
ar
X

iv
:2

00
6.

08
78

1v
3 

 [c
s.L

G
]  

23
 M

ar
 2

02
2

1

Optimizing Variational Representations of

Divergences and Accelerating their Statistical

Estimation

Jeremiah Birrell, Markos A. Katsoulakis and Yannis Pantazis

Abstract

Variational representations of divergences and distances between high-dimensional probability dis-

tributions offer significant theoretical insights and practical advantages in numerous research areas.

Recently, they have gained popularity in machine learning as a tractable and scalable approach for

training probabilistic models and for statistically differentiating between data distributions. Their advan-

tages include: 1) They can be estimated from data as statistical averages. 2) Such representations can

leverage the ability of neural networks to efficiently approximate optimal solutions in function spaces.

However, a systematic and practical approach to improving the tightness of such variational formulas,

and accordingly accelerate statistical learning and estimation from data, is currently lacking. Here we

develop such a methodology for building new, tighter variational representations of divergences. Our

approach relies on improved objective functionals constructed via an auxiliary optimization problem.

Furthermore, the calculation of the functional Hessian of objective functionals unveils the local curvature

differences around the common optimal variational solution; this quantifies and orders the tightness gains

between different variational representations. Finally, numerical simulations utilizing neural network

optimization demonstrate that tighter representations can result in significantly faster learning and more

accurate estimation of divergences in both synthetic and real datasets (of more than 1000 dimensions),

often accelerated by nearly an order of magnitude.
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I. INTRODUCTION

Divergences and distances between multivariate probability distributions play a central role

in many mathematical, engineering, and scientific fields ranging from statistical physics, large

deviations theory, and uncertainty quantification to information theory, statistics, and machine

learning. Variational representation formulas for divergences, also referred to as dual formula-

tions, convert divergence calculation into an optimization problem over a function space and offer

a valuable mathematical tool to build, train, and analyze probabilistic models and measure the

similarity between data collections. Typical examples of variational representations are, among

others, the Legendre transformation (LT) of an f -divergence [1], [2], the Donsker-Varadhan (DV)

formula for the Kullback-Leibler (KL) divergence [3], [4] and the Rubinstein-Kantorovich duality

formula for Wasserstein distance [5]. Variational representations have been used in statistical

mechanics and interacting particles systems [6], large deviations [4], divergence estimation

[7], [8], [9], determining variable independence through mutual information estimation [10],

adversarial learning of generative models [11], [12], [13], uncertainty quantification (UQ) of

stochastic processes [14], [15], bounding risk in probably approximately correct (PAC) learning

[16], [17], [18], as well as in parameter estimation [19].

Two main mathematical ingredients are involved in the construction of a variational formula.

First, the function space where the optimal solution will be searched for and, second, the repre-

sentation expression, called here the ‘objective functional’, whose optimization leads to the value

of the divergence. Crucial practical advantages of variational formulas in statistics and machine

learning include: a) they do not require an explicit form of the probability distributions (or their

density ratio); related probabilistic quantities can be approximated by statistical estimators over

available data; b) they can exploit the capacity of rich regression models such as neural networks

to efficiently search the function space for optimal solutions; the optimal solution is typically

related to the density ratio.

A single divergence can be derived from several different objective functionals. The key

contribution of this paper is a systematic methodology that uses families of transformations

(e.g., shifts, affine, and powers) to build new, tighter variational representations for divergences
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by creating improved objective functionals, as described in our main Theorem 1. This idea is both

simple and powerful; it provides a general framework that unifies many of the previous variational

formulas in the literature, reveals new connections between them, drives the derivation of new

variational formulas, and has practical implications in terms of accelerated statistical training,

learning, and estimation from data.

Striking consequences of the proposed framework include: (i) the connection between LT-

based KL, the DV representation formula, and a new, improved DV-type formula, (ii) a concrete

representation of the abstract objective functional in [9], and (iii) a derivation of new represen-

tation formulas for α-divergence and connections with a recently derived, DV-type variational

representation of Rényi divergences. Moreover, when the optimization over the transformation

family is not analytically tractable, a second-order approximation is employed resulting in new

variational representations.

The improved objective functionals constructed via our framework have the same optimal

solution, but they are tighter in the sense that the same approximation of the optimum will provide

a better approximation of the divergence, i.e., they are flatter around the optimal solution. We

employ (functional) Hessians of the objective functionals to quantify and order relative tightness

gains between different variational representations of divergences, in terms of the local curvature

around the optimal solution. Although our goal here is not variance reduction, we do also study

the asymptotic variance of the tighter variational representations. We obtain theoretical evidence

that our optimization procedures do not increase the variance and provide some numerical

evidence that the variance as well as the averaged error can be decreased.

Finally, we demonstrate that these tighter representation formulas can accelerate numerical

optimization and estimation of divergences in a series of synthetic and real examples, such as the

statistical estimation of f -divergences and mutual information, including cases with real and/or

high-dimensional data (in excess of 1000 dimensions). Similarly to [10], we parameterize the

function space using neural networks, hence the (parameter) optimization is efficiently performed

with back-propagation algorithms. As an example of our method, we develop neural-based

estimators of controlled sample complexity for Hellinger-based mutual information (Hellinger-

MINE). Overall, we find that the improved, tighter representation formulas converge several

times faster than the initial representation formula, often by nearly an order of magnitude in

high-dimensional problems.



4

II. TIGHTENING THE VARIATIONAL REPRESENTATION OF f -DIVERGENCE

Background

Define F1(a, b) to be the set of all convex functions f : (a, b) → R with f(1) = 0. If a (resp. b)

is finite, we extend f to a (resp. b) by continuity and set f(x) = ∞ for x 6∈ [a, b]. Such functions

are appropriate for defining f -divergences, Df , which have the variational characterization

Df (Q‖P ) ≡EP [f(dQ/dP )]

= sup
φ∈Mb(Ω)

{EQ[φ]−EP [f
∗(φ)]} , (1)

where Mb(Ω) denotes the set of all bounded measurable functions and f ∗ is the Legendre

transform of f [20], [8]. Under appropriate assumptions (see Theorem 4.4 in [20]), the maximum

is achieved at

φ∗ = f ′(dQ/dP ). (2)

There are cases, such as α-divergence with α ∈ (0, 1), where Df (Q‖P ) can be given a mean-

ingful finite value even if Q 6≪ P (see [21]). However, the right hand side of (1) is always +∞
if Q 6≪ P and so here we use the convention that Df (Q‖P ) ≡ ∞ when Q 6≪ P . The special

case of Kullback-Leibler (KL) divergence (i.e., Df with f(x) = x log(x)) has a well-known

alternative variational representation, the Donsker-Varadhan (DV) variational formula

DKL(Q‖P ) = sup
φ∈Mb(Ω)

{EQ[φ]− logEP [e
φ]}. (3)

It is known that the objective functional in (3) is tighter than that of (1), in the sense that

EQ[φ] − logEP [e
φ] ≥ EQ[φ] − EP [f

∗(φ)] for all φ ∈ Mb(Ω), [9]. In this paper, we present a

general procedure for obtaining tighter variational representations of any f -divergence, for which

the transition from (1) to (3) is just one special case.

Theoretical Results

Our method for deriving tighter variational representations for f -divergences is described in

the following Theorem; a proof can be found in Section VI.

Theorem 1: Let f ∈ F1(a, b) and suppose Df (Q‖P ) < ∞. With φ∗ defined by Eq. (2) (when

it exists), let Φ be a family of functions (the test functions) with

Mb(Ω) ⊂ Φ ⊂ L1(Q) or with φ∗ ∈ Φ ⊂ L1(Q). (4)
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Consider any family of transformations

T ⊂ {T = T (φ) , such that T : Φ 7→ L1(Q)} (5)

that includes the identity map. Then

Df(Q‖P ) = sup
φ∈Φ

HT [φ] , (6)

where HT ,f [φ] = sup
T∈T

{EQ[T (φ)]− EP [f
∗(T (φ))]} , (7)

and the maximum in (6) is achieved at φ∗. Furthermore, the objective functional, HT ,f , in the

variational representation (6) is tighter than the objective functional in (1), in the sense that

EQ[φ]− EP [f
∗(φ)] ≤ HT ,f [φ] ≤ Df(Q‖P ) (8)

for all φ ∈ Φ.

Remark 1: When the choice of f and/or T is unimportant or clear from the context, we will

omit the corresponding subscript on HT ,f .

(i) The main new insight and primary mathematical tool in this paper are formulas (6) and (7),

which allow for the objective functional HT [φ] to be ‘improved/tightened’ using any appropriate

family of transformations T ; examples of such families are discussed in the next two subsections.

Eq. (6) is a simple but far-reaching idea that reveals connections between many known variational

representations and also leads to the derivation of new ones. (ii) The extension of Eq. (1) from

Mb(Ω) to L1(Ω) is useful because the exact optimizer, φ∗, is generally unbounded; various

versions of this extension can be found in the literature [20], [8]. This extension is needed to

justify the computation of variational derivatives around the optimum presented in Section III. It

also implies that one does not need to impose boundedness condition via a cutoff function when

employing neural-based statistical estimation. (iii) The generalization of Eq. (1) to a family,

Φ, that contains the optimizer is the natural next step; again, see [20], [8]. It provides a

great deal of flexibility in adapting the proposed variational representation (6) to different f -

divergences and could guide the algorithmic implementation. We use this idea several times to

restrict the optimization to, e.g., positive functions for the α-divergences and finite dimensional

submanifolds for exponential families of distributions. (iv) If T ⊂ {T : Φ → Φ} is a group under

composition then the objective functional (7) is invariant under the family of transformations T ,

i.e., HT [T (φ)] = HT [φ] for all T ∈ T . (v) If (Ω,M) is a metric space with the Borel σ-algebra

then one can replace Mb(Ω) with Cb(Ω) (bounded continuous functions) and L1(Q) with L1
c(Q)
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(continuous L1(Q) functions) in Theorem 1. This is a direct consequence of Lusin’s theorem [22,

Appendix D]. (vi) The auxiliary optimization problem in Eq. (7) is often computed analytically;

alternatively and due to its low dimensionality, the corresponding optimization can be easily

incorporated into the gradient descent framework without significant additional computational

cost.

Families of Transformations

Next, we present several useful families of transformations that, in conjunction with Theorem

1, yield tighter variational formulas.

a. Identity: T id = {id} leads to what we call the Legendre Transform (LT) f -divergence

variational formula given by (1).

b. Shifts: T shift
ν (φ) = φ − ν, ν ∈ R, lead to what we call the shift or ν-improved variational

formula

Df(Q‖P ) = sup
φ∈Φ

{sup
ν∈R

{EQ[φ]− ν −EP [f
∗(φ− ν)]}} . (9)

This result was first obtained in [23], and in this sense Theorem 1 is a broad and systematic

generalization of Theorem 4.4 in [23], where only shift transformations where considered.

c. Scaling Transformation: T scale
η (φ) = ηφ, η ∈ R, which lead to the scaling or η-improved

variational formula

Df(Q‖P ) = sup
φ∈Φ

{sup
η∈R

{ηEQ[φ]−EP [f
∗(ηφ)]}} . (10)

d. Affine Transformation: The above two cases can be combined into a two parameter family

T affine
η,ν (φ) = ηφ− ν.

e. Power Transformation: T power
β (φ) = φβ, β ∈ R, which lead to the power or β-improved

variational formula

Df (Q‖P ) = sup
φ∈Φ

{sup
β∈R

{EQ[φ
β]−EP [f

∗(φβ)]}} . (11)

As with the affine transformations, the power transformations can be combined with the shift

and/or scaling transformations to form a multiparameter family. These are related to the well-

known Box-Cox transformation [24], used in statistics to transform non-normal data sets to

approximately normal.
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New Derivations of Existing Variational Representations

In this and next subsections, we explore several specific cases of the above framework, focusing

primarily on examples where the optimization over the shift and/or scaling parameter can be

done analytically. Here, we uncover connections with previously known variational formulas.

1) Donsker-Varadhan formula (KL-divergence with shift transformations): KL-divergence is the

f -divergence corresponding to f(x) = x log(x), which has Legendre transform f ∗(y) = ey−1.

The maximum over the shift transformations T shift in (6) occurs at ν∗ = log
(
EP [e

φ]
)
− 1,

and hence

sup
ν∈R

{EQ[φ]− ν − EP [f
∗(φ− ν)]} (12)

=EQ[φ]− ν∗ − EP [e
φ]e−ν∗−1 = EQ[φ]− log(EP [e

φ]).

The result is the objective functional in the well-known Donsker-Varadhan variational formula

(3) and so this framework provides the connection between (3) and (1). We also note that in

[25] a connection is derived between (3) and (1) by using a logarithmic change of variables

in the function space, based on (2) for the KL case.

