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Abstract

Variational representations of divergences and distances between high-dimensional probability dis-
tributions offer significant theoretical insights and practical advantages in numerous research areas.
Recently, they have gained popularity in machine learning as a tractable and scalable approach for
training probabilistic models and for statistically differentiating between data distributions. Their advan-
tages include: 1) They can be estimated from data as statistical averages. 2) Such representations can
leverage the ability of neural networks to efficiently approximate optimal solutions in function spaces.
However, a systematic and practical approach to improving the tightness of such variational formulas,
and accordingly accelerate statistical learning and estimation from data, is currently lacking. Here we
develop such a methodology for building new, tighter variational representations of divergences. Our
approach relies on improved objective functionals constructed via an auxiliary optimization problem.
Furthermore, the calculation of the functional Hessian of objective functionals unveils the local curvature
differences around the common optimal variational solution; this quantifies and orders the tightness gains
between different variational representations. Finally, numerical simulations utilizing neural network
optimization demonstrate that tighter representations can result in significantly faster learning and more
accurate estimation of divergences in both synthetic and real datasets (of more than 1000 dimensions),

often accelerated by nearly an order of magnitude.
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I. INTRODUCTION

Divergences and distances between multivariate probability distributions play a central role
in many mathematical, engineering, and scientific fields ranging from statistical physics, large
deviations theory, and uncertainty quantification to information theory, statistics, and machine
learning. Variational representation formulas for divergences, also referred to as dual formula-
tions, convert divergence calculation into an optimization problem over a function space and offer
a valuable mathematical tool to build, train, and analyze probabilistic models and measure the
similarity between data collections. Typical examples of variational representations are, among
others, the Legendre transformation (LT) of an f-divergence [1], [2], the Donsker-Varadhan (DV)
formula for the Kullback-Leibler (KL) divergence [3], [4] and the Rubinstein-Kantorovich duality
formula for Wasserstein distance [5]. Variational representations have been used in statistical
mechanics and interacting particles systems [6], large deviations [4], divergence estimation
[7]1, [8], [9], determining variable independence through mutual information estimation [10],
adversarial learning of generative models [11], [12], [13], uncertainty quantification (UQ) of
stochastic processes [14], [15], bounding risk in probably approximately correct (PAC) learning
[16], [17], [18], as well as in parameter estimation [19].

Two main mathematical ingredients are involved in the construction of a variational formula.
First, the function space where the optimal solution will be searched for and, second, the repre-
sentation expression, called here the ‘objective functional’, whose optimization leads to the value
of the divergence. Crucial practical advantages of variational formulas in statistics and machine
learning include: a) they do not require an explicit form of the probability distributions (or their
density ratio); related probabilistic quantities can be approximated by statistical estimators over
available data; b) they can exploit the capacity of rich regression models such as neural networks
to efficiently search the function space for optimal solutions; the optimal solution is typically
related to the density ratio.

A single divergence can be derived from several different objective functionals. The key
contribution of this paper is a systematic methodology that uses families of transformations

(e.g., shifts, affine, and powers) to build new, tighter variational representations for divergences



by creating improved objective functionals, as described in our main Theorem 1. This idea is both
simple and powerful; it provides a general framework that unifies many of the previous variational
formulas in the literature, reveals new connections between them, drives the derivation of new
variational formulas, and has practical implications in terms of accelerated statistical training,
learning, and estimation from data.

Striking consequences of the proposed framework include: (i) the connection between LT-
based KL, the DV representation formula, and a new, improved DV-type formula, (ii) a concrete
representation of the abstract objective functional in [9], and (iii) a derivation of new represen-
tation formulas for a-divergence and connections with a recently derived, DV-type variational
representation of Rényi divergences. Moreover, when the optimization over the transformation
family is not analytically tractable, a second-order approximation is employed resulting in new
variational representations.

The improved objective functionals constructed via our framework have the same optimal
solution, but they are tighter in the sense that the same approximation of the optimum will provide
a better approximation of the divergence, i.e., they are flatter around the optimal solution. We
employ (functional) Hessians of the objective functionals to quantify and order relative tightness
gains between different variational representations of divergences, in terms of the local curvature
around the optimal solution. Although our goal here is not variance reduction, we do also study
the asymptotic variance of the tighter variational representations. We obtain theoretical evidence
that our optimization procedures do not increase the variance and provide some numerical
evidence that the variance as well as the averaged error can be decreased.

Finally, we demonstrate that these tighter representation formulas can accelerate numerical
optimization and estimation of divergences in a series of synthetic and real examples, such as the
statistical estimation of f-divergences and mutual information, including cases with real and/or
high-dimensional data (in excess of 1000 dimensions). Similarly to [10], we parameterize the
function space using neural networks, hence the (parameter) optimization is efficiently performed
with back-propagation algorithms. As an example of our method, we develop neural-based
estimators of controlled sample complexity for Hellinger-based mutual information (Hellinger-
MINE). Overall, we find that the improved, tighter representation formulas converge several
times faster than the initial representation formula, often by nearly an order of magnitude in

high-dimensional problems.



II. TIGHTENING THE VARIATIONAL REPRESENTATION OF f-DIVERGENCE

Background

Define F;(a, b) to be the set of all convex functions f : (a,b) — R with f(1) = 0. If a (resp. b)
is finite, we extend f to a (resp. b) by continuity and set f(z) = oo for x ¢ [a, b]. Such functions

are appropriate for defining f-divergences, D, which have the variational characterization
Dy(Q|P) =Ep[f(dQ/dP)]
= sup {Eql¢] — Er[f (o)1}, (D

PEM, ()

where M, (§2) denotes the set of all bounded measurable functions and f* is the Legendre
transform of f [20], [8]. Under appropriate assumptions (see Theorem 4.4 in [20]), the maximum

is achieved at

¢" = f'(dQ/dP). )
There are cases, such as a-divergence with o € (0, 1), where D;(Q||P) can be given a mean-
ingful finite value even if () <« P (see [21]). However, the right hand side of (1) is always +oco
if () £« P and so here we use the convention that D¢(Q)||P) = oo when ) £« P. The special
case of Kullback-Leibler (KL) divergence (i.e., Dy with f(x) = xlog(x)) has a well-known

alternative variational representation, the Donsker-Varadhan (DV) variational formula

Dir(Q|P) = sup {Eg[¢] —log Ep[e’]}. 3)
PEM,(Q)

It is known that the objective functional in (3) is tighter than that of (1), in the sense that
Egle] —log Ep[e?] > Egl[d] — Ep[f*(4)] for all ¢ € M,(£2), [9]. In this paper, we present a
general procedure for obtaining tighter variational representations of any f-divergence, for which

the transition from (1) to (3) is just one special case.

Theoretical Results

Our method for deriving tighter variational representations for f-divergences is described in

the following Theorem; a proof can be found in Section VI.

Theorem 1: Let f € Fi(a,b) and suppose D;(Q||P) < co. With ¢* defined by Eq. (2) (when

it exists), let ® be a family of functions (the test functions) with

My(Q2) € @ C LY(Q) or with ¢* € & C L'(Q). 4)



Consider any family of transformations
T Cc{T =T(¢), such that T : & — L' (Q)} 6)

that includes the identity map. Then

D(Q||P) = sup Hrlg], (6)
where  Hr f[¢] Z;gl;{EQ [T(¢)] — Eplf*(T(9))]}, (7)

and the maximum in (6) is achieved at ¢*. Furthermore, the objective functional, Hr ¢, in the

variational representation (6) is tighter than the objective functional in (1), in the sense that

Eqle] — Ep[f*(0)] < Hrflo] < Dy(Q|P) ®)

for all ¢ € .

Remark 1: When the choice of f and/or 7 is unimportant or clear from the context, we will
omit the corresponding subscript on H7 ;.
(1) The main new insight and primary mathematical tool in this paper are formulas (6) and (7),
which allow for the objective functional Hr|[¢] to be ‘improved/tightened’ using any appropriate
family of transformations 7 ; examples of such families are discussed in the next two subsections.
Eq. (6) is a simple but far-reaching idea that reveals connections between many known variational
representations and also leads to the derivation of new ones. (ii) The extension of Eq. (1) from
M,y(Q) to L'(Q) is useful because the exact optimizer, ¢*, is generally unbounded; various
versions of this extension can be found in the literature [20], [8]. This extension is needed to
justify the computation of variational derivatives around the optimum presented in Section III. It
also implies that one does not need to impose boundedness condition via a cutoff function when
employing neural-based statistical estimation. (iii) The generalization of Eq.(1) to a family,
®, that contains the optimizer is the natural next step; again, see [20], [8]. It provides a
great deal of flexibility in adapting the proposed variational representation (6) to different f-
divergences and could guide the algorithmic implementation. We use this idea several times to
restrict the optimization to, e.g., positive functions for the a-divergences and finite dimensional
submanifolds for exponential families of distributions. (iv) If 7 C {T": & — ®} is a group under
composition then the objective functional (7) is invariant under the family of transformations 7,
ie., Hr[T(¢)] = Hr[¢] for all T € T. (v) If (2, M) is a metric space with the Borel o-algebra
then one can replace M;(Q) with C,(©2) (bounded continuous functions) and L'(Q) with L(Q)



(continuous L'(Q) functions) in Theorem 1. This is a direct consequence of Lusin’s theorem [22,

Appendix D]. (vi) The auxiliary optimization problem in Eq. (7) is often computed analytically;

alternatively and due to its low dimensionality, the corresponding optimization can be easily

incorporated into the gradient descent framework without significant additional computational

cost.

Families of Transformations

Next, we present several useful families of transformations that, in conjunction with Theorem

1, yield tighter variational formulas.

a.

Identity: 7% = {id} leads to what we call the Legendre Transform (LT) f-divergence
variational formula given by (1).

Shifts: 75"/t (¢) = ¢ — v, v € R, lead to what we call the shift or v-improved variational
formula

D(QP) = sup{sup{Eq[¢] — v — Ep[f*(¢ = v)[}}. )

ded® veR
This result was first obtained in [23], and in this sense Theorem 1 is a broad and systematic
generalization of Theorem 4.4 in [23], where only shift transformations where considered.
Scaling Transformation: Tnscale(gﬁ) = n¢, n € R, which lead to the scaling or n-improved

variational formula

D(Q||P) = sup{sup{nEq|[¢] — Ep[f*(ne)]}}. (10)

ded® neER
Affine Transformation: The above two cases can be combined into a two parameter family
Toflme(¢) = ng — v.
Power Transformation: T (¢) = ¢”, f € R, which lead to the power or S-improved

variational formula

Dy(Q||P) = ZEE{ZEE{EQW] — Eplf*(¢")]}}. (11)

As with the affine transformations, the power transformations can be combined with the shift
and/or scaling transformations to form a multiparameter family. These are related to the well-
known Box-Cox transformation [24], used in statistics to transform non-normal data sets to

approximately normal.



