameters. We penalize the repre-

sentation in target task far from the source representation while

restricting the complexity of specialized classifier. [20, 22, 30] also

demonstrated the improvement from regularizing distances be-

tween representations.

5.2 Small ratio 𝑛𝑏
𝛼

helps deep models generalize
A direct application of Theorem 3 is the following corollary:

Corollary 5.1. If 𝑑 is larger than 𝛼tr(Σ𝐴−1
)

2𝜆0𝑛𝑏
+ 2𝐾 , then the corre-

lation between generalization error and 𝑛𝑏
𝛼 is positive.

Proof. Denote 𝑟 =
𝑛𝑏
𝛼 for ease of notation. Let us cal-

culate the derivative of E2 to 𝑟 :
𝜕E2

𝜕𝑟 =
𝑑
2𝑟 −

(
tr(Σ𝐴−1

)

4𝜆0

+

1710

KDD ’22, August 14–18, 2022, Washington, DC, USA Jianhui Sun et al.

𝛼tr(Σ)

4𝜆0

(4𝜈2−2𝜈−1)𝛽2−2𝜈𝛽+1

2(1−𝛽2
)

)
1

𝑟 2
. It is straightforward to verify if we

have 𝑑 ≥ 𝛼tr(Σ𝐴−1
)

2𝜆0𝑛𝑏
+ 2𝐾 , we could get

𝜕E2

𝜕𝑟 ≥ 0, which completes

our proof.

□

The condition for 𝑑 (the number of parameters) is easily satisfied

for many overparameterized deep models. It may sound counter-

intuitive that large batch size may hurt models to generalize. But it

is consistent with our theoretical and empirical evidence if training

an overparameterized model. Note that controlling
𝑛𝑏
𝛼 has been

used in [8, 36] for vanilla SGD, and here we extend it to momentum-

based methods.

Corollary 5.1 also tells us if training shallow models, the previous

relationship does not necessarily hold. Moreover, recalling Corol-

lary 4.2, we could conclude that learning rate should be restricted

if we scale 𝑛𝑏 with 𝛼 .

5.3 NAG generalizes better than SHB, when
𝛽 → 1

To recover the generalization error in SHB and NAG, we just need

to set 𝜈 = 1 and 𝜈 = 𝛽 , respectively.

𝐾SHB =

𝛼2
tr(Σ)

4𝜆0𝑛𝑏

1 − 𝛽
2(1 + 𝛽)

(11)

𝐾NAG =

𝛼2
tr(Σ)

4𝜆0𝑛𝑏

1 + 𝛽 − 2𝛽2 − 4𝛽3

2(1 + 𝛽)

(12)

We could conclude from (11) and (12): 𝐾SHB will be constantly

larger than 𝐾NAG when 𝛽 → 1. 𝐾SHB is smaller than 𝐾NAG when

𝛽 ∈ (0, 1

2
).

Therefore, ENAG < ESHB, in a typical 𝛽 setting. In other words,

NAG provably generalizes better than SHB. [40] compared empiri-

cally SHB and NAG in training deep learning models, and concludes

that NAG performs better than SHB in most of their experimental

settings. [44] studied qualitatively, hypothesizing NAG is better in

achieving a tradeoff between speed of convergence and algorithm

stability compared to SHB, without giving an explicit theoretical

justification. Our analysis here provides an explanation why and

when NAG is better.

5.4 Set momentum parameter 𝛽 close to 1 and 𝜈
as 0.5

[26] proposed to adopt a rule of thumb specification of (𝛽rot =

0.999, 𝜈rot = 0.7). However, from the expression of 𝐾 , we could

easily conclude: 𝐾(𝛽 → 1, 𝜈 = 0.5) could be arbitrarily small, and

thus much smaller than 𝐾 (𝛽rot = 0.999, 𝜈rot = 0.7).

Therefore, we suggest that adopting a large 𝛽 and setting 𝜈 as

0.5, especially when the learning rate is large (e.g., initial stage of

training), will potentially improve the generalization ability. Our

experiments (see Table 2) show that test accuracy with 𝛽opt =

0.999, 𝜈opt = 0.5 will generally improve over (𝛽rot = 0.999, 𝜈rot =

0.7), by a non-trivial margin
8
.

8
We do not indicate 𝛽opt = 0.999, 𝜈opt = 0.5 is the optimal setting. Our goal is to show

training guidance motivated by our bound could in fact improves generalization.

5.5 Guidelines to other momentum schemes
Apart from classical SHB and NAG, Theorem 3 could also guide the

training of some recently proposed momentum schemes. Here we

study the case of SNV and PID. We briefly introduce the definitions

of SNV and PID for ease of reference (see e.g., [1, 19] for more

details).

Definition 1 (Synthesized Nesterov Variant (SNV)). Syn-
thesized Nesterov Variant, parameterized by 𝛾, 𝛽1, 𝛽2 ∈ R, uses the
following update rule:

𝜉𝑘+1
← 𝜉𝑘 − 𝛾 · 𝑔𝑘 + 𝛽1(𝜉𝑡 − 𝜉𝑡−1)

𝜃𝑘+1
← 𝜉𝑘+1

+ 𝛽2(𝜉𝑘+1
− 𝜉𝑘)

(13)

Definition 2 (PID Control). A PID control optimizer, parame-
terized by 𝑘𝑃 , 𝑘𝐼 , 𝑘𝐷 ∈ R, uses the update rule:

𝑣𝑘 ← 𝛽 · 𝑣𝑘−1
+ (1 − 𝛽)(𝑒𝑘 − 𝑒𝑘−1

)

𝑒𝑘 ← −𝑔𝑘 𝑤𝑘 ← 𝑤𝑘−1
+ 𝑒𝑘

𝜃𝑘+1
← 𝜃0 + 𝑘𝑃 · 𝑒𝑡 + 𝑘𝐼 ·𝑤𝑡 + 𝑘𝐷 · 𝑣𝑡

(14)

Acknowledging the connection to QHM, we make two practical

training guidelines to help improve the generalization ability of

SNV and PID.

Corollary 5.2. Under the condition of convergence, the following
two guidelines could help improve generalization to train deep neural
networks with SNV and PID:
• Smaller batch size ensures better generalization.
• Set 𝛽1 to be as close to 1 as possible, and set a large 𝛾 in SNV;
set a large 𝑘𝐼 in PID.

6 VERIFYING THE GUIDELINES: EMPIRICAL
EVIDENCE

We conduct extensive experiments to verify the guidelines moti-

vated by our theoretical findings. In this section, we present our

experimental results in Figure 3 and Tables 1, 2, 3.

Experimental Setup: We include different models, data, and

optimizers, while sweeping across a wide range of parameters, to

show the robustness of our guidelines. ’Accuracy’ in the figure

and tables represents test accuracy after training for 100 epochs.

The learning curves have been flat for all experiments. Note that

our objective here is not to achieve state of the art performance in

these datasets. Therefore, we do not pick the setup that gives us the

highest predictions and set most hyperparameters as their default

values.

Figure 3: We pretrain with ImageNet and then fine-tune

the model on Dogs [17] and Aircraft [27] datasets. We test

ResNet18/34/50/101 (to evaluate the effect of model parameters)

and VGG11 with SHB (𝜈 = 1 and 𝛽 = 0.9) and PID (𝑘𝑃 = −0.1 and

𝑘𝐷 = 3.0). We sweep through a large range of 𝛼 from 10
−5

to 10
−3
.

Table 1: Left: We fit a shallow logistic regression on MNIST and

a deep Preact-ResNet-110 [10] on CIFAR-10. The optimizer is SHB

with 𝜈 = 1 and 𝛽 = 0.9. We sweep a large range of batch size and

learning rate. Right: We fit a ResNet-20 [9] on CIFAR-10 with SHB

(𝜈 = 1) and NAG (𝜈 = 𝛽), respectively. The learning rate 𝛼 is fixed

to be 1. We sweep 𝛽 through 0 to 1..

