Demystify Hyperparameters for Stochastic Optimization with
Transferable Representations

Jianhui Sun
University of Virginia, js9gu@virginia.edu

Kishlay Jha

University of Virginia, kjeww@virginia.edu

ABSTRACT

This paper studies the convergence and generalization of a large
class of Stochastic Gradient Descent (SGD) momentum schemes, in
both learning from scratch and transferring representations with
fine-tuning. Momentum-based acceleration of SGD is the default
optimizer for many deep learning models. However, there is a lack
of general convergence guarantees for many existing momentum
variants in conjunction with stochastic gradient. It is also unclear
how the momentum methods may affect the generalization error. In
this paper, we give a unified analysis of several popular optimizers,
e.g., Polyak’s heavy ball momentum and Nesterov’s accelerated
gradient. Our contribution is threefold. First, we give a unified
convergence guarantee for a large class of momentum variants in
the stochastic setting. Notably, our results cover both convex and
nonconvex objectives. Second, we prove a generalization bound for
neural networks trained by momentum variants. We analyze how
hyperparameters affect the generalization bound and consequently
propose guidelines on how to tune these hyperparameters in vari-
ous momentum schemes to generalize well. We provide extensive
empirical evidence to our proposed guidelines. Third, this study
fills the vacancy of a formal analysis of fine-tuning in literature. To
our best knowledge, our work is the first systematic generalizabil-
ity analysis on momentum methods that cover both learning from
scratch and fine-tuning. Our codes are available !.

CCS CONCEPTS

« Theory of computation — Sample complexity and gener-
alization bounds; - Mathematics of computing — Nonconvex
optimization.

KEYWORDS

Deep Learning Optimization; Fine-tuning; Stochastic Gradient De-
scent; AutoML; Generalization Bound

!https://github.com/jsycsjh/Demystify-Hyperparameters-for-Stochastic-
Optimization-with-Transferable-Representations

® This work is licensed under a Creative Commons Attribution
BY International 4.0 License.

KDD °22, August 14-18, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9385-0/22/08.
https://doi.org/10.1145/3534678.3539298

Mengdi Huai

University of Virginia, mh6ck@virginia.edu

Aidong Zhang

University of Virginia, aidong@virginia.edu

ACM Reference Format:

Jianhui Sun, Mengdi Huai, Kishlay Jha, and Aidong Zhang. 2022. Demystify
Hyperparameters for Stochastic Optimization with Transferable Representa-
tions. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining (KDD ’22), August 14-18, 2022, Washington, DC, USA.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3534678.3539298

1 INTRODUCTION

Gradient based method in conjunction with a momentum term is
the optimizer of choice in many applications. On the one hand,
classical momentum methods (e.g. Polyak’s "heavy ball’ momen-
tum [33] and Nesterov’s accelerated gradient [31]) are known to
achieve faster convergence guarantees than gradient descent for
smooth and strongly convex objectives with deterministic gradi-
ents (gradient computed on the full training dataset) [32, 34]. On
the other hand, stochastic gradient descent (SGD) possesses both
practical and theoretical appeals over batch gradient descent [3],
and has now played a central role in training deep learning models.
Therefore, momentum in conjunction with stochastic gradient has
been extensively used.

Since [40] first demonstrated the critical role of well-tuned sto-
chastic momentum method in deep learning optimization, stochas-
tic momentum has been used so pervasively that deep learning
models are usually optimized by SGD with momentum instead of
vanilla SGD by default. Notably, momentum has not only exhibited
convincing performances in accelerating training loss minimization,
it has also been reported to achieve better generalizability in over-
parameterized neural networks than adaptive gradient algorithms
[16, 42].

Apart from the classical stochastic variant of heavy ball momen-
tum (SHB) and Nesterov’s accelerated gradient (NAG), a growing
number of momentum variants in stochastic setting have been pro-
posed to train deep learning models to either accommodate objec-
tive functions with more general geometry, or to improve training
stability and generalization ability in specific settings?. Despite
empirical successes reported for many momentum variants in a
wide spectrum of tasks, how different forms of momentum variants
and their associated hyperparameters affect (1) the convergence
properties and (2) the generalization abilities, is largely an open
question in stochastic setting.

More importantly, a growing number of applications rely on
transferring representation pretrained from a source task where
labeled data is abundant and computational capacity is sufficient,

2 An incomplete list of momentum schemes will include Synthesized Nesterov Variants
(SNV) [19], PID control (PID) [1], Accelerated Stochastic Gradient Method (ASGD)
[18], Triple Momentum [41], and Quasi-Hyperbolic Momentum (QHM) [26].

https://github.com/jsycsjh/Demystify-Hyperparameters-for-Stochastic-Optimization-with-Transferable-Representations
https://github.com/jsycsjh/Demystify-Hyperparameters-for-Stochastic-Optimization-with-Transferable-Representations
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3534678.3539298
https://doi.org/10.1145/3534678.3539298

KDD ’22, August 14-18, 2022, Washington, DC, USA

and then fine-tune on target task®. However, despite the enormous
popularity of transferring representation, there is a lack of rigor-
ous understanding of how well momentum variants converge and
generalize in transfer learning with fine-tuning.

To tackle the aforementioned problems, this paper studies a gen-
eral framework, the Quasi-Hyperbolic Momentum (QHM) method
[26] with constant momentum parameters, in the stochastic ap-
proximation setting (unbiased gradients with bounded variance),
in both training from scratch and fine-tuning paradigms. Note that
QHM has a general formulation that could cover a large family
of popular momentum methods, e.g., SHB, NAG, ASGD, and SNV.
Therefore, our unified analysis includes a large class of momentum
schemes as special cases.

Our main contributions could be summarized as follow:

e We derive a unified convergence guarantee for a family of
momentum methods, for both convex and nonconvex objec-
tives. Our nonconvex analysis does not require the restrictive
’bounded gradient’ assumption used in the existing litera-
ture.

We prove a generalization bound for neural networks trained
by momentum variants. To our best knowledge, this is
the first systematic generalizability analysis of momentum
schemes. Based on the bound, we theoretically justify some
training heuristics from existing empirical works 4, and fur-
ther motivate novel training guidelines to new momentum
methods (e.g., PID and SNV). Our empirical experiments test
across different data, models, and optimizers, which all verify
the effectiveness of our proposed guidelines.

Our analysis is the first work that provides a rigorous under-
standing of how momentum methods converge and general-
ize in learning both with and without fine-tuning.

In Section 2, we formally introduce the definitions of learning
from scratch/fine-tuning, momentum schemes, and generalization
error, that are pertinent to this work. In Section 3, we provide the
convergence guarantee of QHM, for both strongly convex and gen-
eral nonconvex objective functions. In Section 4, we theoretically
connect the generalization error of momentum schemes with hy-
perparameters, both with and without fine-tuning. In Section 5, we
justify existing tuning heuristics and propose new tuning rules. We
conduct extensive experiments to verify our proposed guidelines
in Section 6. Related works are discussed in Section 7. Proofs of all
our theorems and corollaries are presented in Appendix (Section
9).

2 BACKGROUND

2.1 Learning from Scratch vs. Fine-tuning

Let X be the input space and C be the label space. Suppose hr :
X + C is the ground truth for the target task T. The learning
goal is to find a hypothesis h such that it minimizes the target risk
Rr(h) = Bx-proo)[l(hr(x), h(x))], where Pr(X) is the input data
distribution on target task, and [is a loss function.

3Examples of powerful pretrained models include Caffe Model Zoo [14] and BERT [4].
e.g., regularizing the distance between fine-tuned weights and the pre-trained weights,
linearly scaling batch size with learning rate, NAG generalizing better than SHB in
many experimental settings, and monotonically increasing momentum parameter
B — 1[15, 36]

1707

Jianhui Sun et al.

‘ Source Data Target Data
| cony |
Layer1 | —i—eoi-es Layer 1
+ ¥
Representation f : : Fine-tune
+ Copy 1
LayerK | —---—.—-» Layer K

: / \
+ i ' |
Layer L-1 i LayerL1 |
Random . i | Train fromsScratch
i initialization !] i
i H
H H
\ H

Specialized
Classifier g

Output Layer

Pretrained

Figure 1: The workflow of fine-tuning. In most cases, a spe-
cialized classifier only containing the last output layer is
trained from scratch, while representation containing all pre-
vious layers is transferred from the source and fine-tuned.