New Derivations of Existing Variational Representations

In this and next subsections, we explore several specific cases of the above framework, focusing
primarily on examples where the optimization over the shift and/or scaling parameter can be
done analytically. Here, we uncover connections with previously known variational formulas.
1) Donsker-Varadhan formula (KL-divergence with shift transformations): KL-divergence is the

f-divergence corresponding to f(x) = zlog(x), which has Legendre transform f*(y) = e¥~!.
The maximum over the shift transformations 7"/t in (6) occurs at v* = log (Ep [e¢]) —1,
and hence

sup{Eql¢] —v = Eplf"(¢ — )]} (12)

—Eql¢] — v* — Eple’le™ ™" = Eql¢] — log(Ep[e”]).

The result is the objective functional in the well-known Donsker-Varadhan variational formula
(3) and so this framework provides the connection between (3) and (1). We also note that in
[25] a connection is derived between (3) and (1) by using a logarithmic change of variables
in the function space, based on (2) for the KL case.

2) Connection with the results of [9]: In Theorem 1 of [9] the following improved variational
formula was derived:

Dy(Q|P) :¢ESX4113(Q){EQ[¢] — (I7p)" 1}, (13)

Ep[f(’l")], r e LI(P), r Z 0, Ep[’l"] =1

I ;?P(T)
0, otherwise

This is another special case of our framework, as can be seen by first rewriting the Legendre-

Fenchel transform and then using Theorem 4.2 in [23]:
(Ifp)*[0) = sup {Eql¢] — Dy (Q|P)} (14)
Q<P

= inf (v + Bp[f*(6 — )]}

Hence the variational formula (13) is in fact the same as the v-improved variational formula
9).
3) x2-Divergence: We use Theorem 1 to provide a variational perspective on the classical

Hammersley-Chapman-Robbins bound for the x2-divergence. To our knowledge, the tightness



result of the bound is novel. The y?-divergence is a special case of the «-divergences,

X2(Q||P) = 2Dy, (Q]| P). Here we optimize (6) over 7%/ to obtain

2 _ o (Eqld] — Ep[¢])?
X“(QIIP) [ v
where ® = {¢p € L'(Q) N L*(P) : ¢ > 0,Varp[p] > 0} and the maximum is achieved at

¢* = dQ/dP > 0. Eq.(15) implies the Hammersley-Chapman-Robbins bound for the 2

(15)

divergence (see, e.g., Eq. 4.13 in [26]) and shows tightness over the set ®. The objective
functional in (15) was proposed as loss function for y2-GANs, [27]; thus, (15) provides a
complete and rigorous justification for this choice. Finally, if we instead optimize (6) over
Tshift| we obtain the objective functional for x? derived in [25], which is thus less tight than

(15); see Appendix A.3.

Deriving New Variational Representations and Further Connections

In this subsection, we produce new variational representations and reveal further connections

between divergences. We do not claim these examples are exhaustive. Nevertheless, they cover

many important cases and illustrate the power and flexibility of Theorem 1.

1)

2)

Improved Donsker-Varadhan (KL-Divergence with affine transformations): Introducing a scal-
ing parameter into Eq. (12), i.e., optimizing over all affine transformations 7%/ in (6), one
finds the new KL variational representation
Dk1(Q||P) =sup{sup{nEq[¢] — log Ep[e™]}}. (16)
¢ped neR
The inclusions 7"/t c Tae/fire implies that (16) is tighter than DV (3). Calculations
and numerical results that quantify this improved tightness are found in Section III. The
optimization over 7 in Eq. (16) cannot be evaluated analytically in general, but it can be done
numerically (as discussed in Section V).

a-Divergences (scaling transformations): The a-divergences are the family of f-divergences

t*—1

corresponding to f,(t) = ala—1)°

a # 0,1. See [21] for properties, related families, and
further references. It includes the KL, Hellinger and x? divergences as special cases [28], is

closely related to the Tsallis entropies [29], and appears also in the context of information



3)

4)

geometry [30]. By optimizing (6) over the family of scaling transformations, 7 ¢ (restricted

to n > (), we obtain a new variational representation of the a-divergences:
Dy (Q[|P) (17)

Y SR S o g/ (@-D]—(a=1) _
p { = (Balo Erfr e — )b

€D, a—1)

where ®, = {¢ € L'(Q) : ¢ > 0,0 < Ep[¢p*/(® V] < 0o} if a > 1 and &, = {¢ : ¢ > 0}
if 0 < a < 1. Eq.(17) has the exact optimizers ¢* = (dQ/dP)*~!. Theorem 1 guarantees
that the objective functionals in the new variational representations (17) are tighter than that
of the LT f-divergence objective functional from (1). See Appendix A for details on the
calculations that lead to Eq.(17), as well as for connections to the KL divergence in the
limits as o — 0, 1.

Variational representations of Rényi divergences: Eq. (17) leads to a variational characteriza-
tion of Rényi divergences. Using the known connection between the o and Rényi divergences,
along with Eq. (17) and the change of variables ¢ = e(*~19 (see Appendix A for details) one

obtains

Ra(Q||P) log(a(a = 1) Dp, (Q[IP) + 1) (18)

B 1
ala—1)

=sup {a i 1 log(Eq [e(a—l)g]) — é log(Ep[eag])} .

g

This constitutes an independent derivation of the Renyi variational formula derived in [31],
[25], while in the asymptotic limit & — 1 one recovers (3). The Renyi variational formula
(18) was also used in [32] to construct cumulant-based, generative adversarial networks.
Moreover, UQ bounds for risk-sensitive functionals in terms of Rényi divergences, which
were obtained recently in [33], readily follow from (18) after appropriate manipulations and
an optimization over o > 1.

a-Divergences (scaling and power transformations): For o € (0, 1), Combining the scaling

and power family of transformations yields

1 — —a)]l—a
D (Q|P) = mi&lg 2‘;5{1 — Eq[¢°|*Ep[p—F/1=]! | (19)

The optimization over scalings was evaluated as in Eq.(17) but the optimization over the
power transformations, (3, cannot be done analytically. In practice, 5 can be included as
an additional parameter in a numerical optimization procedure; see Section V for further

discussion.



5)

6)

10

Exponential Families: If P and () are members of a parametric family then the set of test
functions, @, in (6) can be reduced to a finite dimensional manifold. For instance, if P = P,
and () = P, are members of the same exponential family dPp = h(z)e"®T@-56) ¢ ¢ ©
with 7" : Q@ — R™ the vector of sufficient statistics then the explicit optimizer ¢* = f/(dQ/dP)
lies on an (n+ 1)-dimensional manifold of functions, parameterized by the sufficient statistics
and constants, ¢z = f'(exp(k-T + B)), (B,x) € R x R", and computation of the f-
divergence reduces to the following finite-dimensional optimization problem:

Dp(@QIP) = sup {EqQ[opm] — Eplf*(0.m)]} - (20)

(B,k)ERF1

This variational representation can be further combined with any appropriate family of
transformations 7. We refer to Appendix E for further details.
Approximating the Improved Donsker-Varadhan: An analytic computation of the optimization
over 7 in Eq. (6) is not possible in general. Nevertheless, an alternative variational charac-
terization of the KL divergence can be derived by expanding around 7 = 1 and solving the
quadratic approximation for An*. Under appropriate assumptions given in Theorem 6 (see

Appendix B), we derive a new variational formula for the KL divergence,

Dk1(Q||P) = Zug{(l + An*(¢))Egl¢] — log Eple AT @)9]} Q1)

where the optimal An* is obtained by maximizing the second-order Taylor approximation
and it is given by

aue) = 22,

with dP, = e?dP/Ep[e?] being the tilted measure. Since we quadratically approximate the

(22)

improved Donsker-Varadhan, there is no guarantee that the objective functional in Eq. (21)
is tighter than that of Donsker-Varadhan’s representation. Despite no general guarantee, it
is expected to be tighter when An*(¢) is sufficiently small. This example demonstrates that
even when there is no explicit formula for the transformation’s optimization, one is still
able to derive a closed-form formula for an approximate version of it and thereby obtain
a new, rigorous variational formula. This same methodological approach can be used to
analytically approximate the optimization over other families of transformations. As another
demonstration, we refer to Theorem 7 in Appendix C where a new approximate variational

formula is derived for the power-improved Rényi variational representation.
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7) Connections with Uncertainty Quantification: The improved DV representation (16) provides
an alternative and arguably more general derivation of model uncertainty bounds derived
recently in [14], [15]. These results quantify the effects of model uncertainty by bounding
expectations of an observable ¢ under an alternative model, (), in terms of the behavior under
a baseline model P and the model discrepancy, measured by Dy (Q||P). Specifically, (16)
implies after straightforward manipulation that Eg[¢] < inf,»o{ log Ep[e"]+ Dr1(Q|IP)}
[14]. More generally, we can obtain similar UQ bounds when model discrepancy is measured
by an f-divergence by using T;f,f me(¢) = n¢ — v in (6) and performing the analogous

manipulations:

Bofo] < ut { L(ER (r0 )] + 0} + TDQIP)} @

The Hammersley-Chapman-Robbins bound can also be viewed as a special case of (23) in

this UQ context.

III. VARIATIONAL DERIVATIVES AND TIGHTNESS GAINS

In Theorem 1, we established the general methodology for building tighter variational rep-
resentations of f-divergences, by constructing suitable objective functionals H7. Here we will
quantify relative tightness gains corresponding to different transformation families 7 for all
such families the maximizer in (6) is always ¢* given by (2). Therefore, our approach relies on
building quadratic variational approximations of each objective functional (7) around the common
maximizer ¢*, and subsequently comparing the corresponding (variational) curvatures; see Figure

1 for a demonstration. Specifically, using that the maximum occurs at ¢*, an asymptotic expansion

yields
1
Hr[o" + 4] = Dr(QIP) + 5(V’ Hrl¢ 1w, v) + O([411%). 24)
where we formally define (VZH7[¢]y, ) = j—; —oHrl¢+e] and ¢ is any functional perturba-

tion of the maximizer ¢*. Formally, the second order term V2HT[¢*], i.e., a variational Hessian,
is necessarily non-positive and determines the behavior in a neighborhood of the maximizer. By
comparing V2H[¢*] for different families 7, we will quantify the ‘tightness gains’ provided by
different transformation families. All these calculations can be made rigorous under appropriate
assumptions as demonstrated next in Theorem 2 and in Theorem 8 in Appendix D.

Here we focus our analysis on affine transformations, Tgf{,f ne(¢) = n¢ — v, but a similar

analysis can be performed for any family 7 with a smooth, finite-dimensional parameterization.
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The LT f-divergence variational formula (1) corresponds to 7 containing only the identity, and
we write the corresponding objective functional as H,4[¢]. Specializing (7) to the affine case,

we define the functional
H[p,n,v] =EQ[T; 11" (¢)] — Eplf* (T3 (9))] (25)
=Eqn¢ —v] — Eplf*(ng —v)],

which leads to four different objective functionals and variational representations of the f-

divergence
Hiql9] Hpipe9]
—— —_——
D¢(Ql|P) ZSI;pH[@l,O] ngpsupH[é,l,V] (26)
=supsup H|[¢, n, 0] = supsup H|[p,n, V]
¢ N ¢ v
—— ———
Hscale[(ﬂ Haffine [¢]

and the corresponding Hessians V> H,4[¢], V2 Hgpifi[0], V2 Heate| @], and V2 Hyy pine|¢]. Next we
state a Theorem where we evaluate and compare these variational Hessians for the important case
of KL divergence, where f(z) = zlog(z) and ¢* = f'(dQ/dP) = log(dQ/dP) + 1. Detailed

computations and rigorous analysis for general f-divergences can be found in Appendix D.

