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Abstract—1In this article, we propose a novel loss function
for training generative adversarial networks (GANs) aiming
toward deeper theoretical understanding as well as improved
stability and performance for the underlying optimization prob-
lem. The new loss function is based on cumulant generating
functions (CGFs) giving rise to Cumulant GAN. Relying on a
recently derived variational formula, we show that the corre-
sponding optimization problem is equivalent to Rényi divergence
minimization, thus offering a (partially) unified perspective of
GAN losses: the Rényi family encompasses Kullback-Leibler
divergence (KLD), reverse KLD, Hellinger distance, and
x2-divergence. Wasserstein GAN is also a member of cumu-
lant GAN. In terms of stability, we rigorously prove the linear
convergence of cumulant GAN to the Nash equilibrium for a
linear discriminator, Gaussian distributions, and the standard
gradient descent ascent algorithm. Finally, we experimentally
demonstrate that image generation is more robust relative to
Wasserstein GAN and it is substantially improved in terms of
both inception score (IS) and Fréchet inception distance (FID)
when both weaker and stronger discriminators are considered.

Index Terms— Cumulant generating function (CGF), gener-
ative adversarial networks (GANs), image generation, Rényi
divergence.

I. INTRODUCTION

Generative adversarial network (GAN) is a two-
player zero-sum game between a discriminator and
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a generator, both being neural networks with high learning
capacity. GANs [1] are powerful generative models capable
of drawing new samples from an unknown distribution when
only samples from that distribution are available. Their pop-
ularity stems from their ability to generate realistic samples
from high-dimensional and complex distributions. In computer
vision, GANs have been applied for (conditional) image
generation [2]-[8], image synthesis from text (i.e., reverse
captioning) [9], image-to-image translation [10], and image
super-resolution [11]. In time-series data, GANs have been
used for speech enhancement [12], speech synthesis [13], [14]
as well as for natural language processing [15], [16] among
other types of raw data. GANs have been also employed
to protect classifiers against adversarial examples [17]-[19].
Several surveys and reviews on GANs are available in the
literature [20]-[23]. Moreover, the concept of adversarial
training which fairly designates that the loss function is learned
(i.e., data-driven) and not predetermined by the user has been
successfully applied in domain adaptation [10], [24]-[26] and
representation disentanglement [27].

There are three ingredients that constitute a GAN: the
architectures for both the generator and the discriminator,
the training algorithm and the loss function which is further
divided into the objective functional to be optimized and the
function space where the discriminator belongs to. Over the
years, the capacity of the neural networks has been increased
resulting in significant gains in terms of naturalness and perfor-
mance [6]-[8], [28]. Similarly, new normalization techniques
such as spectral normalization [29] and new optimization algo-
rithms [30] have been proposed. Two characteristic examples
are progressive GAN training [6], [31] where the models are
built in progressive levels of resolution and MelGAN [14]
where weight normalization played a critical role for the
generation of high-quality speech. Several heuristics have been
also devised [32] to alleviate the difficulties of training GANs.

As already stated, the third ingredient in GANs’ definition
corresponds to the loss function. Since their introduction,
GANSs have been described as a tractable approach to minimize
a divergence or a distance between the real data distribution
and the model distribution. Indeed, the original formulation of
GANSs [1] can be seen as the minimization of the Shannon-
Jensen divergence. f-GAN [33] is a generalization of vanilla
GAN where a variational lower bound for the f-divergence
is minimized. Least-Squares GAN [34] minimizes a softened
version of the Pearson y2-divergence and hinge loss [35]
proposes objective functionals aiming toward avoiding mode
collapse issues. As it is well-documented, the training proce-
dure of GANs often fails and several studies have suggested
remedies to alleviate the observed hindrances. For instance,
a recurring impediment with GAN training is the oscillatory
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behavior of the optimization algorithms due to the fact that
the optimal solution is a saddle point of the loss function.
Standard optimization algorithms such as stochastic gradi-
ent descent ascent (SGDA) may fail even for simple loss
functions [30], [36].

One of the most successful approaches to improve stability
is through the restriction of the function space of the discrimi-
nator. Wasserstein GAN (WGAN) [37] which has been further
improved in [38] aims to minimize the Wasserstein distance
which is equivalent to restricting to Lipschitz continuous
functions. SNGAN [29] also restricts to Lipschitz continuous
functions while MMD-GAN [39] restricts the discriminator
to belong to a reproducible Hilbert kernel space. Recently,
the dissociation between the objective functional and the
function space has been presented in a rigorous mathematical
framework [40]. In this article, we concentrate on the loss
function and propose a new objective functional that further
improves training stability and avoids mode collapse.

The novel objective functional is based on cumulant gen-
erating functions (CGFs) with the resulting model referred as
Cumulant GAN. A key advantage of cumulants over expec-
tations is that cumulants capture higher-order information
about the underlying distributions which often results in more
effective learning. Using this property, we rigorously prove
that cumulant GAN converges exponentially fast when the
gradient descent ascent algorithm is used for the special case
with linear generator, linear discriminator, and Gaussian dis-
tributions. Despite being a simple case, this theoretical result
offers a rigorous and valuable differentiation between WGAN,
which fails to converge, and the proposed cumulant GAN
that demonstrates linear convergence to the Nash equilibrium,
when the same gradient descent ascent algorithm is used on
both.