Table 2: We fit a ResNet-20 on CIFAR-10. In the first 6 columns

where we sweep 𝛼 , 𝑛𝑏 , and
𝑛𝑏
𝛼 , the optimizer is SHB with 𝜈 = 1

1711

Demystify Hyperparameters for Stochastic Optimization with Transferable Representations KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 1: Left: The effect of learning rate and batch size on shallow (LR on MNIST) vs. deep models (Preac-ResNet-110 on
CIFAR-10). Right: NAG vs. SHB on small 𝛽 and large 𝛽 settings. ’Accuracy’ represents test accuracy after training for 100 epochs.
Accd represents the difference between NAG test accuracy and SHB test accuracy, i.e., AccNAG − AccSHB.

Logistic Regression on MNIST Preact-ResNet-110 on CIFAR-10 SHB vs. NAG

𝛼 Accuracy 𝑛𝑏 Accuracy 𝛼 Accuracy 𝑛𝑏 Accuracy 𝛽 Acc
d

𝛽 Acc
d

0.03 92.58% 8 91.82% 0.01 37.04% 64 85.89% 0.10 -2.22% 0.9 -0.60%

0.05 92.50% 16 91.93% 0.03 58.31% 128 83.20% 0.15 -10.54% 0.95 0.91%

0.07 92.53% 32 92.48% 0.05 66.68% 256 75.14% 0.20 -1.34% 0.99 3.37%

0.09 92.60% 64 92.60% 0.07 70.11% 300 74.08% 0.30 -10.74% 0.995 3.28%

0.20 92.54% 256 92.61% 0.1 76.60% 500 67.02% 0.40 -8.60% 0.9995 0.98%

0.30 92.54% 512 92.60% 0.2 82.80% 600 62.84% 0.45 -2.04% 0.9999 0.27%

0.40 92.35% 1024 92.42% 0.3 84.42% 700 62.33% 0.50 -0.18% 0.99995 3.41%

Table 2: ResNet-20 on CIFAR-10. We report the test accuracy with different learning rates, batch size, ratio 𝑛𝑏
𝛼 , and (𝛽, 𝜈)

specifications. (𝛽rot = 0.99, 𝜈rot = 0.7) denotes the rule of thumb specification proposed in [26]. (𝛽opt = 0.999, 𝜈opt = 0.5) represents
a better specification justified by Theorem 3.

𝛼 Accuracy 𝑛𝑏 Accuracy Ratio
𝑛𝑏
𝛼 Accuracy 𝛼, 𝛽rot, 𝜈rot Accuracy 𝛼, 𝛽opt, 𝜈opt Accuracy

0.010 37.54% 8 86.77% 16/0.005 71.69% 0.01 41.07% 0.01 44.67%

0.016 40.37% 16 85.89% 32/0.010 70.74% 0.014 45.87% 0.014 47.79%

0.020 41.02% 32 83.54% 64/0.020 67.02% 0.02 50.70% 0.02 53.40%

0.026 45.12% 64 76.94% 128/0.040 61.69% 0.024 49.70% 0.024 55.82%

0.030 45.57% 128 68.45% 256/0.080 54.57% 0.03 55.82% 0.03 59.05%

0.036 49.08% 256 55.08% 512/0.016 52.81% 0.036 58.38% 0.036 62.68%

0.040 50.29% 512 45.09% 800/0.025 47.09% 0.038 59.36% 0.038 62.29%

0.050 52.30% 1024 36.33% 1024/0.032 44.69% 0.040 60.08% 0.040 63.48%

Figure 3: We pretrain with ImageNet and then fine-tune the model on Dogs and Aircraft datasets. We test a list of classifiers
and model architectures, larger 𝛼 ensures better generalization consistently in all cases.

Table 3: PID and SNV. We report the test accuracy training ResNet-110 with CIFAR-10 using PID and SNV. We study the effect
of batch size, 𝑘𝐼 in PID control (which could be regarded as learning rate), and (𝛾, 𝛽1) in SNV.

PID Control Synthesized Nesterov Variant (SNV)

𝑘𝐼 Accuracy 𝑛𝑏 Accuracy 𝛽1 Accuracy 𝛾 Accuracy 𝑛𝑏 Accuracy

0.04 66.50% 64 90.25% 0.90 69.70% 0.001 48.00% 64 87.47%

0.07 73.09% 128 87.55% 0.91 72.54% 0.003 62.65% 128 85.19%

0.10 77.30% 256 77.90% 0.92 71.84% 0.005 68.74% 256 85.26%

0.13 77.80% 400 70.74% 0.93 74.20% 0.007 72.14% 300 77.31%

0.16 80.36% 600 62.72% 0.94 76.45% 0.009 75.67% 500 78.80%

0.19 81.51% 800 59.53% 0.95 79.41% 0.011 77.19% 700 71.19%

0.22 82.13% 1000 52.08% 0.96 79.86% 0.013 78.29% 900 64.64%

and 𝛽 = 0.999. In the last 4 columns where we compare the rule of

thumb (𝛽, 𝜈) specification with our suggested (𝛽, 𝜈) specification, the

optimizer is QHM. 𝛽rot = 0.999, 𝜈rot = 0.7, and 𝛽opt = 0.999, 𝜈opt =

0.7.

1712

KDD ’22, August 14–18, 2022, Washington, DC, USA Jianhui Sun et al.

Table 3: Left: We train a ResNet-110 on CIFAR-10 by PID. We set

𝑘𝑃 = −0.1 and 𝑘𝐷 = 3.0 when we test different 𝑘𝐼 and 𝑛𝑏 . Right:

We train a ResNet-110 on CIFAR-10 by SNV. We set 𝛾 = 0.1 and

𝛽2 = 0.6 when we test different 𝛽1. We set 𝛽1 = 0.9 and 𝛽2 = 0.6

when we sweep 𝛾 . We set 𝛾 = 0.1, 𝛽1 = 0.9, and 𝛽2 = 0.6 when we

test different batch sizes.

Ratio of Batch Size to Learning Rate:We conclude in the last

section that smaller
𝑛𝑏
𝛼 ratio helps deep learning models generalize,

while may have limited impact on shallow models. We report our

results of training logistics regression onMNIST and Preact-ResNet-

110 on CIFAR10 in Table 1. Note that the first model is a shallow

model while the second model is deep and overparameterized with

a sufficiently large number of parameters.

Note that with the increase of learning rate and batch size, the

test accuracy of logistic regression experiences very minor fluctua-

tion and remains practically constant around 92%. While in Preac-

ResNet-110, the impact of learning rate and batch size are apparent.

The test accuracy increases rapidly with larger learning rate, and

drops with larger batch size. The pattern is consistent with different

models and optimizers. See Table 2 for a more comprehensive study

on ResNet-20 trained by CIFAR-10. Negative correlation between

test accuracy and
𝑛𝑏
𝛼 could be observed in the first 4 columns.

Note the columns 5 and 6 in Table 2. The ratio
𝑛𝑏
𝛼 is fixed as

3.2 × 10
3
. Based on the first order generalization bound in [8], the

test accuracywill be approximately constant. However, we conclude

from our second order bound that the accuracy will decrease with

larger learning rate. Column 5 and column 6 verify our findings.

We also report the impact of batch size on other momentum-

based optimizers (e.g., PID and SNV) in Table 3. The pattern that

larger batch size leads to worse generalization holds for both PID

and SNV.

In Figure 3, we report our results for fine-tuning. We test a

list of classifiers and model architectures, larger 𝛼 ensures better

generalization consistently in all cases. Comparing the slopes of

accuracy curve for ResNet 18, 50, and 101, we could reassure our

claim that generalizability of deeper models is more positively

correlated with ratio of learning rate and batch size.

NAG vs SHB:We verify our theoretical conclusion that NAG

generalizes better than SHBwhen 𝛽 is close to 1, while SHB is better

when 𝛽 is small. Our results are reported in the last 4 columns in

Table 1.