0.1
— Hi[4d
0.05 = = = Hgifi[dc]
= = = Hycale[0c]
g ---- Haffme[¢e]
g ‘ ‘ ‘ ‘ ; ‘ ‘
g 04 03 02 01 0 01 02 03 04
L{: €
o
= 0.1
3
g
o
0.05

Fig. 1. Both plots demonstrate the improvement of the KL divergence objective functional in a neighborhood of the optimizer.
Here, ¢. = ¢*+ep where ¢ = 22 (top panel) and 1(x) = x (bottom panel). P and @ are 1-dimensional Gaussians. Black curves:
LT-based f-divergence objective functional, Blue curves: shift-improved (i.e., Donkser-Varadhan), Magenta curves: n-improved,
Red curves: shift-scaling-improved. Note that 1) = x2 is related to ¢* by a shift and scaling, hence the shift-scaling-improved

objective functional in the top plot has zero curvature in this direction, a manifestation of its shift and scale invariance.
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Motivated by the formal calculation (24), we define

Jr(e) = Hr[¢p" + ep], forany ¢ € My(Q2) and e € R. 27)
The second derivative, when it exists, j—;jT(O) = j—; —oH7l¢" + €y] is called a 2nd Gateaux

derivative of Hp[¢] in the direction ¢) and describes the curvature of the objective functional
Hr[¢] along any given direction ¢ € M,;(Q2) at the maximizer ¢*. Therefore we will define a
corresponding variational Hessian in the direction v as
pe
T de

We remark that relation (28) is simply a notation that only intends to draw a parallel to finite

(V2 Hr {6, v) = 5 77 (0

_oHrlo+ey]. (28)

dimensional optimization calculations using conventional Hessians at maxima or minima of
finite dimensional functions. All rigorous results are stated in terms of the 2nd Gateaux derivative
%jT(O). Using the above notations we can formulate to following result for the KL. divergence.

Theorem 2 (Tightness gains for KL divergence): Consider the KL divergence, i.e., f(x) =
xlog(z). In addition to the assumptions of Theorem 1, we assume that the maximizer ¢* =
log(d@Q/dP) + 1 in (2) is bounded (i.e., ¢* € M,(€2)) and select the function space ¢ =
My(Q) in Theorem 1. Then for 7 = T'd Tshift Taeffine the function J7 in (27) is twice

differentiable at ¢ = (. Furthermore, using the notation (28), the corresponding 2nd Gateaux

derivatives j—;JT(O) = % | _ Hrlo"+ep] forall T = T Tehift Telfine satisfy the following:

d2

@jﬂd(o) = (V?H;q[¢* |1, ¢0) = — Varg[Y] — Eq[v]?, (29)
d2

@sthift (0) = (V*Hgpipe [0, ) = — Varg[y] (30)
d2 C *’ 2

Tz Iressine (0) = (V*Haggine[671, ) = = Varg[y] + % , 31)

corresponding to (1), (3), and (16), respectively.

The complete proof of Theorem 2 is presented in Appendix D in the form of Theorem 8 that
describes the more general case of f-divergences.

Remark 2: The gains inherent in the inclusions 7% C T*M/t c T@e/fine in Theorem 1
are quantified in Theorem 2 by comparing the variational curvatures Eq.(29), Eq.(30), and
Eq. (31) as computed by these 2nd Gateaux derivatives; note that they are progressively smaller
in magnitude. These curvature computations demonstrate how one can rigorously and precisely

quantify heuristics such as those presented in Figure 1 from [9]. Furthermore, our Hessian



14

computations in the form of Theorem 8 also quantify and extend to f-divergences the accuracy
gains observed in the neural estimation of mutual information in [10].

Remark 3: The boundedness assumptions of Theorems 2 and 8 may appear restrictive com-
pared to the generality assumed for f-divergence definition, but they provide the simplest
conditions under which Theorems can be rigorously stated. Under appropriate technical as-
sumptions these results can be easily generalized without assuming the boundedness of ¢* and
for more general function spaces ®. Any necessary assumptions need to ensure the applicability
of the implicit function theorem and the dominated convergence theorem [34] (Theorem 2.27),
following their use in the proof of Theorem 8 presented in Appendix D.

Figure 1 is a simple demonstration of Theorem 2, using 1D Gaussians: P = N(0,1), @ =
N(0,1/2), with perturbations in the directions 1 = z? (top) and ¢ = x (bottom). Optimizing
over all affine transformations (red curves) provides noticeable curvature gains when compared to
optimization over only shifts (blue curves), i.e., the improved DV proposed in (16) compared to
the classical DV objective functional (3) and even more so compared to the Legendre transform

case, (1) (black curves).

IV. f-DIVERGENCE ESTIMATOR BIAS AND VARIANCE

The variational formula Eq. (6) suggests the following natural f-divergence estimator
DHQI[P) = sup sup{Eq, [T(@)] — Er, [/ (T(#))]} (32)
cd TeT

where (), and P, are the n-sample empirical measures and ® C ® is a function space that
can be optimized over numerically (e.g., a family of neural networks). A natural question is
therefore the bias and variance of this estimator. In practice, the optimizations are performed
via some stochastic gradient descent (SGD) algorithm, and one is actually interested in the bias
and variance after a finite number of training steps. Addressing this complicated problem, which
depends heavily on the choice of space ® and the SGD algorithm, is outside the scope of the
present work. However, in this section we will follow the prior work in [35] for KL divergences
and discuss the bias and variance of the objective functional in (32). Finally, we emphasize
that our goal of this paper is to develop tighter objective functionals and study the impact of
improved curvature on the speed of convergence of numerical estimators. This is a separate
question from that of variance reduction, which we do not pursue here. However, we will show

that, for a-divergences, optimizing over scalings does not worsen the variance at the optimizer.
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Objective Functional Bias

The estimator (32) can be viewed either as a single-stage optimization problem over both ¢

and 7', in which case the objective functional is unbiased, or as a two-stage optimization,

D}QI|IP) =sup Hr ([¢; Qu. Pu] (33)
ped
Hr ¢ Qu. P = sup{Eq,[T(¢)] = Er,[f*(T(6))]}

with a biased objective functional. If the optimization over 7" must be performed numerically
then we take the former view, but if part of the optimization can be performed analytically (such
as in (12) and (17)) then we take the latter view. In any case, the divergence estimator as a
whole, Eq. (32), is not unbiased. This can be seen in the simple case of discrete measures on a

finite sample space, where one can numerically optimize over all of M,(2),

D}QIIP) = sup {Eq,[8] - Ep,[f*(9)]} = Dr(Qul|P)

PEM(Q)
By [£(dQ,/dP)]. (34)

which is biased. This fact renders the biased/unbiased objective functional question less relevant
in practice, as one’s goal is generally to estimate the divergence and not just the objective

functional at a fixed ¢.

Objective Functional Variance

For general f, the objective functional estimator for the LT variational formula is

Hy[¢; Qu, Pu] = Eq,[6] — Ep,[f*(9)]. (35)

The two terms are independent, therefore

Var[Hy[¢; Qn, Pa] = Var[Eq, [¢]] + Var|Ep, [f*(¢)]] (36)

=2 Varg[g] + - Varplf*(6)]

In particular, for o divergences (36) reduces to
nVar[Hy,[¢; Qn, P]] = Varg[g] + a*ja — 1/ Varp[p/*71], (37)

where for a € (0,1) we made a change of variables ¢ — —¢.
To compute the asymptotic variance of an optimized objective functional, we rely on the delta

method. This method can be applied to any objective functional that can be expressed as a
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function of expectations. We provide the details in the case of scaling-optimized a-divergences
Eq. (17).

Theorem 3: Let a > 0, a # 1 and suppose ¢ € ® satisfies 0 < ¢ < ¢ < d for some ¢, d € R.
Then we have:

(a) The scaling-optimized a-divergence objective functional (17),

1

Hcate 1[0 Qn, P = W(EQ" (0] Ep, [/ — 1), (38)
has asymptotic variance
lim 1 Var[Hycate, 1,65 Qn, P (39)

n—oo

=(a —1)"(Eql¢]/Ep[ta]) ™Y Varg[g] + a~*(Eq¢]/ Ep[ta])* Varp[i))

where 1, = ¢/(@=1),
(b) At the exact optimizer, ¢!, = (dQ/dP)*~*, Eq.(39) reduces to

lim n Var[Hscape 1. [0"; Qn, Pal] (40)

n—o0

=|a — 1|72 Varg[(dQ/dP)*~'] + a~? Varp[(dQ/dP)"] .

See Appendix F for the proof.

Theorem 3 implies that we need (dQ/dP)** € L'(P) to achieve a finite variance; this fact
can motivate an appropriate choice of «; we also refer to the Hellinger-MINE discussion and
Corollary 1 in Section V. The asymptotic variance (40) agrees with the variance of the LT
objective functional, Eq.(37), at its optimizer ¢ = (dQ/dP)*~'/|a — 1|. Hence, from the
perspective of the variance at the optimizer, neither method has an advantage. Away from the
optimizer there is no consistent relationship between the two variances. In practice, both methods
will take different paths to the optimizer and this further complicates any variance comparison
away from the optimizer. However, empirically we found that the estimators constructed via the
improved variational formulas have smaller variance at the estimated optimal which is different
in general from the theoretical optimizer ¢* (i.e., after a finite number of SGD steps); see Figure

3.

V. NUMERICAL EXAMPLES: FASTER STATISTICAL ESTIMATION AND LEARNING

Next we discuss practical implications of using tighter variational representations developed

in Theorem 1, focusing on accelerating neural-based statistical learning and estimation. In recent
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works, variational representations such as (1) or (3) were used to estimate f-divergences and
likelihood ratios based solely on available data [8]. This variational perspective proved also to
be a crucial mathematical step in training generative adversarial networks (GAN) [11], [12], [13]
and towards developing neural-based estimators for mutual information, [10], taking advantage
of the ability of neural networks to search efficiently through function spaces.

Improved variational formulas for statistical estimation and learning were previously studied
in: 1) [9], using Eq.(13) and assuming a Hilbert space (RKHS) function space, ii) [10], where
the DV and LT formulas for the KL divergence were used to estimate mutual information with
improved accuracy. Both of these implicitly rely on the shift-improved variational formula (see
Eq.(12) and Eq.(14)). Our Theorem 1 provides a broad generalization of these ideas to other
transformation families, allows for practical implementation of the method in [9] to more general
functions space parametrizations (e.g., neural networks), and generalizes the ideas in [10] to other
f-divergences beyond KL, where it can provide improved mutual information estimators based
on (6).