Interestingly, the optimization of cumulant GAN can be
described as a weighting extension of the standard SGDA
where the samples that confuse the discriminator the most
receive a higher weight, thus, contributing more to the update
of the neural network’s parameters. Furthermore, by applying
a recent variational representation formula [41], we show that
cumulant GAN is capable of interpolating between several
GAN formulations, thus, offering a partially unified mathemat-
ical framework. Indeed, the optimization of the proposed loss
function is equivalent to the minimization of a divergence for
a wide set of cumulant GAN’s hyper-parameter values. It is
also worth-noting that despite f-GAN’s (partial) unification
property [33], cumulant GAN and f-GAN formulations are
not equivalent even when they minimize the same divergence
and there is a subtle but important difference: the underlying
variational representation which is eventually optimized is
different. Ours is based on the Donsker—Varadhan represen-
tation formula while f-GAN is based on the Legendre trans-
form of f-divergence. For KLD, Donsker—Varadhan formula
is tighter than Legendre duality formula.! Additionally, our
formulation is computationally more manageable because the
hyper-parameters of cumulant GAN are of continuous nature
while f-GAN requires different f’s for different divergences.

!'Simply by the fact that x > elogx; see also [42].
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Our numerical demonstrations aim to provide insights
into cumulant GAN’s representational ability and learnabil-
ity advantages. Experiments on synthetic multi-modal data
revealed the differences in the dynamics of learning for dif-
ferent hyper-parameter values of cumulant GAN. Even though
the optimal solution is the same, the SGDA’s dynamics for the
training parameters driven by the chosen hyper-parameters’
values resulted in very different distributional realizations with
the two extremes being mode covering and mode selection.
Moreover, using cumulant GAN, we were able to recover
higher order statistics even when the discriminator is linear.
Finally, we demonstrated increased robustness as well as
improved performance on image generation for both CIFAR10
and ImageNet datasets. We performed relative comparisons
with WGAN under standard as well as distressed settings
which is a primary reason for training instabilities in GANs
and demonstrated that not only cumulant GAN is more stable
but also it is better up to 68% in terms of averaged inception
score (IS) and up to 75% in terms of Fréchet inception
distance (FID).

The article is organized as follows. Section II introduces
the necessary background theory, while Section III defines
cumulant GAN and highlights the derivation of several of its
theoretical properties. In Section IV, numerical simulations on
both synthetic and real datasets are presented, while Section V
concludes the article.

II. BACKGROUND

The proposed GAN is a substantial generalization of
WGAN by means of CGFs. These concepts are briefly dis-
cussed in this section.

A. Wasserstein GAN

WGAN [37], [38] minimizes the Earth-Mover (a.k.a. one-
Wasserstein) distance and primarily aims to avoid gradi-
ent saturation during the training process. Based on the
Kantorovich—Rubinstein duality formula for Wasserstein dis-
tance, the loss function of WGAN can be written as

minmax E,, [D(x)] ~ E,, [D(x)] (1)
where p, and p, correspond to the real data distribution
and the implicitly defined model distribution, respectively.
Namely, p, denotes the distribution of G(z), where G is
the generator and z ~ p,(z) is a random input vector often
following a standard normal or uniform distribution. D(-) is
the discriminator (called critic in the WGAN setup) while D is
the function space of all one-Lipschitz continuous functions.
In WGAN, Lipschitz continuity is imposed by adding a (soft)
regularization term on gradient values called gradient penalty
(GP). It has been shown that GP regularization produces
superior performance relative to weight clipping [38].

B. Cumulant Generating Functions

The CGF, also known as the log-moment generating func-
tion, is defined for a random variable with probability density
function p(x) as

Ay p(B) = logE,[e/ V] (2)
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where f is a measurable function with respect to p. The
standard CGF is obtained when f(x) = x. CGF is a convex
function with respect to f and it contains information for
all moments of p. CGF also encodes the tail behavior of
distributions and plays a key role in the theory of Large
Deviations for the estimation of rare events [43]. A power
series expansion of the CGF reveals that the lower order
statistics dominate when || << 1 while all statistics contribute
to the CGF when || >> 1. In statistical mechanics, CGF is the
logarithm of the partition function, —B~'A ,(—p) is called
the Helmholtz free energy where £ is interpreted as the inverse
temperature and f as the Hamiltonian [44]. Furthermore,
it is straightforward to show that Af,(0) = 0 as well as
A/ﬁ p(O) = E,[f(x)], hence, the following limit for CGF
holds:

lim £71A 1, (B) = Eplf ()] 3)
We are now ready to introduce the new GAN.

III. CUMULANT GAN
A. Definition

We define a novel GAN model by substituting the
expectations in the loss function of WGAN with the respec-
tive CGFs. Thus, we propose to optimize the following mini-
max problem:

. - -1

minmax {(=f)"" Ap.p, (=8) =7 "' Ap,p, ()}
= mi _ B! D) _ ,, 1 ? D(x)
= min max B~ logE,, [e ] 7~ logE,, [e ]

=L(.7)
“)

where the hyper-parameters f and y are two nonzero real
numbers which control the learning dynamics as well as the
optimal solution. Since the loss function is the difference of
two CGFs, we call L(f,y) in (4) the cumulant loss func-
tion and the respective generative model as Cumulant GAN.
Throughout this article, we assume the mild condition that
both CGFs are finite for a neighborhood of (0, 0), therefore,
the cumulant loss is well defined for |f| + |y| < €, for
some € > 0.

The definition of the loss function is extended on the axes
and the origin of the (f, y )-plane using the limit in (3). Hence,
the cumulant loss function is defined for all values of £ and y
for which the new loss function is finite. It is straightforward
to show that WGAN is a special case of cumulant GAN.