Deep learning models generally first learn the disentangled fea-
tures of input. Suppose Z is the feature space, F = {f : X + Z}isa
class of representations,and G = {g : Z +— C} is a class of specialized
classifiers. Any hypothesis is a composite of a representation and
specialized classifier, i.e. h = go f : X + C, and the hypothesis class
is H = {h:3f € F,g € G,such that, h = g o f}. Each hypothesis is
parameterized by 6 = (0, 0y). Figure 1 describes the workflow of
fine-tuning.

Suppose (x, y) is a labeled data instance, and N is the number of
labeled data points in the target task. The traditional Frequentist
learning paradigm views model parameter 6 as fixed but unknown
values and do not attach any probabilities to these learnable pa-
rameters. In contrast, the Bayesian perspective shifts to studying
a distribution of every possible setting of parameters instead of
betting on one single setting of parameters to manage model uncer-
tainty, and has proven to be increasingly powerful in many settings.
In the Bayesian framework, 0 is assumed to follow some prior dis-
tribution P (reflects our prior knowledge of model parameters), and
through the iterative optimization, the distribution of @ shifts to
{Qk } k>0, and converges to posterior distribution Q (reflects our
knowledge of model parameters after learning with N data points).
The mode of the posterior distribution is typically regarded as the
final model parameter.

The generalization bound could therefore be defined as follows:

& = |R(Q) = R(Q)I- (1)

where R(Q) 2 Eg_gBypyollhp)y), and RQ) 2
Eo-on Zﬁ-\il I(ho(x5), yj)-

In the Bayesian framework, the stochastic hypothesis fzgo ris
a distribution over hypothesis class H and is associated with the
Frequentist hypothesis h = g o f (i.e., the mode of ftgof isgo f); the
stochastic hypothesis class is Hgor 2 {flgof :3df € F,g € G}. Let
us introduce the two learning paradigms that we consider in this
paper.
Learning from Scratch When N is sufficiently large, we do not
need to leverage any external information in learning and could
directly train from scratch. We would start from some random initial
stochastic hypothesis flgﬂo f (i.e., a distribution centered around
random initial hypothesis go o fj), and pose no restriction over the

11>

Demystify Hyperparameters for Stochastic Optimization with Transferable Representations

search space Hgop {fzgof : 3f € F,g € G. We would search in
Hgor with any optimizer minimizing the target risk Ry.

Fine-tuning When target data amount N is not sufficiently large,
while there is a source task where labeled data is abundant and
we believe these tasks share similar intermediate representation,
we could transfer representations learned from a source task to
the target task. Formally, we have source task S and the number
of labeled data Ng is typically much larger than N. Source risk
is defined similarly as Rs(h) = E,_pg(x)[hs(x) # h(x)], where hg
and Pg are the ground truth and input data distribution in source
task, respectively. We obtain a minimizer of Rg as gs o fs with
some optimizer. As we believe target task is similar in internal
fs

point than random initialization h, ;. Furthermore, representation

representation as source task, flégo is thus a much better starting

in source task is believed to approximate fs, and therefore, we will
search in I—NIGOI; = {fzgof :3f € F,g € G. F C F and is a region
around fs (such restriction is enforced through a penalty term of
distance between f and fs) As g is the specialized classifier specific
to the task, and typically takes only a small proportion of all model
parameters, no restriction will be posed on function class G.

Both source task and target task are optimized with an optimizer,
and in this paper, we focus on Stochastic Gradient Descent (SGD)
momentum and its variants.

2.2 Gradient Descent Algorithm and Its Variants

This paper studies a large class of first-order gradient descent algo-
rithms. Recall 4 is the parameter to be optimized in the hypothesis,
and R is the risk function. Let z; = (x;, y;) represents a single data in-
stance. R is the empirical risk evaluated by a mini-batch of random

samples, Rg B nL,, Yjer Rj, where R; = lp(z;) is the contribution
to risk from j-th data point. { represents a mini-batch of random
samples and np = |{| represents the batch size. §(0) = VgR; is the
empirical gradient of risk with respect to 6.

We start from the formula of Stochastic Gradient Descent (SGD):

@
where oy and dy are the learning rate and search direction at k-th
step, respectively. (mini-batch) SGD ° uses g = §(6) as dg.
We focus on Quasi-Hyperbolic Momentum methods [26], which
could be formulated as:
a1 = (1= P + Bredy
O+1 = Ok — oge[(1 = vie)ge + viede]

Oke1 = O — o d

®)

More specifically, in this paper, we study QHM with constant pa-
rameters, i.e., ap = a, fr. = B, vi = v.

Note that the formulation of Quasi-Hyperbolic Momentum
method is very general, and could recover many momentum meth-
ods with different specifications of («, §, v). For example, QHM
recovers plain SGD when v = 0.

If v = 1, QHM recovers SHB:

die1 = (1= P)gk + fdi. Oky1 = O — ady

©

5 As mini-batch GD contains *one-instance’ SGD as a special case, we use 'SGD’ to
refer to mini-batch GD throughout this paper unless otherwise specified.

1708

KDD ’22, August 14-18, 2022, Washington, DC, USA

where variable d is commonly referred to as the ‘'momentum buffer’.
The exponential discount factor § controls how slowly the momen-
tum buffer is updated.

If v = B, QHM recovers NAG:

it = (1= B)gic + Pdic)
O+1 = Ok — al(1 = gk + pdyc]
From the connection between QHM and SHB (NAG), QHM could
be interpreted as a v-weighted average of the momentum update
step and the plain SGD update step. We refer v as the immediate
discount factor.

[26] showed that QHM could recover many other popular mo-
mentum schemes, e.g., PID control (PID), Synthesized Nesterov
Variants (SNV), Accelerated Stochastic Gradient Method (ASGD),
and Triple Momentum, with different «, §, v specifications. There-
fore, our analysis based on QHM could cover a family of momentum
methods as special cases.

3 CONVERGENCE OF MOMENTUM SCHEMES
IN STOCHASTIC APPROXIMATION
SETTING

In this section, we will discuss the dynamics and convergence of the
iterates produced by momentum schemes, for both strongly convex
and nonconvex objectives. All proofs are deferred to Appendix
(Section 9) unless specified otherwise.

3.1 Strongly Convex Objective

AssUMPTION 1 (LocALLY QUADRATIC Risk FUNCTION ©). Suppose
the risk function is approximately convex and 2-order differentiable,
in the region close to minimum, i.e., there exists a 6y > 0, such that
R(O) = 2(0-07)T A0 -6%) if1|0—0%|| < S, where 0* is a minimizer
of R(0). Here A is the Hessian matrix V;R around minimizer and is
positive definite. Without loss of generality, we assume a minimizer
of the risk is zero, i.e., 0" = 0.

Let us denote the suboptimality of the current iterate as ry =
0 — 0*. Following from Assumption 1, the risk function is 2-order
differentiable. We denote the Hessian as V2R(8) in a local region
around minimizer 6%, and the Hessian is positive definite. Let Ay =
Ll) VZR(* + tr)dt. Denote the gradient noise at iteration k as
& = Ag(6r), where Ag(0y) = §(0) — g(6k). Suppose at each step k,
gradient noise is Gaussian (the stochastic gradient is a sum of n,,
independent, uniformly sampled contributions. Invoking the central
limit theorem, we assume that the gradient noise is Gaussian) with
mean 0 and covariance %Z. We know Ag(0y) is a random variable

with mean 0 and bounded variance o2, i.e., E[&] = 0 and E||&||? <
0%, Here ¢ could be ||3]|. By the fundamental theorem of calculus,
we know:

(6)

®Though here we assume quadratic form of risk function, all our results apply to
locally smooth and strongly convex objectives. Note that the assumption on locally
quadratic structure of loss function, even for extremely nonconvex objectives, could be
justified empirically. [21] visualized the loss surfaces for deep structures like ResNet
[9] and DenseNet [12], observing quadratic geometry around local minimum in both
cases. And certain network architecture designs (e.g., skip connections) could further
make neural loss geometry show no noticeable nonconvexity.