In the following, we employ the outcomes from Sections II & III and build several variational
neural network estimators, in the general spirit of [8], [10]. We demonstrate the performance
improvements that result from representations such as Eq. (6). We start with the heuristic obser-
vation, illustrated in Figure 1, that tighter representations can improve the accuracy of statistical
estimators for f-divergences, in the sense that the same approximation of the optimal ¢* will
provide a better approximation of the divergence. Moreover, tighter variational formulas can lead
to faster convergence of the search algorithm, as we now motivate: suppose one minimizes a
convex function f(z) by the simple gradient descent algorithm x,, .1 = x, — YV f(x,). If V[ is
L-Lipschitz (i.e., the Hessian is bounded by L) then this algorithm converges if 0 < v < 2/L,
and the analysis suggests the optimal learning rate of v = 1/L and leads to the error bound
|f(zn) = f(z*)| < |lmo—27||2/(2vn) (see, e.g., Theorem 3.3 in [36]). If f has the same optimizer
and optimal value, but has a smaller Hessian bound, E, then the optimal learning rate, ¥ = 1/ L
is larger, and the error bound after an equal number of steps is smaller, i.e., the use of f in
place of f can lead to faster convergence.

The above argument is only heuristic; the constant learning rate algorithm is far from optimal
in most cases and the above analysis does not capture the complexity of the current setting.
Nonetheless, it does provide important insight into the numerical results, presented below, which

demonstrate that, in practice, the improved variational formulas do generally lead to faster



18

convergence of the estimators, letting all other factors be equal.
The examples below use the new variational formulas (17) and (19) for a-divergence, largely

focusing on the well-known Hellinger divergence (oo = 1/2), defined as

Dy, ,(Ql P) =4 (1 — / pl/qu/zdu) : (41)

where d() = qdu, dP = pdu. Computations were done in TensorFlow using the AdamOptimizer
[37], an adaptive learning-rate SGD optimizer, with all methods given the same initial learning
rate. When working with neural-network based estimators of a-divergence, we enforce positivity
of the test functions (see (17) and (19)) via the parameterization ¢y = exp(gy) where gq, 0 € O,
is a neural network family with ReLLU activation functions. We compare the LT method, (1)
with the improved estimators based on our formulas (17) and (19). For instance, in the case of
Hellinger divergences we compare the following estimators.

LT Hellinger Estimator:

Zlelg{EQN [—exp(ga)] — Epy[fi)2(—exp(g0))]}, (42)

Fia(y) = 0olyzo + 4(Jyl ™" — 1)1y<0, (43)

Scaling-Improved Hellinger Estimator:

42ug {1 — EQN[eXp(gg)]l/2EpN [exp(—gg)]l/z} , (44)
€

Scaling-Power-Improved Hellinger Estimator:

4 sup {1— Eglexp(Bgs)]"/*Eplexp(—Bgs))"/?} . (45)
0€O,BeR

In the above, (Qy and Py denote the expectation under the empirical distributions using N iid
samples from () and P respectively.

If the optimization over a parameterized family of transformations, 7}, cannot be performed
analytically then we solve the minimization problem (6) - (7) by performing stochastic gradient
descent (SGD) on the full collection of parameters, (#, §). In such cases, our two-step formulation
can be thought of as parametric enhancement of the neural network architecture. The nested
nature of the minimization over ¢ and 7" also allows for more sophisticated methods (not explored
here), e.g., for each ¢ one can perform several SGD steps for 7', thus solving the (generally low
dimensional) problem (7) to high accuracy, before performing another SGD step for ¢ in (6); this

is reminiscent of multiscale numerical methods [38]. The parameterization, 9, of the families of
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transformations considered here is at most two dimensional. For example in the case of 7%//™m¢
we have § = (v, n), where v, ) € R; see also the remaining examples in Section II. Including this
small number of additional parameters in the stochastic gradient descent iterations is expected
to add a negligible additional computational cost, as compared to the (generally) much larger
number of neural-network parameters, 6. In practice, we do find the additional computational

cost to be negligible.

Hellinger-MINE

Here we consider the problem of computing Hellinger mutual information (Hellinger-MI),
Dy, ,(Pixy)l|Px x Py). Typically the divergence in mutual information Dy(P(xy)l[Px x Py)
is chosen to be KL. However, one can consider a whole array of different f-divergences for this
purpose, see for instance [39]. A motivation for choosing Hellinger over KL is rigorously based
on the variance calculations in Section IV. In particular, as a direct consequence of Theorem 3
we obtain the following:

Corollary 1: Under the assumptions of Theorem 3, the relative variance for the Hellinger

a-divergence where o = 1/2, at the optimizer ¢* is

n Var[f[?m [¢*7 Q, PH nh—>n;10 nvar[ﬁscale,fl/Q [¢*7 Qnu Pn]] 46
D, QP D, . (QIP? (“0)
8- Dy,,(Q1P)

- 2Dy,,(QIIP)
Therefore, the sample complexity of the estimator I?[smle, i) [¢*; Qn, P,] at the optimizer ¢* is
n = O(1), when @ # P.
Comparing Corollary 1 with the corresponding result for the KL divergence from Theorem 2 of

Ref. [35],

1i_>m nVar[]?IDv (0% Qn, P ePrL(QIP) _ 1
n o0 > ,
Dy1(Q|[P)? ~ Dk (Q]|P)?

we see that in practice the KL divergence requires n = O(ePx2(@-P)) samples, while the Hellinger

47)

divergence requires n = O(1) samples due to (46).

In Figure 2, we present the computation of Hellinger mutual information (Hellinger-MI),
Dy, ,(Pxy)l|Px x Py), via neural network optimization, where X and Y are correlated 20-
dimensional Gaussians with component-wise correlation p. The results demonstrate that, for

a given computational budget (i.e., fixed number of SGD iterations) the improved variational
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Fig. 2. Estimation of Hellinger-based mutual information between 20-dimensional correlated Gaussians with component-wise
correlation p. We use a fully-connected neural network with one hidden layer of 64 nodes while training is performed with a
minibatch size of 100. We show the Hellinger MI as a function of p after 1000 steps of SGD and averaged over 50 runs. The

inset shows the relative error for p = 0.7, as a function of the number of SGD iterations.

formulas (red and blue) yield more accurate results, i.e., they converge faster than the LT f-
divergence method (1) (black). Moreover, optimizing over both scalings and powers (19) (red)
provides a non-trivial improvement over the scaling-improved method (17) (blue). This is a
generalization of the findings in [10], which compared the DV variational formula (3) with (1)
for the KL divergence. We emphasize that despite the lack of an analytical formula for the
optimization over 3, the inclusion of this single additional parameter in the variational formula
(a negligible addition to the computational cost) leads to a clear performance gain.

As a followup, we demonstrate the effectiveness of our method in estimating Hellinger-
MI for high-dimensional problems with low-dimensional structure. Specifically, in Figure 3
we compare 20-dimensional Gaussians embedded in high dimensional space via a nonlinear
map. The left panels demonstrate the performance gain when using the curvature-improved
objective functionals; we find that the optimized methods significantly outperform the LT method,
especially in higher dimensions. The right panels are a (partial) demonstration that the variances
are comparable, if not improved, when using the optimized objective functionals. Specifically,
we find that the optimized methods approach the exact asymptotic variance faster while the LT

method, which has not yet converged, has a larger variance.
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Fig. 3. Hellinger-MINE between correlated Gaussians embedded in high-dimensional space by a map of the following form:
hi(xz) = z; for i = 1,...,20 and for i > 20 we define h;(x) = A;(x) 4 cos(z;, ;) sin(xy, ;) + zj, ,2j, ;» Wwhere A is an affine
function and ji; € {1, ...,20}; the parameters of A were randomly selected. We employ a fully-connected neural network and
performed training with a minibatch size of 1000 from a dataset of 100000 samples. We show results after 50000 steps of SGD
and the relative L?-error was computed using data from 75 runs. The left figures show the relative error while the right figures
show the relative variance; the solid lines show the exact relative asymptotic variance (46). The top row show the result as a
function of p for embedding-dimension 200 and used a single hidden layer of 64 nodes. The bottom row shows the result for
p = 0.75 as a function of problem dimension (i.e., embedding dimension for X plus embedding dimension for Y') and used
two hidden layers of 64 and 8 nodes respectively, irrespective of the embedding dimension; the majority of LT method runs

diverged when the dimension equaled 4000.

Submanifold Parameterization for Exponential Families

Our method allows for a great deal of flexibility in the choice of function space parameteriza-
tion. In a ‘small-data’ setting, the assumption of an exponential family structure can serve as an
effective regularization. We illustrate this with Figure 4, which shows the estimation of the -

divergence with o = 0.25 between 10-dimensional Gaussians using a data set of 5000 samples
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from each distribution for SGD (minibatch size of 100) and using another 5000 samples for
Monte Carlo estimation of the value of the objective functional. Using the submanifold estimation
formula (20) and its scaling-improved variant (see Appendix E) we obtain the magenta and red
curves, respectively. In blue, we show the result from the scaling-improved variational formula

(17) and in black we show the result using the LT f-divergence objective functional (1); both use

10’

—— LT f-Divergence Method
Scaling-Improved Method

~—— Submanifold Method

Scaling-Improved Submanifold Method

10°

Relative Error

10-1 L

102 10°
Iteration

Fig. 4. Estimation of the a-divergence with a = 0.25 between two 10-dimensional Gaussians with randomly generated variances
and one of the means randomly perturbed from zero. We compare the convergence performance between the neural network

and submanifold parameterizations. The relative error was averaged over 50 runs.

neural network families with one fully connected hidden layer (5 nodes). The number of nodes
was chosen so that all methods use approximately the same number of parameters. The neural
network parameterization converges faster, but ends up with a larger bias than the submanifold
parameterization. The scaling-improved variational formulas lead to faster convergence than the

LT variational formula in both cases as expected by our theory.

MNIST Dataset Examples

Next we illustrate the accelerated speed of convergence on high-dimensional (28 x 28 = 784
dimensional) realistic data by estimating the Hellinger divergence between two distributions
obtained by (iid) randomly translating the MNIST handwritten digits image dataset [40]. This
provides an effective test case wherein we know the exact answer (Dy, ,(Q|P) = 0). Figure 5
shows the error, as a function of the number of SGD iterations, and once again demonstrates
that the improved variational formulas lead to faster convergence; in this case, nearly one order

of magnitude fewer SGD iterations are required to reach an accuracy of 102 when using the
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Fig. 5. Estimation of the Hellinger divergence between two distributions obtained by (iid) randomly translating the MNIST
handwritten digits dataset [40]: each sample is a random translation of an MNIST image in the 2 and y directions (iid N (0, 3?)
shifts, rounded to the nearest pixel and with periodic boundary conditions). Each step of SGD uses two independent minibatches
of 100 such samples (one minibatch for P and one for )). Monte Carlo estimation of the value of the Hellinger divergence was
done using the corresponding objective functional and with samples coming from two separate datasets of 10000 randomly shifted
MNIST images (one collection of images for P and an independent collection for ). The function space was parameterized

via fully-connected neural networks with one hidden layer of 128 nodes. The results were averaged over 50 runs.

tighter objective functionals. In practice, this means that one can more quickly detect whether
or not the two data streams are in fact coming from the same distribution.