Proposition 1: Let D be the set of all 1-Lipschitz contin-
uous functions. Then, cumulant GAN with (£, y) = (0, 0) is
equivalent to WGAN.

Proof: The proposition is a consequence of the fact that

Jim L(B.7) = L(0.0) = E,, [D(x)] ~ Ey, [D(x)].

0

Remark 1: The same proof applies when D is the set of all

measurable and bounded functions and cumulant GAN with

(f,7) = (0,0) is equivalent to minimizing the Radon metric

between the two distributions which corresponds to the origin
in Fig. 1.

\

divergence
=1)

KLD - 4log(1-Hellinger"2)
| %vers? KLD

' B

Ylog(1+reverse x"2)

Ylog(1+x2)

1/B x “largest-
mode selector”

Fig. 1. Special cases of cumulant GAN. Line defined by f +y = I has
a point symmetry. The central point, ((1/2), (1/2)), corresponds to the
Hellinger distance. For each point, (a, 1 — a), there is a symmetric one,
ie., (I —a,a), which has the same distance from the symmetry point. The
respective divergences have reciprocal probability ratios (e.g., KLD & reverse
KLD, y2-divergence & reverse y>2-divergence, etc.). Each point on the ray
starting at the origin and pass through the point (a, 1 — a) also corresponds
to (scaled) Rényi divergence of order a. These half-lines are called d-rays.

Next, we rigorously demonstrate that cumulant GAN can
be seen as a unified and smooth interpolation between several
well-known divergence minimization problems.

B. KLD, Reverse KLD and Rényi Divergence as Special
Cases

A major inconvenience of many GAN formulations is their
inability to interpret the loss function value and understand the
properties of the obtained solution. Even when the stated goal
is to minimize a divergence as in the original GAN and the
f-GAN, the utilization of training tricks such as a nonsatu-
rating generators may result in the minimization of something
completely different as it was recently observed [45]. In con-
trast, the proposed cumulant loss function can be interpreted
for several choices of its hyper-parameters. Below there is a list
of values for f and y that result to interpretable loss functions.
Indeed, several well-known divergences are recovered when
the function space for the discriminator is the set of all
measurable and bounded functions. In the following, we make
the convention that a forward divergence or simply divergence
is a divergence that uses the probability ratio, (p,/p,), while
a reverse divergence uses the reciprocal ratio.

Theorem 1: Let D be the set of all bounded and measurable
functions. Then, the optimization of cumulant loss in (4) is
equivalent to the minimization of

1) Kullback-Leibler divergence for (53, y) = (0, 1):

minmax £.(0, 1) = min D, (prlipg).

2) Reverse KLD for (5, y) = (1,0):

min Igleag L(1,0)= min Dk (Pg||Pr)~

3) Rényi divergence for (5, y) = (a, 1 —a) with a # 0 and
o # 1:

mGlnIgleagL(a, l—a)= ménRa (pgllp,)
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as well as for (f,7) = (1—a, a) witha # 0 and a # 1:

i L(1 —a,a) =minR,(p;,
ménrlgleaz)j( ( a,a) méll a(PHPg)

where R, (p|lg) is the Rényi divergence defined by

1 a
Ra(pllg) = mlOgEq[(S) :|

when p and ¢ are absolutely continuous with respect to
each other and a > 0.2

Proof:
1) Using the definition of L(f, y), we have:

max £(0, 1) = max{E,, [D(x)] — logE,, [¢"]}
= Dk (Pr||Pg)

where the last equation is the Donsker-Varadhan varia-
tional formula [43], [46].
2) Similarly

max L(1,0) = rgleaz)j({— logE,, [e’D(")] — E,,g[D(x)]}
s 2ol 0] e, ]

= Dk (pellpr)

where we applied again the Donsker—Varadhan varia-
tional formula.
3) Generalizing a. and b. we now have:

L(a, 1 —
pas Lie 1 =)

1
= — 1 E —aD(x)
rgleaz))(I a 8 Fer [e ]

logE, [e(l_“)D(")] ]

l—-a
— loo | [ (a—l)D’(x)]
D’inageD{a —1 08 Fpe|©
1 ,
——logE,, [e“D(’“)”
a
= Ra (pg”pr)

where the last equation is an extension of the
Donsker—Varadhan variational formula to Rényi diver-
gence and was recently proved in (see [41, Th. 3.1]).
For completeness, we provide a proof of the Rényi
divergence variational representation in Appendix A of
Supplementary Materials.

The proof for the case L(1—a, ) is similar and agrees with
the symmetry identity for the Rényi divergence, R, (p|lg) =
Rl—a (61||P) 0

The Rényi divergence, R,, interpolates between KLD
(e — 0) and reverse KLD (o — 1). Interestingly, there are
additional special cases that belong to the family of Rényi
divergences. The following corollary states some of them,
while Fig. 1 depicts schematically the obtained divergences
and distances on the (f, y)-plane.

2The definition is extended for & < O using the symmetry identity
Ra(pllg) = Ri-a(qllp).
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Corollary 1: Under the same assumption as in Theorem 1,
the optimization of (4) is equivalent to the minimization of

1) Hellinger distance for (f,y) = ((1/2), (1/2)):

) 11 .
meILI)lea%L(E’ 5) = mGln —4log(1 — Di, (pg, pr))

where D7, (p,q) = (1/2)E,[(((p/q))"* — 1)*] is the
square of the Hellinger distance [47].