We could observe that SHB performs much better than NAG

with smaller 𝛽 , typically obtaining test accuracy several percentages

higher. When 𝛽 is large, NAG generalizes better in general, though

the improvement is minor in some cases.

Setmomentumparameter 𝛽 close to 1 and 𝜈 as 0.5: In the last
4 columns of Table 2, we compare our suggested hyperparameter

specification 𝛽opt = 0.999, 𝜈opt = 0.5 with the default rule-of-thumb

specification 𝛽rot = 0.99, 𝜈rot = 0.7 in [26].

We could observe under all learning rates, 𝛽rot = 0.99, 𝜈rot =

0.7 achieves better generalization performances than 𝛽opt =

0.999, 𝜈opt = 0.5. The improvement is non-trivial, often more than

3% higher in test accuracy, which perfectly verifies our Theorem 3.

SNV and PID: We train ResNet-110 with SNV and PID, and our

results are reported in Table 3. The pattern that larger batch size

leads to worse generalization holds for both PID and SNV. And the

first two columns in Table 3 exhibit that larger 𝑘𝐼 (could be regarded

as learning rate in PID) improves generalization performances.

The first 4 columns in SNV subtable also verify our recommended

guideline: set a larger 𝛾 and 𝛽1 in SNV training.

7 RELATEDWORK
7.1 Convergence analysis for momentum

methods
Many results concerning the convergence of the vanilla SGD are

highlighted in [3]. Despite the widespread interest in, and use of,

the stochastic momentum method, there are limited definitive the-

oretical convergence guarantees [5, 44].

Our analysis relies on the limited behavior of QHM iterates.

[28] followed the idea of analyzing SGD with stochastic differen-

tial equations, and derived the stationary distribution of vanilla

SGD and SHB. Our convergence analysis is most relevant to [6],

which derived the convergence rate for QHM with constant pa-

rameters to a stability region around minimizer in the deterministic
setting (see e.g., their Theorem 3). We extend their deterministic

analysis to stochastic cases. We show how our results recover the

recent convergence rate regarding NAG [2]. Furthermore, [6] was

mainly purposed to minimize the training loss and did not consider

improving generalization, which our paper focuses upon.

7.2 Generalization analysis for momemtum
methods

Our work aims to theoretically and empirically justify several train-

ing heuristics regarding hyperparameters to generalize. The hy-

perparameter search space in state-of-the-art deep learning sys-

tems can be too high-dimensional to explore manually, especially

for many interesting real-world problems, e.g., deep reinforce-

ment learning, time series analysis, and biomedical data mining

[11, 38, 39, 43]. A number of recent works [13, 15, 36] empirically

report the influence of hyper-parameters, largely on batch size and

learning rate, and provide practical tuning guidelines like linear

scaling rule, or moving 𝛽 to 1, which our paper theoretically justify.

Our generalization analysis relies on PAC-Bayesian inequali-

ties [29, 35], and we refer readers to a comprehensive review of

PAC-Bayesian learning and references therein [7]. [8, 25] proved a

PAC-Bayesian bound for vanilla SGD. Our work focuses on char-

acterizing generalization on a class of momentum schemes and

covers their vanilla SGD analysis as a special case. [37] derived

generalization bound for momentum schemes, but only in training

from the scratch scenario. [30] proved a risk bound for transfer

learning, but their bound does not connect to hyperparameters and

therefore does not have practical implications on hyperparameter

tuning.

8 CONCLUSIONS
In this paper, we study the convergence properties and generaliza-

tion abilities of a family of momentum schemes when training deep

neural networks, in both training from scratch and fine-tuning.

Our analysis is unified as it covers many momentum schemes as

special cases. Our theoretical findings have justified some training

heuristics already known to the deep learning community, and

have further inspired novel training guidelines whose effectiveness

1713

Demystify Hyperparameters for Stochastic Optimization with Transferable Representations KDD ’22, August 14–18, 2022, Washington, DC, USA

are verified by our experiments. As momentum scheme is used so

pervasively, our work could provide valuable insights for practi-

tioners to tune hyperparameters to improve model training and

generalization.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for

their valuable comments and helpful suggestions. This work is sup-

ported in part by the US National Science Foundation under grants

IIS-2106913, 2008208, 1955151, 1934600, 1938167. Any opinions,

findings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect

the views of the National Science Foundation.

REFERENCES
[1] W. An, H. Wang, Q. Sun, J. Xu, Q. Dai, and L. Zhang. 2018. A PID Controller

Approach for Stochastic Optimization of Deep Networks. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. 8522–8531.

[2] Mahmoud Assran and M. Rabbat. 2020. On the Convergence of Nesterov’s

Accelerated Gradient Method in Stochastic Settings. ArXiv abs/2002.12414 (2020).
[3] L. Bottou, Frank E. Curtis, and J. Nocedal. 2018. Optimization Methods for

Large-Scale Machine Learning. ArXiv abs/1606.04838 (2018).

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

ArXiv abs/1810.04805 (2019).

[5] Saeed Ghadimi and Guanghui Lan. 2016. Accelerated Gradient Methods for

Nonconvex Nonlinear and Stochastic Programming. Math. Program. 156, 1–2
(March 2016), 59–99. https://doi.org/10.1007/s10107-015-0871-8

[6] Igor Gitman, Hunter Lang, Pengchuan Zhang, and Lin Xiao. 2019. Understanding

the Role of Momentum in Stochastic Gradient Methods. In Advances in Neural
Information Processing Systems 32. 9633–9643.

[7] Benjamin Guedj. 2019. A Primer on PAC-Bayesian Learning. ArXiv
abs/1901.05353 (2019).

[8] Fengxiang He, Tongliang Liu, and Dacheng Tao. 2019. Control Batch Size and

Learning Rate to Generalize Well: Theoretical and Empirical Evidence. In Ad-
vances in Neural Information Processing Systems 32. 1143–1152.

[9] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image

Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 770–778.

[10] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity Mappings in

Deep Residual Networks. ArXiv abs/1603.05027 (2016).

[11] Mengdi Huai, Jianhui Sun, Renqin Cai, Liuyi Yao, and Aidong Zhang. 2020. Mali-

cious Attacks against Deep Reinforcement Learning Interpretations. In Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
amp; Data Mining (KDD ’20). Association for Computing Machinery, New York,

NY, USA, 472–482. https://doi.org/10.1145/3394486.3403089

[12] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. 2017. Densely

Connected Convolutional Networks. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2261–2269.

[13] Stanisław Jastrzębski, Zac Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer,

Amos Storkey, and Yoshua Bengio. 2018. Three factors influencing minima in

SGD. https://openreview.net/forum?id=rJma2bZCW

[14] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional

Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093 (2014).
[15] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,

and Ping Tak Peter Tang. 2016. On Large-Batch Training for Deep Learning: Gen-

eralization Gap and Sharp Minima. CoRR abs/1609.04836 (2016). arXiv:1609.04836

http://arxiv.org/abs/1609.04836

[16] Nitish Shirish Keskar and Richard Socher. 2017. Improving Generalization

Performance by Switching from Adam to SGD. CoRR abs/1712.07628 (2017).

arXiv:1712.07628 http://arxiv.org/abs/1712.07628

[17] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei. 2012.

Novel Dataset for Fine-Grained Image Categorization : Stanford Dogs.

[18] Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham M. Kakade. 2018.

On the insufficiency of existing momentum schemes for Stochastic Optimization.

CoRR abs/1803.05591 (2018). arXiv:1803.05591 http://arxiv.org/abs/1803.05591

[19] Laurent Lessard, Benjamin Recht, and Andrew Packard. 2014. Analysis and

Design of Optimization Algorithms via Integral Quadratic Constraints. SIAM
Journal on Optimization 26 (08 2014). https://doi.org/10.1137/15M1009597

[20] Hao Li, Pratik Chaudhari, Hao Yang, Michael Lam, Avinash Ravichandran,

Rahul Bhotika, and Stefano Soatto. 2020. Rethinking the Hyperparameters for

Fine-tuning. In International Conference on Learning Representations. https:

//openreview.net/forum?id=B1g8VkHFPH

[21] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. 2018.