To further illustrate that our estimators are behaving appropriately, we perform a pair of
consistency checks using the MNIST dataset, similar to the tests in [35]. While not a perfect
substitute for computing the relative error, tests such as these are very useful in situations where
the exact value of the divergence is nonzero and unknown. In Figure 6(a) we test the data

processing inequality for f-divergences:
Di(Q @ kl[P @ k)= Dy(QlP), (48)

where k is a probability kernel. Here we let () be the MNIST dataset, P be the MNIST dataset
of digits 0 through Np where Np ranges from 0 to 8, and we let x, be the distribution of
random translations of the image = (specifically, N (0, 1) translations, with components rounded
to the nearest integer). The plot shows the ratio of the estimators for Dy, ,(Q ® k[P ® k) and

Dy, ,(Q||P), using various objective functionals. In Figure 6(b) we test the product measure
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identity for a-divergences:
k
[y (la = 1)Dp (Qil|[P) +1) — 1
ala—1) ’
Here we let (); be copies of the MNIST dataset and P; be copies of the MNIST dataset of

Dy (Q1 X .. X Qpll Py x ... x P) = (49)

digits 0 through Np, where Np again ranges from 0 to 8. The plot shows the ratio of the right-
hand-side of Eq. (49) to the left-hand-side. The black horizontal lines in both panels show the
exact value of 1. We find that all methods perform well on these consistency checks, though
the best performing method is different for the two tests. This is unsurprising, as our methods
are designed to accelerate the convergence to the optimum value, which is a different goal than
preserving these the above two properties. Note that as Np increases the distributions ) and P
become more similar and so both the numerator and denominator approach zero, making the

task of estimating the ratio more difficult; this is reflected in Figure 6.

1.02 114 ¢
O LT Hellinger
° 1 A 1.12 % Scaling-Improved Hellinger A
'% 6 L A A Q A Scaling-Power-Improved Hellinger
s ° A gs A
Q A S 11t
2098 o A
= * o A
& * 8 £ 108 A
2096 5 A 6
[a¥ % A
) x [ L x x
7 0941 ° o 190 x ©
¢ 8 A s ©
Zé b = 1.04 % o
A 0.92F < A o
= O LT Hellinger & 1.02F *®
s = Scaling-Improved Hellinger e
8 ool 4 o ©
. A  Scaling-Power-Improved Hellinger y
0.88 ) o . . . . )
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Np Np

Fig. 6. Hellinger divergence consistency tests (Left: testing the data processing inequality (48). Right: testing the product
property (49)) using MNIST dataset. We employ a fully connected neural network with one hidden layer of 128 nodes. Training

was performed with a minibatch size of 100. We show results after 5000 steps of SGD and results were averaged over 100 runs.

To conclude these examples, we note that although the proposed optimization framework
was applied on statistical learning and estimation, it can be of broader interest, among others,
in epistemic uncertainty quantification [14], in coarse-graining and model reduction [41], [42],
[43], as well as in PAC learning [18] and adversarial learning [11], [13]. In particular, we intend
to explore the use of variational formulas derived via the quadratic approximation method (e.g.,

Eq.(21) and Eq. (100)) for uncertainty quantification, along with the UQ bound (23).
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VI. PROOF OF THEOREM 1

In this section we provide a detailed proof of Theorem 1. For the convenience of the reader,
we will recall the relevant definitions and notation below.

Let P, () be probability measures on a measurable space ({2, M) and, for any —oo < a <
1 < b < oo define Fi(a,b) to be the set of convex functions f : (a,b) — R with f(1) =0.If a
(resp. b) is finite, we extend f to a (resp. b) by continuity and set f(z) = oo for x ¢ [a, b]. The
result is a convex, lower semicontinuous function, f : R — (—o0, oo]. The f-divergence of Q)

with respect to P is defined by

Eplf(dQ/dP)), Q < P

D(Q|P) = : (50)
00, QLK P

Our starting point is the the following variational characterization [20], [8]:

Dy(Q[|P)= sup {Eg[¢] — Er[f*(d)]}, (51
PEM(Q)

where M,,(€2) denotes the set of all bounded and measurable functions and

[ (y) = sup{yz — f(z)} = sup {yz — f(z)} (52)
z€R z€(a,b)

is the Legendre transform of f.

Remark 4: Note that f*(y) > y. This implies f*(¢) > ¢ is bounded below for ¢ € M, (1),
and hence Ep[f*(¢)] € (—o0, 0] is always well-defined.

The technical aspects of the proof of Theorem 1 revolve around ensuring that all of the
required expectations and operations are well-defined (without requiring any arbitrary convention
regarding the definition of co—o00). Modulo those details, the derivation of Eq. (6) is quite simple.
As a first step, we show that Eq.(51) can be extended to certain unbounded ¢. This is similar
to results in [20], [8] but we will prove explicit conditions for which the expectations exist. To
do this, we will need the following lemmas:

Lemma 1: Let f € Fi(a,b). Then one of the following holds
1) f* is bounded below.

2) The set dom(f*) = {y : f*(y) < oo} is of the form dom(f*) = (—oo,d) or dom(f*) =
(—o0, d] for some d € (—o0,00] and f* is non-decreasing.

Proof: Suppose f* is not bounded below. Take y, € I with f*(y,) — —oo. We know

f*(y) >y and so y, < f*(y,) — —oo and hence y,, — —oc. I is convex so it we let d = sup [

then this implies (—oo,d) C I C (—o0,d].
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To show f* is non-decreasing, suppose that we have z; < xy with f*(x1) > f*(z2). Taking
Y, as above, find an n such that y, < z; and f*(y,) < f*(z2). f* is convex and so, letting
t=(zy—x1)/(x2 —yn) € (0,1), we have

fr(@) =1 (tyn + (1 = t)za) < tf*(yn) + (1 = 1) f"(22)
<tf*(w2) + (1 =) f*(22) = fH(22) < f*(21). (53)
This is a contradiction, hence f* is non-decreasing. [ |

Lemma 2: Let f € Fi(a,b) and suppose f* is bounded below or D;(Q|P) < oo. Then
Ep[f*(¢)7] < oo for all ¢ € LY(Q).

Remark 5: We use the notation g* = gl,50 and g~ = —gl,<( for positive and negative parts
of a function g = g™ — g~

Proof: Fix ¢ € LY(Q). If f* is bounded below then (f*)~ is bounded above and the result

is trivial, so suppose not. Lemma 1 then implies that f* is non-decreasing. General properties
of Legendre transforms on the real line imply that f* is convex, lower semicontinuous, and f*
is continuous on dom(f*). Hence there exists b € R such that f* < 0 on (—oc,b] and f* > 0
on (b,00) (note that f*(0) > 0). Define ¢, = ¢ply<p, + bly=p, so that ¢, < b, ¢, € L(Q), and

Ep[f*(¢)7] = Ep[ls<nf™(¢) "] = Ep[ly<uf ()] < Ep[f*(¢n)"] = Ep[—f ()] . (54

Hence Ep[f*(é)] < —Ep[f*(¢)~].
Now define ¢, = —nly, <+ @ply,>—n. ¢p is bounded above and so ¢, € M,(§2) and we
can use Eq.(51) to find

Egléwn] < Di(Q|P) + Ep[f*(¢pn)] - (55)

We have ¢y,,, — ¢, pointwise, |¢p,| < |¢], and ¢, € L'(Q), so we can use the dominated

convergence theorem to obtain

Eqlér] < Dy(Q|[P) +lim inf Ep[f*(¢1,,)] (56)

(here it was important that we are in the case where D(Q)||P) < 00). We also have ¢y 11 < ¢p 1,
hence f*(¢pni1) < f*(¢pn) (recall we are in the case where f* is nondecreasing) and for N

large enough we have ¢, < b for all n > N. f* is continuous on (—oo, b}, hence so

0< —f"(dom) / —f"(ds) . (57)
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Therefore the monotone convergence theorem implies lim,, Ep|[f*(¢s.n)] = Ep[f*(¢s)], and so

— 00 < Egldw] < Dy(QIP) + Ep[f*(¢s)] < Dp(Q|IP) — Ep[f*(6)7]. (58)

We therefore conclude that Ep[f*(¢)~] < oco. u
We can now prove that Eq.(51) can be extended to ¢ € L'(Q).
Theorem 4: Let f € Fi(a,b) and suppose either f* is bounded below or D(Q||P) < oc.
Then

D(QlP) = d)GSLulI()Q){EQ [0] = Ep[f* (&)1}, (59)

where the objective functional is valued in [—o00, 00).

Proof: Lemma 2 implies Ep[f*(¢)~] < oo for all ¢ € L*(Q) and so the objective functional
in Eq.(59) is valued in [—o00,00). If we can show Eg[¢] — Ep[f*(¢)] < D¢(Q|P) for all
¢ € LY(Q) then the claimed result will follow by using Eq. (51).

Fix ¢ € L(Q). If D;(Q||P) = oo or Ep[f*(¢)] = oo then the required bound is trivial, so
suppose not. Then f*(¢) < oo P-a.s. We are in the case where D;(Q||P) < oo, and so ) < P
and f*(¢) < co Q-a.s. as well.

In summary, it suffices to show Eg[d] — Ep[f*(¢)] < D;(Q||P) in the case where ¢ € L'(Q),
[*(¢) € LY(P), Di(Q||P) < oo, range(¢) C dom(f*). To do this, fix yo € I and define
On = Yolpc—n + Ol n<p<n + Yolgsn. On € M,(£2) and so Eq.(51) gives

Dp(QIIP) = Eqlon] — Eplf*(¢n)]- (60)

We have ¢,, — ¢ pointwise and |¢,,| < |¢|+|yo| € L'(Q), therefore the dominated convergence
theorem Eg[¢,] = Egl¢].

We have range(¢,, ), range(¢) C dom(f*) and f* is continuous on dom( f*), therefore f*(¢,) —
f*(¢) pointwise. We also have

[F (@)l =15 (0n) [1pcn + [ (0n)[1nco<n + |7 (dn)[1g>n (61)
<|f*(yo)l + 1f*(9)] € L'(P),

hence the dominated convergence theorem implies Ep[f*(¢,)] — Ep[f*(¢)]. Combining these

gives

Eqlon] — Ep[f*(¢n)] = Eqld] — Ep[f*(¢)] (62)



28

and so

Dy(QIP) = Eqlo] — Ep[f(¢)]. (63)

This proves the claim. [ |
We now prove Theorem 1 from the main text, which we restate below. For completeness, we
also provide a derivation of the formula for the optimizer, ¢*, which was obtained in [20].
Theorem 5: Let f € Fi(a,b) and suppose either f* is bounded below or D(Q||P) < oc.
Then:
1) Suppose Q < P, f is O, f’ is strictly increasing, and one of the following holds:
a) a <dQ/dP <b
b) a <dQ)/dP < b and if the value a (resp. b) is achieved then f'(a) = limy, f'(t) (resp.
J'(b) = limy », f'(t)) exists and is finite.
Define ¢* = f/(dQ/dP). If ¢* € L'(Q) then the supremum in Eq.(59) is achieved at ¢*.
2) Let @ be a family of functions with M(Q) C ® C L'(Q) or with ¢* € ® C L'(Q) (in the
latter case, we also assume that the conditions from part (1) hold, so that ¢* is the optimizer).
Consider any family of transformations 7 C {7 = T'(¢), such that T': ® — L'(Q)} that

includes the identity map. Then
D(Q|lP) = sup{sup{ EQ[T(¢)] — Er[f*(T(¢))]}}- (64)
ped TeT

3) If @ < P and (2, M) is a metric space with the Borel o-algebra then one can replace
M, () with C,(Q) (bounded continuous functions) and L*(Q)) with L!(Q) (continuous L'(Q)
functions) in the above.