2) yx>’-divergence for (B,7) = (—1,2):
. 1 2
min max L(—1,2) = min 3 log(l +x (p,||pg))
and reverse y>-divergence for (8,7) = (2, —1):
. 1 2
min max L(2,-1)= min 3 log(l +x (pg||p,))

where x2(pllg) = Eul((p/g) — D] is the

x2-divergence® [47].
3) All-mode covering or worst case regret in minimum
description length principle [48] for (5, y) = (o0, —00):

min lim a max L(a, 1 —a)=minlog{ esssup pe(x)
G a—>o0 DeD G xesupp(pg) p,(x)

where ess sup is the essential supremum of a function.
4) Largest-mode selector for (£, y) = (—00, o0):

o L pr(x)
min lim a max L(1 —a, a)=minlog| esssup .
G a—>o0 DeD G xesupp(p,) pg(x)
Proof: All cases a.—d. follow from Theorem 1-c as special
instances of Rényi divergence:

Rip(pllg) = —4log(l = Dy (p, )
Ra(plg) = 5 log(1+ 22 (pll), R(pllg) = Rlalp)

and

/
lim aR,(pllqg) = log(ess sup & )
=00 xesupp(q) Q(x)
We refer to [49] and [50] and the references therein for detailed
proofs. O

The flexibility of the two hyper-parameters is significant
since they offer a simple recipe to remedy some of the most
frequent issues of GAN training. For instance, KLD tends to
cover all the modes of the real distribution while reverse KLD
tends to select a subset of them [45], [49]-[52] (see also Fig. 3
for a benchmark). Therefore, if mode collapse is observed
during training, then, increasing y with f = 1—y will push the
generator toward generating a wider variety of samples. In the
other limit, more realistic samples (e.g., less blurry images)
but with less variability will be generated when £ is increased
while y =1—p.

We also expand the interpretation of the (f, y)-plane to
the case where f + y > 0 as the following proposition
demonstrates. We show that the half-lines beginning at the
origin and passing through the line f+7y = 1 define the same

3Forward y2-divergence is often called Pearson y2-divergence while the
reverse y>2-divergence is often called Neyman y2-divergence.
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divergence therefore we call them divergence rays or d-rays
for shorthand as depicted in Fig. 1 (gray half-lines).

Proposition 2: Let o € R~ {0, 1} and 6 € [Omin, Omax] With
0 < Omin < Omax < oo and D be the set of all bounded
and measurable functions. Then, the optimization of cumulant
loss in (4) is equivalent to the minimization of scaled Rényi
divergence for (5, 7) = (0(1 — a), da)

1
i L1 — = min — . .
minmax L(G(1 — &), da) = min =R (prllpe)
Proof: The maximization part of cumulant GAN becomes

rglez% L1 —a), oa)

= max logE,, [e_(s(l_“)D(x)]

1
DeD[_5(1 —a)

1 yo. D (x
—alongg[ea D( )]]

1 ,
_ ! (a-1)D'(x)
) D/gg%ép{ log ), [e ]

(a—1)
1 aD'(x)
——logE,, [e ]
a
1
= SR(Z (pr”pg)
which completes the proof since J is positive and far
from O or oo thus 6D € D. O

Remark 2: From a practical perspective, the boundedness
condition required in the above theoretical formulation can be
easily enforced by considering a clipped discriminator with
clipping factor M, i.e., Dy (x) = M tanh((D(x)/M)). On the
other hand, the set of all measurable functions is a very large
class of functions and it might be difficult to be represented by
a neural network. However, one can approximate measurable
functions with continuous functions via Lusin’s theorem [53]
which states that every finite Lebesgue measurable function is
approximated arbitrarily well by a continuous function except
on a set of arbitrarily small Lebesgue measure. Therefore,
a sufficiently large neural network can accurately approximate
any measurable function.

C. Cumulant GAN as a Weighted Version of the SGDA
Algorithm

The parameter estimation for the cumulant GAN is per-
formed using the SGDA algorithm. Algorithm 1 presents the
core part of SGDA’s update steps where we exclude any regu-
larization terms for clarity purposes. Namely, # and 6 are the
parameters of the discriminator and the generator, respectively,
while A is the learning rate. The proposed loss function is
not the difference of two expected values; therefore, the order
between differentiation and expectation approximation does
matter. We choose to first approximate the expected values
with the respective statistical averages as

m

R 1 ey 1 < .
Lu(.7) = —glog > e = Zlog 3 & PO (5)
i=1 i=1

Then, we apply the differentiation operator which results
in a weighted version of SGDA as shown in Algorithm 1.

Arrows indicate the

relative change of
weight value

Uniform

l I l l 1 level: 1/m

————¢ 00— Ao A A A A ——
D(x)

0 : Generated data A : Real data

Fig. 2. Interpretation of cumulant GAN as a weighted variation of SGDA for
£,y > 0. Both real and generated samples for which the discriminator outputs
a value closer to the decision boundary are assigned with larger weights
because these are the samples which most probably confuse the discriminator.

Interestingly, several recent articles [52], [54]-[57] included a
weighting perspective in their optimization approach.