2) Connection with the results of [9]: In Theorem 1 of [9] the following improved variational

formula was derived:

Df(Q‖P ) = sup
φ∈Mb(Ω)

{EQ[φ]− (IRf,P )
∗[φ]}, (13)

IRf,P (r) ≡




EP [f(r)], r ∈ L1(P ), r ≥ 0, EP [r] = 1

∞, otherwise

.

This is another special case of our framework, as can be seen by first rewriting the Legendre-

Fenchel transform and then using Theorem 4.2 in [23]:

(IRf,P )
∗[φ] = sup

Q≪P
{EQ[φ]−Df(Q‖P )} (14)

= inf
ν∈R

{ν + EP [f
∗(φ− ν)]}.

Hence the variational formula (13) is in fact the same as the ν-improved variational formula

(9).

3) χ2-Divergence: We use Theorem 1 to provide a variational perspective on the classical

Hammersley-Chapman-Robbins bound for the χ2-divergence. To our knowledge, the tightness
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result of the bound is novel. The χ2-divergence is a special case of the α-divergences,

χ2(Q‖P ) = 2Df2(Q‖P ). Here we optimize (6) over T affine to obtain

χ2(Q‖P ) = sup
φ∈Φ

(EQ[φ]−EP [φ])
2

VarP [φ]
, (15)

where Φ = {φ ∈ L1(Q) ∩ L2(P ) : φ ≥ 0,VarP [φ] > 0} and the maximum is achieved at

φ∗ = dQ/dP ≥ 0. Eq. (15) implies the Hammersley-Chapman-Robbins bound for the χ2

divergence (see, e.g., Eq. 4.13 in [26]) and shows tightness over the set Φ. The objective

functional in (15) was proposed as loss function for χ2-GANs, [27]; thus, (15) provides a

complete and rigorous justification for this choice. Finally, if we instead optimize (6) over

T shift, we obtain the objective functional for χ2 derived in [25], which is thus less tight than

(15); see Appendix A.3.

Deriving New Variational Representations and Further Connections

In this subsection, we produce new variational representations and reveal further connections

between divergences. We do not claim these examples are exhaustive. Nevertheless, they cover

many important cases and illustrate the power and flexibility of Theorem 1.

1) Improved Donsker-Varadhan (KL-Divergence with affine transformations): Introducing a scal-

ing parameter into Eq. (12), i.e., optimizing over all affine transformations T affine in (6), one

finds the new KL variational representation

DKL(Q‖P ) = sup
φ∈Φ

{sup
η∈R

{ηEQ[φ]− logEP [e
ηφ]}} . (16)

The inclusions T shift ⊂ T affine implies that (16) is tighter than DV (3). Calculations

and numerical results that quantify this improved tightness are found in Section III. The

optimization over η in Eq. (16) cannot be evaluated analytically in general, but it can be done

numerically (as discussed in Section V).

2) α-Divergences (scaling transformations): The α-divergences are the family of f -divergences

corresponding to fα(t) = tα−1
α(α−1)

, α 6= 0, 1. See [21] for properties, related families, and

further references. It includes the KL, Hellinger and χ2 divergences as special cases [28], is

closely related to the Tsallis entropies [29], and appears also in the context of information
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geometry [30]. By optimizing (6) over the family of scaling transformations, T scale (restricted

to η > 0), we obtain a new variational representation of the α-divergences:

Dfα(Q‖P ) (17)

= sup
φ∈Φα

{
1

α(α− 1)

(
EQ[φ]

αEP [φ
α/(α−1)]−(α−1) − 1

)}
,

where Φα = {φ ∈ L1(Q) : φ ≥ 0, 0 < EP [φ
α/(α−1)] < ∞} if α > 1 and Φα = {φ : φ > 0}

if 0 < α < 1. Eq. (17) has the exact optimizers φ∗
α = (dQ/dP )α−1. Theorem 1 guarantees

that the objective functionals in the new variational representations (17) are tighter than that

of the LT f -divergence objective functional from (1). See Appendix A for details on the

calculations that lead to Eq. (17), as well as for connections to the KL divergence in the

limits as α → 0, 1.

3) Variational representations of Rényi divergences: Eq. (17) leads to a variational characteriza-

tion of Rényi divergences. Using the known connection between the α and Rényi divergences,

along with Eq. (17) and the change of variables φ = e(α−1)g (see Appendix A for details) one

obtains

Rα(Q‖P ) =
1

α(α− 1)
log(α(α− 1)Dfα(Q‖P ) + 1) (18)

=sup
g

{
1

α− 1
log(EQ[e

(α−1)g ])− 1

α
log(EP [e

αg])

}
.

This constitutes an independent derivation of the Renyi variational formula derived in [31],

[25], while in the asymptotic limit α → 1 one recovers (3). The Renyi variational formula

(18) was also used in [32] to construct cumulant-based, generative adversarial networks.

Moreover, UQ bounds for risk-sensitive functionals in terms of Rényi divergences, which

were obtained recently in [33], readily follow from (18) after appropriate manipulations and

an optimization over α > 1.

4) α-Divergences (scaling and power transformations): For α ∈ (0, 1), Combining the scaling

and power family of transformations yields

Dfα(Q‖P ) =
1

α(1− α)
sup
φ>0

sup
β∈R

{
1− EQ[φ

β]αEP [φ
−αβ/(1−α)]1−α

}
. (19)

The optimization over scalings was evaluated as in Eq. (17) but the optimization over the

power transformations, β, cannot be done analytically. In practice, β can be included as

an additional parameter in a numerical optimization procedure; see Section V for further

discussion.
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5) Exponential Families: If P and Q are members of a parametric family then the set of test

functions, Φ, in (6) can be reduced to a finite dimensional manifold. For instance, if P = Pθp

and Q = Pθq are members of the same exponential family dPθ = h(x)eκ(θ)·T (x)−β(θ), θ ∈ Θ

with T : Ω → R
n the vector of sufficient statistics then the explicit optimizer φ∗ = f ′(dQ/dP )

lies on an (n+1)-dimensional manifold of functions, parameterized by the sufficient statistics

and constants, φ(β,κ) = f ′(exp(κ · T + β)), (β, κ) ∈ R × R
n, and computation of the f -

divergence reduces to the following finite-dimensional optimization problem:

Df (Q‖P ) = sup
(β,κ)∈Rn+1

{EQ[φ(β,κ)]− EP [f
∗(φ(β,κ))]} . (20)

This variational representation can be further combined with any appropriate family of

transformations T . We refer to Appendix E for further details.

6) Approximating the Improved Donsker-Varadhan: An analytic computation of the optimization

over η in Eq. (6) is not possible in general. Nevertheless, an alternative variational charac-

terization of the KL divergence can be derived by expanding around η = 1 and solving the

quadratic approximation for ∆η∗. Under appropriate assumptions given in Theorem 6 (see

Appendix B), we derive a new variational formula for the KL divergence,

DKL(Q‖P ) = sup
φ∈Φ

{(1 + ∆η∗(φ))EQ[φ]− logEP [e
(1+∆η∗(φ))φ]} , (21)

where the optimal ∆η∗ is obtained by maximizing the second-order Taylor approximation

and it is given by

∆η∗(φ) =
EQ[φ]−EPφ

[φ]

VarPφ
[φ]

, (22)

with dPφ = eφdP/EP [e
φ] being the tilted measure. Since we quadratically approximate the

improved Donsker-Varadhan, there is no guarantee that the objective functional in Eq. (21)

is tighter than that of Donsker-Varadhan’s representation. Despite no general guarantee, it

is expected to be tighter when ∆η∗(φ) is sufficiently small. This example demonstrates that

even when there is no explicit formula for the transformation’s optimization, one is still

able to derive a closed-form formula for an approximate version of it and thereby obtain

a new, rigorous variational formula. This same methodological approach can be used to

analytically approximate the optimization over other families of transformations. As another

demonstration, we refer to Theorem 7 in Appendix C where a new approximate variational

formula is derived for the power-improved Rényi variational representation.
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7) Connections with Uncertainty Quantification: The improved DV representation (16) provides

an alternative and arguably more general derivation of model uncertainty bounds derived

recently in [14], [15]. These results quantify the effects of model uncertainty by bounding

expectations of an observable φ under an alternative model, Q, in terms of the behavior under

a baseline model P and the model discrepancy, measured by DKL(Q‖P ). Specifically, (16)

implies after straightforward manipulation that EQ[φ] ≤ infη>0{ 1
η
logEP [e

ηφ]+ 1
η
DKL(Q‖P )}

[14]. More generally, we can obtain similar UQ bounds when model discrepancy is measured

by an f -divergence by using T affine
η,ν (φ) = ηφ − ν in (6) and performing the analogous

manipulations:

EQ[φ] ≤ inf
η>0
ν∈R

{
1

η
{EP [f

∗(ηφ− ν)] + ν} + 1

η
Df (Q‖P )

}
. (23)

The Hammersley-Chapman-Robbins bound can also be viewed as a special case of (23) in

this UQ context.

III. VARIATIONAL DERIVATIVES AND TIGHTNESS GAINS

In Theorem 1, we established the general methodology for building tighter variational rep-

resentations of f -divergences, by constructing suitable objective functionals HT . Here we will

quantify relative tightness gains corresponding to different transformation families T : for all

such families the maximizer in (6) is always φ∗ given by (2). Therefore, our approach relies on

building quadratic variational approximations of each objective functional (7) around the common

maximizer φ∗, and subsequently comparing the corresponding (variational) curvatures; see Figure

1 for a demonstration. Specifically, using that the maximum occurs at φ∗, an asymptotic expansion

yields

HT [φ
∗ + ψ] = Df(Q‖P ) +

1

2
〈∇2HT [φ

∗]ψ, ψ〉+O(‖ψ‖3) , (24)

where we formally define 〈∇2HT [φ]ψ, ψ〉 ≡ d2

dǫ2

∣∣
ǫ=0

HT [φ+ǫψ] and ψ is any functional perturba-

tion of the maximizer φ∗. Formally, the second order term ∇2HT [φ
∗], i.e., a variational Hessian,

is necessarily non-positive and determines the behavior in a neighborhood of the maximizer. By

comparing ∇2HT [φ
∗] for different families T , we will quantify the ‘tightness gains’ provided by

different transformation families. All these calculations can be made rigorous under appropriate

assumptions as demonstrated next in Theorem 2 and in Theorem 8 in Appendix D.

Here we focus our analysis on affine transformations, T affine
η,ν (φ) = ηφ − ν, but a similar

analysis can be performed for any family T with a smooth, finite-dimensional parameterization.
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The LT f -divergence variational formula (1) corresponds to T containing only the identity, and

we write the corresponding objective functional as Hid[φ]. Specializing (7) to the affine case,

we define the functional

H [φ, η, ν] =EQ[T
affine
η,ν (φ)]−EP [f

∗(T affine
η,ν (φ))] (25)

=EQ[ηφ− ν]− EP [f
∗(ηφ− ν)],

which leads to four different objective functionals and variational representations of the f -

divergence

Df (Q‖P ) = sup
φ

Hid[φ]︷ ︸︸ ︷
H [φ, 1, 0] = sup

φ

Hshift[φ]︷ ︸︸ ︷
sup
ν

H [φ, 1, ν] (26)

=sup
φ

sup
η

H [φ, η, 0]

︸ ︷︷ ︸
Hscale[φ]

= sup
φ

sup
η,ν

H [φ, η, ν]

︸ ︷︷ ︸
Haffine[φ]

and the corresponding Hessians ∇2Hid[φ], ∇2Hshift[φ], ∇2Hscale[φ], and ∇2Haffine[φ]. Next we

state a Theorem where we evaluate and compare these variational Hessians for the important case

of KL divergence, where f(x) = x log(x) and φ∗ = f ′(dQ/dP ) = log(dQ/dP ) + 1. Detailed

computations and rigorous analysis for general f -divergences can be found in Appendix D.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

0.05

0.1

-1 -0.5 0 0.5 1
0
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Fig. 1. Both plots demonstrate the improvement of the KL divergence objective functional in a neighborhood of the optimizer.