Remark 6: Recall that —oo < a < 1 < b < oco. In particular, one could have b = co and so
the assumptions of part (1) do not necessary imply d@)/dP is bounded.
Proof: Suppose that f satisfies the additional conditions from item (1). Then the Legendre

transform can be computed:

F @) =y(f") ) = £ W) (65)

for all y € range(f’). This implies that for « € (a,b) we have f(z) = zf'(z) — f*(f'(x)). By
taking limits and using the assumptions on d@/dP, we find f(dQ/dP) = dQ/dP f'(dQ/dP) —
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f*(f'(dQ/dP)). Therefore, assuming ¢* = f'(dQ/dP) € L'(Q), we have

Eqlé"] — Eplf*(¢")] (66)
—Ep[f'(dQ/dP)dQ/dP — f*(f'(dQ/dP))]
=Ep[f(dQ/dP)] = Ds(Q||P),

which proves the claim.
Now, let ® and 7T be as in item (2). Since every 7' € T maps ® into L'(Q) and 7 contains

the identity we can use Theorem 4 to obtain

EqQl¢] — Ep[f™(9)] < sup {EQ[T(¢)] — Ep[f*(T(9))]} < Df(QIP) (67)

TeT
for all ¢ € ®. Maximizing over ® and using the fact that either ¢* € L'(Q) or M, C ® C L(Q)

along with Eq. (59) gives

Dy(Q|P) < Zlelg{EQ [¢] = Ep[f*(¢)]} (68)

< sup ;}é};{E@ [T(9)] = Ep[f*(T(e))]} < Dp(QP),

which proves the claim.

Finally, on a metric space, one can approximate measurable functions with continuous func-
tions via Lusin’s theorem (see, e.g., Appendix D in [22]). Using this fact it is straightforward
to show that the same results are obtained if one replaces M, (2) with C,(©2) and L'(Q) with
LL(Q) (see the Proof of Theorem 1 in [31] for details on the use of this technique in a similar

context). This proves item (3).

APPENDIX A

DERIVATION OF VARIATIONAL FORMULAS FOR o AND RENYI DIVERGENCES

Here we provide additional details regarding the derivation of the new variational formulas

for a-divergences, as well as their connection to the Rényi divergences.

1. Recall that the a-divergences are the family of f-divergences corresponding to

t*—1

falt) = ala—1 @ #0,1. (69)
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First consider the case o > 1: The Legendre transform of f, is

f*(y) — ya/(a—l)a—l(a . l)a/(a—l) +

07

m» y=>0 (70)

and the exact optimizer (2) is non-negative. With this in mind, fix ¢ > 0, ¢ € Ll(Q), and
¢p*/(e=1) ¢ L1(P), with ¢ not P-a.s. zero. For n > 0 we can write

Eqngl — Eplfy(nd)] (71)
1

—nE _ aof(a=1) -1 -1 a/(a—l)E of(a=1)1y - )
EQlo] ~ 1+ e = 1) Eplg ]

For a,c > 0, b > 0 we have the following general solution to the optimization problem

o a-1
where the maximum occurs at n* = (a(a — 1)/(ba))*~!. Hence we can use this formula to
obtain
sup{Eqlno] ~ Eplf2(10)]} = s Balo" o V) - . 73
Using this, for Q < P with (dQ/dP)* € L'(P) we find
Dr(QIP = " sup  {Bglg] Bplo”/ V] 1}, (74)
ala—1) ser1 Qo0
and the maximum is achieved at
O = (dQ/dP)*. (75)

In Eq. (74) one should interpret 0/0 = 1 and ¢/oo0 = 0, or else restrict to the subset of functions
with 0 < Ep[¢p®/@~Y] < oo for which these cases do not occur. Also note that the objective
functional (74) is now invariant under scaling and so we were able to drop the factor of 1/(a—1)
in Eq. (75).

If « € (0,1) and y < 0 then

1
* _ —a/(l-a) , —1 1— —af(l—a) _ = 76
fay) =yl a” (1—-a) ai—a)’ (76)
and, if () < P, a similar computation to the above yields
1
D P)=—— sup {1 — Ep[¢|*Ep|¢p~/I-)i=e1 (77)
1 (QUIP) = o sup {1 = Folg]* Bplom/" =)'~}

If dQ/dP > 0 then the exact optimizer is ¢}, = (d@Q/dP)>"'. Note that we reparameterized

¢ — —¢ in Eq.(77) so that we optimize over strictly positive functions, rather than strictly
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negative functions. Also, note that it is not necessary to restrict the optimization in (77) to
¢ € LYQ); if Egl¢] = oo then the objective functional equals —oo and hence including
such ¢’s does not change the value of the supremum. Theorem 1 guarantees that the objective
functionals in the variational representations Eq.(74), and Eq.(77) are tighter than that of the

LT f-divergence objective functional from (51).

2. In particular, for the Hellinger distance (v = 1/2) we find the scaling-improved formula
D1, (QIP) = 4sup {1 = Eolg]#Eplo™)* } 8)

as compared to the LT f-divergence variational formula (after changing variables ¢ — —¢)
Dy, ,(QIP) = 21113{4 — Eql¢] - 4Ep[¢7']}. (79

The improved tightness, 4 — Eq[¢] — 4Ep[¢~!] < 4(1 — Eq[¢]2 Ep[¢~']2), is guaranteed by
the general result of Theorem 5, but it can also be seen to be a consequence of the inequality

ab < a® + b?/4 applied to a = Ep[gﬁ_l]%, b= EQ[¢]%-

3. For the y?*-divergence (equal to 2D;,) one can evaluate the optimization over all affine
tranformations. We have f5(z) = (2> —1)/2 and f5(y) = (y*+1)/2. Suppose Dy, (Q||P) < oo.
Optimizing first over shifts we find, for ¢ € LY(Q) N L*(P),

sup{Eqlo —v] = 3Bel(6 —v)* + 1] .
~Bglo) + 3(Eeld] — 1 = 2(1+ Erl¢*)

—Eolg] — Belg] - 5 Varpld],

with the maximum occurring at v* = Ep[¢]|—1. Therefore we obtain the variational representation

X(QIP)= sup  {Eg[2¢] — Ep[2¢] — Varp[¢]}
$ELH(Q)NLA(P)
—  sup  {Eold| - Erld] iVarp[gb]} | 81

PEL(Q)NLA(P)
Note that the objective functional in the last line is the same as that obtained in Eq. (48) of [25].

Further optimizing the objective functional over the scaling parameter 7 € R we find

sup {Eqlne] + 5 (Erlnd] ~ 1F = 5(1+ En[(n0)))}

_ 1 (Egl¢] — Erld])?
2 Varp[¢] (82)
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(if Varp[¢] > 0), with the maximum occurring at n* = (Eq|[¢]— Ep[¢])/ Varp[¢] (if Varp[¢] =0

then the supremum equals zero, since () < P). Therefore

X*(QIP) =2 sup sup {Eq[n¢ —v] — Eplfs(n¢ —v)]} (83)
peL(Q) n,veR
_ (Eql¢] — Epl¢])?
B ¢6L1(Q)OLS;(JJI-"’D):Varp [6]>0 Varp[¢)] .

Equality is achieved at ¢* = d@Q/dP and so one can further restrict the optimization to ¢ > 0.
This provides a rigorous justification of the loss function for y2-GANs proposed in, [27]. We

emphasize that the objective functional in (83) is tighter than the one in (81).

4. The a-divergences for a = 0,1 are the KL divergences: Dy (Q||P) = Dgr(P]|Q) and
D¢ (Q||P) = Dkr(Q|/P). Reparameterizing the objective functional in Eq.(77) via

¢ — erla g (84)

(with the optimization running over all measurable g) provides connections to the Donsker-
Varadhan formula for the KL divergence in the limits &« — 0, 1. Under the reparameterization
0o = €@V one has
Eq¢a]® Eplo,%/ ="~ =1+ (Eglg] — log Ep[e*])) (@ = 1) + O((a = 1)*)  (85)
and so
. ]- e — —Q —Q
lim —————(1 = Eql¢n]Ep[¢,"/""]'""") =Eqlg] —log Ep[e’] . (86)

a=1a(l — )
which is the the DV objective functional for Dx(Q||P).

Similarly, reparameterizing via ¢, = e~ (*~19 gives
Eql¢a]*Eplg/ D)7V =1 — (Eplg) — log Eqle’])a + O(a?) 87)
and so
lim #(1 — Egl6a]*Epl¢p,*/ =41 =) =Ep[g] — log Egle?] (88)

a=0 a(l — a)
which is the objective functional for the Donsker-Varadhan representation of Dy (P||Q).
5. Using the same reparametrization as in Eq.(84) we can also derive a connection with the
Rényi family of divergences: Fix a € (0, 1), reparametrize ¢ = e(®~9 (g is any measurable

function), and rewrite Eq. (77) in terms of an optimization over g:

D;. (Q||P) = sup {1 — Egle® ™ V9]* Ep[e®9]'~} (89)
g

b
a(l —a)
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Using the connection between a-divergences and Rényi divergences (see [21], but note that our

definition of Rényi divergence differs from theirs by a factor of 1/a), we obtain

Ra(Q|P) log(e(a = 1) Dy, +1) (90)

:a(a —1)

1 : a— (0% (0% —Q
:m log(lrglf EQ [6( 1)9] EP[€ g]l )

=sup {a i 1 log(Eq[e®V9]) — élog(Ep[eag])} :

g

A similar calculation applies when a > 1; in either case, we obtain an independent derivation

of the Rényi divergence variational formula from [31].

APPENDIX B

IMPROVED DONSKER-VARADHAN VARIATIONAL FORMULA

Here we collect some additional properties of the improved Donsker-Varadhan (DV) variational
formula (16):
Di1(Q||P) =sup{sup{nEq|[¢] — log Ep[e"]}}. 1)
ped nER
One obviously has 7@ c T*hi/t c Ta/lineAg a consequence, the objective functional in (91)
is tighter than DV, which in turn is tighter than the LT f-Divergence objective functional from

Eq. (51):

Improved DV Eq.(91) DV Eq.(3) LT f-Divergence Eq.(51)
sup{nEq[¢] — log Eple"]} > Eq[¢] — log Ep[e?] > Eqlé] — Eple?™'] .

neR

Although the supremum over 7 in Eq. (91) cannot in general be evaluated analytically, one can
obtain an explicit approximation as follows: Define Gy(n) = nEg[¢] — log Ep[e"] and Taylor

expand around 77 = 1 to obtain

Varp, (¢
Gol1 + An) =Eqgld] —log Eple?] + (Eole] — Er, o) An — 2l a4 0(a). - 92
We approximate the optimal A7 by maximizing the quadratic approximation (92) to find
Eq[¢] — Er,[¢]
An*(¢) = LOE 93

where dP, = e?dP/Eple?] is the tilted measure and An*(¢) is defined to be 0 if Varp, [¢] = 0.