Algorithm 1 Core of SGDA Iteration

Input: data batch: {x;}, noise batch: {z;}
for k steps do

n<n+ /l(z w!v,D(x;) — z w! VnD(G(Zi)))

i=1 i=1

end for

0«0+ /I(Z w! VaD(G(Zi)))

i=1

The difference between WGAN and cumulant GAN for the
update steps is the weights w;g and w! . In WGAN, the weights
are constant and equal to (1/m) while in cumulant GAN they
are defined for anyi = 1,...,m by

e—hDG) 7 DG @)

y
e > e #D(x)’ and wp = > e'P(G(z)))
The weights redistribute the sample distributions based on the
assessment of the current discriminator. Fig. 2 qualitatively
demonstrates the change of the weight relative to uniform
weights for £,y > 0. The weights place more emphasis on
the real samples associated with the smallest D(x;) values.
Similarly they place more emphasis on the synthetic sam-
ples that give the highest D(G(z;)) values. A quantitative
demonstration of the weights and how they evolve during the
training process is presented in Appendix C (see Figs. 1-3) of
Supplementary Materials.

The intuition behind the weighting mechanism is that sam-
ples that confuse the discriminator, i.e., the samples around the
“fuzzy” decision boundary, are more valuable for the training
process than samples that are easily distinguished, thus, they
should weigh more. Essentially, the discriminator is updated
with samples produced by a better generator than the current
one, as well as with more challenging real samples. Similarly,
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the generator is also updated using samples from a generator
which is better than the current one. Overall, due to the
use of the weights w;g ,w] in Algorithm 1, both generator
and discriminator updates will be more affected by synthetic
samples that are more indistinguishable from the real ones.

Additionally, the update of the discriminator is performed k
times more than the generator’s update offering two important
advantages. First, more iterations for the discriminator implies
that it better distinguishes the real data from the generated
ones, making the weighting perspective more valid. Second,
it better approximates the optimal discriminator, thus, the the-
ory presented in the previous section becomes more credible
in practice.

Remark 3: The Monte Carlo approximation in (5) is biased.
However, it has been shown that it is consistent [52], hence, the
error due to the statistical approximation decreases as the size
of minibatch increases. Bias correction gradients using moving
averages have been utilized in [42] for the estimation of CGF.
However, the modification of the loss function and the lack
of an interpretation analogous to the weights w;B ,w] are two
key reasons to avoid inserting any bias-correction mechanism.

D. Convergence Guarantees for Linear Discriminator

Let D be the set of all linear functions (i.e., D(x) = 5"x
with #,x € RY) and assume that the real data follow a
Gaussian distribution with mean value u € R? and covariance
matrix, I;. The generator is defined by G(z) = z + 0, where
z is a standard d-dimensional Gaussian. The loss function for
WGAN is*

minmax " (¢ - 0) (6)
n

while the respective exact cumulant loss function from (4) is
given by [58]

s (g Lt N L rp L
rrgnm$X_ﬁ( B u+2ﬂnn) y(w zynn)
B+7v 7

5
It has been proven that the training dynamics oscillates without
converging to the optimum for the WGAN loss function (6)
if gradient descent ascent (GDA) is used [36] and more
sophisticated algorithms such as training with optimism [30]
or two-step extra-gradient approaches [59] are required to
guarantee convergence. The use of CGFs transforms the opti-
mization problem from just concave to a strongly concave
problem for 7. Actually, the cumulant loss function (7) is
((B 4+ y)/2)-strongly concave. When the loss is both strongly
convex and strongly concave, the GDA algorithm converges
linearly (i.e., exponentially fast) to the optimal solution under
efficient proximal mappings admission [60]. Our case, where
the loss is not strongly-convex with respect to @ but it is
strongly-concave for 7, has also linear convergence when
the coupling term between # and 0 is full-column rank and
the learning rates are properly chosen as it has been shown

@)

= minmax 5’ (u —0) —
0

#We did not add the GP in the current formulation since it has been shown
that the convergence behavior of the gradient descent/ascend algorithm is not
affected [30, Appendix B].
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in [61]. The following theorem demonstrates that the training
dynamics for the cumulant loss function (7) converges even
when the GDA algorithm uses the same learning rate for
both players which is the main difference between our result
and [61]. Next, without loss of generality, we assume y = 0.
Theorem 2: The GDA method with learning rate A con-
verges exponentially fast to the (unique) Nash equilibrium
with rate 1 — (1 —e)Ap if f € (A/e,1) with 1 < € < 1.
Mathematically, for the rth iteration of GDA we have

1@ 1) = (0, )3 < (1 = (1 = €)2B)’ ®)

where (0%, 7*) = (i, 0) is the Nash equilibrium while ¢ is a
computable positive constant.

Proof: The update step of GDA for the cumulant loss is
given by

Nis1 = N+ A(u — 0 — Bny)
Orp1 = 60, + Any.

Define the energy function

Em.0)=n"n—pBn"(u—0)+ u—0)"(u—0).

E(n,0) is a second order polynomial for #; it is straightfor-
ward to show that if 0 < f < 1 then E(5,0) > 0 for all 5
and @ and it is equal to O iff = #* =0 and § = 0" = u.
Additionally, it generally holds that

110, n) — (, 0)|13 < 2E(1, 0)

since 2E(n,0) — (10, 1) — (1, 0|13 = n" n— 280" (u — 0) +
(u—0)T(u—0)=0forall 0 < p < 1.
Next, we show that E(#;,6,) converges exponentially fast

to 0. Since, E(7,0) = S0, n? — Bnilui — 6) + (ui — 6,
we can proceed with d = 1 without sacrificing the generality
of the proof. Using symbolic calculations, we obtain

E(y1,041) = (1 = (1 = €)AB)E(n:, 01)
—€p = N[} = B —6) + (1 —6,)°]
<(U-=0=eiB)EM,0)

since n? — By (u—0)+(u—0,)*> > 0for f < 1and B > i/e.
The iterative application of this inequality yields

E(i11,041) < (1 — (1 — ©)AB) T E (o, 6).