Visualizing the Loss Landscape of Neural Nets. In Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Systems (NIPS’18). Red Hook,

NY, USA, 6391–6401.

[22] Xuhong Li, Yves Grandvalet, and Franck Davoine. 2018. Explicit Inductive Bias

for Transfer Learning with Convolutional Networks. In ICML.
[23] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. 2020. Toward a theory of optimiza-

tion for over-parameterized systems of non-linear equations: the lessons of deep

learning. arXiv:cs.LG/2003.00307

[24] Yanli Liu, Yuan Gao, and Wotao Yin. 2020. An Improved Analysis of Stochastic

Gradient Descent with Momentum. arXiv:math.OC/2007.07989

[25] Ben London. 2017. A PAC-Bayesian Analysis of Randomized Learning with

Application to Stochastic Gradient Descent. In NIPS.
[26] Jerry Ma and Denis Yarats. 2019. Quasi-hyperbolic momentum and Adam for

deep learning. In International Conference on Learning Representations. https:

//openreview.net/forum?id=S1fUpoR5FQ

[27] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew B. Blaschko, and Andrea

Vedaldi. 2013. Fine-Grained Visual Classification of Aircraft. CoRR abs/1306.5151

(2013). arXiv:1306.5151 http://arxiv.org/abs/1306.5151

[28] Stephan Mandt, Matthew D. Hoffman, and David M. Blei. 2017. Stochastic

Gradient Descent as Approximate Bayesian Inference. J. Mach. Learn. Res. 18, 1
(Jan. 2017), 4873–4907.

[29] David A. McAllester. 1998. Some PAC-Bayesian Theorems. In Proceedings of the
Eleventh Annual Conference on Computational Learning Theory (COLT’ 98). New
York, NY, USA, 230–234. https://doi.org/10.1145/279943.279989

[30] Daniel McNamara and Maria-Florina Balcan. 2017. Risk Bounds for Transferring

Representations With and Without Fine-Tuning. In ICML.
[31] Y. Nesterov. 1983. A method for solving the convex programming problem with

convergence rate O(1/k^2).

[32] Yurii Nesterov. 2014. Introductory Lectures on Convex Optimization: A Basic Course
(1 ed.). Springer Publishing Company, Incorporated.

[33] B.T. Polyak. 1964. Some methods of speeding up the convergence of iteration

methods. U. S. S. R. Comput. Math. and Math. Phys. 4, 5 (1964), 1 – 17. https:

//doi.org/10.1016/0041-5553(64)90137-5

[34] B. T. Polyak. 1987. Introduction to Optimization.

[35] John Shawe-Taylor and Robert C.Williamson. 1997. A PACAnalysis of a Bayesian

Estimator. In Proceedings of the Tenth Annual Conference on Computational Learn-
ing Theory (COLT ’97). New York, NY, USA, 2–9. https://doi.org/10.1145/267460.

267466

[36] Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. 2018. Don’t Decay the

Learning Rate, Increase the Batch Size. In International Conference on Learning
Representations. https://openreview.net/forum?id=B1Yy1BxCZ

[37] Jianhui Sun, Ying Yang, Guangxu Xun, and Aidong Zhang. 2021. A Stagewise

Hyperparameter Scheduler to Improve Generalization. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery amp; Data Mining. New York,

NY, USA, 1530–1540. https://doi.org/10.1145/3447548.3467287

[38] Qiuling Suo, Liuyi Yao, Guangxu Xun, Jianhui Sun, and Aidong Zhang. 2019.

Recurrent Imputation for Multivariate Time Series with Missing Values. In 2019
IEEE International Conference on Healthcare Informatics, ICHI 2019, Xi’an, China,
June 10-13, 2019. IEEE, 1–3. https://doi.org/10.1109/ICHI.2019.8904638

[39] Qiuling Suo, Weida Zhong, Guangxu Xun, Jianhui Sun, Changyou Chen, and

Aidong Zhang. 2020. GLIMA: Global and Local Time Series Imputation with

Multi-directional Attention Learning. In IEEE International Conference on Big
Data, Big Data 2020, Atlanta, GA, USA, December 10-13, 2020. IEEE, 798–807.
https://doi.org/10.1109/BigData50022.2020.9378408

[40] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. 2013. On the

Importance of Initialization and Momentum in Deep Learning. In Proceedings of
the 30th International Conference on International Conference on Machine Learning
- Volume 28 (ICML’13). III–1139–III–1147.

[41] B. Van Scoy, R. A. Freeman, and K. M. Lynch. 2018. The Fastest Known Globally

Convergent First-Order Method for Minimizing Strongly Convex Functions. IEEE
Control Systems Letters 2, 1 (2018), 49–54.

[42] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin

Recht. 2017. The Marginal Value of Adaptive Gradient Methods in Machine

Learning. In Advances in Neural Information Processing Systems 30. 4148–4158.
[43] Guangxu Xun, Kishlay Jha, Jianhui Sun, and Aidong Zhang. 2020. Correlation

Networks for Extreme Multi-Label Text Classification. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(KDD ’20). New York, NY, USA, 1074–1082. https://doi.org/10.1145/3394486.

3403151

[44] Yan Yan, Tianbao Yang, Zhe Li, Qihang Lin, and Yi Yang. 2018. A Unified Analysis

of Stochastic MomentumMethods for Deep Learning. In IJCAI. 2955–2961. https:
//doi.org/10.24963/ijcai.2018/410

1714

https://doi.org/10.1007/s10107-015-0871-8
https://doi.org/10.1145/3394486.3403089
https://openreview.net/forum?id=rJma2bZCW
https://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1712.07628
http://arxiv.org/abs/1712.07628
https://arxiv.org/abs/1803.05591
http://arxiv.org/abs/1803.05591
https://doi.org/10.1137/15M1009597
https://openreview.net/forum?id=B1g8VkHFPH
https://openreview.net/forum?id=B1g8VkHFPH
https://arxiv.org/abs/cs.LG/2003.00307
https://arxiv.org/abs/math.OC/2007.07989
https://openreview.net/forum?id=S1fUpoR5FQ
https://openreview.net/forum?id=S1fUpoR5FQ
https://arxiv.org/abs/1306.5151
http://arxiv.org/abs/1306.5151
https://doi.org/10.1145/279943.279989
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1145/267460.267466
https://doi.org/10.1145/267460.267466
https://openreview.net/forum?id=B1Yy1BxCZ
https://doi.org/10.1145/3447548.3467287
https://doi.org/10.1109/ICHI.2019.8904638
https://doi.org/10.1109/BigData50022.2020.9378408
https://doi.org/10.1145/3394486.3403151
https://doi.org/10.1145/3394486.3403151
https://doi.org/10.24963/ijcai.2018/410
https://doi.org/10.24963/ijcai.2018/410

KDD ’22, August 14–18, 2022, Washington, DC, USA Jianhui Sun et al.

9 APPENDIX
In this section, we give the proof of Theorem 1, 2, and 3. We only

keep the key proof steps and omit algebraic transformations due to

page limit.

9.1 Proof of Theorem 1
We first provide the intuition of the proof. We only need to

bound the norm of the right side of Equation (8) as we could see

∥𝜃𝑘 − 𝜃∗∥2 = ∥𝑟𝑘 ∥2 ≤

 [𝑑𝑘−1

𝑟𝑘

]

2

. By Gelfand’s formula, we could

conclude that there exists a vanishing sequence of {𝜖𝑘 }, such that,

∥𝑇 ∥2𝑘 ≤ (𝜌(𝑇) + 𝜖𝑘)
2𝑘
. We could get 𝜀

d
with this {𝜖𝑘 } sequence.