Here, φǫ = φ∗+ǫψ where ψ = x2 (top panel) and ψ(x) = x (bottom panel). P and Q are 1-dimensional Gaussians. Black curves:

LT-based f -divergence objective functional, Blue curves: shift-improved (i.e., Donkser-Varadhan), Magenta curves: η-improved,

Red curves: shift-scaling-improved. Note that ψ = x2 is related to φ∗ by a shift and scaling, hence the shift-scaling-improved

objective functional in the top plot has zero curvature in this direction, a manifestation of its shift and scale invariance.
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Motivated by the formal calculation (24), we define

JT (ǫ) = HT [φ
∗ + ǫψ] , for any ψ ∈ Mb(Ω) and ǫ ∈ R . (27)

The second derivative, when it exists, d2

dǫ2
JT (0) =

d2

dǫ2

∣∣
ǫ=0

HT [φ
∗ + ǫψ] is called a 2nd Gateaux

derivative of HT [φ] in the direction ψ and describes the curvature of the objective functional

HT [φ] along any given direction ψ ∈ Mb(Ω) at the maximizer φ∗. Therefore we will define a

corresponding variational Hessian in the direction ψ as

〈∇2HT [φ]ψ, ψ〉 ≡
d2

dǫ2
JT (0) =

d2

dǫ2
∣∣
ǫ=0

HT [φ+ ǫψ] . (28)

We remark that relation (28) is simply a notation that only intends to draw a parallel to finite

dimensional optimization calculations using conventional Hessians at maxima or minima of

finite dimensional functions. All rigorous results are stated in terms of the 2nd Gateaux derivative

d2

dǫ2
JT (0). Using the above notations we can formulate to following result for the KL divergence.

Theorem 2 (Tightness gains for KL divergence): Consider the KL divergence, i.e., f(x) =

x log(x). In addition to the assumptions of Theorem 1, we assume that the maximizer φ∗ =

log(dQ/dP ) + 1 in (2) is bounded (i.e., φ∗ ∈ Mb(Ω)) and select the function space Φ =

Mb(Ω) in Theorem 1. Then for T = T id , T shift , T affine the function JT in (27) is twice

differentiable at ǫ = 0. Furthermore, using the notation (28), the corresponding 2nd Gateaux

derivatives d2

dǫ2
JT (0) =

d2

dǫ2

∣∣
ǫ=0

HT [φ
∗+ǫψ] for all T = T id , T shift , T affine satisfy the following:

d2

dǫ2
JT id(0) = 〈∇2Hid[φ

∗]ψ, ψ〉 = −VarQ[ψ]− EQ[ψ]
2 , (29)

d2

dǫ2
JT shift(0) = 〈∇2Hshift[φ

∗]ψ, ψ〉 = −VarQ[ψ] , (30)

d2

dǫ2
JT affine(0) = 〈∇2Haffine[φ

∗]ψ, ψ〉 = −VarQ[ψ] +
CovQ(φ

∗, ψ)2

VarQ[φ∗]
, (31)

corresponding to (1), (3), and (16), respectively.

The complete proof of Theorem 2 is presented in Appendix D in the form of Theorem 8 that

describes the more general case of f -divergences.

Remark 2: The gains inherent in the inclusions T id ⊂ T shift ⊂ T affine in Theorem 1

are quantified in Theorem 2 by comparing the variational curvatures Eq. (29), Eq. (30), and

Eq. (31) as computed by these 2nd Gateaux derivatives; note that they are progressively smaller

in magnitude. These curvature computations demonstrate how one can rigorously and precisely

quantify heuristics such as those presented in Figure 1 from [9]. Furthermore, our Hessian



14

computations in the form of Theorem 8 also quantify and extend to f -divergences the accuracy

gains observed in the neural estimation of mutual information in [10].

Remark 3: The boundedness assumptions of Theorems 2 and 8 may appear restrictive com-

pared to the generality assumed for f -divergence definition, but they provide the simplest

conditions under which Theorems can be rigorously stated. Under appropriate technical as-

sumptions these results can be easily generalized without assuming the boundedness of φ∗ and

for more general function spaces Φ. Any necessary assumptions need to ensure the applicability

of the implicit function theorem and the dominated convergence theorem [34] (Theorem 2.27),

following their use in the proof of Theorem 8 presented in Appendix D.

Figure 1 is a simple demonstration of Theorem 2, using 1D Gaussians: P = N(0, 1), Q =

N(0, 1/2), with perturbations in the directions ψ = x2 (top) and ψ = x (bottom). Optimizing

over all affine transformations (red curves) provides noticeable curvature gains when compared to

optimization over only shifts (blue curves), i.e., the improved DV proposed in (16) compared to

the classical DV objective functional (3) and even more so compared to the Legendre transform

case, (1) (black curves).

IV. f -DIVERGENCE ESTIMATOR BIAS AND VARIANCE

The variational formula Eq. (6) suggests the following natural f -divergence estimator

D̂n
f (Q‖P ) = sup

φ∈Φ̃
sup
T∈T

{EQn [T (φ)]− EPn[f
∗(T (φ))]} , (32)

where Qn and Pn are the n-sample empirical measures and Φ̃ ⊂ Φ is a function space that

can be optimized over numerically (e.g., a family of neural networks). A natural question is

therefore the bias and variance of this estimator. In practice, the optimizations are performed

via some stochastic gradient descent (SGD) algorithm, and one is actually interested in the bias

and variance after a finite number of training steps. Addressing this complicated problem, which

depends heavily on the choice of space Φ̃ and the SGD algorithm, is outside the scope of the

present work. However, in this section we will follow the prior work in [35] for KL divergences

and discuss the bias and variance of the objective functional in (32). Finally, we emphasize

that our goal of this paper is to develop tighter objective functionals and study the impact of

improved curvature on the speed of convergence of numerical estimators. This is a separate

question from that of variance reduction, which we do not pursue here. However, we will show

that, for α-divergences, optimizing over scalings does not worsen the variance at the optimizer.
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Objective Functional Bias

The estimator (32) can be viewed either as a single-stage optimization problem over both φ

and T , in which case the objective functional is unbiased, or as a two-stage optimization,

D̂n
f (Q‖P ) = sup

φ∈Φ̃
ĤT ,f [φ;Qn, Pn] , (33)

ĤT ,f [φ;Qn, Pn] = sup
T∈T

{EQn[T (φ)]−EPn [f
∗(T (φ))]} ,

with a biased objective functional. If the optimization over T must be performed numerically

then we take the former view, but if part of the optimization can be performed analytically (such

as in (12) and (17)) then we take the latter view. In any case, the divergence estimator as a

whole, Eq. (32), is not unbiased. This can be seen in the simple case of discrete measures on a

finite sample space, where one can numerically optimize over all of Mb(Ω),

D̂n
f (Q‖P ) = sup

φ∈Mb(Ω)

{EQn[φ]− EPn[f
∗(φ)]} = Df (Qn‖Pn)

=EPn [f(dQn/dPn)] , (34)

which is biased. This fact renders the biased/unbiased objective functional question less relevant

in practice, as one’s goal is generally to estimate the divergence and not just the objective

functional at a fixed φ.

Objective Functional Variance

For general f , the objective functional estimator for the LT variational formula is

Ĥf [φ;Qn, Pn] = EQn[φ]− EPn[f
∗(φ)] . (35)

The two terms are independent, therefore

Var[Ĥf [φ;Qn, Pn]] =Var[EQn[φ]] + Var[EPn [f
∗(φ)]] (36)

=
1

n
VarQ[φ] +

1

n
VarP [f

∗(φ)] .

In particular, for α divergences (36) reduces to

nVar[Ĥfα[φ;Qn, Pn]] = VarQ[φ] + α−2|α− 1|2α/(α−1) VarP [φ
α/(α−1)] , (37)

where for α ∈ (0, 1) we made a change of variables φ → −φ.

To compute the asymptotic variance of an optimized objective functional, we rely on the delta

method. This method can be applied to any objective functional that can be expressed as a
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function of expectations. We provide the details in the case of scaling-optimized α-divergences

Eq. (17).

Theorem 3: Let α > 0, α 6= 1 and suppose φ ∈ Φ satisfies 0 < c ≤ φ ≤ d for some c, d ∈ R.

Then we have:

(a) The scaling-optimized α-divergence objective functional (17),

Ĥscale,fα[φ;Qn, Pn] =
1

α(α− 1)
(EQn[φ]

αEPn[φ
α/(α−1)]−(α−1) − 1) , (38)

has asymptotic variance

lim
n→∞

nVar[Ĥscale,fα[φ;Qn, Pn]] (39)

=(α− 1)−2(EQ[φ]/EP [ψα])
2(α−1) VarQ[φ] + α−2(EQ[φ]/EP [ψα])

2α VarP [ψα]) ,

where ψα ≡ φα/(α−1).

(b) At the exact optimizer, φ∗
α = (dQ/dP )α−1, Eq. (39) reduces to

lim
n→∞

nVar[Hscale,fα[φ
∗;Qn, Pn]] (40)

=|α− 1|−2VarQ[(dQ/dP )α−1] + α−2VarP [(dQ/dP )α] .

See Appendix F for the proof.

Theorem 3 implies that we need (dQ/dP )2α ∈ L1(P ) to achieve a finite variance; this fact

can motivate an appropriate choice of α; we also refer to the Hellinger-MINE discussion and

Corollary 1 in Section V. The asymptotic variance (40) agrees with the variance of the LT

objective functional, Eq. (37), at its optimizer φ∗
α = (dQ/dP )α−1/|α − 1|. Hence, from the

perspective of the variance at the optimizer, neither method has an advantage. Away from the

optimizer there is no consistent relationship between the two variances. In practice, both methods

will take different paths to the optimizer and this further complicates any variance comparison

away from the optimizer. However, empirically we found that the estimators constructed via the

improved variational formulas have smaller variance at the estimated optimal which is different

in general from the theoretical optimizer φ∗ (i.e., after a finite number of SGD steps); see Figure

3.

V. NUMERICAL EXAMPLES: FASTER STATISTICAL ESTIMATION AND LEARNING

Next we discuss practical implications of using tighter variational representations developed

in Theorem 1, focusing on accelerating neural-based statistical learning and estimation. In recent
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works, variational representations such as (1) or (3) were used to estimate f -divergences and

likelihood ratios based solely on available data [8]. This variational perspective proved also to

be a crucial mathematical step in training generative adversarial networks (GAN) [11], [12], [13]

and towards developing neural-based estimators for mutual information, [10], taking advantage

of the ability of neural networks to search efficiently through function spaces.

Improved variational formulas for statistical estimation and learning were previously studied

in: i) [9], using Eq. (13) and assuming a Hilbert space (RKHS) function space, ii) [10], where

the DV and LT formulas for the KL divergence were used to estimate mutual information with

improved accuracy. Both of these implicitly rely on the shift-improved variational formula (see

Eq. (12) and Eq. (14)). Our Theorem 1 provides a broad generalization of these ideas to other

transformation families, allows for practical implementation of the method in [9] to more general

functions space parametrizations (e.g., neural networks), and generalizes the ideas in [10] to other

f -divergences beyond KL, where it can provide improved mutual information estimators based

on (6).

In the following, we employ the outcomes from Sections II & III and build several variational

neural network estimators, in the general spirit of [8], [10]. We demonstrate the performance

improvements that result from representations such as Eq. (6). We start with the heuristic obser-

vation, illustrated in Figure 1, that tighter representations can improve the accuracy of statistical

estimators for f -divergences, in the sense that the same approximation of the optimal φ∗ will

provide a better approximation of the divergence. Moreover, tighter variational formulas can lead

to faster convergence of the search algorithm, as we now motivate: suppose one minimizes a

convex function f(x) by the simple gradient descent algorithm xn+1 = xn − γ∇f(xn). If ∇f is

L-Lipschitz (i.e., the Hessian is bounded by L) then this algorithm converges if 0 < γ < 2/L,

and the analysis suggests the optimal learning rate of γ = 1/L and leads to the error bound

|f(xn)−f(x∗)| ≤ ‖x0−x∗‖2/(2γn) (see, e.g., Theorem 3.3 in [36]). If f̃ has the same optimizer

and optimal value, but has a smaller Hessian bound, L̃, then the optimal learning rate, γ̃ = 1/L̃

is larger, and the error bound after an equal number of steps is smaller, i.e., the use of f̃ in

place of f can lead to faster convergence.

The above argument is only heuristic; the constant learning rate algorithm is far from optimal

in most cases and the above analysis does not capture the complexity of the current setting.

Nonetheless, it does provide important insight into the numerical results, presented below, which

demonstrate that, in practice, the improved variational formulas do generally lead to faster
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convergence of the estimators, letting all other factors be equal.

The examples below use the new variational formulas (17) and (19) for α-divergence, largely

focusing on the well-known Hellinger divergence (α = 1/2), defined as

Df1/2(Q‖P ) =4

(
1−

∫
p1/2q1/2dµ

)
, (41)

where dQ = qdµ, dP = pdµ. Computations were done in TensorFlow using the AdamOptimizer

[37], an adaptive learning-rate SGD optimizer, with all methods given the same initial learning

rate. When working with neural-network based estimators of α-divergence, we enforce positivity

of the test functions (see (17) and (19)) via the parameterization φθ = exp(gθ) where gθ, θ ∈ Θ,

is a neural network family with ReLU activation functions. We compare the LT method, (1)

with the improved estimators based on our formulas (17) and (19). For instance, in the case of

Hellinger divergences we compare the following estimators.