Combining the above inequalities, we prove (8) with
Cc = 2E(l70,90). O
Finally, we remark that similar to previous studies that prove
linear convergence [60], [61], our proof utilizes the concept
of energy functions (a.k.a. Lyapunov functionals), a tool from
the theory of Dynamical Systems that has the potential to be
transferable to more general optimization problems, too.

IV. DEMONSTRATIONS

The source code of our demonstration examples is available
online.’

Shttps://github.com/dipjyoti92/CumulantGAN
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Fig. 3. Generated samples using the Wasserstein distance using clipping (1st row), KL divergence (2nd row), reverse KLD (3rd row), and Hellinger distance
(last row). The boundedness condition is not enforced on this example but it is necessary to be satisfied when the hyper-parameters take negative values.

A. Traversing the (f,y )-Plane: From Mode Covering to
Mode Selection

As demonstrated in Section III-B and Fig. 1, the optimiza-
tion of cumulant GAN for the set of bounded and measurable
functions and various hyper-parameter values is equivalent
to the minimization of a divergence. It is well known that
different divergences result in fundamentally different behavior
of the solution. For instance, KLD minimization tends to
produce a distribution that covers all the modes while the
reverse KLD tends to produce a distribution that is focused
on a subset of the modes [49]-[51]. Taking the extreme cases,
an all-mode covering is obtained as f — —oo while largest
mode selection is observed at the other limit direction.

Our first example aims at highlighting the above charac-
teristics of divergences and additionally to verify that the
suboptimal approximation of the function space of all bounded
functions by a family of neural networks does not significantly
affect the expected outcomes. Fig. 3 presents generated sam-
ples for various values of the (S, y) pair at different stages of
the training process as quantified by the number of iterations
(denoted by “Nolter” in the Figure). The target distribution is a
mixture of eight equiprobable and equidistant-from-the-origin
Gaussian random variables. Both discriminator and generator
are neural networks with two hidden layers with 32 units
each and ReLU as activation function. Input noise for the
generator is an 8§-dimensional standard Gaussian. In all cases,
the discriminator is updated &k = 5 times followed by an update
for the generator.

KLD minimization that corresponds to (f,7 = (0,1)
(second row) tends to cover all modes while reverse KLD
that corresponds to (f,7) = (1,0) (third row) tends
to select a subset of them. This is particularly evident
when the number of iterations is between 500 and 2000.

Hellinger distance minimization (last row) produces samples
with statistics that lie between KLD and reverse KLD mini-
mization while Wasserstein distance minimization (first row)
has a less controlled behavior. It is also noteworthy that
reverse KLD was not able to fully cover all the modes after
10 K iterations. This behavior is not necessarily a drawback
since the divergence of choice is primarily an application-
specific decision. For instance, the lack of diversity might be
sacrificed in image generation for the sake of sharpness of the
synthetic images.

We note that despite demonstrating a single run, the plots
in Fig. 3 are not cherry-picked. We have tested several archi-
tectures with more or fewer layers, as well as more or fewer
units per layer, repeating each run several times, with quali-
tatively similar results which are presented in Appendix E-A
(Figs. 4-6) of Supplementary Materials. We further tested and
compared the performance of various hyper-parameter values
of cumulant GAN on two additional data distributions and
presented them in Appendix E-B (Figs. 7-12). The first dataset
is a mixture of six equiprobable Student’s t distributions while
the second dataset is the Swiss-roll distribution. Overall, cumu-
lant GAN with (8, 7) = (0.5,0.5) (i.e., Hellinger distance®)
generated the most accurate results for all datasets and across
various architectures. Finally, we experimented with d-rays
and showed in Appendix E-C (see Figs. 13-15) that the
training process is qualitatively similar in terms of “mode
covering” versus “mode selection” across the divergence rays.

B. Learning the Covariance Matrix of a Multivariate
Gaussian

A CGF can uniquely determine a distribution and contains
information on all moments. Therefore, the use of simple

6 Actually, we minimize —4log(1 — Hel?), see Corollary 1.
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discriminators which may fail under the WGAN loss might be
sufficient under the cumulant loss to successfully train the gen-
erator. In this section, we provide an explicit example where
the discriminator despite being a linear function the target is
to learn the second-order statistic of a multivariate Gaussian
distribution. Thus, the real data, x € R<, follow a zero-mean
Gaussian with covariance matrix X, the discriminator is given
by D(x) = 5" x while the generator is given by G(z) = Az
where A is a d x k matrix and z is a standard k-dimensional
Gaussian. The aim is to obtain a solution, & = AAT, close to
the true covariance matrix.

The loss function of WGAN is L(0,0) = n"E, [x] —
n" AE, [z] = 0, therefore it is impossible here to learn the
covariance matrix. On the other hand, the cumulant loss reads

1
L(ﬁ,y)=—§f7T(ﬁZ+yAAT)f7 )

allowing the possibility of a (f, y) pair that makes the Nash
equilibrium non-trivially informative regarding the covariance
matrix. Indeed, we calculated the best response diagrams for
d = 1 with fixed positive values of y and inferred that suitable
values are f <« —1. Fig. 4 presents the average error of the
covariance matrix evaluated using the Frobenius norm as a
function of . The covariance is computed using either the
above exact loss function (upper plot) or the statistical approx-
imation of the cumulant loss along with SGDA algorithm
(lower plot) for three values of y. We use 10 K samples
for the latter case, average over ten iterations, and a different
covariance matrix is used at each iteration. The true covariance
matrix is rescaled so that its Frobenius norm equals to 1.
We observe that the covariance matrix is learned satisfactorily
when the exact loss function is used for large negative values
of . When the approximated, yet realistic, loss is used, the
error between the true and the estimated covariance matrices
increases after a certain value of —f because tail statistics
(requiring a large amount of samples) start to take control.
Overall, the direct conclusion is that cumulant GAN is able
to learn higher order statistics and produce samples with the
correct covariance structure despite the fact that a very simple
discriminator without any access to higher order statistics was
deployed.