The norm of second term in Equation (8) could be bounded by∑𝑘
𝑗=1
∥𝑇 ∥2(𝑘−𝑗)∥𝑆 ∥2∥𝜉 𝑗 ∥2. Recall ∥𝑆 ∥2≤ 1 − 𝛽2

+ 𝛼2
(1 − 𝜈𝛽)

2
, and

after taking expectations on both sides, E∥𝜉 𝑗 ∥2≤ 𝜎2
. Combining

everything together will give us 𝜀s.

Then, we introduce one key lemma and prove Theorem 1 after-

wards.

Lemma 2. Denote the spectral radius of 𝑇 as 𝜌(𝑇). Let the small-
est and largest eigenvalues of Hessian matrix as: 𝜇 = min𝑖 𝜆𝑖 (𝐴),
and 𝐿 = max𝑖 𝜆𝑖 (𝐴). Let ∆𝜆 ≜ (1 + 𝛽 − 𝛼𝜆 + 𝛼𝜈𝛽𝜆)

2 − 4𝛽(1 −
𝛼𝜆 + 𝛼𝜆𝜈). Then we have 𝜌(𝑇) = max{𝜌𝜇 , 𝜌𝐿}, where 𝜌𝜆 ={

1

2
|1 + 𝛽 − 𝛼𝜆 + 𝛼𝜈𝛽𝜆 | + 1

2

√︁
∆𝜆, if ∆𝜆 ≥ 0√︁

𝛽(1 − 𝛼𝜆 + 𝛼𝜆𝜈), otherwise
.

Remark 9.1. Note that this lemma is an adapted version from
[6] (see e.g., Lemmas 5, 6, 7). Here we adopt a more concise proof
technique to show this lemma for completeness of this work.

proof of Lemma 2. Recall the transition matrix 𝑇 is defined

as 𝑇 =

[
𝛽𝐼 (1 − 𝛽)𝐴

−𝛼𝜈𝛽𝐼 𝐼 − 𝛼(1 − 𝜈𝛽)𝐴

]
, and 𝑇 is a 2 × 2 block matrix

with 𝑑 × 𝑑 blocks. As 𝐴 is real and symmetric, all blocks commute

with each other, since each block is an affine matrix function of

𝐴. Therefore, 𝜆𝑇 is an eigenvalue of 𝑇 if and only if there is an

eigenvalue 𝜆𝐴 of A, such that 𝜆𝑇 is an eigenvalue of the 2×2 matrix

[33]:

[
𝛽 (1 − 𝛽)𝜆𝐴
−𝛼𝜈𝛽 1 − 𝛼(1 − 𝜈𝛽)𝜆𝐴

]
. The characteristic polynomial is:

𝑥2 − (1 + 𝛽 − 𝛼𝜆𝐴 + 𝛼𝜈𝛽𝜆𝐴)𝑥 + 𝛽(1 − 𝛼𝜆𝐴 + 𝛼𝜈𝜆𝐴). Therefore, let

∆𝜆 ≜ (1 + 𝛽 − 𝛼𝜆 + 𝛼𝜈𝛽𝜆)
2 − 4𝛽(1 − 𝛼𝜆 + 𝛼𝜆𝜈), and the solution

of characteristic polynomial is given by 𝜌𝜆𝐴 . Let {𝜆𝑖 }𝑑𝑖=1
be the

set of ordered eigenvalues of 𝐴. As 𝜌𝜆𝐴 is a quasi-convex function

in 𝜆𝐴 with fixed (𝛼, 𝛽, 𝜈). Therefore, 𝜌𝜆𝐴 achieves its maximum at

boundary, i.e., 𝜇 and 𝐿. Therefore, we get 𝜌(𝑇) = max{𝜌𝜇 , 𝜌𝐿}. □

Proof of Theorem 1. Recall the dynamics of QHM:

[
𝑑𝑘−1

𝑟𝑘

]
=

𝑇𝑘
[
𝑑−1

𝑟0

]
+

∑𝑘
𝑗=1

𝑇𝑘−𝑗𝑆𝜉 𝑗 , where 𝑑−1 is initialized as 0.

We extend the result for the deterministic case in [6] (see e.g.

Theorem 3) to stochastic setting. Notably, in deterministic set-

ting, the second term

∑𝑘
𝑗=1

𝑇𝑘−𝑗𝑆𝜉 𝑗 is ignored. Let E denotes

E𝜉1,· · ·,𝜉𝑘 , we have E∥𝜃𝑘 − 𝜃∗∥2 = E∥𝑟𝑘 ∥2 ≤ E

 [𝑑𝑘−1

𝑟𝑘

]

2

≤

∥𝑇𝑘 ∥2𝑟2

0
+ E

∑𝑘
𝑗=1
∥𝑇𝑘−𝑗 ∥2∥𝑆 ∥2∥𝜉 𝑗 ∥2.

According to Gelfand’s formula: 𝜌(𝑇) = lim𝑘→+∞∥𝑇𝑘 ∥
1

𝑘 , we

would get: for any 𝜖 > 0, there exist a 𝐾(𝜖), such that ∥𝑇𝑘 ∥
1

𝑘 ≤
𝜌(𝑇) + 𝜖 , for all 𝑘 ≥ 𝐾(𝜖). Let 𝐶(𝜖) ≜ max𝑘<𝐾 (𝜖)

max

{
1,

∥𝑇𝑘 ∥
(𝜌(𝑇)+𝜖)

2

}
.

Therefore, ∥𝑇𝑘 ∥ ≤ 𝐶(𝜖)(𝜌(𝑇) + 𝜖)
𝑘
, and we consequently have:

∥𝑇𝑘 ∥2𝑟2

0
+ E

∑𝑘
𝑗=1
∥𝑇𝑘−𝑗 ∥2∥𝑆 ∥2∥𝜉 𝑗 ∥2≤ 𝜀d +𝐶(𝜖)𝜎2

(1 − 𝛽2
+ 𝛼2

(1 −
𝜈𝛽)

2
)

∑𝑘
𝑗=1

(𝜌(𝑇) + 𝜖)
2(𝑘−𝑗) ≤ 𝜀

d
+ 𝜀s. We obtain Theorem 1 after

some straightforward algebraic transformations. □

9.2 Proof of Theorem 2
Recall the formulation of QHM, and denote the update sequence

𝑦𝑘 ≜ 𝜃𝑘+1
− 𝜃𝑘 . The updating rule is different from vanilla SGD in

that 𝑦𝑘 ̸= −𝛼𝑔𝑘 . The proof of Theorem 2 hinges on the construction

of an auxiliary sequence {𝜂𝑘 }𝑘∈N, such that 𝜂𝑘+1
−𝜂𝑘 = −𝛼𝑔𝑘 . This

{𝜂𝑘 }𝑘∈N is more like vanilla SGD iterates and thus easier to deal

with. We then study the property of {𝜂𝑘 }𝑘∈N and its connection

to {𝜃𝑘 }𝑘∈N. {𝜂𝑘 }𝑘∈N is devised as: 𝜂𝑘 =

{
𝜃𝑘 𝑘 = 1

𝜃𝑘 −
𝛼𝛽𝜈

1−𝛽 𝑑𝑘−1
𝑘 ≥ 2

,

where 𝑑0 = 0.

It is not difficult to verify 𝜂𝑘+1
− 𝜂𝑘 = −𝛼𝑔𝑘 when 𝑘 = 1; when

𝑘 ≥ 2: 𝜂𝑘+1
− 𝜂𝑘 = 𝜃𝑘+1

− 𝛼𝛽𝜈

1−𝛽 𝑑𝑘 − (𝜃𝑘 −
𝛼𝛽𝜈

1−𝛽 𝑑𝑘−1
) = (−𝛼 + 𝛼𝜈 −

𝛼𝛽𝜈)𝑔𝑘 − 𝛼𝜈(𝑑𝑘 − 𝛽𝑑𝑘−1
) = −𝛼𝑔𝑘 .