LT Hellinger Estimator:

sup
θ∈Θ

{EQN
[− exp(gθ)]− EPN

[f ∗
1/2(− exp(gθ))]} , (42)

f ∗
1/2(y) = ∞1y≥0 + 4(|y|−1 − 1)1y<0 , (43)

Scaling-Improved Hellinger Estimator:

4 sup
θ∈Θ

{
1− EQN

[exp(gθ)]
1/2EPN

[exp(−gθ)]
1/2

}
, (44)

Scaling-Power-Improved Hellinger Estimator:

4 sup
θ∈Θ,β∈R

{
1− EQ[exp(βgθ)]

1/2EP [exp(−βgθ)]
1/2

}
. (45)

In the above, QN and PN denote the expectation under the empirical distributions using N iid

samples from Q and P respectively.

If the optimization over a parameterized family of transformations, Tδ, cannot be performed

analytically then we solve the minimization problem (6) - (7) by performing stochastic gradient

descent (SGD) on the full collection of parameters, (θ, δ). In such cases, our two-step formulation

can be thought of as parametric enhancement of the neural network architecture. The nested

nature of the minimization over φ and T also allows for more sophisticated methods (not explored

here), e.g., for each φ one can perform several SGD steps for T , thus solving the (generally low

dimensional) problem (7) to high accuracy, before performing another SGD step for φ in (6); this

is reminiscent of multiscale numerical methods [38]. The parameterization, δ, of the families of
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transformations considered here is at most two dimensional. For example in the case of T affine

we have δ = (ν, η), where ν, η ∈ R; see also the remaining examples in Section II. Including this

small number of additional parameters in the stochastic gradient descent iterations is expected

to add a negligible additional computational cost, as compared to the (generally) much larger

number of neural-network parameters, θ. In practice, we do find the additional computational

cost to be negligible.

Hellinger-MINE

Here we consider the problem of computing Hellinger mutual information (Hellinger-MI),

Df1/2(P(X,Y )‖PX × PY ). Typically the divergence in mutual information Df(P(X,Y )‖PX × PY )

is chosen to be KL. However, one can consider a whole array of different f -divergences for this

purpose, see for instance [39]. A motivation for choosing Hellinger over KL is rigorously based

on the variance calculations in Section IV. In particular, as a direct consequence of Theorem 3

we obtain the following:

Corollary 1: Under the assumptions of Theorem 3, the relative variance for the Hellinger

α-divergence where α = 1/2, at the optimizer φ∗ is

nVar[Ĥn
f1/2

[φ∗;Q,P ]]

Df1/2(Q‖P )2
=

lim
n→∞

nVar[Ĥscale,f1/2[φ
∗;Qn, Pn]]

Df1/2(Q‖P )2
(46)

=
8−Df1/2(Q‖P )

2Df1/2(Q‖P )
.

Therefore, the sample complexity of the estimator Ĥscale,f1/2[φ
∗;Qn, Pn] at the optimizer φ∗ is

n = O(1), when Q 6= P .

Comparing Corollary 1 with the corresponding result for the KL divergence from Theorem 2 of

Ref. [35],

lim
n→∞

nVar[ĤDV [φ
∗;Qn, Pn]]

DKL(Q‖P )2
≥eDKL(Q‖P ) − 1

DKL(Q‖P )2
, (47)

we see that in practice the KL divergence requires n = O(eDKL(Q,P )) samples, while the Hellinger

divergence requires n = O(1) samples due to (46).

In Figure 2, we present the computation of Hellinger mutual information (Hellinger-MI),

Df1/2(P(X,Y )‖PX × PY ), via neural network optimization, where X and Y are correlated 20-

dimensional Gaussians with component-wise correlation ρ. The results demonstrate that, for

a given computational budget (i.e., fixed number of SGD iterations) the improved variational
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Fig. 2. Estimation of Hellinger-based mutual information between 20-dimensional correlated Gaussians with component-wise

correlation ρ. We use a fully-connected neural network with one hidden layer of 64 nodes while training is performed with a

minibatch size of 100. We show the Hellinger MI as a function of ρ after 1000 steps of SGD and averaged over 50 runs. The

inset shows the relative error for ρ = 0.7, as a function of the number of SGD iterations.

formulas (red and blue) yield more accurate results, i.e., they converge faster than the LT f -

divergence method (1) (black). Moreover, optimizing over both scalings and powers (19) (red)

provides a non-trivial improvement over the scaling-improved method (17) (blue). This is a

generalization of the findings in [10], which compared the DV variational formula (3) with (1)

for the KL divergence. We emphasize that despite the lack of an analytical formula for the

optimization over β, the inclusion of this single additional parameter in the variational formula

(a negligible addition to the computational cost) leads to a clear performance gain.

As a followup, we demonstrate the effectiveness of our method in estimating Hellinger-

MI for high-dimensional problems with low-dimensional structure. Specifically, in Figure 3

we compare 20-dimensional Gaussians embedded in high dimensional space via a nonlinear

map. The left panels demonstrate the performance gain when using the curvature-improved

objective functionals; we find that the optimized methods significantly outperform the LT method,

especially in higher dimensions. The right panels are a (partial) demonstration that the variances

are comparable, if not improved, when using the optimized objective functionals. Specifically,

we find that the optimized methods approach the exact asymptotic variance faster while the LT

method, which has not yet converged, has a larger variance.
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Fig. 3. Hellinger-MINE between correlated Gaussians embedded in high-dimensional space by a map of the following form:

hi(x) = xi for i = 1, ..., 20 and for i > 20 we define hi(x) = Ai(x)+ cos(xj1,i) sin(xj2,i) + xj3,ixj4,i , where A is an affine

function and jk,i ∈ {1, ..., 20}; the parameters of A were randomly selected. We employ a fully-connected neural network and

performed training with a minibatch size of 1000 from a dataset of 100000 samples. We show results after 50000 steps of SGD

and the relative L2-error was computed using data from 75 runs. The left figures show the relative error while the right figures

show the relative variance; the solid lines show the exact relative asymptotic variance (46). The top row show the result as a

function of ρ for embedding-dimension 200 and used a single hidden layer of 64 nodes. The bottom row shows the result for

ρ = 0.75 as a function of problem dimension (i.e., embedding dimension for X plus embedding dimension for Y ) and used

two hidden layers of 64 and 8 nodes respectively, irrespective of the embedding dimension; the majority of LT method runs

diverged when the dimension equaled 4000.

Submanifold Parameterization for Exponential Families

Our method allows for a great deal of flexibility in the choice of function space parameteriza-

tion. In a ‘small-data’ setting, the assumption of an exponential family structure can serve as an

effective regularization. We illustrate this with Figure 4, which shows the estimation of the α-

divergence with α = 0.25 between 10-dimensional Gaussians using a data set of 5000 samples
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from each distribution for SGD (minibatch size of 100) and using another 5000 samples for

Monte Carlo estimation of the value of the objective functional. Using the submanifold estimation

formula (20) and its scaling-improved variant (see Appendix E) we obtain the magenta and red

curves, respectively. In blue, we show the result from the scaling-improved variational formula

(17) and in black we show the result using the LT f -divergence objective functional (1); both use

102 103

10-1

100

101

Fig. 4. Estimation of the α-divergence with α = 0.25 between two 10-dimensional Gaussians with randomly generated variances

and one of the means randomly perturbed from zero. We compare the convergence performance between the neural network

and submanifold parameterizations. The relative error was averaged over 50 runs.

neural network families with one fully connected hidden layer (5 nodes). The number of nodes

was chosen so that all methods use approximately the same number of parameters. The neural

network parameterization converges faster, but ends up with a larger bias than the submanifold

parameterization. The scaling-improved variational formulas lead to faster convergence than the

LT variational formula in both cases as expected by our theory.

MNIST Dataset Examples

Next we illustrate the accelerated speed of convergence on high-dimensional (28× 28 = 784

dimensional) realistic data by estimating the Hellinger divergence between two distributions

obtained by (iid) randomly translating the MNIST handwritten digits image dataset [40]. This

provides an effective test case wherein we know the exact answer (Df1/2(Q‖P ) = 0). Figure 5

shows the error, as a function of the number of SGD iterations, and once again demonstrates

that the improved variational formulas lead to faster convergence; in this case, nearly one order

of magnitude fewer SGD iterations are required to reach an accuracy of 10−2 when using the
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Fig. 5. Estimation of the Hellinger divergence between two distributions obtained by (iid) randomly translating the MNIST

handwritten digits dataset [40]: each sample is a random translation of an MNIST image in the x and y directions (iid N(0, 32)

shifts, rounded to the nearest pixel and with periodic boundary conditions). Each step of SGD uses two independent minibatches

of 100 such samples (one minibatch for P and one for Q). Monte Carlo estimation of the value of the Hellinger divergence was

done using the corresponding objective functional and with samples coming from two separate datasets of 10000 randomly shifted

MNIST images (one collection of images for P and an independent collection for Q). The function space was parameterized

via fully-connected neural networks with one hidden layer of 128 nodes. The results were averaged over 50 runs.

tighter objective functionals. In practice, this means that one can more quickly detect whether

or not the two data streams are in fact coming from the same distribution.

To further illustrate that our estimators are behaving appropriately, we perform a pair of

consistency checks using the MNIST dataset, similar to the tests in [35]. While not a perfect

substitute for computing the relative error, tests such as these are very useful in situations where

the exact value of the divergence is nonzero and unknown. In Figure 6(a) we test the data

processing inequality for f -divergences:

Df(Q⊗ κ‖P ⊗ κ) = Df(Q‖P ) , (48)

where κ is a probability kernel. Here we let Q be the MNIST dataset, P be the MNIST dataset

of digits 0 through NP where NP ranges from 0 to 8, and we let κx be the distribution of

random translations of the image x (specifically, N(0, 1) translations, with components rounded

to the nearest integer). The plot shows the ratio of the estimators for Df1/2(Q⊗ κ‖P ⊗ κ) and

Df1/2(Q‖P ), using various objective functionals. In Figure 6(b) we test the product measure
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identity for α-divergences:

Dfα(Q1 × ...×Qk‖P1 × ...× Pk) =

∏k
i=1(α(α− 1)Dfα(Qi‖Pi) + 1)− 1

α(α− 1)
. (49)

Here we let Qi be copies of the MNIST dataset and Pi be copies of the MNIST dataset of

digits 0 through NP , where NP again ranges from 0 to 8. The plot shows the ratio of the right-

hand-side of Eq. (49) to the left-hand-side. The black horizontal lines in both panels show the

exact value of 1. We find that all methods perform well on these consistency checks, though

the best performing method is different for the two tests. This is unsurprising, as our methods

are designed to accelerate the convergence to the optimum value, which is a different goal than

preserving these the above two properties. Note that as NP increases the distributions Q and P

become more similar and so both the numerator and denominator approach zero, making the

task of estimating the ratio more difficult; this is reflected in Figure 6.
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Fig. 6. Hellinger divergence consistency tests (Left: testing the data processing inequality (48). Right: testing the product

property (49)) using MNIST dataset. We employ a fully connected neural network with one hidden layer of 128 nodes. Training

was performed with a minibatch size of 100. We show results after 5000 steps of SGD and results were averaged over 100 runs.

To conclude these examples, we note that although the proposed optimization framework

was applied on statistical learning and estimation, it can be of broader interest, among others,

in epistemic uncertainty quantification [14], in coarse-graining and model reduction [41], [42],

[43], as well as in PAC learning [18] and adversarial learning [11], [13]. In particular, we intend

to explore the use of variational formulas derived via the quadratic approximation method (e.g.,

Eq. (21) and Eq. (100)) for uncertainty quantification, along with the UQ bound (23).
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VI. PROOF OF THEOREM 1

In this section we provide a detailed proof of Theorem 1. For the convenience of the reader,

we will recall the relevant definitions and notation below.

Let P,Q be probability measures on a measurable space (Ω,M) and, for any −∞ ≤ a <

1 < b ≤ ∞ define F1(a, b) to be the set of convex functions f : (a, b) → R with f(1) = 0. If a

(resp. b) is finite, we extend f to a (resp. b) by continuity and set f(x) = ∞ for x 6∈ [a, b]. The

result is a convex, lower semicontinuous function, f : R → (−∞,∞]. The f -divergence of Q

with respect to P is defined by

Df(Q‖P ) =




EP [f(dQ/dP )], Q ≪ P

∞, Q 6≪ P
. (50)

Our starting point is the the following variational characterization [20], [8]:

Df(Q‖P ) = sup
φ∈Mb(Ω)

{EQ[φ]− EP [f
∗(φ)]} , (51)

where Mb(Ω) denotes the set of all bounded and measurable functions and

f ∗(y) = sup
x∈R

{yx− f(x)} = sup
x∈(a,b)

{yx− f(x)} (52)

is the Legendre transform of f .