9(Ok) = Ap e + &

KDD ’22, August 14-18, 2022, Washington, DC, USA

Recall the QHM formulation in Equation (3) and apply Equation
(6), we could write the recursive pattern of QHM as follows:

- [f5]

Tk+1
where Ty and S are functions of (a, f, v) and A:
o[B a-pac | [a-pr
k —avpl I-a(l-vPAg|’ —a(l - vp)I
With the assumption of locally quadratic risk function, we know

Ay = Afor all k.
Unrolling the recursion in (7), we have the following:

dr_4 _k d-1 +Zk:Tk—jS§j
e |- ro

j=1
where d_; is 0 by default. With Equation (8), we present the con-
vergence result for quadratic functions:

™

®

THEOREM 1. Denote the spectral radius of T as p(T). Let the small-
est and largest eigenvalues of Hessian matrix as: p = min; A;(A) and
L = max; A;(A). Let Ay 2 (1 + B —a) + avPA)? — 4B(1 — ad + alv).
Let {0k }ren as the sequence from QHM. There exists a vanishing
sequence of {€x }, i.e., limy_, o, € = 0, such that for all k, the expected
optimality gap satisfies,

E”9k - 9*”2 < Eg+&s
(p(T) + e)*¥ 1160 — 6"

1-p2+a?(1-vp? ,
1= (p(T) + €x)?
where p(T) = max{py, p }, with:

1+ B—ak+avpAl+ 3Dy ifAy >0

PA= {\/ﬁ(l —al + adv), otherwise

&4 and ¢ reflect two sources of expected optimality gap, &4 is the
deterministic approximation error, representing the rate of conver-
gence to local region around minimizer, while ¢ is the stochastic
error, describing the irreducible fluctuation around the minimizer
due to gradient noise. Both ¢4 and &5 are important in determining
the dynamics of QHM. Based on ¢4, the condition to converge to
local region of minimizer is p(T) < 1 as limg_,oo(p(T) + €x) = p(T).
Based on &, the fluctuation is a constant factor multiplying noise o2,
where the constant factor depends on (, f, v). Our result extends
the deterministic analysis in [6] to stochastic setting. In the deter-
ministic analysis, the second term Zle Tk-is¢ j in (8) is ignored.

éd

Es

REMARK 3.1 (CONNECTION TO CONVERGENCE RESULT IN NAG).
Set f = v, and re-scale « — ﬁ, Theorem 1 will recover the conver-

gence guarantee for stochastic NAG (see Theorem 1 in [2])7.

REMARK 3.2 (ESTIMATION OF VARIANCE FACTOR). In Theorem 1,
&4 is easier to handle as we know it is dominated by p(T). Let us denote
a2 1-pA+a’(1-vp)?
@ = Fmrar
ies and show how C(€) changes w.r.t. different model specifications.

Specifically, we optimize quadratic functions with QHM. The dimen-
sion of parameters is set to be d = 20. The Gaussian noise we add is

, e, &5 = C(€)o?. We conduct simulation stud-

"The exact formulation of NAG is different in [2], as the learning rate in our QHM
formulation re-scales their learning rate: « — (1:){/5)'

1709

Jianhui Sun et al.

v=10 Q=100.0 v=05 Q=100.0

Figure 2: C(¢) in simulation studies. Upper row represents qua-
dratic function with Q = 100.0, and lower row represents qua-
dratic function with Q = 60.0. We test QHM with v = 1.0,0.5.
Each pixel represents one single run of QHM with specific
a and f. Red line denotes the condition of convergence in
Theorem 1. From this figure, we could see QHM is easier to
converge with flatter geometry and f — 1 will improve the
variance constant factor.

¢ -1y, and c is fixed at 0.03. Q is the ratio of the largest eigenvalue to
the smallest eigenvalue for this quadratic function, i.e., Q = f—l Qis
a measure of ’sharpness’ at minimum. Figure 2 shows the result of
our simulation studies. As we could observe from Figure 2, variance
constant factor is smaller when f — 1 in both cases. This partially
verifies our training heuristic: move § to 1 under the condition of con-
vergence. And we could see that if Q is smaller, the convergence region
is larger in area. As smaller Q represents flatter geometry around
minimum, it indicates QHM is easier to converge with flatter local
geometry.

3.2 Nonconvex Objective

Assumption 1 (i.e., locally quadratic assumption) in Section 3.1 may
not hold for highly over-parameterized neural networks (see e.g.
[23]: the set of local minima is often a low-dimensional manifold,
instead of isolated points, in the parameter space; and as long as
the manifold is not linear, there should be no locally convex region).
Therefore, we provide the following convergence guarantee for
QHM when optimizing nonconvex functions.

THEOREM 2. Suppose R(0) is L-smooth and not necessarily strongly
convex. Denote the expected gradient square as {Gy. 2 B[|lgx |11} ken
and G = %zlegk. We have: G < g4 + €5, where,
2(Reen) - R*)

AT ke
2,2

£ = (1 + fv + 1—

1+ 1+p

. . 1-8 V1-ANT-B

ifa < min{{zmmnsar NN

REMARK 3.3 (ROLEL OF (f3, v)). In Theorem 2, we do not require the
’bounded gradient’ assumption ||g|| < G for some G > 0 [44]. Speci-
fications of (B, v) mainly affect the radius of stationary distribution
&s.

-

PO+ (1 - ﬂv)2v4)La0'2

).

Please refer to Appendix (Section 9) for proof.

Demystify Hyperparameters for Stochastic Optimization with Transferable Representations

4 GENERALIZATION OF MOMENTUM WITH
AND WITHOUT FINE-TUNING

In this section, we introduce our main theorem to explain the role
of momentum in closing the generalization gap in both learning
from scratch and fine-tuning. We will also discuss how the theorem
guides practical model training with SGD momentum variants. All
proofs are deferred to Appendix (Section 9).

We first introduce the following lemma that describes the limit-
ing behavior of SGD momentum variants.

LEmMA 1. 6 optimized by QHM will converge to a stationary dis-
tribution h = exp{—%HTZQG}. Furthermore, the trace tr(Xg) and
determinant det(Zg) of g fulfill the following equalities, tn(Zg) =

- 2 2(1+p—-
& i(zAY)+ & (%(1 - %ﬁvﬂ) + %))tr(2)+0(a3), and det(Sg) =
()4 det(ZA™Y) + O(a?).

With this lemma, we are prepared to give our main theorem.

THEOREM 3. Assume the target task has nt training data instances.
Assume the risk function is locally quadratic, and gradient noise is
Gaussian. Suppose the prior distribution of parameters is ho and
posterior distribution is h, both of which are some distributions on
hypothesis class parameterized by 0. For any positive real € € (0, 1),
the following inequality holds with probability at least 1 — €,

KL(h||ho) + log 1 +logny +2
2nt -1

R(Q) < R(Q) + \/

Learning from Scratch: ho = N (6o, Aoly), where 0y = (Go,f, Bo,9) is
some random initialization for h = go f. Ay represents the uncertainty
in the Gaussian initialization, where d represents the dimension of
parameters. y y

Fine-tuning: hy = hésofq = N((GS,f’?SLQ)’ Aoly).

Invoking Lemma 1, we will have KL(h||ho) = &1 + &z, where, &1 =
iz 160113+ 3dlog Ao — 3d, and & = —5 log det(SA™")~ 3d log 5+

atrEA™Y) AP nE) (4vi-2v-1)B2—2vpB+1
4onp 4Aonp 2(1-5%) .

Proor. Please refer to Appendix (Section 9) for proof.

Let us denote:

a?tr(S) (4% —2v - 1% —2vf + 1

4Aony, 2(1 - ﬁz)

In the rest of the paper, when we study how (f, v) affects the gener-

alization bound, we would focus on how K changes with different
settings of (f, v), as it is the only term in Theorem 3 containing

(B,v)-

REMARK 4.1 (CONNECTION TO GENERALIZATION ERROR IN SGD).
Generalization error with respect to momentum is less understood,
but there are some existing results on vanilla SGD. To recover the
generalization error in SGD, we just need to set v = 0 in Theorem 3.
We immediately have the following corollary:

A

COROLLARY 4.1. Replace & in Theorem 3 with the following for-
mulation will give us the PAC-Bayesian generalization bound for
vanilla SGD:

at(ZA™)
4Aony,

a?t(2)
8Aony

1 04 1
&y = —~dlog — — = log det(SA™!
2 ZOanb ZOge()+

1710

KDD ’22, August 14-18, 2022, Washington, DC, USA

Note that [8] proved a similar PAC-Bayesian bound for vanilla
SGD. However, our bound in this corollary has a nontrivial difference
than theirs. Specifically, their bound only includes a first-order term of

2
learning rate, while ours includes one extra second-order term %’flz).
The difference is important, in that it incurs the following corollary

that could not be derived from their first order bound:

COROLLARY 4.2. We give the following two statements about the
relationship between learning rate and generalization when training
deep learning models with sufficiently large d (see Corollary 5.1 for
exact size of d):

o Increasing learning rate (under the condition of convergence)
will give us a better (smaller) generalization bound.

o But if we hold the ratio of batch size to learning rate constant,
the generalization bound will get worse (larger) if we increase
the learning rate.

This second statement is obvious from our second order bound.
However, with their first order bound, the generalization bound re-
mains constant if fixing the ratio %b. Our experimental results (see
e.g., Table 2) verifies our theoretical findings.