We now study R(𝜂𝑘+1
) − R(𝜂𝑘): E𝜉𝑘 [R(𝜂𝑘+1

)] ≤ R(𝜂𝑘) + E𝜉𝑘 [<

∇R(𝜂𝑘), 𝜂𝑘+1
− 𝜂𝑘 >] +

𝐿
2
E𝜉𝑘 [∥𝜂𝑘+1

− 𝜂𝑘 ∥2] = R(𝜂𝑘) + E𝜉𝑘 [<

∇R(𝜂𝑘),−𝛼𝑔𝑘 >] +
𝐿𝛼2

2
E𝜉𝑘 [∥𝑔𝑘 ∥2].

Taking full expectation E = E𝜉1
E𝜉2

...E𝜉𝑘 on both sides:

E[R(𝜂𝑘+1
)] ≤ E[R(𝜂𝑘)] + E[< ∇R(𝜂𝑘),−𝛼𝑔𝑘 >] +

𝐿𝛼2

2
E[∥𝑔𝑘 ∥2] ≤

E[R(𝜂𝑘)] +
𝐿𝛼2

2
E[∥𝑔𝑘 ∥2] − 𝛼E[∥𝑔𝑘 ∥2] + 𝛼 𝑐

2
𝐿2E[∥𝜂𝑘 − 𝜃𝑘 ∥2] +

𝛼 1

2𝑐 E[∥𝑔𝑘 ∥2] for 𝑐 > 0 as any positive constant.

And we know 𝜂𝑘 − 𝜃𝑘 = −𝛼𝛽𝜈
1−𝛽 𝑑𝑘−1

. Thus we have:

E[R(𝜂𝑘+1
)] ≤ E[R(𝜂𝑘)] + 𝛼3 𝑐

2
𝐿2

(
𝛽𝜈

1−𝛽)
2E[∥𝑑𝑘−1

∥2] + (𝛼 1

2𝑐 −
𝛼)E[∥𝑔𝑘 ∥2] +

𝐿𝛼2

2
E[∥𝑔𝑘 ∥2].

Let us make a small detour and first provide the following lemma

with respect to the updating sequence {𝑦𝑘 ≜ 𝜃𝑘+1
− 𝜃𝑘 }𝑘∈N. Given

the gradient sequence {𝑔𝑘 }𝑘∈N, set: 𝑎𝑘,𝑖 =

{
1 − 𝛽𝜈 𝑖 = 𝑘

𝜈(1 − 𝛽)𝛽𝑘−𝑖 𝑖 < 𝑘
,

unroll the recursion of Equation (3) with 𝑑0 = 0, and we could get

𝑦𝑘 = Σ
𝑘
𝑖=1
𝑎𝑘,𝑖𝑔𝑖 . Therefore, E[𝑦𝑘] = Σ

𝑘
𝑖=1
𝑎𝑘,𝑖𝑔𝑖 . We will have:

Lemma 3. The following two inequalities hold,

(1) The variance of QHM updating vector𝑦𝑘 :V[𝑦𝑘] ≤
(

1−𝛽
1+𝛽

𝜈2𝛽2−
1−𝛽
1+𝛽

𝜈2𝛽2𝑘
+ (1 − 𝛽𝜈)

2

)
𝜎2.

(2) The deviance between updating vector 𝑦𝑘 and 𝑔𝑘 : E[∥𝑔𝑘 −
1

1−𝜈𝛽𝑘 Σ
𝑘
𝑖=1
𝑎𝑘,𝑖𝑔𝑖 ∥2] ≤ Σ

𝑘−1

𝑗=1

𝜈𝛽𝑘−𝑗𝐿2

1−𝜈𝛽𝑘
(
𝑘 − 𝑗 +

𝛽

1−𝛽

)
E[∥𝜃 𝑗+1 − 𝜃 𝑗 ∥2].

Proof of Lemma 3. We know V[𝑦𝑘] = E[∥𝑦𝑘 − Σ
𝑘
𝑖=1
𝑎𝑘,𝑖𝑔𝑖 ∥2] =

E[∥Σ𝑘
𝑖=1
𝑎𝑘,𝑖 (𝑔𝑖 − 𝑔𝑖)∥2] ≤ Σ

𝑘
𝑖=1
𝑎2

𝑘,𝑖
𝜎2

=

(
1−𝛽
1+𝛽

𝜈2𝛽2 − 1−𝛽
1+𝛽

𝜈2𝛽2𝑘
+

(1 − 𝛽𝜈)
2

)
𝜎2

, where the inequality follows from that {𝑔𝑘 }𝑘∈N
are independent from each other and E𝜉𝑘 [∥𝑔𝑘 − 𝑔𝑘 ∥2] ≤
𝜎2

. We know Σ
𝑘
𝑖=1
𝑎𝑘,𝑖 = 1 − 𝛽𝑘𝜈 , thus we have: E[∥𝑔𝑘 −

1715

Demystify Hyperparameters for Stochastic Optimization with Transferable Representations KDD ’22, August 14–18, 2022, Washington, DC, USA

1

1−𝜈𝛽𝑘 Σ
𝑘
𝑖=1
𝑎𝑘,𝑖𝑔𝑖 ∥2] =

1

(1−𝜈𝛽𝑘)
2
E[∥Σ𝑘

𝑖=1
𝑎𝑘,𝑖 (𝑔𝑘 − 𝑔𝑖)∥2]

(𝑖)
≤

1

(1−𝜈𝛽𝑘)
2
× Σ

𝑘
𝑖,𝑗=1

𝑎𝑘,𝑖𝑎𝑘,𝑗

(
1

2
E[∥𝑔𝑘 − 𝑔 𝑗 ∥2] +

1

2
E[∥𝑔𝑘 − 𝑔𝑖 ∥2]

)
=

1

1−𝜈𝛽𝑘 Σ
𝑘
𝑖=1
𝑎𝑘,𝑖E[∥𝑔𝑘 −𝑔𝑖 ∥2]

(𝑖𝑖)
≤ 1

1−𝛽𝑘 𝜈 Σ
𝑘
𝑖=1
𝑎𝑘,𝑖

(
(𝑘−𝑖)Σ𝑘−1

𝑗=𝑖
E[∥𝑔 𝑗+1−

𝑔 𝑗 ∥2]

)
(𝑖𝑖𝑖)
≤ 1

1−𝛽𝑘 𝜈 Σ
𝑘
𝑖=1
𝑎𝑘,𝑖

(
(𝑘 − 𝑖)𝐿2

Σ
𝑘−1

𝑗=𝑖
E[∥𝜃 𝑗+1 − 𝜃 𝑗 ∥2]

)
=

1

1−𝛽𝑘 𝜈 Σ
𝑘−1

𝑗=1

(
Σ
𝑗

𝑖=1
𝑎𝑘,𝑖 (𝑘 − 𝑖)

)
E[∥𝜃 𝑗+1 − 𝜃 𝑗 ∥2]𝐿2

, where (𝑖) follows

from Cauchy-Schwarz inequality, (𝑖𝑖) follows from triangle inequal-

ity, and (𝑖𝑖𝑖) follows from smoothness. Substitute the exact form

of 𝑎𝑘,𝑖 , we know: Σ
𝑗

𝑖=1
𝑎𝑘,𝑖 (𝑘 − 𝑖) = 𝜈(1 − 𝛽)

(
Σ
𝑗

𝑖=1
𝛽𝑘−𝑖 (𝑘 − 𝑖)

)
≤

𝜈𝛽𝑘−𝑗
(
𝑘 − 𝑗 +

𝛽

1−𝛽

)
. Therefore, we could get the second state-

ment. □

We know: E[∥𝑑𝑘−1
∥2] ≤ 2E[∥𝑑𝑘−1

− (1 − 𝛽)Σ
𝑘−1

𝑖=1
𝛽𝑘−1−𝑖𝑔𝑖 ∥2] +

2E[∥(1 − 𝛽)Σ
𝑘−1

𝑖=1
𝛽𝑘−1−𝑖𝑔𝑖 ∥2] ≤ 2

1−𝛽
1+𝛽

𝜎2
+ 2E[∥(1 −

𝛽)Σ
𝑘−1

𝑖=1
𝛽𝑘−1−𝑖𝑔𝑖 ∥2], where it follows from Lemma 1 in

[24]. And we also have: E[∥ 1−𝛽
1−𝛽𝑘−1

Σ
𝑘−1

𝑖=1
𝛽𝑘−1−𝑖𝑔𝑖 ∥2] ≤

2E[∥ 1−𝛽
1−𝛽𝑘−1

Σ
𝑘−1

𝑖=1
𝛽𝑘−1−𝑖𝑔𝑖 − 𝑔𝑘 ∥2] + 2E[∥𝑔𝑘 ∥2]E[∥𝑔𝑘 ∥2] ≤

𝜎2
+ E[∥𝑔𝑘 ∥2].