Remark 4: Note that f ∗(y) ≥ y. This implies f ∗(φ) ≥ φ is bounded below for φ ∈ Mb(Ω),

and hence EP [f
∗(φ)] ∈ (−∞,∞] is always well-defined.

The technical aspects of the proof of Theorem 1 revolve around ensuring that all of the

required expectations and operations are well-defined (without requiring any arbitrary convention

regarding the definition of ∞−∞). Modulo those details, the derivation of Eq. (6) is quite simple.

As a first step, we show that Eq. (51) can be extended to certain unbounded φ. This is similar

to results in [20], [8] but we will prove explicit conditions for which the expectations exist. To

do this, we will need the following lemmas:

Lemma 1: Let f ∈ F1(a, b). Then one of the following holds

1) f ∗ is bounded below.

2) The set dom(f ∗) ≡ {y : f ∗(y) < ∞} is of the form dom(f ∗) = (−∞, d) or dom(f ∗) =

(−∞, d] for some d ∈ (−∞,∞] and f ∗ is non-decreasing.

Proof: Suppose f ∗ is not bounded below. Take yn ∈ I with f ∗(yn) → −∞. We know

f ∗(y) ≥ y and so yn ≤ f ∗(yn) → −∞ and hence yn → −∞. I is convex so it we let d = sup I

then this implies (−∞, d) ⊂ I ⊂ (−∞, d].
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To show f ∗ is non-decreasing, suppose that we have x1 < x2 with f ∗(x1) > f ∗(x2). Taking

yn as above, find an n such that yn < x1 and f ∗(yn) < f ∗(x2). f
∗ is convex and so, letting

t = (x2 − x1)/(x2 − yn) ∈ (0, 1), we have

f ∗(x1) =f ∗(tyn + (1− t)x2) ≤ tf ∗(yn) + (1− t)f ∗(x2)

<tf ∗(x2) + (1− t)f ∗(x2) = f ∗(x2) < f ∗(x1) . (53)

This is a contradiction, hence f ∗ is non-decreasing.

Lemma 2: Let f ∈ F1(a, b) and suppose f ∗ is bounded below or Df(Q‖P ) < ∞. Then

EP [f
∗(φ)−] < ∞ for all φ ∈ L1(Q).

Remark 5: We use the notation g+ ≡ g1g≥0 and g− ≡ −g1g≤0 for positive and negative parts

of a function g = g+ − g−.

Proof: Fix φ ∈ L1(Q). If f ∗ is bounded below then (f ∗)− is bounded above and the result

is trivial, so suppose not. Lemma 1 then implies that f ∗ is non-decreasing. General properties

of Legendre transforms on the real line imply that f ∗ is convex, lower semicontinuous, and f ∗

is continuous on dom(f ∗). Hence there exists b ∈ R such that f ∗ ≤ 0 on (−∞, b] and f ∗ ≥ 0

on (b,∞) (note that f ∗(0) ≥ 0). Define φb = φ1φ≤b + b1φ>b, so that φb ≤ b, φb ∈ L1(Q), and

EP [f
∗(φ)−] = EP [1φ≤bf

∗(φ)−] = EP [1φ≤bf
∗(φb)

−] ≤ EP [f
∗(φb)

−] = EP [−f ∗(φb)] . (54)

Hence EP [f
∗(φb)] ≤ −EP [f

∗(φ)−].

Now define φb,n = −n1φb<−n +φb1φb≥−n. φb is bounded above and so φb,n ∈ Mb(Ω) and we

can use Eq. (51) to find

EQ[φb,n] ≤ Df(Q‖P ) + EP [f
∗(φb,n)] . (55)

We have φb,n → φb pointwise, |φb,n| ≤ |φb|, and φb ∈ L1(Q), so we can use the dominated

convergence theorem to obtain

EQ[φb] ≤ Df (Q‖P ) + lim inf
n

EP [f
∗(φb,n)] (56)

(here it was important that we are in the case where Df (Q‖P ) < ∞). We also have φb,n+1 ≤ φb,n,

hence f ∗(φb,n+1) ≤ f ∗(φb,n) (recall we are in the case where f ∗ is nondecreasing) and for N

large enough we have φb,n ≤ b for all n ≥ N . f ∗ is continuous on (−∞, b], hence so

0 ≤ −f ∗(φb,n) ր −f ∗(φb) . (57)
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Therefore the monotone convergence theorem implies limnEP [f
∗(φb,n)] = EP [f

∗(φb)], and so

−∞ < EQ[φb] ≤ Df (Q‖P ) + EP [f
∗(φb)] ≤ Df (Q‖P )− EP [f

∗(φ)−] . (58)

We therefore conclude that EP [f
∗(φ)−] < ∞.

We can now prove that Eq. (51) can be extended to φ ∈ L1(Q).

Theorem 4: Let f ∈ F1(a, b) and suppose either f ∗ is bounded below or Df (Q‖P ) < ∞.

Then

Df (Q‖P ) = sup
φ∈L1(Q)

{EQ[φ]−EP [f
∗(φ)]} , (59)

where the objective functional is valued in [−∞,∞).

Proof: Lemma 2 implies EP [f
∗(φ)−] < ∞ for all φ ∈ L1(Q) and so the objective functional

in Eq. (59) is valued in [−∞,∞). If we can show EQ[φ] − EP [f
∗(φ)] ≤ Df(Q‖P ) for all

φ ∈ L1(Q) then the claimed result will follow by using Eq. (51).

Fix φ ∈ L1(Q). If Df(Q‖P ) = ∞ or EP [f
∗(φ)] = ∞ then the required bound is trivial, so

suppose not. Then f ∗(φ) < ∞ P -a.s. We are in the case where Df (Q‖P ) < ∞, and so Q ≪ P

and f ∗(φ) < ∞ Q-a.s. as well.

In summary, it suffices to show EQ[φ]−EP [f
∗(φ)] ≤ Df (Q‖P ) in the case where φ ∈ L1(Q),

f ∗(φ) ∈ L1(P ), Df(Q‖P ) < ∞, range(φ) ⊂ dom(f ∗). To do this, fix y0 ∈ I and define

φn = y01φ<−n + φ1−n≤φ≤n + y01φ>n. φn ∈ Mb(Ω) and so Eq. (51) gives

Df(Q‖P ) ≥ EQ[φn]− EP [f
∗(φn)] . (60)

We have φn → φ pointwise and |φn| ≤ |φ|+ |y0| ∈ L1(Q), therefore the dominated convergence

theorem EQ[φn] → EQ[φ].

We have range(φn), range(φ) ⊂ dom(f ∗) and f ∗ is continuous on dom(f ∗), therefore f ∗(φn) →
f ∗(φ) pointwise. We also have

|f ∗(φn)| =|f ∗(φn)|1φ<−n + |f ∗(φn)|1−n≤φ≤n + |f ∗(φn)|1φ>n (61)

≤|f ∗(y0)|+ |f ∗(φ)| ∈ L1(P ) ,

hence the dominated convergence theorem implies EP [f
∗(φn)] → EP [f

∗(φ)]. Combining these

gives

EQ[φn]− EP [f
∗(φn)] → EQ[φ]− EP [f

∗(φ)] (62)
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and so

Df(Q‖P ) ≥ EQ[φ]− EP [f
∗(φ)] . (63)

This proves the claim.

We now prove Theorem 1 from the main text, which we restate below. For completeness, we

also provide a derivation of the formula for the optimizer, φ∗, which was obtained in [20].

Theorem 5: Let f ∈ F1(a, b) and suppose either f ∗ is bounded below or Df (Q‖P ) < ∞.

Then:

1) Suppose Q ≪ P , f is C1, f ′ is strictly increasing, and one of the following holds:

a) a < dQ/dP < b

b) a ≤ dQ/dP ≤ b and if the value a (resp. b) is achieved then f ′(a) ≡ limtցa f
′(t) (resp.

f ′(b) ≡ limtրb f
′(t)) exists and is finite.

Define φ∗ = f ′(dQ/dP ). If φ∗ ∈ L1(Q) then the supremum in Eq. (59) is achieved at φ∗.

2) Let Φ be a family of functions with Mb(Ω) ⊂ Φ ⊂ L1(Q) or with φ∗ ∈ Φ ⊂ L1(Q) (in the

latter case, we also assume that the conditions from part (1) hold, so that φ∗ is the optimizer).

Consider any family of transformations T ⊂ {T = T (φ) , such that T : Φ 7→ L1(Q)} that

includes the identity map. Then

Df (Q‖P ) = sup
φ∈Φ

{sup
T∈T

{EQ[T (φ)]− EP [f
∗(T (φ))]}} . (64)

3) If Q ≪ P and (Ω,M) is a metric space with the Borel σ-algebra then one can replace

Mb(Ω) with Cb(Ω) (bounded continuous functions) and L1(Q) with L1
c(Q) (continuous L1(Q)

functions) in the above.

Remark 6: Recall that −∞ ≤ a < 1 < b ≤ ∞. In particular, one could have b = ∞ and so

the assumptions of part (1) do not necessary imply dQ/dP is bounded.

Proof: Suppose that f satisfies the additional conditions from item (1). Then the Legendre

transform can be computed:

f ∗(y) = y(f ′)−1(y)− f((f ′)−1(y)) (65)

for all y ∈ range(f ′). This implies that for x ∈ (a, b) we have f(x) = xf ′(x) − f ∗(f ′(x)). By

taking limits and using the assumptions on dQ/dP , we find f(dQ/dP ) = dQ/dPf ′(dQ/dP )−
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f ∗(f ′(dQ/dP )). Therefore, assuming φ∗ ≡ f ′(dQ/dP ) ∈ L1(Q), we have

EQ[φ
∗]− EP [f

∗(φ∗)] (66)

=EP [f
′(dQ/dP )dQ/dP − f ∗(f ′(dQ/dP ))]

=EP [f(dQ/dP )] = Df(Q‖P ) ,

which proves the claim.

Now, let Φ and T be as in item (2). Since every T ∈ T maps Φ into L1(Q) and T contains

the identity we can use Theorem 4 to obtain

EQ[φ]− EP [f
∗(φ)] ≤ sup

T∈T
{EQ[T (φ)]− EP [f

∗(T (φ))]} ≤ Df (Q‖P ) (67)

for all φ ∈ Φ. Maximizing over Φ and using the fact that either φ∗ ∈ L1(Q) or Mb ⊂ Φ ⊂ L1(Q)

along with Eq. (59) gives

Df(Q‖P ) ≤ sup
φ∈Φ

{EQ[φ]−EP [f
∗(φ)]} (68)

≤ sup
φ∈Φ

sup
T∈T

{EQ[T (φ)]−EP [f
∗(T (φ))]} ≤ Df (Q‖P ) ,

which proves the claim.

Finally, on a metric space, one can approximate measurable functions with continuous func-

tions via Lusin’s theorem (see, e.g., Appendix D in [22]). Using this fact it is straightforward

to show that the same results are obtained if one replaces Mb(Ω) with Cb(Ω) and L1(Q) with

L1
c(Q) (see the Proof of Theorem 1 in [31] for details on the use of this technique in a similar

context). This proves item (3).

APPENDIX A

DERIVATION OF VARIATIONAL FORMULAS FOR α AND RÉNYI DIVERGENCES

Here we provide additional details regarding the derivation of the new variational formulas

for α-divergences, as well as their connection to the Rényi divergences.

1. Recall that the α-divergences are the family of f -divergences corresponding to

fα(t) =
tα − 1

α(α− 1)
, α 6= 0, 1 . (69)
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First consider the case α > 1: The Legendre transform of fα is

f ∗
α(y) = yα/(α−1)α−1(α− 1)α/(α−1) +

1

α(α− 1)
, y ≥ 0 (70)

and the exact optimizer (2) is non-negative. With this in mind, fix φ ≥ 0, φ ∈ L1(Q), and

φα/(α−1) ∈ L1(P ), with φ not P -a.s. zero. For η > 0 we can write

EQ[ηφ]− EP [f
∗
α(ηφ)] (71)

=ηEQ[φ]− ηα/(α−1)α−1(α− 1)α/(α−1)EP [φ
α/(α−1)]− 1

α(α− 1)
.