The practical implication is important as a popular training heuris-
tic is to scale batch size ny, < a [36]. Controlling the ratio is a good
strategy, but our result warns that we still need to restrict the learning
rate.

5 GUIDELINES TO IMPROVE
GENERALIZATION

With the above Theorem 3, we are ready to provide several useful
training heuristics to improve generalization performance.

5.1 Enforce 07 to be close to 0¢ s

As KL(szfzo) is the main factor that controls the generalization
error, the typical Ly regularization ||9||§ is insufficient for fine-
tuning. KL(leflo) is determined by 65 — 01, where 01 and 0O are
parameters in target task and source task, respectively. Each set of 6
is a composition of 6 and 6y, where 05 encodes the representation
we expect the tasks to share, and 0 is task-specific parameters.
Add the following regularization is guaranteed to improve the
generalization performance according to Theorem 3,

o1ll05s = 057115 + 920164715 (10)
where ¢1 and ¢, are two hyperparameters. We penalize the repre-
sentation in target task far from the source representation while
restricting the complexity of specialized classifier. [20, 22, 30] also
demonstrated the improvement from regularizing distances be-
tween representations.

5.2 Small ratio 72 helps deep models generalize
A direct application of Theorem 3 is the following corollary:

atrZA™)
2Aonp
lation between generalization error and %b is positive.

CoRroOLLARY 5.1. Ifd is larger than + 2K, then the corre-

Proor. Denote r

n .
7” for ease of notation. Let us cal-

28, d _ (tr(zA-l) .

culate the derivative of &; to r: =2 o YR

or

KDD ’22, August 14-18, 2022, Washington, DC, USA

atr(®) (4v:-2v-1)f2-2vp+1

LTt is straightforward to verify if we
"

i, 2(1-57)
-1
have d > % + 2K, we could get 88_«?2 > 0, which completes
our proof.

O

The condition for d (the number of parameters) is easily satisfied
for many overparameterized deep models. It may sound counter-
intuitive that large batch size may hurt models to generalize. But it
is consistent with our theoretical and empirical evidence if training
an overparameterized model. Note that controlling % has been
used in [8, 36] for vanilla SGD, and here we extend it to momentum-
based methods.

Corollary 5.1 also tells us if training shallow models, the previous
relationship does not necessarily hold. Moreover, recalling Corol-
lary 4.2, we could conclude that learning rate should be restricted
if we scale nj, with a.

5.3 NAG generalizes better than SHB, when
p—1

To recover the generalization error in SHB and NAG, we just need

toset v=1and v = 3, respectively.

_ a?tr(x) 1-p
Ksup = 4onp, 2(1+ P) (11)
Knac = () 1+ - 22 — 43 (12)

4Aony, 21+ p)

We could conclude from (11) and (12): Ksgp will be constantly
larger than Kyag when f — 1. Kgyp is smaller than Kyag when
Be(0d)

Therefore, Exac < Esyp, in a typical f setting. In other words,
NAG provably generalizes better than SHB. [40] compared empiri-
cally SHB and NAG in training deep learning models, and concludes
that NAG performs better than SHB in most of their experimental
settings. [44] studied qualitatively, hypothesizing NAG is better in
achieving a tradeoff between speed of convergence and algorithm
stability compared to SHB, without giving an explicit theoretical
justification. Our analysis here provides an explanation why and
when NAG is better.

5.4 Set momentum parameter f close to 1 and v
as 0.5

[26] proposed to adopt a rule of thumb specification of (frot =
0.999, vrot = 0.7). However, from the expression of K, we could
easily conclude: K(f — 1,v = 0.5) could be arbitrarily small, and
thus much smaller than K(frot = 0.999, vrot = 0.7).

Therefore, we suggest that adopting a large f and setting v as
0.5, especially when the learning rate is large (e.g., initial stage of
training), will potentially improve the generalization ability. Our
experiments (see Table 2) show that test accuracy with fopt =
0.999, vopt = 0.5 will generally improve over (Brot = 0.999, Vrot =
0.7), by a non-trivial margin 8.

8We do not indicate Bopt = 0.999, Vopt = 0.5 is the optimal setting. Our goal is to show
training guidance motivated by our bound could in fact improves generalization.

1711

Jianhui Sun et al.

5.5 Guidelines to other momentum schemes

Apart from classical SHB and NAG, Theorem 3 could also guide the
training of some recently proposed momentum schemes. Here we
study the case of SNV and PID. We briefly introduce the definitions
of SNV and PID for ease of reference (see e.g., [1, 19] for more
details).

DEFINITION 1 (SYNTHESIZED NESTEROV VARIANT (SNV)). Syn-
thesized Nesterov Variant, parameterized by y, p1, P2 € R, uses the
following update rule:

Eke1 < &=y Gk + P — &r-1)
Oks1 < &1 + Pa€rar — &)

DEerINITION 2 (PID CoNTROL). A PID control optimizer, parame-
terized by kp, k1, kp € R, uses the update rule:

O — Brog_q + (1 B)ex —ex—1)
ex «— —Jk Wk < Wi_1 t e

(13)

(14)
Ors1 < 0o +kp-e; +kp-wr+kp -0

Acknowledging the connection to QHM, we make two practical
training guidelines to help improve the generalization ability of
SNV and PID.

COROLLARY 5.2. Under the condition of convergence, the following
two guidelines could help improve generalization to train deep neural
networks with SNV and PID:

o Smaller batch size ensures better generalization.
o Set f1 to be as close to 1 as possible, and set a large y in SNV;
set a large ky in PID.

6 VERIFYING THE GUIDELINES: EMPIRICAL
EVIDENCE

We conduct extensive experiments to verify the guidelines moti-
vated by our theoretical findings. In this section, we present our
experimental results in Figure 3 and Tables 1, 2, 3.

Experimental Setup: We include different models, data, and
optimizers, while sweeping across a wide range of parameters, to
show the robustness of our guidelines. ’Accuracy’ in the figure
and tables represents test accuracy after training for 100 epochs.
The learning curves have been flat for all experiments. Note that
our objective here is not to achieve state of the art performance in
these datasets. Therefore, we do not pick the setup that gives us the
highest predictions and set most hyperparameters as their default
values.

Figure 3: We pretrain with ImageNet and then fine-tune
the model on Dogs [17] and Aircraft [27] datasets. We test
ResNet18/34/50/101 (to evaluate the effect of model parameters)
and VGG11 with SHB (v = 1 and § = 0.9) and PID (kp = —0.1 and
kp = 3.0). We sweep through a large range of a from 107> to 1073,

Table 1: Left: We fit a shallow logistic regression on MNIST and
a deep Preact-ResNet-110 [10] on CIFAR-10. The optimizer is SHB
with v = 1 and f = 0.9. We sweep a large range of batch size and
learning rate. Right: We fit a ResNet-20 [9] on CIFAR-10 with SHB
(v = 1) and NAG (v = f), respectively. The learning rate « is fixed
to be 1. We sweep f§ through 0 to 1..

Table 2: We fit a ResNet-20 on CIFAR-10. In the first 6 columns
where we sweep a, ny, and %”, the optimizer is SHB with v = 1

Demystify Hyperparameters for Stochastic Optimization with Transferable Representations

KDD ’22, August 14-18, 2022, Washington, DC, USA

Table 1: Left: The effect of learning rate and batch size on shallow (LR on MNIST) vs. deep models (Preac-ResNet-110 on
CIFAR-10). Right: NAG vs. SHB on small § and large f settings. ’Accuracy’ represents test accuracy after training for 100 epochs.
Accq represents the difference between NAG test accuracy and SHB test accuracy, i.e., AccNag — ACCSHB.