Substitute the above inequalities back to the inequality

prior to Lemma 3: E[R(𝜂𝑘+1
)] ≤ E[R(𝜂𝑘)] +

(
− 𝛼 + 𝛼 1

2𝑐 +

2𝛼3𝑐𝐿2
(
𝛽𝜈

1−𝛽)
2
(1 − 𝛽𝑘−1

)
2

+
𝐿𝛼2

2

)
E[∥𝑔𝑘 ∥2] +

(
𝛼3𝑐𝐿2

(
𝛽𝜈

1−𝛽)
2 1−𝛽

1+𝛽
+

𝐿𝛼2

2

)
𝜎2

+ 2𝛼3𝑐𝐿2
(
𝛽𝜈

1−𝛽)
2
(1 − 𝛽𝑘−1

)
2 × E[∥ 1−𝛽

1−𝛽𝑘−1
Σ
𝑘−1

𝑖=1
𝛽𝑘−1−𝑖𝑔𝑖 −

𝑔𝑘 ∥2]. We know: E[∥ 1−𝛽
1−𝛽𝑘−1

Σ
𝑘−1

𝑖=1
𝛽𝑘−1−𝑖𝑔𝑖 − 𝑔𝑘 ∥2] =

1

𝛽2
(

1−𝛽𝑘
1−𝛽𝑘−1

)
2E[∥ 1−𝛽

1−𝛽𝑘 Σ
𝑘
𝑖=1
𝛽𝑘−𝑖𝑔𝑖 − 𝑔𝑘 ∥2]. Let 𝑐 =

1−𝛽
2𝐿𝛼

,

we have E[R(𝜂𝑘+1
)] ≤ E[R(𝜂𝑘)] +

(
𝛽2𝜈2

2(1+𝛽)
+

1

2

)
𝐿𝛼2𝜎2

+

𝐿𝛼2𝜈2 (1−𝛽𝑘)
2

1−𝛽 E[∥ 1−𝛽
1−𝛽𝑘 Σ

𝑘
𝑖=1
𝛽𝑘−𝑖𝑔𝑖 − 𝑔𝑘 ∥2] +

(
− 𝛼 +

1

2
𝐿𝛼2

+

1+𝛽2𝜈2

1−𝛽 𝐿𝛼2

)
E[∥𝑔𝑘 ∥2]. We study the following sequence:

𝐿𝑘 ≜ R(𝜂𝑘) − R∗ + Σ
𝑘−1

𝑖=1
𝑞𝑖 ∥𝜃𝑘+1−𝑖 − 𝜃𝑘−𝑖 ∥2 following

the idea from [24], where 𝑞𝑖 are constants to be deter-

mined: E[𝐿𝑘+1
− 𝐿𝑘] ≤ 𝑞1E[∥𝜃𝑘+1

− 𝜃𝑘 ∥2] + Σ
𝑘−1

𝑖=1
(𝑞𝑖+1 −

𝑞𝑖)E[∥𝜃𝑘+1−𝑖 −𝜃𝑘−𝑖 ∥2]

(
−𝛼 +𝛼 1

2𝑐 + 2𝛼3𝑐𝐿2
(
𝛽𝜈

1−𝛽)
2

+
𝐿𝛼2

2

)
E[∥𝑔𝑘 ∥2] +(

𝛼3𝑐𝐿2
(
𝛽𝜈

1−𝛽)
2 1−𝛽

1+𝛽
+
𝐿𝛼2

2

)
𝜎2

+ 2𝛼3𝑐𝐿2
(
𝜈

1−𝛽)
2
(1 − 𝛽𝑘)

2 ×

E[∥ 1−𝛽
1−𝛽𝑘 Σ

𝑘
𝑖=1
𝛽𝑘−𝑖𝑔𝑖 − 𝑔𝑘 ∥2].

Let us look at 𝑞1E[∥𝜃𝑘+1
− 𝜃𝑘 ∥2] in detail: 𝑞1E[∥𝜃𝑘+1

− 𝜃𝑘 ∥2] =

𝑞1𝛼
2E[∥𝑦𝑘 ∥2] ≤ 2𝑞1𝛼

2

(
1−𝛽
1+𝛽

𝜈2𝛽2 − 1−𝛽
1+𝛽

𝜈2𝛽2𝑘
+ (1 − 𝛽𝜈)

2

)
𝜎2

+

2𝑞1𝛼
2
(1 − 𝜈𝛽𝑘)

2E[∥ 1

1−𝜈𝛽𝑘 Σ
𝑘
𝑖=1
𝑎𝑘,𝑖𝑔𝑖 ∥2].

We know: E[∥ 1

1−𝜈𝛽𝑘 Σ
𝑘
𝑖=1
𝑎𝑘,𝑖𝑔𝑖 ∥2] ≤ 2E[∥ 1

1−𝜈𝛽𝑘 Σ
𝑘
𝑖=1
𝑎𝑘,𝑖𝑔𝑖 −

𝑔𝑘 ∥2] + 2E[∥𝑔𝑘 ∥2]. Therefore, we have 𝑞1E[∥𝜃𝑘+1
− 𝜃𝑘 ∥2] ≤

4𝑞1𝛼
2
(1 − 𝜈𝛽𝑘)

2E[∥𝑔𝑘 ∥2] + 2𝑞1𝛼
2

(
1−𝛽
1+𝛽

𝜈2𝛽2 − 1−𝛽
1+𝛽

𝜈2𝛽2𝑘
+ (1 −

𝛽𝜈)
2

)
𝜎2

+ 4𝑞1𝛼
2
(1 − 𝜈𝛽𝑘)

2E[∥ 1

1−𝜈𝛽𝑘 Σ
𝑘
𝑖=1
𝑎𝑘,𝑖𝑔𝑖 − 𝑔𝑘 ∥2].