For a, c ≥ 0, b > 0 we have the following general solution to the optimization problem

sup
η>0

{aη − bηα/(α−1) − c} =
aα

αbα−1

(
α− 1

α

)α−1

− c , (72)

where the maximum occurs at η∗ = (a(α − 1)/(bα))α−1. Hence we can use this formula to

obtain

sup
η>0

{EQ[ηφ]− EP [f
∗
α(ηφ)]} =

1

α(α− 1)
EQ[φ]

αEP [φ
α/(α−1)]−(α−1) − 1

α(α− 1)
. (73)

Using this, for Q ≪ P with (dQ/dP )α ∈ L1(P ) we find

Dfα(Q‖P =
1

α(α− 1)
sup

φ∈L1(Q):φ≥0

{EQ[φ]
αEP [φ

α/(α−1)]1−α − 1} , (74)

and the maximum is achieved at

φ∗
α = (dQ/dP )α−1 . (75)

In Eq. (74) one should interpret 0/0 ≡ 1 and c/∞ ≡ 0, or else restrict to the subset of functions

with 0 < EP [φ
α/(α−1)] < ∞ for which these cases do not occur. Also note that the objective

functional (74) is now invariant under scaling and so we were able to drop the factor of 1/(α−1)

in Eq. (75).

If α ∈ (0, 1) and y < 0 then

f ∗
α(y) = |y|−α/(1−α)α−1(1− α)−α/(1−α) − 1

α(1− α)
, (76)

and, if Q ≪ P , a similar computation to the above yields

Dfα(Q‖P ) =
1

α(1− α)
sup
φ>0

{
1− EQ[φ]

αEP [φ
−α/(1−α)]1−α

}
. (77)

If dQ/dP > 0 then the exact optimizer is φ∗
α = (dQ/dP )α−1. Note that we reparameterized

φ → −φ in Eq. (77) so that we optimize over strictly positive functions, rather than strictly
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negative functions. Also, note that it is not necessary to restrict the optimization in (77) to

φ ∈ L1(Q); if EQ[φ] = ∞ then the objective functional equals −∞ and hence including

such φ’s does not change the value of the supremum. Theorem 1 guarantees that the objective

functionals in the variational representations Eq. (74), and Eq. (77) are tighter than that of the

LT f -divergence objective functional from (51).

2. In particular, for the Hellinger distance (α = 1/2) we find the scaling-improved formula

Df1/2(Q‖P ) = 4 sup
φ>0

{
1− EQ[φ]

1

2EP [φ
−1]

1

2

}
, (78)

as compared to the LT f -divergence variational formula (after changing variables φ → −φ)

Df1/2(Q‖P ) = sup
φ>0

{4− EQ[φ]− 4EP [φ
−1]} . (79)

The improved tightness, 4 − EQ[φ] − 4EP [φ
−1] ≤ 4(1 − EQ[φ]

1

2EP [φ
−1]

1

2 ), is guaranteed by

the general result of Theorem 5, but it can also be seen to be a consequence of the inequality

ab ≤ a2 + b2/4 applied to a = EP [φ
−1]

1

2 , b = EQ[φ]
1

2 .

3. For the χ2-divergence (equal to 2Df2) one can evaluate the optimization over all affine

tranformations. We have f2(x) = (x2− 1)/2 and f ∗
2 (y) = (y2+1)/2. Suppose Df2(Q‖P ) < ∞.

Optimizing first over shifts we find, for φ ∈ L1(Q) ∩ L2(P ),

sup
ν∈R

{EQ[φ− ν]− 1

2
EP [(φ− ν)2 + 1]} (80)

=EQ[φ] +
1

2
(EP [φ]− 1)2 − 1

2
(1 + EP [φ

2])

=EQ[φ]− EP [φ]−
1

2
VarP [φ] ,

with the maximum occurring at ν∗ = EP [φ]−1. Therefore we obtain the variational representation

χ2(Q‖P ) = sup
φ∈L1(Q)∩L2(P )

{EQ[2φ]−EP [2φ]− VarP [φ]}

= sup
φ∈L1(Q)∩L2(P )

{EQ[φ]−EP [φ]−
1

4
VarP [φ]} . (81)

Note that the objective functional in the last line is the same as that obtained in Eq. (48) of [25].

Further optimizing the objective functional over the scaling parameter η ∈ R we find

sup
η∈R

{EQ[ηφ] +
1

2
(EP [ηφ]− 1)2 − 1

2
(1 + EP [(ηφ)

2])}

=
1

2

(EQ[φ]− EP [φ])
2

VarP [φ]
(82)
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(if VarP [φ] > 0), with the maximum occurring at η∗ = (EQ[φ]−EP [φ])/VarP [φ] (if VarP [φ] = 0

then the supremum equals zero, since Q ≪ P ). Therefore

χ2(Q‖P ) =2 sup
φ∈L1(Q)

sup
η,ν∈R

{EQ[ηφ− ν]− EP [f
∗
2 (ηφ− ν)]} (83)

= sup
φ∈L1(Q)∩L2(P ):VarP [φ]>0

(EQ[φ]− EP [φ])
2

VarP [φ]
.

Equality is achieved at φ∗ = dQ/dP and so one can further restrict the optimization to φ ≥ 0.

This provides a rigorous justification of the loss function for χ2-GANs proposed in, [27]. We

emphasize that the objective functional in (83) is tighter than the one in (81).

4. The α-divergences for α = 0, 1 are the KL divergences: Df0(Q‖P ) = DKL(P‖Q) and

Df1(Q‖P ) = DKL(Q‖P ). Reparameterizing the objective functional in Eq. (77) via

φ → e±(α−1)g (84)

(with the optimization running over all measurable g) provides connections to the Donsker-

Varadhan formula for the KL divergence in the limits α → 0, 1. Under the reparameterization

φα = e(α−1)g one has

EQ[φα]
αEP [φ

−α/(1−α)
α ]1−α =1 + (EQ[g]− logEP [e

g])(α− 1) +O((α− 1)2) (85)

and so

lim
α→1

1

α(1− α)
(1−EQ[φα]

αEP [φ
−α/(1−α)
α ]1−α) =EQ[g]− logEP [e

g] , (86)

which is the the DV objective functional for DKL(Q‖P ).

Similarly, reparameterizing via φα = e−(α−1)g gives

EQ[φα]
αEP [φ

α/(α−1)
α ]−(α−1) =1− (EP [g]− logEQ[e

g])α+O(α2) (87)

and so

lim
α→0

1

α(1− α)
(1−EQ[φα]

αEP [φ
−α/(1−α)
α ]1−α) =EP [g]− logEQ[e

g] , (88)

which is the objective functional for the Donsker-Varadhan representation of DKL(P‖Q).

5. Using the same reparametrization as in Eq. (84) we can also derive a connection with the

Rényi family of divergences: Fix α ∈ (0, 1), reparametrize φ = e(α−1)g (g is any measurable

function), and rewrite Eq. (77) in terms of an optimization over g:

Dfα(Q‖P ) =
1

α(1− α)
sup
g

{
1− EQ[e

(α−1)g]αEP [e
αg]1−α

}
. (89)
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Using the connection between α-divergences and Rényi divergences (see [21], but note that our

definition of Rényi divergence differs from theirs by a factor of 1/α), we obtain

Rα(Q‖P ) =
1

α(α− 1)
log(α(α− 1)Dfα + 1) (90)

=
1

α(α− 1)
log(inf

g
EQ[e

(α−1)g ]αEP [e
αg]1−α)

= sup
g

{
1

α− 1
log(EQ[e

(α−1)g ])− 1

α
log(EP [e

αg])

}
.

A similar calculation applies when α > 1; in either case, we obtain an independent derivation

of the Rényi divergence variational formula from [31].

APPENDIX B

IMPROVED DONSKER-VARADHAN VARIATIONAL FORMULA

Here we collect some additional properties of the improved Donsker-Varadhan (DV) variational

formula (16):

DKL(Q‖P ) = sup
φ∈Φ

{sup
η∈R

{ηEQ[φ]− logEP [e
ηφ]}} . (91)

One obviously has T id ⊂ T shift ⊂ T affine. As a consequence, the objective functional in (91)

is tighter than DV, which in turn is tighter than the LT f -Divergence objective functional from

Eq. (51):

Improved DV Eq. (91)︷ ︸︸ ︷
sup
η∈R

{ηEQ[φ]− logEP [e
ηφ]} ≥

DV Eq. (3)︷ ︸︸ ︷
EQ[φ]− logEP [e

φ] ≥
LT f -Divergence Eq. (51)︷ ︸︸ ︷
EQ[φ]− EP [e

φ−1] .

Although the supremum over η in Eq. (91) cannot in general be evaluated analytically, one can

obtain an explicit approximation as follows: Define Gφ(η) = ηEQ[φ] − logEP [e
ηφ] and Taylor

expand around η = 1 to obtain

Gφ(1 + ∆η) =EQ[φ]− logEP [e
φ] + (EQ[φ]−EPφ

[φ])∆η −
VarPφ

[φ]

2
∆η2 +O(∆η3) . (92)

We approximate the optimal ∆η by maximizing the quadratic approximation (92) to find

∆η∗(φ) =
EQ[φ]−EPφ

[φ]

VarPφ
[φ]

, (93)

where dPφ = eφdP/EP [e
φ] is the tilted measure and ∆η∗(φ) is defined to be 0 if VarPφ

[φ] = 0.

Using this, we obtain a new variational representation:
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Theorem 6: Define Φ = {φ ∈ L1(Q) : eφ, φeφ ∈ L1(P )} and for φ ∈ Φ define ∆η∗(φ) as in

Eq. (93). Suppose log(dQ/dP ) ∈ L1(Q). Then

DKL(Q‖P ) = sup
φ∈Φ

{(1 + ∆η∗(φ))EQ[φ]− logEP [e
(1+∆η∗(φ))φ]} . (94)

Proof: It is easy to see that the objective functional in Eq. (21) is well defined for all

φ ∈ Φ. To see that Eq. (21) is an equality, first recall that DKL(Q‖P ) ≥ Gφ(η) for all η and all

φ ∈ L1(Q) (see Eq. (91)), and so DKL(Q‖P ) ≥ supφ∈ΦGφ(1 + ∆η∗(φ)). Computing the value

at φ∗ = log(dQ/dP ) ∈ Φ we see that Pφ∗ = Q and so ∆η∗(φ∗) = 0 and

sup
φ∈Φ

{(1 + ∆η∗(φ))EQ[φ]− logEP [e
(1+∆η∗(φ))φ]} (95)

≥(1 + ∆η∗(φ∗))EQ[φ
∗]− logEP [e

(1+∆η∗(φ∗))φ∗

]

=EQ[φ
∗]− logEP [e

φ∗

] = DKL(Q‖P ) .

This proves (21).

Eq. (21) is a new variational representation of the KL-divergence, however we make no claim

that the objective functional in (21) is tighter than Donsker-Varadhan for every φ; Eq. (21) is

only guaranteed to be tighter than DV when ∆η∗(φ) is sufficiently small. This is because we

only maximized the quadratic approximation in η, and hence only obtained an approximation to

the scaling-improved objective functional from Eq. (91). One can of course circumvent this by

using the maximum of the two:

DKL(Q‖P ) = sup
φ∈Φ

{
max

{
(1 + ∆η∗(φ))EQ[φ]− logEP [e

(1+∆η∗(φ))φ], EQ[φ]− logEP [e
φ]
}}

.

(96)

Although Eq. (96) is less than aesthetically appealing, note that its objective functional is certainly

no worse than DV and will be tighter when ∆η∗(φ) is sufficiently small. Also note that no

additional expectations need to be computed to evaluate the objective functional in Eq. (96) as

compared to that of Eq. (21).

APPENDIX C

APPROXIMATING THE POWER-IMPROVED RÉNYI VARIATIONAL REPRESENTATION

The same method used to derive the second-order approximation of the improved Donsker-

Varadhan variational formula (21) can be applied to the Rényi divergence with power transfor-
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mations. Recall that the power-improved Rényi variational is given by

Rα(Q‖P ) = sup
g

sup
β

{
1

α− 1
log(EQ[e

(α−1)βg ])− 1

α
log(EP [e

αβg])

}
. (97)

Define Gg,α(β) = 1
α−1

log(EQ[e
(α−1)βg ]) − 1

α
log(EP [e

αβg]) to be the objective functional as a

function of β. A Taylor expansion around β = 1 gives

Gg,α(1 + ∆β) = Gg,α(1) + (EQα−1
[g]− EPα[g])∆β (98)

− 1

2
((1− α) VarQα−1

[g] + αVarPα[g])∆β2 +O(∆β3) ,

with dQα = eαgdQ/EQ[e
αg] being the α-tilted measure and similarly for P . The quadratically-

optimal ∆β∗ is obtained by maximizing the second-order Taylor approximation and is given

by

∆β∗(g) =
EQα−1

[g]− EPα[g]

(1− α) VarQα−1
[g] + αVarPα[g]

, (99)

where we assumed 0 < α < 1. If (1−α) VarQα−1
[g] +αVarPα [g] = 0 then we set ∆β∗(g) = 0.