Logistic Regression on MNIST Preact-ResNet-110 on CIFAR-10 SHB vs. NAG

a | Accuracy | np | Accuracy | « | Accuracy | np | Accuracy | f Accy B Accy
0.03 92.58% 8 91.82% 0.01 37.04% 64 85.89% 0.10 | -2.22% 0.9 -0.60%
0.05 92.50% 16 91.93% 0.03 58.31% 128 83.20% 0.15 | -10.54% 0.95 0.91%
0.07 92.53% 32 92.48% 0.05 66.68% 256 75.14% 0.20 | -1.34% 0.99 3.37%
0.09 92.60% 64 92.60% 0.07 70.11% 300 74.08% 0.30 | -10.74% 0.995 3.28%
0.20 92.54% 256 92.61% 0.1 76.60% 500 67.02% 0.40 | -8.60% 0.9995 0.98%
0.30 92.54% 512 92.60% 0.2 82.80% 600 62.84% 045 | -2.04% 0.9999 0.27%
0.40 92.35% 1024 92.42% 0.3 84.42% 700 62.33% 0.50 | -0.18% | 0.99995 | 3.41%

Table 2: ResNet-20 on CIFAR-10. We report the test accuracy with different learning rates, batch size, ratio r;—”, and (8, v)

specifications. (frot = 0.99, Vot = 0.7) denotes the rule of thum
a better specification justified by Theorem 3.

b specification proposed in [26]. (fopt = 0.999, vopt = 0.5) represents

o Accuracy ng Accuracy | Ratio %” Accuracy | o, Prot, Vrot | Accuracy | a, ﬁopt, Vopt | Accuracy
0.010 37.54% 8 86.77% 16/0.005 71.69% 0.01 41.07% 0.01 44.67%
0.016 40.37% 16 85.89% 32/0.010 70.74% 0.014 45.87% 0.014 47.79%
0.020 41.02% 32 83.54% 64/0.020 67.02% 0.02 50.70% 0.02 53.40%
0.026 45.12% 64 76.94% 128/0.040 61.69% 0.024 49.70% 0.024 55.82%
0.030 45.57% 128 68.45% 256/0.080 54.57% 0.03 55.82% 0.03 59.05%
0.036 49.08% 256 55.08% 512/0.016 52.81% 0.036 58.38% 0.036 62.68%
0.040 50.29% 512 45.09% 800/0.025 47.09% 0.038 59.36% 0.038 62.29%
0.050 52.30% 1024 36.33% 1024/0.032 44.69% 0.040 60.08% 0.040 63.48%

Target: Aircraft; Source: ImageNet

—— ResNet18
—— ResNet34

ResNet50

—— ResNet101
VGG11

—— ResNet50, PID

0
Learning Rate

Target: Dogs; Source: ImageNet

Accuracy

—— ResNet18

—— ResNet50

—— ResNet101
VGG11

—— DenseNet

—— ResNet50, PID

20%

0
Learning Rate

Figure 3: We pretrain with ImageNet and then fine-tune the model on Dogs and Aircraft datasets. We test a list of classifiers

and model architectures, larger « ensures better generalizat

ion consistently in all cases.

Table 3: PID and SNV. We report the test accuracy training ResNet-110 with CIFAR-10 using PID and SNV. We study the effect
of batch size, k; in PID control (which could be regarded as learning rate), and (y, f1) in SNV.

PID Control Synthesized Nesterov Variant (SNV)

k; | Accuracy | np | Accuracy | f1 | Accuracy Y Accuracy | np | Accuracy
0.04 66.50% 64 90.25% 0.90 69.70% 0.001 48.00% 64 87.47%
0.07 73.09% 128 87.55% 0.91 72.54% 0.003 62.65% 128 85.19%
0.10 | 77.30% 256 77.90% | 092 | 71.84% | 0.005 | 68.74% | 256 | 85.26%
0.13 77.80% 400 70.74% 0.93 74.20% 0.007 72.14% 300 77.31%
0.16 80.36% 600 62.72% 0.94 76.45% 0.009 75.67% 500 78.80%
0.19 | 81.51% 800 59.53% | 0.95 | 79.41% | 0.011 | 77.19% | 700 | 71.19%
0.22 82.13% 1000 52.08% 0.96 79.86% 0.013 78.29% 900 64.64%

and f§ = 0.999. In the last 4 columns where we compare the rule of
thumb (B, v) specification with our suggested (f, v) specification, the

optimizer is QHM. ot = 0.999, vrot = 0.7, and fopt = 0.999, vopt =
0.7.

1712

KDD ’22, August 14-18, 2022, Washington, DC, USA

Table 3: Left: We train a ResNet-110 on CIFAR-10 by PID. We set
kp = —0.1 and kp = 3.0 when we test different k7 and n;,. Right:
We train a ResNet-110 on CIFAR-10 by SNV. We set y = 0.1 and
P2 = 0.6 when we test different 1. We set 1 = 0.9 and 2 = 0.6
when we sweep y. We set y = 0.1, f1 = 0.9, and 2 = 0.6 when we
test different batch sizes.

Ratio of Batch Size to Learning Rate: We conclude in the last
section that smaller %” ratio helps deep learning models generalize,
while may have limited impact on shallow models. We report our
results of training logistics regression on MNIST and Preact-ResNet-
110 on CIFARI10 in Table 1. Note that the first model is a shallow
model while the second model is deep and overparameterized with
a sufficiently large number of parameters.

Note that with the increase of learning rate and batch size, the
test accuracy of logistic regression experiences very minor fluctua-
tion and remains practically constant around 92%. While in Preac-
ResNet-110, the impact of learning rate and batch size are apparent.
The test accuracy increases rapidly with larger learning rate, and
drops with larger batch size. The pattern is consistent with different
models and optimizers. See Table 2 for a more comprehensive study
on ResNet-20 trained by CIFAR-10. Negative correlation between
test accuracy and %” could be observed in the first 4 columns.

Note the columns 5 and 6 in Table 2. The ratio %b is fixed as
3.2 x 10%. Based on the first order generalization bound in [8], the
test accuracy will be approximately constant. However, we conclude
from our second order bound that the accuracy will decrease with
larger learning rate. Column 5 and column 6 verify our findings.

We also report the impact of batch size on other momentum-
based optimizers (e.g., PID and SNV) in Table 3. The pattern that
larger batch size leads to worse generalization holds for both PID
and SNV.

In Figure 3, we report our results for fine-tuning. We test a
list of classifiers and model architectures, larger @ ensures better
generalization consistently in all cases. Comparing the slopes of
accuracy curve for ResNet 18, 50, and 101, we could reassure our
claim that generalizability of deeper models is more positively
correlated with ratio of learning rate and batch size.

NAG vs SHB: We verify our theoretical conclusion that NAG
generalizes better than SHB when f is close to 1, while SHB is better
when f is small. Our results are reported in the last 4 columns in
Table 1.

We could observe that SHB performs much better than NAG
with smaller 3, typically obtaining test accuracy several percentages
higher. When f is large, NAG generalizes better in general, though
the improvement is minor in some cases.

Set momentum parameter 5 close to 1and v as 0.5: In the last
4 columns of Table 2, we compare our suggested hyperparameter
specification fopt = 0.999, vopt = 0.5 with the default rule-of-thumb
specification frot = 0.99, Vrot = 0.7 in [26].

We could observe under all learning rates, frot = 0.99, Vot =
0.7 achieves better generalization performances than fop =
0.999, vopt = 0.5. The improvement is non-trivial, often more than
3% higher in test accuracy, which perfectly verifies our Theorem 3.

SNV and PID: We train ResNet-110 with SNV and PID, and our
results are reported in Table 3. The pattern that larger batch size
leads to worse generalization holds for both PID and SNV. And the

1713

Jianhui Sun et al.

first two columns in Table 3 exhibit that larger kj (could be regarded
as learning rate in PID) improves generalization performances.
The first 4 columns in SNV subtable also verify our recommended
guideline: set a larger y and f; in SNV training.

7 RELATED WORK

7.1 Convergence analysis for momentum
methods

Many results concerning the convergence of the vanilla SGD are

highlighted in [3]. Despite the widespread interest in, and use of,

the stochastic momentum method, there are limited definitive the-

oretical convergence guarantees [5, 44].

Our analysis relies on the limited behavior of QHM iterates.
[28] followed the idea of analyzing SGD with stochastic differen-
tial equations, and derived the stationary distribution of vanilla
SGD and SHB. Our convergence analysis is most relevant to [6],
which derived the convergence rate for QHM with constant pa-
rameters to a stability region around minimizer in the deterministic
setting (see e.g., their Theorem 3). We extend their deterministic
analysis to stochastic cases. We show how our results recover the
recent convergence rate regarding NAG [2]. Furthermore, [6] was
mainly purposed to minimize the training loss and did not consider
improving generalization, which our paper focuses upon.

7.2 Generalization analysis for momemtum
methods

Our work aims to theoretically and empirically justify several train-
ing heuristics regarding hyperparameters to generalize. The hy-
perparameter search space in state-of-the-art deep learning sys-
tems can be too high-dimensional to explore manually, especially
for many interesting real-world problems, e.g., deep reinforce-
ment learning, time series analysis, and biomedical data mining
[11, 38, 39, 43]. A number of recent works [13, 15, 36] empirically
report the influence of hyper-parameters, largely on batch size and
learning rate, and provide practical tuning guidelines like linear
scaling rule, or moving f to 1, which our paper theoretically justify.