We study I ≜ Σ
𝑘−1

𝑖=1
(𝑞𝑖+1 − 𝑞𝑖)E[∥𝜃𝑘+1−𝑖 − 𝜃𝑘−𝑖 ∥2] + 4𝑞1𝛼

2
(1 −

𝜈𝛽𝑘)
2×Σ

𝑘−1

𝑗=1

𝜈𝛽𝑘−𝑗𝐿2

1−𝜈𝛽𝑘
(
𝑘− 𝑗+ 𝛽

1−𝛽

)
E[∥𝜃 𝑗+1−𝜃 𝑗 ∥2]+2𝛼3𝑐𝐿2

(
𝜈

1−𝛽)
2
(1−

𝛽𝑘)
2 × Σ

𝑘−1

𝑗=1

𝛽𝑘−𝑗𝐿2

1−𝛽𝑘
(
𝑘 − 𝑗 +

𝛽

1−𝛽

)
E[∥𝜃 𝑗+1 − 𝜃 𝑗 ∥2] ≤ Σ

𝑘−1

𝑖=1
(𝑞𝑖+1 −

𝑞𝑖)E[∥𝜃𝑘+1−𝑖 − 𝜃𝑘−𝑖 ∥2] + 4𝑞1𝛼
2
(1 − 𝜈𝛽𝑘)

2 × Σ
𝑘−1

𝑖=1

𝛽𝑖𝐿2

1−𝛽𝑘
(
𝑖 +

𝛽

1−𝛽

)
E[∥𝜃𝑘+1−𝑖 − 𝜃𝑘−𝑖 ∥2] + 2𝛼3𝑐𝐿2

(
𝜈

1−𝛽)
2
(1 − 𝛽𝑘)

2 × Σ
𝑘−1

𝑖=1

𝛽𝑖𝐿2

1−𝛽𝑘
(
𝑖 +

𝛽

1−𝛽

)
E[∥𝜃𝑘−𝑖+1

− 𝜃𝑘−𝑖 ∥2]

In order to let I be non-positive, we need to have for all 𝑖 ≥ 1:

𝑞𝑖+1 ≤ 𝑞𝑖 −
(
4𝑞1𝛼

2
(1 − 𝜈𝛽𝑘)

2
+ 2𝛼3𝑐𝐿2

(
𝜈

1−𝛽)
2
(1 − 𝛽𝑘)

2

)
𝛽𝑖𝐿2

1−𝛽𝑘
(
𝑖 +

𝛽

1−𝛽

)
. It suffices to have for all 𝑖 ≥ 1: 𝑞𝑖+1 = 𝑞𝑖 −

(
4𝑞1𝛼

2 1

𝜈(1−𝛽)
+

2𝛼3𝑐𝐿2
(
𝜈

1−𝛽)
2

)
𝛽𝑖𝐿2

(
𝑖 +

𝛽

1−𝛽

)
.

Therefore, by some algebraic transformations, in order for

𝑞𝑖 > 0 for all 𝑖 ≥ 1, 𝑞1 could be set as 𝑞1 =

(
4𝑞1𝛼

2 1

𝜈(1−𝛽)
+

2𝛼3𝑐𝐿2
(
𝜈

1−𝛽)
2

)
Σ
∞
𝑖=1
𝛽𝑖𝐿2

(
𝑖 +

𝛽

1−𝛽

)
=

2𝛼3𝑐𝐿4 𝛽+𝛽2

(1−𝛽)
4
𝜈2

1−4𝛼2
𝛽+𝛽2

𝜈(1−𝛽)
3
𝐿2

. Combining ev-

erything together, and we could determine {𝑞𝑘 }𝑘∈N such that I is
non-positive.

We now have: E[𝐿𝑘+1
− 𝐿𝑘] ≤ −𝑄1E[∥𝑔𝑘 ∥2] + 𝑄2𝜎

2
, where

𝑄1 ≜ 𝛼 − 𝛼 1

2𝑐 − 2𝛼3𝑐𝐿2
(
𝛽𝜈

1−𝛽)
2 − 𝐿𝛼2

2
− 4𝑞1𝛼

2
(1 − 𝜈𝛽𝑘)

2
and 𝑄2 ≜(

𝛼3𝑐𝐿2
(
𝛽𝜈

1−𝛽)
2 1−𝛽

1+𝛽
+
𝐿𝛼2

2

)
+ 2𝑞1𝛼

2

(
1−𝛽
1+𝛽

𝜈2𝛽2− 1−𝛽
1+𝛽

𝜈2𝛽2𝑘
+ (1− 𝛽𝜈)

2

)
Omitting the tedious transformations, we could get, if 𝛼 ≤

min{ 1−𝛽
(3+2𝛽2𝜈2

+2𝜈4
)𝐿
,
𝜈(1−𝛽)

√
1−𝛽

2

√
2

√
𝛽+𝛽2𝐿

}, we have:
1

𝑘
Σ
𝑘
𝑖=1
E[∥𝑔𝑖 ∥2] ≤

2

(
R(𝜃1)−R∗

)
𝑘𝛼

+

(
1 +

𝛽2𝜈2

1+𝛽
+

1−𝛽
1+𝛽

𝛽2𝜈6
+ (1 − 𝛽𝜈)

2𝜈4

)
𝐿𝛼𝜎2

.

9.3 Proof of Theorem 3
We introduce the following lemma and then prove Theorem 3.

Lemma 4 ([29]). Let KL(𝑄 | |𝑃) as the KL divergence between two
distributions𝑄 and 𝑃 . For any positive real 𝛿 ∈ (0, 1), with probability
at least 1−𝛿 over a sample of size 𝑁 , we have the following inequality

for all distributions 𝑄 : R(𝑄) ≤ ˆR(𝑄) +

√︂
KL(𝑄 | |𝑃)+log

1

𝛿
+log𝑁+2

2𝑁−1
.

Lemma 1 can be adapted from Theorem 5 in [6] with some

algebraic transformations. We omit the detailed proof due to space

limit. As we are mainly concerned about how 𝛼, 𝛽, 𝜈 affect the trend

of generalization bound, we ignore higher order terms for now. The

experiments have shown that our approximations are satisfactory.

proof of Theorem 3. With Lemma 4 and Lemma 1, we are

ready to prove Theorem 3. Recall the density of prior and posterior

distributions are 𝑓𝑃 =
1√

2𝜋 det(𝜆0𝐼𝑑)

exp

{
− 1

2
(𝜃 − 𝜃0)

𝑇
(𝜆0𝐼𝑑)

−1
(𝜃 −

𝜃0)

}
and 𝑓𝑄 =

1√
2𝜋 det(Σ𝜃)

exp

{
− 1

2
𝜃𝑇 Σ

−1

𝜃
𝜃

}
, respectively. We

calculate their KL(𝑄 | |𝑃) as follows: KL(𝑄 | |𝑃) =

∫ (
1

2
log
|𝜆0𝐼𝑑 |
|Σ𝜃 | −

1

2
𝜃𝑇 Σ

−1

𝜃
𝜃 +

1

2
(𝜃 −𝜃0)

𝑇
(𝜆0𝐼𝑑)

−1
(𝜃 −𝜃0)

)
𝑓𝑄 (𝜃)𝑑𝜃 =

1

2

{
tr((𝜆0𝐼𝑑)

−1
Σ𝜃)+

𝜃𝑇
0

(𝜆0𝐼𝑑)
−1𝜃0−𝑑 +log

|𝜆0𝐼𝑑 |
|Σ𝜃 |

}
=

1

2𝜆0

𝜃𝑇
0
𝜃0− 𝑑

2
+
𝑑
2

log 𝜆0 +
1

2𝜆0

tr(Σ𝜃)−
1

2
log|Σ𝜃 |. A direct application of the determinant and trace from

Lemma 1 completes our proof for training from scratch. The sce-

nario for fine-tuning follows the exact same proof logic. □

1716

	Abstract
	1 Introduction
	2 Background
	2.1 Learning from Scratch vs. Fine-tuning
	2.2 Gradient Descent Algorithm and Its Variants

	3 Convergence of Momentum Schemes in Stochastic Approximation Setting
	3.1 Strongly Convex Objective
	3.2 Nonconvex Objective

	4 Generalization of Momentum with and without Fine-tuning
	5 Guidelines to Improve Generalization
	5.1 Enforce _f,T to be close to _f,S
	5.2 Small ratio =2n_b =1=+1=0 helps deep models generalize
	5.3 NAG generalizes better than SHB, when 1
	5.4 Set momentum parameter close to 1 and as 0.5
	5.5 Guidelines to other momentum schemes

	6 Verifying the Guidelines: Empirical Evidence
	7 Related Work
	7.1 Convergence analysis for momentum methods
	7.2 Generalization analysis for momemtum methods

	8 Conclusions
	Acknowledgments
	References
	9 Appendix
	9.1 Proof of Theorem 1
	9.2 Proof of Theorem 2
	9.3 Proof of Theorem 3