A new Rényi representation formula is then obtained as the following theorem asserts.

Theorem 7: Define Φ = {g : gke(α−1)g ∈ L1(Q), gkeαg ∈ L1(P ) with k = 0, 1} and for g ∈ Φ

define ∆β∗(g) as in Eq. (99). Suppose log(dQ/dP ) ∈ Φ. Then for α ∈ (0, 1) we have

Rα(Q‖P ) = sup
g∈Φ

{
1

α− 1
log(EQ[e

(α−1)(1+∆β∗(g))g ])− 1

α
log(EP [e

α(1+∆β∗(g))g])

}
. (100)

Proof: The proof is similar to the proof of Theorem 6. First, the integrability assumptions

ensure that ∆β∗(g), and hence the objective functional, are well-defined (the latter possibly

equaling −∞). Second, Rα(Q‖P ) ≥ Gg,α(β) for all β and g ∈ Φ thus Rα(Q‖P ) ≥ Gg,α(1 +

∆β∗(g)). It remains to show that the there is a g such that the supremum is attained. Taking

g∗ = log(dQ/dP ) ∈ Φ, it is sufficient to show that ∆β∗(g∗) = 0. We compute the two terms of

the numerator of ∆β∗(g∗):

EQα−1
[g∗] =

EQ[e
(α−1) log(dQ/dP ) log(dQ/dP )]

EQ[e(α−1) log(dQ/dP )]

=
EQ[(dQ/dP )(α−1) log(dQ/dP )]

EQ[(dQ/dP )(α−1)]

=
EP [(dQ/dP )α log(dQ/dP )]

EP [(dQ/dP )α]
,
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and

EPα [g
∗] =

EP [e
α log(dQ/dP ) log(dQ/dP )]

EP [eα log(dQ/dP )]
(101)

=
EP [(dQ/dP )α log(dQ/dP )]

EP [(dQ/dP )α]
.

Thus ∆β∗(g∗) = 0, which completes the proof.

APPENDIX D

TIGHTNESS GAINS AND VARIATIONAL DERIVATIVES

Here we prove an extension of Theorem 2 for the more general case of f -divergences.

Theorem 8 (Tightness gains for f -divergences): In addition to the assumptions of Theorem 1

suppose f ′ is strictly increasing and f ∗ ∈ C3((c, d)) with (f ∗)′′ > 0. We select the function

space Φ = Mb(Ω) and assume that the maximizer φ∗ in (2) is valued in a compact subset of

(c, d). Then, for T = T id , T shift , T scale , T affine we have that JT in (27) is twice differentiable

at ǫ = 0 for any ψ ∈ Mb(Ω). Furthermore, using the notation (28), the corresponding 2nd

Gateaux derivatives d2

dǫ2
JT (0) =

d2

dǫ2

∣∣
ǫ=0

HT [φ
∗ + ǫψ] for all T = T id , T shift , T affine satisfy the

following:

〈∇2Hid[φ
∗]ψ, ψ〉 =−EP [(f

∗)′′(φ∗)]EP ∗ [(ψ)2]

=−EP [(f
∗)′′(φ∗)]

(
VarP ∗[ψ] + EP ∗ [ψ]2

)
, (102)

〈∇2Hshift[φ
∗]ψ, ψ〉 =−EP [(f

∗)′′(φ∗)] VarP ∗ [ψ] , (103)

〈∇2Hscale[φ
∗]ψ, ψ〉 =−EP [(f

∗)′′(φ∗)]

(
VarP ∗ [ψ] + EP ∗ [ψ]2 − (EP ∗ [φ∗ψ])2

EP ∗ [(φ∗)2]

)

=−EP [(f
∗)′′(φ∗)]

(
EP ∗ [(ψ)2]− (EP ∗ [φ∗ψ])2

EP ∗ [(φ∗)2]

)
, (104)

〈∇2Haffine[φ
∗]ψ, ψ〉 =−EP [(f

∗)′′(φ∗)]

[
VarP ∗[ψ]− CovP ∗(φ∗, ψ)2

VarP ∗[φ∗]

]

=−EP [(f
∗)′′(φ∗)] VarP ∗ [ψ]

[
1− ρ2P ∗(φ∗, ψ)

]
, (105)

corresponding to (1), (9), (10) and the combination of the last two respectively. The tilted

probability measure P ∗ is defined as

dP ∗ = (f ∗)′′(φ∗)dP/EP [(f
∗)′′(φ∗)] , (106)

while ρP ∗(φ∗, ψ) denotes the correlation between φ∗ and ψ.
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Remark 7: The relations (102), (103), (104) and (105) imply the following comparisons in

variational curvatures around the optimizer φ∗, extending the discussion in Section III to f -

divergences:

〈∇2Haffine[φ
∗]ψ, ψ〉 ≥ 〈∇2Hscale[φ

∗]ψ, ψ〉 ≥ 〈∇2Hid[φ
∗]ψ, ψ〉 (107)

and

〈∇2Haffine[φ
∗]ψ, ψ〉 ≥ 〈∇2Hshift[φ

∗]ψ, ψ〉 ≥ 〈∇2Hid[φ
∗]ψ, ψ〉 . (108)

Furthermore, relations (102), (103), (104) and (105) quantify precisely the gains in each inequal-

ity; compare also to the demonstration in Figure 1. We note that the inequality 〈∇2Haffine[φ
∗]ψ, ψ〉 ≥

〈∇2Hscale[φ
∗]ψ, ψ〉 readily follows from (104) and (105) when all pertinent terms are rewritten

using the correlation ρP ∗(φ∗, ψ).

Remark 8: In the KL case we readily have P ∗ = Q and EP [(f
∗)′′(φ∗)] = 1, thus Theorem 8

implies the results of Theorem 2.

Proof: For the convenience of the reader, we start by repeating several of the equations

from the main text. First define

H [φ, η, ν] = EQ[ηφ− ν]−EP [f
∗(ηφ− ν)] . (109)

Optimization over the affine family leads to four different variational representations of the

f -divergence

Df (Q‖P ) = sup
φ

Hid[φ]︷ ︸︸ ︷
H [φ, 1, 0] = sup

φ

Hshift[φ]︷ ︸︸ ︷
sup
ν

H [φ, 1, ν] (110)

=sup
φ

Hscale[φ]︷ ︸︸ ︷
sup
η

H [φ, η, 0] = sup
φ

Haffine[φ]︷ ︸︸ ︷
sup
η,ν

H [φ, η, ν] .

Then, using the notation (28) for the 2nd Gateaux derivatives, we have the corresponding

variational Hessians

〈∇2Hid[φ
∗]ψ, ψ〉 = d2

dǫ2
∣∣
ǫ=0

H [φ∗ + ǫψ, 1, 0] , (111)

〈∇2Hshift[φ
∗]ψ, ψ〉 = d2

dǫ2
∣∣
ǫ=0

sup
ν

H [φ∗ + ǫψ, 1, ν] ,

〈∇2Hscale[φ
∗]ψ, ψ〉 = d2

dǫ2
∣∣
ǫ=0

sup
η

H [φ∗ + ǫψ, η, 0] ,

〈∇2Haffine[φ
∗]ψ, ψ〉 = d2

dǫ2
∣∣
ǫ=0

sup
η,ν

H [φ∗ + ǫψ, η, ν] .
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The following general computation will facilitate the computation of the variational Hessians

that appear in Eq. (111): The maxima in Eq. (110) are achieved at η = 1, ν = 0, φ = φ∗ ≡
f ′(dQ/dP ). Given C2 families φǫ = φ∗ + ǫψ, ηǫ with η0 = 1, and νǫ with ν0 = 0, we can

compute the derivatives

d

dǫ
H [φǫ, ηǫ, νǫ] = EQ[η

′
ǫφǫ + ηǫψ − ν ′

ǫ] (112)

− EP [(f
∗)′(ηǫφǫ − νǫ)(η

′
ǫφǫ + ηǫψ − ν ′

ǫ)] ,

d2

dǫ2
H [φǫ, ηǫ, νǫ] = EQ[η

′′
ǫ φǫ + 2η′ǫψ − ν ′′

ǫ ]

− EP [(f
∗)′′(ηǫφǫ − νǫ)(η

′
ǫφǫ + ηǫψ − ν ′

ǫ)
2]

− EP [(f
∗)′(ηǫφǫ − νǫ)(η

′′
ǫ φǫ + 2η′ǫψ − ν ′′

ǫ )] .

Here we used the boundedness assumptions on f ∗, the differentiablity of f ∗ and the domi-

nated convergence theorem [34] (Theorem 2.27); the latter allowed us to rigorously exchange

derivatives and expectations when we calculated the 1st and the 2nd Gateaux derivatives of the

objective functionals above. The same argument is also used in the evaluation of all Gateaux

derivatives below. Furthermore, for any choice of ψ, νǫ, ηǫ that have the above properties, the

maximum of ǫ → H [φǫ, ηǫ, νǫ] is achieved at ǫ = 0. Therefore the first derivative vanishes at

ǫ = 0. In particular, by considering the case ηǫ ≡ 1, νǫ ≡ 0 we see that

EP [(f
∗)′(φ∗)ψ] = EQ[ψ] (113)

for all ψ. The second derivative at the maximum is given by

d2

dǫ2
∣∣
ǫ=0

H [φǫ, ηǫ, νǫ] (114)

=EQ[η
′′
0φ

∗ + 2η′0ψ − ν ′′
0 ]− EP [(f

∗)′′(φ∗)(η′0φ
∗ + ψ − ν ′

0)
2]

−EP [(f
∗)′(φ∗)(η′′0φ

∗ + 2η′0ψ − ν ′′
0 )]

=−EP [(f
∗)′′(φ∗)(η′0φ

∗ + ψ − ν ′
0)

2] ,

where we used Eq. (113) to cancel several terms. We will specialize this to compute all four

Hessians from Eq. (111).

A. LT f - Divergence objective functional

Here we fix ηǫ ≡ 1, νǫ ≡ 0:

H [φ, 1, 0] = EQ[φ]− EP [f
∗(φ)] (115)
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and hence

〈∇2Hid[φ
∗]ψ, ψ〉 = d2

dǫ2

∣∣
ǫ=0

H [φǫ, 1, 0] (116)

=
d2

dǫ2
∣∣
ǫ=0

(EQ[φǫ]− EP [f
∗(φǫ)])

=− EP [(f
∗)′′(φ∗)ψ2] .

We have assumed (f ∗)′′ > 0 and so we can define the probability measure

dP ∗ = (f ∗)′′(φ∗)dP/EP [(f
∗)′′(φ∗)] (117)

and thereby write

〈∇2Hid[φ
∗]ψ, ψ〉 = −EP [(f

∗)′′(φ∗)]EP ∗ [ψ2] (118)

(compare with the KL-case Eq. (29)).

B. Optimization over shifts

Here ηǫ ≡ 1 and νǫ is chosen so that

sup
ν
{−ν − EP [f

∗(φǫ − ν)]} = −νǫ − EP [f
∗(φǫ − νǫ)] . (119)

By using the convexity of the objective functional in ν along with implicit function theorem,

one can see that the assumptions on f are sufficient to ensure that such a smooth νǫ exists for

ǫ in a neighborhood of 0. We can simplify

〈∇2Hshift[φ
∗]ψ, ψ〉 = d2

dǫ2
∣∣
ǫ=0

sup
ν

H [φǫ, 1, ν] (120)

=
d2

dǫ2
∣∣
ǫ=0

H [φǫ, ηǫ, νǫ] = −EP [(f
∗)′′(φ∗)(ψ − ν ′

0)
2] .

The derivative of νǫ can be computed as follows: Eq. (119) implies

0 =∂ν |ν=νǫ(−ν −EP [f
∗(φǫ − ν)]) = −1 + EP [(f

∗)′(φǫ − νǫ)] (121)

for all ǫ. Differentiating with respect to ǫ gives

0 = EP [(f
∗)′′(φǫ − νǫ)(ψ − ν ′

ǫ)] , (122)

hence

ν ′
0 =

EP [(f
∗)′′(φ∗)ψ]

EP [(f ∗)′′(φ∗)]
= EP ∗ [ψ] (123)
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where P ∗ is the probability measure defined in Eq. (117). Therefore

d2

dǫ2
∣∣
ǫ=0

sup
ν

H [φǫ, 1, ν] =− EP [(f
∗)′′(φ∗)]EP ∗ [(ψ − ν ′

0)
2]

=− EP [(f
∗)′′(φ∗)] VarP ∗[ψ] (124)

(compare with the KL-case Eq. (30)).