Using this, we obtain a new variational representation:
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Theorem 6: Define ® = {¢ € L*(Q) : e?, pe® € L'(P)} and for ¢ € ® define An*(¢) as in
Eq. (93). Suppose log(dQ/dP) € L*(Q). Then

Dg1(Q||P) = Zlég{ (14 An*(¢))Eqle] — log Eple AT @)9]} (94)

Proof: 1t is easy to see that the objective functional in Eq.(21) is well defined for all
¢ € . To see that Eq.(21) is an equality, first recall that Dy (Q||P) > Gg4(n) for all n and all
¢ € L'(Q) (see Eq.(91)), and s0 Dy (Q||P) > supyeq Go(1 4+ An*(¢)). Computing the value
at ¢* =log(dQ/dP) € ® we see that Py = () and so An*(¢*) =0 and

sup{(1 + An*(¢)) Eq[¢] — log Ep[e 47 (?D?]} (95)
peD

>(1+ A (¢)) Eql¢"] — log Ep[el+27 #)9"]
:EQ[¢*] — 10g Ep[ed)*] = DKL(QHP) .

This proves (21). [ ]

Eq. (21) is a new variational representation of the KL-divergence, however we make no claim
that the objective functional in (21) is tighter than Donsker-Varadhan for every ¢; Eq.(21) is
only guaranteed to be tighter than DV when An*(¢) is sufficiently small. This is because we
only maximized the quadratic approximation in 7, and hence only obtained an approximation to
the scaling-improved objective functional from Eq.(91). One can of course circumvent this by

using the maximum of the two:

Dicr(QIIP) = sup { max {(1 + A1’ (9)) Eql¢] — log Ep[e 27 )%, Bq[¢] — log Ep [eﬂ}}.
(S
(96)
Although Eq. (96) is less than aesthetically appealing, note that its objective functional is certainly
no worse than DV and will be tighter when An*(¢) is sufficiently small. Also note that no

additional expectations need to be computed to evaluate the objective functional in Eq. (96) as

compared to that of Eq. (21).

APPENDIX C

APPROXIMATING THE POWER-IMPROVED RENYI VARIATIONAL REPRESENTATION

The same method used to derive the second-order approximation of the improved Donsker-

Varadhan variational formula (21) can be applied to the Rényi divergence with power transfor-
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mations. Recall that the power-improved Rényi variational is given by

R.(Q||P) =sup sup{ 1 1 log( Eqle@~159)) — élog(Ep[eaﬁg])} : 97)
g B

a JR—
Define Gyo(8) = =L log(Eq[e*~1%]) — Llog(Ep[e*]) to be the objective functional as a

function of 3. A Taylor expansion around 5 =1 gives

Goa(l+AP) = Gya(l) + (Eq, . l9] — Er.[9])AB (98)

— %((1 — a) Varg, _,[g] + a Varp, [g]) AB* + O(AB?),

with dQ), = e*dQ)/Egle“?] being the a-tilted measure and similarly for P. The quadratically-
optimal AS* is obtained by maximizing the second-order Taylor approximation and is given
by

ey Eq._.l9] — Ep,l9g]
85°9) = Ty Varg, [g] + aVarn g ©9)

where we assumed 0 < o < 1. If (1 —«) Varg, ,[g] +a Varp, [g] = 0 then we set A5*(g) = 0.
A new Rényi representation formula is then obtained as the following theorem asserts.

Theorem 7: Define ® = {g : gFe(*~19 € LY(Q), g*e*9 € L'(P) with k = 0,1} and for g € ®
define A5*(g) as in Eq.(99). Suppose log(dQ)/dP) € ®. Then for a € (0,1) we have

raQlP) =sup {

log(EoleleD0+a8 @)y _ L1 EP[ea(l+Aﬁ*<g>)g])} (100)
ged (6]

Proof: The proof is similar to the proof of Theorem 6. First, the integrability assumptions
ensure that A5*(g), and hence the objective functional, are well-defined (the latter possibly
equaling —o0). Second, R,(Q||P) > G,.(p) for all 8 and g € ¢ thus R, (Q||P) > Gya(l +
A(B*(g)). It remains to show that the there is a g such that the supremum is attained. Taking
g* =log(dQ/dP) € @, it is sufficient to show that AF*(g*) = 0. We compute the two terms of
the numerator of AS*(g*):

B, g = Zale® e log(dQ/dP)]
Qa-119 | = EQ [e(a—l)log(dQ/dP)]

_ Bg[(dQ/dP)“Vlog(dQ/dP)]
Eq[(dQ/dP)e~1)]

_ Ep[(dQ/dP)*log(dQ/dP)]
Ep[(dQ/dP)"] ’
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and
EP [6(1 log(dQ/dP) log(dQ/dP)]

EPa [g*] = EP [ea log(dQ/dP)] (101)
_ Ep[(dQ/dP)*log(dQ/dP)]
Ep[(dQ/dP)*]
Thus AS*(g*) = 0, which completes the proof. n

APPENDIX D

TIGHTNESS GAINS AND VARIATIONAL DERIVATIVES

Here we prove an extension of Theorem 2 for the more general case of f-divergences.

Theorem 8 (Tightness gains for f-divergences): In addition to the assumptions of Theorem 1
suppose f’ is strictly increasing and f* € C3((c,d)) with (f*)” > 0. We select the function
space & = M,(£2) and assume that the maximizer ¢* in (2) is valued in a compact subset of
(c,d). Then, for T = T'd Tshift 7rscale Taffine we have that Jr in (27) is twice differentiable
at ¢ = 0 for any v € M,(Q2). Furthermore, using the notation (28), the corresponding 2nd
Gateaux derivatives 4, 7-(0) = £ | _ Hrlo" + €] for all T = T Tshilt aifine satisfy the

following: E
(V2Hal¢" 0, 4) = — Ep[(f)"(6")| Ep-[(¢)’]
=~ Ep[(f*)"(¢")] (Varp-[] + Ep-[]*) | (102)
<V2Hshift[¢*]¢a V) =— Ep[(f")"(¢")] Varp:[¢], (103)
(V Hucate[87100, ) = = Ep[(f°)(6")] (v 6]+ Ep- [0 %)
=~ Bl(7)'(4") (Ep*[w)ﬂ - %) , (104
(7 Hugpind6'16,0) = = Eol(77)"(0")] [Varp- o] - S5
= — Ep[(f)"(¢")] Varp-[¢] [1 — pp (6", )] , (105)

corresponding to (1), (9), (10) and the combination of the last two respectively. The tilted

probability measure P* is defined as

dPt = (f*)"(¢")dP/Ep[(f*)"(¢")], (106)

while pp«(¢*, 1) denotes the correlation between ¢* and .
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Remark 7: The relations (102), (103), (104) and (105) imply the following comparisons in
variational curvatures around the optimizer ¢*, extending the discussion in Section III to f-

divergences:

(V2Hof fine 0], ) > (V2 Hoeuie[¢*]100, ) > (VEHia[¢" ], ¥) (107)

and

(V*Hag pine @100, ¥) 2 (V* Honige[ @100, ) 2 (V* Hial [0, ) . (108)

Furthermore, relations (102), (103), (104) and (105) quantify precisely the gains in each inequal-
ity; compare also to the demonstration in Figure 1. We note that the inequality (V2 H, fine (0|0, 1) >
(V2 H geqie|0*]0, 1) readily follows from (104) and (105) when all pertinent terms are rewritten
using the correlation pp-(¢*, ).
Remark 8: In the KL case we readily have P* = @) and Ep[(f*)"(¢*)] = 1, thus Theorem 8
implies the results of Theorem 2.
Proof: For the convenience of the reader, we start by repeating several of the equations

from the main text. First define

Hip,n,v] = Eqlng — vl — Ep[f*(ng —v)]. (109)

Optimization over the affine family leads to four different variational representations of the

f-divergence

Hiq[o)] Hpipelo)]

— ——~—
D¢(Q||P) =sup H[¢, 1,0] = supsup H|[¢, 1, 7] (110)
¢ ¢ v
Hscale[d)} H(Lffine[(z)]

—_—~— —_—~—
=supsup H|¢p,n, 0] = supsup H|[¢,n,v] .
¢ n ¢ nv

Then, using the notation (28) for the 2nd Gateaux derivatives, we have the corresponding

variational Hessians
2 d?
<V Hld[¢*]w7 ¢> = d€2 e=

d2
<V2Hsm‘ft[¢*]¢a ¢> =

T de?

d2
(V* Hocate 610, ¥) = =]
2

d
(V2 Hapfine|#*]10, ) = de2

JH[o" + e, 1,0], (111)

o SUD H[¢" + e, 1,v],

o Sup H[o" + €, n, 0],
n

e=0 Sup H[¢* + €w7 777 V] :
n,v
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The following general computation will facilitate the computation of the variational Hessians
that appear in Eq.(111): The maxima in Eq.(110) are achieved at n = 1, v = 0, ¢ = ¢* =
f(dQ/dP). Given C? families ¢. = ¢* + etp, . with g = 1, and v, with 1y = 0, we can

compute the derivatives

d

&H[Cbea Te, VE] = EQ[”QQSE + 776?/) - Vé] (112)
- EP[(J”Y(%@ - VE)(né¢e + Ue¢ - Vé)] )

d2

2@ 10enevd = Eqlndoc + 20 — 1]

— Bp[(f*)" (et — ve) (110 + netd — 1))
— Ep[(f*) (nede — ve) (n/ b + 2ncp — V)]

Here we used the boundedness assumptions on f*, the differentiablity of f* and the domi-
nated convergence theorem [34] (Theorem 2.27); the latter allowed us to rigorously exchange
derivatives and expectations when we calculated the 1st and the 2nd Gateaux derivatives of the
objective functionals above. The same argument is also used in the evaluation of all Gateaux
derivatives below. Furthermore, for any choice of v, v,, 7. that have the above properties, the
maximum of € — H|[¢., 7., V| is achieved at ¢ = 0. Therefore the first derivative vanishes at

€ = 0. In particular, by considering the case 1. = 1, v. = 0 we see that

Ep[(f) (¢")¢] = Eq[] (113)

for all ). The second derivative at the maximum is given by
2

o Hldeme ] (114
=Eqliys™ + 200 — V] — Ep[(f7)(6") (mbd™ + ¥ — 1)

— Bpl(f) (6" (nf" + 2 — 1)
= — Bp[(f*)"(¢")(mho" + ¥ — )7,

where we used Eq.(113) to cancel several terms. We will specialize this to compute all four

Hessians from Eq. (111).

A. LT f - Divergence objective functional

Here we fix n. =1, v. = 0O:

H¢,1,0] = Eql¢] — Ep[f"(¢)] (115)
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and hence

d?
(V*Hial @', ¥) =5 .o Hoe 1,0] (116)

de?
d2
= T _o(Balod — Bl (60)
= — Ep[(f")"(¢")¥°].
We have assumed (f*)” > 0 and so we can define the probability measure

dP* = (f*)"(¢")dP/Ep[(f*)"(¢")] (117)

and thereby write

(V2Ha[¢" |0, ) = —Ep[(f*)"(¢")] Ep-[¢°] (118)

(compare with the KL-case Eq.(29)).