C. Improved Image Generation

A series of experiments have been conducted on
CIFAR-10 [62] and ImageNet [63] datasets demonstrating the
effectiveness of cumulant GAN. In the experiments, we select
pairs of (f, y) that correspond to well-known divergences to
highlight their effect on the training process as well as to
facilitate connections with existing literature.

1) CIFAR-10 Dataset: CIFAR-10 is a well-studied dataset
of 32 x 32 x 3 RGB color images with ten classes. We eval-
uate the quality of the generated images using four different
architectures: one with convolutional layers (CNN) and three
with residual blocks (resnet). The generator for the CNN
consists of one linear layer followed by three convolutional
layers while the discriminator is a single convolutional layer
followed by one linear layer. The generator for the three
resnets consists of four residual blocks while the discriminator
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Fig. 4. Covariance estimation error for the exact cumulant loss function
(upper plot) and for the statistically approximated cumulant loss function
(lower plot).

consists of two or three residual blocks. We train two versions
with three residual blocks for the discriminator but with
different channel dimension and learning rate. The complete
description of the architectures can be found in Appendix F of
Supplementary Materials. In all cases, we deliberately choose
a weaker discriminator to challenge the training procedure.

Tables I and II report the averaged IS [32] and the averaged
FID [64] along with their standard deviation over five runs for
the four architectures. We test four different hyper-parameter
values that correspond to minimization of Wasserstein dis-
tance, KLD, reverse KLD, and Hellinger distance [actually,
—41og(1 —Hel®)]. We use the two-sided GP for WGAN since
it has been shown to provide better performance than the
one-sided version [38]. However, the two-sided GP is not valid
for cumulant GAN [40] therefore we enforce the one-sided
version of the GP. In all cases, the optimization for the
discriminator is realized over Lipschitz continuous functions.
The implementation of cumulant GAN is based on available
open-source code.” Following the reference code, we train
the models with the Adam optimizer and the discriminator’s
parameters are updated k = 5 times more often than the
parameters of the generator.

We remind that IS is a standard metric to evaluate the
visual quality of generated image samples [32]. IS correlates
with human judgment by feeding generated samples into
a pre-trained Inception v3 classifier. Images with naturally
looking objects are supposed to have low label (output)
entropy whereas the entropy across images should be high.
On the other hand, FID score uses the Inception v3 model
activation layers (last pooling layer) to capture latent features
calculated for a collection of real and generated images. The
activation values are summarized as a multivariate Gaussian
by calculating the mean and covariance of both real and gen-
erated images. The distance between these two distributions
is then calculated using the Fréchet distance, also called the

7https://github.com/igul222/improved_wgan_training
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TABLE I

MEAN IS ON CIFAR-10 AND IMAGENET

CIFAR-10 ImageNet
Architecture Conv layers Residual blocks Residual blocks (V1) Residual blocks (V2) || Residual blocks Residual blocks
Loss function Gen: 3 & Dis: 1 Gen: 4 & Dis: 2 Gen: 4 & Dis: 3 Gen: 4 & Dis: 3 Gen: 4 & Dis: 2 Gen: 4 & Dis: 4
Wasserstein 4.36 £ 0.10 4.58 £ 0.14 5.25 £ 0.23 6.45 £ 0.34 5.13 £ 0.45 8.88 £ 1.15
KLD 4.81 + 0.07 7.63 = 0.07 742 + 0.08 7.28 £ 0.12 8.86 + 0.08 10.03 £ 0.12
Reverse KLD 4.56 £ 0.13 7.68 + 0.08 7.28 + 0.05 7.39 + 0.08 8.70 + 0.33 10.23 + 0.13
Hellinger 4.82 £+ 0.10 7.69 £ 0.06 7.22 £ 0.08 7.35 £ 0.09 8.55 £ 0.23 10.24 £ 0.58
TABLE II
MEAN FID oN CIFAR-10 AND IMAGENET
CIFAR-10 ImageNet
Architecture Conv layers Residual blocks Residual blocks (V1) Residual blocks (V2) Residual blocks  Residual blocks
Loss function Gen: 3 & Dis: 1 Gen: 4 & Dis: 2 Gen: 4 & Dis: 3 Gen: 4 & Dis: 3 Gen: 4 & Dis: 2 Gen: 4 & Dis: 4
Wasserstein 173.66 £ 3.42 76.54 + 4.04 71.77 £ 3.63 39.58 + 13.85 137.78 £ 11.20 64.26 + 16.06
KLD 157.36 + 2.02 19.81 £+ 0.55 22,51 £ 1.75 23.06 £ 1.20 6745 + 1.74 49.39 £ 0.75
Reverse KLD 156.23 + 6.51 18.74 L+ 0.58 24.62 £+ 0.90 21.54 £+ 1.36 72.96 £ 5.57 4591 £ 140
Hellinger 158.60 + 2.96 18.66 L+ 0.54 24.59 £+ 0.63 21.15 £+ 1.25 69.88 + 1.98 4580 + 3.77

two-Wasserstein distance. We use 50 K images to compute
IS/FID scores. Higher IS means better generated image quality
whereas the best generative model returns the lowest FID
score.