Our generalization analysis relies on PAC-Bayesian inequali-
ties [29, 35], and we refer readers to a comprehensive review of
PAC-Bayesian learning and references therein [7]. [8, 25] proved a
PAC-Bayesian bound for vanilla SGD. Our work focuses on char-
acterizing generalization on a class of momentum schemes and
covers their vanilla SGD analysis as a special case. [37] derived
generalization bound for momentum schemes, but only in training
from the scratch scenario. [30] proved a risk bound for transfer
learning, but their bound does not connect to hyperparameters and
therefore does not have practical implications on hyperparameter
tuning.

8 CONCLUSIONS

In this paper, we study the convergence properties and generaliza-
tion abilities of a family of momentum schemes when training deep
neural networks, in both training from scratch and fine-tuning.
Our analysis is unified as it covers many momentum schemes as
special cases. Our theoretical findings have justified some training
heuristics already known to the deep learning community, and
have further inspired novel training guidelines whose effectiveness

Demystify Hyperparameters for Stochastic Optimization with Transferable Representations

are verified by our experiments. As momentum scheme is used so
pervasively, our work could provide valuable insights for practi-
tioners to tune hyperparameters to improve model training and
generalization.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for
their valuable comments and helpful suggestions. This work is sup-
ported in part by the US National Science Foundation under grants
I1S-2106913, 2008208, 1955151, 1934600, 1938167. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

REFERENCES

(1]

[10]

(1

[12]

[13

[14]

[15

[16

[17]

=
&

[19]

[20]

W. An, H. Wang, Q. Sun, J. Xu, Q. Dai, and L. Zhang. 2018. A PID Controller
Approach for Stochastic Optimization of Deep Networks. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. 8522-8531.

Mahmoud Assran and M. Rabbat. 2020. On the Convergence of Nesterov’s
Accelerated Gradient Method in Stochastic Settings. ArXiv abs/2002.12414 (2020).
L. Bottou, Frank E. Curtis, and J. Nocedal. 2018. Optimization Methods for
Large-Scale Machine Learning. ArXiv abs/1606.04838 (2018).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
ArXiv abs/1810.04805 (2019).

Saeed Ghadimi and Guanghui Lan. 2016. Accelerated Gradient Methods for
Nonconvex Nonlinear and Stochastic Programming. Math. Program. 156, 1-2
(March 2016), 59-99. https://doi.org/10.1007/s10107-015-0871-8

Igor Gitman, Hunter Lang, Pengchuan Zhang, and Lin Xiao. 2019. Understanding
the Role of Momentum in Stochastic Gradient Methods. In Advances in Neural
Information Processing Systems 32. 9633-9643.

Benjamin Guedj. 2019. A Primer on PAC-Bayesian Learning. ArXiv
abs/1901.05353 (2019).

Fengxiang He, Tongliang Liu, and Dacheng Tao. 2019. Control Batch Size and
Learning Rate to Generalize Well: Theoretical and Empirical Evidence. In Ad-
vances in Neural Information Processing Systems 32. 1143-1152.

K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 770-778.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity Mappings in
Deep Residual Networks. ArXiv abs/1603.05027 (2016).

Mengdi Huai, Jianhui Sun, Renqin Cai, Liuyi Yao, and Aidong Zhang. 2020. Mali-
cious Attacks against Deep Reinforcement Learning Interpretations. In Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
amp; Data Mining (KDD °20). Association for Computing Machinery, New York,
NY, USA, 472-482. https://doi.org/10.1145/3394486.3403089

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. 2017. Densely
Connected Convolutional Networks. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2261-2269.

Stanistaw Jastrzebski, Zac Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer,
Amos Storkey, and Yoshua Bengio. 2018. Three factors influencing minima in
SGD. https://openreview.net/forum?id=rJma2bZCW

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional
Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093 (2014).
Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,
and Ping Tak Peter Tang. 2016. On Large-Batch Training for Deep Learning: Gen-
eralization Gap and Sharp Minima. CoRR abs/1609.04836 (2016). arXiv:1609.04836
http://arxiv.org/abs/1609.04836

Nitish Shirish Keskar and Richard Socher. 2017. Improving Generalization
Performance by Switching from Adam to SGD. CoRR abs/1712.07628 (2017).
arXiv:1712.07628 http://arxiv.org/abs/1712.07628

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei. 2012.
Novel Dataset for Fine-Grained Image Categorization : Stanford Dogs.

Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham M. Kakade. 2018.
On the insufficiency of existing momentum schemes for Stochastic Optimization.
CoRR abs/1803.05591 (2018). arXiv:1803.05591 http://arxiv.org/abs/1803.05591
Laurent Lessard, Benjamin Recht, and Andrew Packard. 2014. Analysis and
Design of Optimization Algorithms via Integral Quadratic Constraints. SIAM
Journal on Optimization 26 (08 2014). https://doi.org/10.1137/15M1009597

Hao Li, Pratik Chaudhari, Hao Yang, Michael Lam, Avinash Ravichandran,
Rahul Bhotika, and Stefano Soatto. 2020. Rethinking the Hyperparameters for

KDD ’22, August 14-18, 2022, Washington, DC, USA

Fine-tuning. In International Conference on Learning Representations. https:
//openreview.net/forum?id=B1g8VKHFPH

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. 2018.
Visualizing the Loss Landscape of Neural Nets. In Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Systems (NIPS’18). Red Hook,
NY, USA, 6391-6401.

Xuhong Li, Yves Grandvalet, and Franck Davoine. 2018. Explicit Inductive Bias
for Transfer Learning with Convolutional Networks. In ICML.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. 2020. Toward a theory of optimiza-
tion for over-parameterized systems of non-linear equations: the lessons of deep
learning. arXiv:cs.LG/2003.00307

Yanli Liu, Yuan Gao, and Wotao Yin. 2020. An Improved Analysis of Stochastic
Gradient Descent with Momentum. arXiv:math.OC/2007.07989

Ben London. 2017. A PAC-Bayesian Analysis of Randomized Learning with
Application to Stochastic Gradient Descent. In NIPS.

Jerry Ma and Denis Yarats. 2019. Quasi-hyperbolic momentum and Adam for
deep learning. In International Conference on Learning Representations. https:
//openreview.net/forum?id=S1fUpoR5FQ

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew B. Blaschko, and Andrea
Vedaldi. 2013. Fine-Grained Visual Classification of Aircraft. CoRR abs/1306.5151
(2013). arXiv:1306.5151 http://arxiv.org/abs/1306.5151

Stephan Mandt, Matthew D. Hoffman, and David M. Blei. 2017. Stochastic
Gradient Descent as Approximate Bayesian Inference. J. Mach. Learn. Res. 18, 1
(Jan. 2017), 4873-4907.

David A. McAllester. 1998. Some PAC-Bayesian Theorems. In Proceedings of the
Eleventh Annual Conference on Computational Learning Theory (COLT’ 98). New
York, NY, USA, 230-234. https://doi.org/10.1145/279943.279989

Daniel McNamara and Maria-Florina Balcan. 2017. Risk Bounds for Transferring
Representations With and Without Fine-Tuning. In ICML.

Y. Nesterov. 1983. A method for solving the convex programming problem with
convergence rate O(1/k"2).

Yurii Nesterov. 2014. Introductory Lectures on Convex Optimization: A Basic Course
(1 ed.). Springer Publishing Company, Incorporated.

B.T. Polyak. 1964. Some methods of speeding up the convergence of iteration
methods. U. S. S. R. Comput. Math. and Math. Phys. 4,5 (1964), 1 — 17. https:
//doi.org/10.1016/0041-5553(64)90137-5

B. T. Polyak. 1987. Introduction to Optimization.

John Shawe-Taylor and Robert C. Williamson. 1997. A PAC Analysis of a Bayesian
Estimator. In Proceedings of the Tenth Annual Conference on Computational Learn-
ing Theory (COLT *97). New York, NY, USA, 2-9. https://doi.org/10.1145/267460.
267466

Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. 2018. Don’t Decay the
Learning Rate, Increase the Batch Size. In International Conference on Learning
Representations. https://openreview.net/forum?id=B1Yy1BxCZ

Jianhui Sun, Ying Yang, Guangxu Xun, and Aidong Zhang. 2021. A Stagewise
Hyperparameter Scheduler to Improve Generalization. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery amp; Data Mining. New York,
NY, USA, 1530-1540. https://doi.org/10.1145/3447548.3467287

Qiuling Suo, Liuyi Yao, Guangxu Xun, Jianhui Sun, and Aidong Zhang. 2019.
Recurrent Imputation for Multivariate Time Series with Missing Values. In 2019
IEEE International Conference on Healthcare Informatics, ICHI 2019, Xi’an, China,
June 10-13, 2019. IEEE, 1-3. https://doi.org/10.1109/ICHI.2019.8904638

Qiuling Suo, Weida Zhong, Guangxu Xun, Jianhui Sun, Changyou Chen, and
Aidong Zhang. 2020. GLIMA: Global and Local Time Series Imputation with
Multi-directional Attention Learning. In IEEE International Conference on Big
Data, Big Data 2020, Atlanta, GA, USA, December 10-13, 2020. IEEE, 798-807.
https://doi.org/10.1109/BigData50022.2020.9378408

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. 2013. On the
Importance of Initialization and Momentum in Deep Learning. In Proceedings of
the 30th International Conference on International Conference on Machine Learning
- Volume 28 (ICML’13). T-1139-111-1147.