Recalling the result (118) we arrive at

〈∇2Hshift[φ
∗]ψ, ψ〉 =〈∇2Hid[φ

∗]ψ, ψ〉+ EP [(f
∗)′′(φ∗)ψ]2/EP [(f

∗)′′(φ∗)] . (125)

This shows that the magnitude of the second derivative (which is guaranteed to be non-positive)

has been reduced by the amount EP [(f
∗)′′(φ∗)ψ]2/EP [(f

∗)′′(φ∗)].

C. Optimization over scaling transformations

Here νǫ ≡ 0 and ηǫ is chosen so that

sup
η
{EQ[ηφǫ]− EP [f

∗(ηφǫ)]} = EQ[ηǫφǫ]− EP [f
∗(ηǫφǫ)] . (126)

Again, the existence and smoothness of ηǫ is guaranteed by convexity and the implicit function

theorem. Next note that

0 =∂η|η=ηǫ(EQ[ηφǫ]− EP [f
∗(ηφǫ)]) = EQ[φǫ]−EP [(f

∗)′(ηǫφǫ)φǫ] (127)

for all ǫ. Taking the derivative with respect to ǫ gives

0 = EQ[ψ]− EP [(f
∗)′′(φ∗)(η′0φ

∗ + ψ)φ∗ + (f ∗)′(φ∗)ψ] . (128)

Solving for η′0 and using Eq. (113) to simplify yields

η′0 =− EP [(f
∗)′′(φ∗)ψφ∗]

EP [(f ∗)′′(φ∗)(φ∗)2]
. (129)

Therefore, the Hessian is

〈∇2Hscale[φ
∗]ψ, ψ〉 = d2

dǫ2
∣∣
ǫ=0

sup
η

H [φǫ, η, 0] (130)

=−EP [(f
∗)′′(φ∗)(η′0φ

∗ + ψ)2]

=〈∇2Hid[φ
∗]ψ, ψ〉 − (η′0)

2EP [(f
∗)′′(φ∗)(φ∗)2]− 2η′0EP [(f

∗)′′(φ∗)φ∗ψ]

=〈∇2Hid[φ
∗]ψ, ψ〉+ (EP [(f

∗)′′(φ∗)ψφ∗])2

EP [(f ∗)′′(φ∗)(φ∗)2]
.

Once again, the magnitude of the second derivative has been reduced.
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D. Optimization over affine transformations

Finally, let ηǫ and νǫ be defined by

sup
η,ν

{EQ[ηφǫ − ν]−EP [f
∗(ηφǫ − ν)] = EQ[ηǫφǫ − νǫ]− EP [f

∗(ηǫφǫ − νǫ)] . (131)

The existence and smoothness of ηǫ and νǫ are again guaranteed by convexity and the implicit

function theorem. They satisfy

∂ν |ν=νǫ(EQ[ηǫφǫ − ν]−EP [f
∗(ηǫφǫ − ν)]) = 0 , (132)

∂η|η=ηǫ(EQ[ηφǫ − νǫ]− EP [f
∗(ηφǫ − νǫ)]) = 0

for all ǫ. Simplifying this and differentiating with respect to ǫ we obtain the two equations

0 =EP [(f
∗)′′(φ∗)φ∗]η′0 −EP [(f

∗)′′(φ∗)]ν ′
0 + EP [(f

∗)′′(φ∗)ψ] , (133)

0 =− EP [(f
∗)′′(φ∗)(φ∗)2]η′0 + EP [(f

∗)′′(φ∗)φ∗]ν ′
0 − EP [(f

∗)′′(φ∗)φ∗ψ] .

If we define

a = EP [(f
∗)′′(φ∗)φ∗] , b = EP [(f

∗)′′(φ∗)] , (134)

c = EP [(f
∗)′′(φ∗)(φ∗)2] , g = EP [(f

∗)′′(φ∗)ψ] ,

h = EP [(f
∗)′′(φ∗)φ∗ψ] ,

then these have the solution 
η

′
0

ν ′
0


 =

1

bc− a2


a −b

c −a




g
h


 (135)

(note that a2 < bc follows from the Cauchy Schwarz inequality together with the assumptions

that f ′ is strictly increasing and Q 6= P ). We can compute

〈∇2Haffine[φ
∗]ψ, ψ〉

=
d2

dǫ2

∣∣
ǫ=0

sup
η,ν∈R

H [φǫ, η, ν] = −EP [(f
∗)′′(φ∗)(η′0φ

∗ + ψ − ν ′
0)

2]

=〈∇2Hid[φ
∗]ψ, ψ〉 − (η′0)

2c− 2η′0h+ 2η′0ν
′
0a+ 2ν ′

0g − (ν ′
0)

2b

=〈∇2Hid[φ
∗]ψ, ψ〉+ 1

bc− a2

[
h g

]

 b −a

−a c




h
g


 . (136)

We have b + c ≥ 0 and bc − a2 > 0 hence the matrix in Eq. (136) is positive semi-definite.

Therefore the gain term is non-negative and the second derivative is reduced in magnitude, as



42

compared to the unoptimized objective functional (118). Finally, we can rewrite the terms a, c, d

in (136) in terms of b = EP [(f
∗)′′(φ∗)] and the tilted measure (117):

a = EP [(f
∗)′′(φ∗)φ∗] = b · EP ∗ [φ∗] , (137)

c = EP [(f
∗)′′(φ∗)(φ∗)2] = b · EP ∗ [(φ∗)2] ,

g = EP [(f
∗)′′(φ∗)ψ] = b · EP ∗ [ψ] ,

h = EP [(f
∗)′′(φ∗)φ∗ψ] = b · EP ∗ [φ∗ψ] .

Then (136) becomes

〈∇2Haffine[φ
∗]ψ, ψ〉 = 〈∇2Hid[φ

∗]ψ, ψ〉+ b ·
[
CovP ∗(φ∗, ψ)2

VarP ∗ [φ∗]
+ (EP ∗ [ψ])2

]
. (138)

APPENDIX E

EXPONENTIAL FAMILIES AND THE MANIFOLD OF SUFFICIENT STATISTICS

Suppose P = Pθp and Q = Pθq are members of the same exponential family dPθ =

h(x)eκ(θ)·T (x)−β(θ), θ ∈ Θ with T : Ω → R
n the vector of sufficient statistics. Then (under

appropriate assumptions) we have

Df (Q‖P ) = sup
φ∈L1(Q)

{EQ[φ]− EP [f
∗(φ)]} = EQ[φ

∗]− EP [f
∗(φ∗)] , (139)

and the explicit optimizer φ∗ = f ′(dQ/dP ) lies on a (generally nonlinear) (n+ 1)-dimensional

manifold of functions, parameterized by the sufficient statistics and constants:

φ(β,κ) = f ′(exp(κ · T + β)), (β, κ) ∈ R× R
n . (140)

Therefore, computing the f -divergence reduces to the following finite-dimensional optimization

problem:

Df(Q‖P ) = sup
(β,κ)∈Rn+1

{EQ[φ(β,κ)]− EP [f
∗(φ(β,κ))]} . (141)

In some cases one can further reduce the dimension by optimizing over an appropriate family

of transformations.

1) For KL divergence, we have

φ(β,κ) = log(exp(κ · T + β)) + 1 = κ · T + (β + 1) , (142)
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and so the optimizer lies on a linear manifold. If one optimizes over the family of shifts (i.e.,

one uses the Donsker-Varadhan formula) then the β + 1 factor is eliminated and one finds

that

DKL(Q‖P ) = sup
κ∈Rn

{EQ[κ · T ]− logEP [e
κ·T ]} (143)

for any Q, P that are members of the exponential family, i.e., the optimization is over the

n-dimensional subspace spanned by the sufficient statistics: φκ = κ · T, κ ∈ R
n. Also, note

that κ → EQ[κ · T ]− logEP [e
κ·T ] is concave.

2) For α-divergences, the maximizer of the scaling-improved variational formula (17) lies on

the manifold φκ = exp((α− 1)κ · T ), hence

Dfα(Q‖P ) = sup
κ∈Rn

{
1

α(α− 1)
EQ[φκ]

αEP [φ
α/(α−1)
κ ]−(α−1)

}
− 1

α(α− 1)

for any members Q, P , of the exponential family.

APPENDIX F

ASYMPTOTIC VARIANCE OF THE SHIFT-OPTIMIZED α-DIVERGENCE OBJECTIVE

FUNCTIONAL

In this section we provide details regarding the computation of asymptotic variance of the

objective functional estimators for α-divergences (see Theorem 3), generalizing some of the

work on KL divergences from [35]. The main tool is the following lemma, which is based on

the delta method.

Lemma 3: Let h : Rd → R be C1 and Xn be iid R
d-valued random variables with mean µ,

covariance Σ, and supn ‖Xn‖ < ∞. Define

En[X ] =
1

n

n∑

i=1

Xi . (144)

Then

E[
√
n(h(En[X ])− h(µ))] → 0 (145)

and

Var[
√
n(h(En[X ])− h(µ))] → ∇h(µ) · Σ · ∇h(µ) . (146)

Proof: The central limit theorem implies

√
n(En[X ]− µ)

D−→ N(0,Σ) . (147)
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The delta method (see, e.g., Theorem 5.15 in [44]) then implies

√
n (h(En[X ])− h(µ))

D−→ N(0,∇h(µ) · Σ · ∇h(µ)) . (148)

Convergence of the mean and variance will follow from (148) if we can show uniform inte-

grability of the random variables |√n(h(En[X ])− h(µ))|2; see, e.g., Theorem 5.9 in [45]. The

quantities En[X ] and µ valued in BM(0), where M is a bound on supn ‖Xn‖. The C1 function

h is therefore Lipschitz on this ball; let L denote the Lipschitz constant. We can now compute

sup
n

∫
1|√n(h(En[X])−h(µ))|2>c|

√
n(h(En[X ])− h(µ))|2dP (149)

≤L2 sup
n

n

∫
1nL2‖En[X]−µ‖2>c‖En[X ]− µ‖2dP

≤L2 sup
n

nE[‖En[X ]− µ‖4]1/2P (nL2‖En[X ]− µ‖2 > c)1/2

≤L2 sup
n

nE[‖En[X ]− µ‖4]1/2

×
(

d∑

k=1

P

(
|En[X

k]− µk| > c1/2

n1/2d1/2L

))1/2

.

Hoeffding’s inequality (see, e.g., Theorem 2.8 in [46]) implies

P

(
|En[X

k]− µk| > c1/2

n1/2d1/2L

)
≤2 exp

(
− n

2M2

(
c1/2

n1/2d1/2L

)2
)

(150)

=2 exp
(
− c

2dM2L2

)
.

Therefore

sup
n

∫
1|√n(h(En[X])−h(µ))|2>c|

√
n(h(En[X ])− h(µ))|2dP (151)

≤21/2d1/2L2 exp
(
− c

4dM2L2

)
sup
n

E[n2‖En[X ]− µ‖4]1/2 .

If supn E[n2‖En[X ] − µ‖4] < ∞ then the limit of (151) as c → ∞ equals zero and we are

done. Expanding this expression and using the assumption that the Xi’s are iid we find, after a

somewhat long but straightforward calculation,

E[n2‖En[X ]− µ‖4] = 1

n
E[‖X1 − µ‖4] + (1− 1/n)E[‖X1 − µ‖2]2 (152)

+ 2

d∑

j,k=1

(1− 1/n)E[(Xj
1 − µj)(Xk

1 − µk)]2 ,

which is bounded above uniformly in n. This completes the proof.
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We now prove the asymptotic variance result for α-divergences, Theorem 3.

Proof: First, we can rewrite the variance as

α2(α− 1)2nVar[Ĥscale,fα[φ;Qn, Pn]] =Var[
√
nh(EQn[φ], EPn[ψα])] (153)

=Var[
√
n(h(EQn[φ], EPn[ψα])− h(µ))] ,

where

h(x, y) ≡xαy−(α−1) − 1 , µ ≡ (EQ[φ], EP [ψα]) . (154)

The assumed bounds on φ imply that (φ, ψα) are valued in a compact convex set and that h has

a C1 extension from this set to all of R2. Let En[X ] = (EQn[φ], EPn [ψα]). Note that En[X ] has

mean µ and covariance Σ = diag(VarQ[φ],VarP [ψα]) (we independently sample from Q and

P ). The assumptions of Lemma 3 are now satisfied, and so

α2(α− 1)2nVar[Ĥscale,fα[φ;Qn, Pn]] → ∇h(µ) · Σ · ∇h(µ) . (155)

Simplifying this gives the claimed result (39) .
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