We observe from the tables as well as from the panels
of Fig. 5 which present the averaged IS as a function of
the number of iterations for the four architectures that all
hyper-parameter choices for cumulant GAN outperform the
baseline WGAN. The relative improvement ranged from 4.6%
(reverse KLD) up to 10.5% (Hellinger distance) for the CNN
architecture while the relative improvement for the resnet with
the weaker discriminator ranged from 66.6% (reverse KLD)
up to 67.9% (Hellinger distance) revealing that cuamulant GAN
takes into consideration all discriminator’s moments, i.e., all
higher order statistics and not just the mean values, leading
to better realization of the target distribution. Cumulant GAN
achieves higher ISs than WGAN for the two versions of resnets
with three residual blocks for the discriminator (lower panels
in Fig. 5), too. As expected, cumulant GANs also perform
better on FID metric with relative improvements up to 75.62%
(Hellinger distance) for the resnet with the weaker discrim-
inator and 68.64% (KLD) and 46.56% (Hellinger distance)
for the two versions of resnets, respectively. All cumulant
GAN variations (KLD, reverse KLD, and Hellinger) obtain
similar results for both versions while the performance of
WGAN is significantly affected by the choice of the hyper-
parameter values, e.g., learning rate and channel dimension.
This discrepancy in the performance highlights the enhanced
robustness of cumulant GAN relative to WGAN implying that
cumulant GAN may require less tuning to enjoy excellent
performance. Finally, the samples generated by cumulant GAN
also exhibit larger diversity and are visually better (we refer
to Appendix G in Supplementary Materials).
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Fig. 5. IS for CIFAR-10 using various hyper-parameters of cumulant GAN
and various architectures. In all cases, WGAN has a lower IS relative to
the cumulant GAN with the hyper-parameter corresponding to Hellinger
minimization achieving the best overall performance.

2) ImageNet Dataset: This large dataset consists of 64 x
64 x 3 color images with 1000 object classes. The large
number of classes is challenging for GAN training due to the
tendency to underestimate the entropy in the distribution [32].
We evaluate the performance on two different architectures
which both have a generator with four residual blocks. The
difference is in the number of residual blocks for the discrimi-
nator where we employ a weak discriminator with two residual
blocks and a strong discriminator with four residual blocks.
Fig. 6 presents the performance in terms of IS both for the
baseline WGAN and for the variants of cumulant GAN when
a weak discriminator (left panel) or a strong discriminator
(right panel) is utilized. Improved ISs are obtained with
cumulant GAN for both architectures. It is also important to
note that our approach is much more effective than WGAN
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Fig. 6. Same as Fig. 5 but for ImageNet. Cumulant GAN achieves higher

IS relative to WGAN for both weak (left panel) and strong (right panel)
discriminator. Mode collapse has been mitigated in all cumulant GAN variants.

at avoiding mode collapse while still generating high-quality
samples. The mean ISs along with the standard deviation over
three repetitions are reported in Table I (rightmost columns).
In terms of relative improvement, cumulant GAN is between
72.71% (KLD) to 69.59% (reverse KLD) better than WGAN
for the weak discriminator and a similar trend is observed
when the strong discriminator is used reaching IS as high as
10.24. As reported in Table II, the proposed cumulant GAN is
superior relative to WGAN in generating high-quality images
with low FID scores of 67.45 (KLD) for the weak discrimina-
tor and 45.80 (Hellinger distance) for the strong discriminator.
By visual inspection of the generated images (Appendix G
in Supplementary Materials), we conclude that all generators
learn some basic and contiguous shapes with natural color and
texture. Nevertheless, cumulant GAN provides better images
with object specifications that are clearly more realistic.
Despite not being exhaustive, the presented examples
demonstrated a preference of cumulant GAN over WGAN.
In general, GAN optimization has essentially two critical
components: the first being the function space where the
discriminator lives while the other is the objective functional
to be optimized. WGAN’s breakthrough was the restriction
of the function space to Lipschitz continuous functions that
resulted in increased stability. However, there is no evidence
that the best-performing loss function is the difference of two
expectations as in WGAN. The presented examples revealed
that there are better and more flexible options for the overall
loss function and the proposed cumulant loss is one of them.

V. CONCLUSION AND FUTURE DIRECTIONS

We proposed cumulant GAN by establishing a novel loss
function based on the CGF of both real and generated dis-
tributions. The use of CGFs allows for an inclusive charac-
terization of the distributions’ statistics, making it possible
to partially remove complexity from the discriminator. The
net result is improved and more stable training of GANSs.
Furthermore, cumulant GAN has the capacity to smoothly
interpolate between a wide range of divergences and distances
by simply changing its two hyper-parameter values f & .
Thus, it offers a flexible and comprehensive mechanism to
choose—possibly adaptively—which objective to minimize. In a
recent publication [65], the authors applied cumulant GAN for
disentangled representation learning of speech signals and our
plan is to further explore the improved capabilities of cumulant
GAN in a variety of estimation and inference applications.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Finally, the substitution of an expectation operator with the
respective CGF does not have to be limited to WGAN. It can
be applied to other GANS’ loss function resulting in new GAN
formulations. The theoretical and empirical ramifications of
such extensions are left as future work.
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