B. Van Scoy, R. A. Freeman, and K. M. Lynch. 2018. The Fastest Known Globally
Convergent First-Order Method for Minimizing Strongly Convex Functions. IEEE
Control Systems Letters 2, 1 (2018), 49-54.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin
Recht. 2017. The Marginal Value of Adaptive Gradient Methods in Machine
Learning. In Advances in Neural Information Processing Systems 30. 4148-4158.
Guangxu Xun, Kishlay Jha, Jianhui Sun, and Aidong Zhang. 2020. Correlation
Networks for Extreme Multi-Label Text Classification. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(KDD °20). New York, NY, USA, 1074-1082. https://doi.org/10.1145/3394486.
3403151

Yan Yan, Tianbao Yang, Zhe Li, Qihang Lin, and Yi Yang. 2018. A Unified Analysis
of Stochastic Momentum Methods for Deep Learning. In I[JCAL 2955-2961. https:
//doi.org/10.24963/ijcai.2018/410

https://doi.org/10.1007/s10107-015-0871-8
https://doi.org/10.1145/3394486.3403089
https://openreview.net/forum?id=rJma2bZCW
https://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1712.07628
http://arxiv.org/abs/1712.07628
https://arxiv.org/abs/1803.05591
http://arxiv.org/abs/1803.05591
https://doi.org/10.1137/15M1009597
https://openreview.net/forum?id=B1g8VkHFPH
https://openreview.net/forum?id=B1g8VkHFPH
https://arxiv.org/abs/cs.LG/2003.00307
https://arxiv.org/abs/math.OC/2007.07989
https://openreview.net/forum?id=S1fUpoR5FQ
https://openreview.net/forum?id=S1fUpoR5FQ
https://arxiv.org/abs/1306.5151
http://arxiv.org/abs/1306.5151
https://doi.org/10.1145/279943.279989
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1145/267460.267466
https://doi.org/10.1145/267460.267466
https://openreview.net/forum?id=B1Yy1BxCZ
https://doi.org/10.1145/3447548.3467287
https://doi.org/10.1109/ICHI.2019.8904638
https://doi.org/10.1109/BigData50022.2020.9378408
https://doi.org/10.1145/3394486.3403151
https://doi.org/10.1145/3394486.3403151
https://doi.org/10.24963/ijcai.2018/410
https://doi.org/10.24963/ijcai.2018/410

KDD ’22, August 14-18, 2022, Washington, DC, USA

9 APPENDIX

In this section, we give the proof of Theorem 1, 2, and 3. We only
keep the key proof steps and omit algebraic transformations due to
page limit.

9.1 Proof of Theorem 1

We first provide the intuition of the proof. We only need to
bound the norm of the right side of Equation (8) as we could see

2
16k = 017 = el < | [d’;—l] |
k
conclude that there exists a vanishing sequence of {¢; }, such that,
ITII%* < (p(T) + ek)Zk, We could get ¢4 with this {€ } sequence.
The norm of second term in Equation (8) could be bounded by

SENTIPED)SINE 1P, Recall [IS]2< 1= f% + @®(1 = vB)?, and
112

. By Gelfand’s formula, we could

after taking expectations on both sides, E||£;]|< ¢2. Combining
everything together will give us &.
Then, we introduce one key lemma and prove Theorem 1 after-

wards.

LEMMA 2. Denote the spectral radius of T as p(T). Let the small-
est and largest eigenvalues of Hessian matrix as: p = min; A;(A),
and L = max; 1;(A). Let Ay 2 (1 + f — ad + avpA)? — 4f(1 —
al + adv). Then we have p(T) = max{py, pr}, where p)

%|1+ﬁ—a/1+avﬁ/1|+l Ay, ifAy =0
VB — ad + adv), otherwise

REMARK 9.1. Note that this lemma is an adapted version from
[6] (see e.g., Lemmas 5, 6, 7). Here we adopt a more concise proof
technique to show this lemma for completeness of this work.

PROOF OF LEMMA 2. Recall the transition matrix T is defined
pl 1-pA
—avpl I—-a(l-vpA
with d X d blocks. As A is real and symmetric, all blocks commute
with each other, since each block is an affine matrix function of
A. Therefore, At is an eigenvalue of T if and only if there is an
eigenvalue 14 of A, such that A7 is an eigenvalue of the 2 X 2 matrix

as T = ,and T is a 2 X 2 block matrix

18 a-pua i, .
[33]: [—av B 1-all—vAia| The characteristic polynomial is:
x2 = (1+ f—ada + avfra)x + B(1 — ady + avAy). Therefore, let

Ay 2 (1+B—ad+avpA)? —4B(1 — ad + adv), and the solution
of characteristic polynomial is given by p,,. Let {/Ii}?zl be the
set of ordered eigenvalues of A. As p, , is a quasi-convex function
in A4 with fixed (o, f, v). Therefore, p; , achieves its maximum at
boundary, i.e., i and L. Therefore, we get p(T) = max{py, pr}. O

Proor oF THEOREM 1. Recall the dynamics of QHM: [dk 1] =

d—q

Tk ;] + Zle Tk_jS§j, where d_; is initialized as 0.
0

We extend the result for the deterministic case in [6] (see e.g.
Theorem 3) to stochastic setting. Notably, in deterministic set-
ting, the second term Zle Tk-Jis¢ j is ignored. Let E denotes

1%
Tk

<

Eg, & we have El|0; — 0°[1* = Eflr|l?

IT*Irg + B S5 ITT 1218120811

1715

Jianhui Sun et al.

According to Gelfand’s formula: p(T) = limk_>+oo||Tk||%, we
would get: for any € > 0, there exist a K(¢), such that ||Tk||% <

2 [T
p(T) + ¢, for all k > K(e). Let C(e) = maxy (e max { (p(TTe)Z}
Therefore, ||TX|| < C(e)(p(T) +)k, and we consequently have:
ITRIrg + E K ITETIPISIPNE P eq + Cle)o®(1 = 2 + a®(1 —
Vﬁ)z)zk 1(p(T) + e)z(k 0 < £4 + €. We obtain Theorem 1 after
some stralghtforward algebraic transformations. O

9.2 Proof of Theorem 2

Recall the formulation of QHM, and denote the update sequence
Yk = Or41 — Ok. The updating rule is different from vanilla SGD in
that y # —ag. The proof of Theorem 2 hinges on the construction
of an auxiliary sequence {ny }ren, such that ., —nx = —adi. This
{nk}ken is more like vanilla SGD iterates and thus easier to deal
with. We then study the property of {1y }ren and its connection

. . Ok k=1
1 (Ol (e s devisedas e = 1o apuy
where dy = 0.
It is not difficult to verify ny,1 — g = —agy when k = 1; when
k> 2:neq —mg = 9k+1_%;;}dk_(9k_ ﬂﬁdk 1) =(-a+av-

afv)gx — av(dy — Pdx_1) = —adk.
We now study R(1x+1) — R(7x): Bg, [R(nk+1)] < Rlm) + B [<

VR Mies1 = M >] + %Egk[ﬂf?ku - miell?] = ROp) + Eg, [<
A 2 A
VRO, —adx > + 4B, [llgell*]-
Taking full expectation E Eg Eg,...Eg, on both sides:
E[R(7k.1)] < B[R] + E[< VR(pk), —agi >] + LELE[IGe)?] <

2 ~
BIR(m)] + LElIgel®] - «Elllgil®] + a%LZE[qu - Oll’] +
azCE[Hng] for ¢ > 0 as any positive constant.

And we know np — O _1. Thus we have:

afv
-
E[R(ne1)] < E[R(nkn + @SBk 2] + (e
@E[llgell?] + LB [12].