B. Optimization over shifts

Here 1. = 1 and v, is chosen so that

sup{—v = Ep[f*(¢c = )|} = —ve = Ep[f(¢c — ve)] (119)

By using the convexity of the objective functional in v along with implicit function theorem,
one can see that the assumptions on f are sufficient to ensure that such a smooth v, exists for

e in a neighborhood of 0. We can simplify

d2
(V2 Honigd 6710, 0) = <5]_osup Hle, 1, V] (120)
d2
:@ EZOH[¢E> Nes Ve| = _EP[(f*),/(¢*)(¢ - V(,))Z] .

The derivative of v, can be computed as follows: Eq. (119) implies

0 =0y |y=v.(=v = Ep[f*(¢c = ¥)]) = =1 + Ep[(f")'(¢c — vc)] (121)

for all e. Differentiating with respect to € gives

0= Ep[(f*)"(pe — ve) (¥ — V)], (122)

hence

Bl ()]
"= BRI (@)

= Ep:[¢] (123)
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where P* is the probability measure defined in Eq. (117). Therefore
2

e B9 10] = = Bl (6] B [0 = )]

— — Bpl(f*)'(¢")] Varp-[v] (124)

(compare with the KL-case Eq. (30)).

Recalling the result (118) we arrive at

(V2 Hopige[0"100, 00) =(V2 Hiald" |10, 00) + Ep[(f)" (0" W/ Ep[(f)"(¢7)] . (125)

This shows that the magnitude of the second derivative (which is guaranteed to be non-positive)

has been reduced by the amount Ep[(f*)"(¢*)¢)2/Ep[(f*)"(6*)].

C. Optimization over scaling transformations

Here v. = 0 and 7). is chosen so that

s%p{EQ (0] = Ep[f* (01} = Eqlnedd — Eplf*(ne0c)] - (126)

Again, the existence and smoothness of 7. is guaranteed by convexity and the implicit function

theorem. Next note that

0 =0y ly=n. (Eq[ned — Eplf*(nde)]) = Eqléd — Ep[(f*) (nede)dd (127)

for all e. Taking the derivative with respect to € gives

0= Eq[v] = Ep[(f")"(¢")(mo¢" +1)&" + (f*) (¢")¥]. (128)

Solving for 7} and using Eq. (113) to simplify yields

,__ Ep[(f7)"(0")ve7]

o= B 66 (129

Therefore, the Hessian is

d2
Wmmwmwzg@wm%W] (130)
n

de?
= — Ep[(f")"(¢") (mod" + )]

(V2 Hulo" T, ) — () Eel()"(6°)(6)] — 204 El(F°)(67)6"Y]
ot o L) (606
VG T e T

Once again, the magnitude of the second derivative has been reduced.
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D. Optimization over affine transformations

Finally, let 1. and v, be defined by

S:-E){EQ[ngﬁe - V] - EP[f*(n(be - V)] = EQ[UE¢6 - VE] - EP[f*(n6¢e - VE)] . (131)

The existence and smoothness of 7. and v, are again guaranteed by convexity and the implicit

function theorem. They satisfy

8V|V:V5(EQ[T]E¢E - V] - Ep[f*(ne¢5 - V)]) = O? (132)
Only=n.(EqIn¢e — ve] — Ep[f*(nde — ve)]) = 0

for all e. Simplifying this and differentiating with respect to € we obtain the two equations

0 =Ep[(f*)"(6")¢" I — Ep[(f*)"(¢")]vy + Ep[(f7)"(¢)¥], (133)
0=—Ep[(f)"(¢")(¢") I + Ep[(f")"(6")¢ g — Epl(£7)"(67)¢"0] -
If we define
a = Ep[(f")"(¢")¢], b=Ep[(f)"(¢")], (134)
c=Ep[(f")"(@)(6")], g=Epl(f)"(&")v],
h = Ep[(f*)"(¢")¢"¢],
then these have the solution

% 1 a —b| |g

T e — a2
78 be—a® ¢ —a| |h

(135)

(note that a®> < bc follows from the Cauchy Schwarz inequality together with the assumptions

that f’ is strictly increasing and ) # P). We can compute
<V2Haffine[¢*]¢a ?/)>
_ d2 o *\// * ! * 1\2
=5 leo SUD Hlpe,1,v] = =Ep[(f)"(¢") (00" + ¥ — 14)’]
de n,veER

=(V?Hq[¢" W, ) — (n0)*c — 2nph + 2ngvpa + 2059 — (1))%b

:<V2Hid[¢*]¢a ¢> +

[t [

We have b+ ¢ > 0 and bc — a® > 0 hence the matrix in Eq.(136) is positive semi-definite.

Therefore the gain term is non-negative and the second derivative is reduced in magnitude, as
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compared to the unoptimized objective functional (118). Finally, we can rewrite the terms a, ¢, d

in (136) in terms of b = Ep[(f*)"(¢*)] and the tilted measure (117):

a= Ep[(f")"(¢")¢7] =b- Ep-[¢], (137)
¢ = Ep[(f*)"(¢")(¢")*] = b- Ep-[(¢")°],

9= Ep[(f)"(¢")¥] =b- Ep-[y],

h=Ep[(f)"(¢")¢"¢] = b+ Ep+[¢"¢].

Then (136) becomes

COVP* <¢*7 ¢)2

Val"p* [¢*] + (EP* W]) : (138)

<V2Haffine[¢*]w7 ¢> = <V2sz[¢*]¢7 ¢> +b-

APPENDIX E

EXPONENTIAL FAMILIES AND THE MANIFOLD OF SUFFICIENT STATISTICS

Suppose P = P, and Q = Py, are members of the same exponential family dPy =
h(x)es@T@=56) g ¢ © with T : @ — R™ the vector of sufficient statistics. Then (under
appropriate assumptions) we have

Dy(Q|P) = sup {Eqld] — Ep[f ()]} = Eq[¢"] — Ep[f*(¢")], (139)
L (Q)
and the explicit optimizer ¢* = f'(dQ/dP) lies on a (generally nonlinear) (n + 1)-dimensional

manifold of functions, parameterized by the sufficient statistics and constants:

by = flexp( - T+ ), (B,5) €RxR". (140)

Therefore, computing the f-divergence reduces to the following finite-dimensional optimization

problem:

Dy(Q|P) = sup {Eq[o@m] — Erlf (¢.m)]}- (141)
(B,k)ER™H1
In some cases one can further reduce the dimension by optimizing over an appropriate family

of transformations.

1) For KL divergence, we have

D) =loglexp(k - T+ B)) +1=r-T+ (B+1), (142)
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and so the optimizer lies on a linear manifold. If one optimizes over the family of shifts (i.e.,
one uses the Donsker-Varadhan formula) then the 5 + 1 factor is eliminated and one finds

that

Drr(Q||P) = sup { Eg[s - T] — log Ep[e™ ']} (143)

KER™

for any (), P that are members of the exponential family, i.e., the optimization is over the
n-dimensional subspace spanned by the sufficient statistics: ¢, = x -1, xk € R". Also, note

that k — Eg[k - T] — log Ep[e®T] is concave.

For a-divergences, the maximizer of the scaling-improved variational formula (17) lies on
the manifold ¢,, = exp((aw — 1)k - T'), hence
1 1
D P) = N ) . ap of(a—1)]—(e—=1) L
Q) = sup { Bl Eal/ ) —

for any members (), P, of the exponential family.

APPENDIX F
ASYMPTOTIC VARIANCE OF THE SHIFT-OPTIMIZED «-DIVERGENCE OBJECTIVE

FUNCTIONAL

In this section we provide details regarding the computation of asymptotic variance of the

objective functional estimators for a-divergences (see Theorem 3), generalizing some of the

work on KL divergences from [35]. The main tool is the following lemma, which is based on

the delta method.

Lemma 3: Let h : R — R be C! and X,, be iid R%valued random variables with mean g,

covariance ¥, and sup,, ||.X,,|| < co. Define

E,[X] = %ix (144)
Then -
E[Va(h(E,[X]) — h(s1))] = 0 (145)
and
Var[y/n(h(E.[X]) — h(u))] = Vh(u) - 5 - Vh(). (146)

Proof: The central limit theorem implies

V(B [X] = 1) 2 N(0,3). (147)
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The delta method (see, e.g., Theorem 5.15 in [44]) then implies
Vi (h(E,[X]) = (1)) 2 N(0,Vh(u) - X Vh(p)) . (148)

Convergence of the mean and variance will follow from (148) if we can show uniform inte-
grability of the random variables |\/n(h(E,[X]) — h(n))|?; see, e.g., Theorem 5.9 in [45]. The
quantities F,[X] and x valued in By/(0), where M is a bound on sup,, || X,||. The C' function

h is therefore Lipschitz on this ball; let L denote the Lipschitz constant. We can now compute
s [ 1z, VA X)) = ()PP (149)
§L2 supn/ 1nL2||En[X]—u||2>cHEn[X] — u||2dP
<L sup nE[|| B, [X] — ul|'|'2P(nL?| B, [X] — ] > ¢)'/?
<L?sup nE[| B, [X] — u]| ']/
p iy 1/2
k k
X(;P<|En[X]—M|>m)> :
Hoeffding’s inequality (see, e.g., Theorem 2.8 in [46]) implies
1/2 1/2 2
& § c n c
d <‘E"[X J=wl> m) S2exp <_2M2 <n1/2d1/2L) ) (150

C
=2exp <_2dM2L2) '

Therefore

51D [ 1y -y VA (X)) = () P (1s1)

<2122 exp (- sup E[n? | E,[X] — pl|']2.

)
4dM?L?
If sup,, E[n?||E,[X]| — p||*] < oo then the limit of (151) as ¢ — oo equals zero and we are
done. Expanding this expression and using the assumption that the X;’s are iid we find, after a

somewhat long but straightforward calculation,

E[n®|| E.[X] = "] ZEE[HXl — 1+ (1 =1/n) B[l Xy = pl?? (152)
+2Z (1-1/n)E W) (XE = ")),
7,k=1

which is bounded above uniformly in n. This completes the proof. [ |
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We now prove the asymptotic variance result for a-divergences, Theorem 3.

Proof: First, we can rewrite the variance as

a2(a - ]-)2” Var[li\[scale,fa [¢a Qn7 Pn]] = Var[\/ah(EQn [¢]7 EPn [wa])] (153)

= Var[v/n(h(Eqg,|¢), Ep,[a]) — h(1))],

where

h(z,y) =2y~ — 1, p=(Egld], Ep[¥a]). (154)

The assumed bounds on ¢ imply that (¢, 1), ) are valued in a compact convex set and that A has
a C' extension from this set to all of R% Let £,[X] = (Eq,[#], Ep,[¥a]). Note that F,[X] has
mean g and covariance ¥ = diag(Varg[¢], Varp[i,]) (we independently sample from () and

P). The assumptions of Lemma 3 are now satisfied, and so

o*(a — 1)*n Var[Hyeae. 1. [6: Qs Pol] = V(1) - 5 - Vh(p) . (155)
Simplifying this gives the claimed result (39). [ |
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