Let us make a small detour and first provide the following lemma
with respect to the updating sequence {y = 0,1 — Ok }ren- Given
1-pv i=k
v(1-p)pFt i<k’
unroll the recursion of Equation (3) with dy = 0, and we could get
Yk =

the gradient sequence {gy }ren, set: ay; =

Z]leak!ig}. Therefore, E[yx] = Zleak,igi. We will have:

LEmMMA 3. The following two inequalities hold,
. . 1-
(1) The variance of QHM updating vectoryy.: V[yz] < (ngvzﬁz -

THVEE (1= put) o

(2) The deviance between updating vector y and gi: E[|lgx —

-J
L gl < S (k- e o)ET0 - 0121

Jj=1 1-vpk
ProOF OF LEMMA 3. We know V[yk] = [||yk— ~ A, :9ill?] =
1 1
BOISE aki(oi — G0I] < 352 0 = (8 g gk

(1- ﬁv)z)cr , where the inequality follows from that {gk}keN

are independent from each other and Eg [llgr - al?] <

a?. 1 - pky, Elllgx -

We know Z’leak,i thus we have:

Demystify Hyperparameters for Stochastic Optimization with Transferable Representations

NS

aklgl”] (1- vﬂk)z [”Zl 1akl(gk - gl)”]

1- vﬁk

W X Zi’jzlak,iak,j(fE[”gk = gil*1 + 3Elllgr - gill])

(i
ok ak Bllgk—gil®) < ey B ks ((k=DR5 ELlg 0 -

(iti)
glIP) S (K - LBAIEI0 - 0)12) -
ek 11(21 (gl — i))E[||9j+1 — 0||21L2, where (i) follows

from Cauchy-Schwarz inequality, (ii) follows from triangle inequal-
ity, and (iii) follows from smoothness. Substitute the exact form
of ay.;, we know: 37 aji(k — i) = v(1 - ﬁ)(z{zlﬁk‘i(k - i)) <
V,Bk_j (k —-j+ %) Therefore, we could get the second state-
ment. |

We know: E[[ld1[1°] < 2E[lldx—y = (1 = BEI 1 gil1°] +

2BI1 - PRSP < 25fe? ¢ 2Bl -
ﬂ)Z ﬁk 1-14.12], where it follows from Lemma 1 in
[24]. And we also have: E[|| lﬁflﬁk lﬁk =gi|?] <
22l ﬂklzk 1B g = glP) + 2E[lgkl PRGN <
o® +Elllgrl*].

Substitute the above inequalities back to the inequality
prior to Lemma 3: E[R(jk,1)] < E[R(mp)] + (

20[3CL2(ﬂ)2(1 _ ﬁk—l)Z

—a+a%+

2
+ L)Elllgell?) + (e LA L2k +
Lt)o? 1 aader2 (L2 - N x Bl sk 1ﬂ’< I~ig,
glPl. We kmow: B[l SR f g~ gl?] =
_gk _
PR RS B — ail?) Let ¢ = 5
we have E[R(7r.y)] < E[R(L 1) 242
Nk+1 = n)l + 2(1+5) + 3 jLato” +
L B ek p g -)+ (- v bLa
Hﬁﬂv La) lgell?l. We study the following sequence:
L 2 Rp) - R+ Zqill6k—i — Okill® following

the idea from [24],
mined: E[Lr,; — L]

where g; are constants to be deter-
< QB[O — Okl’] + Zii_f(qm -

90015 — Ok i||2](arad +2ad (L) L VELlgi) +
(a AA L L)a +20%1%(5)? (1—/3’<)2 x
Bl 1= A0 - 9el?)

Let us look at g1 E[||0k.1 — 0k ||?] in detail: g1 E[||6k.1 — 0kl1?] =
a10%Ellyel’] < 2qie (M 262 — Tpv R+ (1 -)
2q1a%(1 — vp*)E[l ay. gl].

2)ot +

1
lvﬁkil

We know: B[l| =z 2 aigil*] < 2Bl 2 agigi

i) + 2B[lgil?). Therefore, we have qiE[[16k.1 — Ocll*] <
1 1

aqia(1 - vB*VEIIglI?) + 2q103(F5v2 82 - Thvep% 4 1 -

Pu?)o? + dqia(1 - v Bl L llak,-gi—gkn !

We study I = Z (‘IHI = q)E[l|Ok+1-; — Ox— l||z] + 4Q10!z(1 -
]L
VB skt 1 - (k j+ 125 VL0 105121+ 203 e ()P0 -

1716

KDD ’22, August 14-18, 2022, Washington, DC, USA

P9 xS B =+)L 1 - 1P < 355 gien -
B0k 1s = Oill?) + 4qia?(— vp9? x S (i

k-1 p'L°
XX v

VB0 1-1 — O] + 2L 2220 - B

(i+
L5 VB 121 = Ol

In order to let I be non-positive, we need to have for all i > 1:
. . 2(1 — k)2 2(_v y2 ky2
Gin < qi = (41621 = vBNE + 20317270 -) £ ﬁk(u
%) It suffices to have for all i > 1: gj+1 = qi — (4q1a 1/(1_—,6) +
2a3cL2(#)2)ﬁiL2(i + %).

Therefore, by some algebraic transformations, in order for

qi > O0foralli > 1, q1 could be set as q1 = (4q1azv(+_ﬁ) +
20314 B £ V2
2a cLZ()Z)Zwlﬁ’Lz(z + %) = tw ﬁ)4 Combining ev-

erything together, and we could determine {qk} ke such that I'is
non-positive.
We now have: E[Lr,; — L¢] < —O1E[llgkll?] + Q20?%, where
O12a-— 0(2l - 20{3cL2(1/‘(3—vﬂ)2 - Iﬁ —4g102(1 — vp*)? and Q,
1 1
(a CLz(ﬁv)21+g Lg‘)+2q1a (1+ﬁ V22— ﬁ zﬁzk (1-pv))
Omitting the tedious transformations, we could get, if & <

1-f v-A)V1

min{(3+2ﬁzvz+2v4)La 2z ﬁ+ﬂ2L} we have: llczéc:lE[”gi”Z] <
2(R(91)—7z)
e (ﬁliﬁz Hﬁﬁzvé +(1- ﬂv)zv4)La0'2,

9.3 Proof of Theorem 3

We introduce the following lemma and then prove Theorem 3.

LEMMA 4 ([29]). Let KL(Q||P) as the KL divergence between two
distributions Q and P. For any positive real § € (0, 1), with probability
at least 1— & over a sample of size N, we have the following inequality

for all distributions Q: R(Q) < R(Q) + \/ KLQI1P)+log 5 +log N+

2N-1
Lemma 1 can be adapted from Theorem 5 in [6] with some
algebraic transformations. We omit the detailed proof due to space
limit. As we are mainly concerned about how a, 5, v affect the trend
of generalization bound, we ignore higher order terms for now. The
experiments have shown that our approximations are satisfactory.

PROOF OF THEOREM 3. With Lemma 4 and Lemma 1, we are
ready to prove Theorem 3. Recall the density of prior and posterior

distributions are fp = m exp { - %(9 —00)T(AoIy)~1(6 -
0
- 1 _ 1gTy-1 .
90)} and fo = TETR) exp{ :0°%, 6}, respectively. We
calculate their KL(Q||P) as follows: KL(QI|P) = [(log Helal

307310+ 3(0-60)" (014) " (0—00)))) fo(0)do =

Her((ola)y 139 +
_ Aol
07 (holg)™ 00 —d +log 112k } 20000~ 4+ Llog Ao + 5k tr(Sg) -

% log|2g|. A direct application of the determinant and trace from
Lemma 1 completes our proof for training from scratch. The sce-
nario for fine-tuning follows the exact same proof logic. O

	Abstract
	1 Introduction
	2 Background
	2.1 Learning from Scratch vs. Fine-tuning
	2.2 Gradient Descent Algorithm and Its Variants

	3 Convergence of Momentum Schemes in Stochastic Approximation Setting
	3.1 Strongly Convex Objective
	3.2 Nonconvex Objective

	4 Generalization of Momentum with and without Fine-tuning
	5 Guidelines to Improve Generalization
	5.1 Enforce _f,T to be close to _f,S
	5.2 Small ratio =2n_b =1=+1=0 helps deep models generalize
	5.3 NAG generalizes better than SHB, when 1
	5.4 Set momentum parameter close to 1 and as 0.5
	5.5 Guidelines to other momentum schemes

	6 Verifying the Guidelines: Empirical Evidence
	7 Related Work
	7.1 Convergence analysis for momentum methods
	7.2 Generalization analysis for momemtum methods

	8 Conclusions
	Acknowledgments
	References
	9 Appendix
	9.1 Proof of Theorem 1
	9.2 Proof of Theorem 2
	9.3 Proof of Theorem 3

