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Abstract—With the recent advances in human sensing, the push
to integrate human mobility tracking with epidemic modeling
highlights the lack of groundwork at the mesoscale (e.g., city-
level) for both contact tracing and transmission dynamics. Al-
though GPS data has been used to study city-level outbreaks in
the past, existing approaches fail to capture the path of infection
at the individual level. Consequently, in this paper, we extend
epidemics prediction from estimating the size of an outbreak at
the population level to estimating the individuals who may likely
get infected within a finite period of time. To this end, we propose
a network science based method to first build and then prune
the dynamic contact networks for recurring interactions; these
networks can serve as the backbone topology for mechanistic
epidemics modeling. We test our method using Foursquare’s
Points of Interest (POI) smart phone geolocation data from
over 1.3 million devices to better approximate the COVID-19
infection curves for two major (yet very different) US cities, (i.e.,
Austin and New York City), while maintaining the granularity
of individual transmissions and reducing model uncertainty. Our
method provides a foundation for building a disease prediction
framework at the mesoscale that can help both policy makers
and individuals better understand their estimated state of health
and help the pandemic mitigation efforts.

Index Terms—human mobility tracking, epidemic surveillance,
dynamic networks, mesoscale epidemiology, network pruning

I. INTRODUCTION

Epidemic contact tracing is a form of non-pharmaceutical
intervention that can help mitigate the spread of infectious
diseases such as HIV, Ebola, and SARS [1]. During an
outbreak, each new infection is meticulously investigated by a
team of trained health officials to swiftly quarantine contacts
made during a patient’s contagious period. This method of
outbreak mitigation is typically effective in diseases that have
visible and fast-moving symptoms. However, such approaches
can be easily outrun by a virus that has high asymptomatic
rates, ambiguous symptoms, and long contagious periods as
in the case of SARS-CoV-2 [2].

The catastrophic speed at which COVID-19 pandemic de-
veloped reveals the need to automate contact tracing on a large
scale. Indeed, stimulated by intercontinental travel and growth
of densely populated cities, an outbreak like COVID-19 can
propagate along the complex networks of people much faster
today than in the 1400s where the Black Plague traveled on
average 1.5 km per day [3]. Building off this need to meet the
challenges posed by the increasingly interconnected world, we
can combine digital contact tracing with epidemic modeling
to accomplish both charting the path of infection, as well as
identifying those in need of quarantining.

In the aftermath of the COVID-19 pandemic, both research
and industrial communities face the challenge to build an
epidemiological surveillance infrastructure to inform policy
makers of impending outbreaks. Although a wide range of
wearable devices currently allow for individual mobility trac-
ing [4]–[6], it remains unclear whether agent-based epidemic
models can easily scale to large mobility datasets without
introducing significant uncertainty in predicting the number
of infections [7]. In addition, the longevity of the current
pandemic presents a major challenge to policy makers in being
able to accurately monitor both early and ongoing outbreaks
at the meso-scale (e.g., city level).

Although contact tracing was meant to stop viral transmis-
sion at the micro-level (from one individual to another), and
mathematical modeling was developed to understand disease
dynamics at the macro-level, we aim to bridge this gap by
simulating an outbreak at the city-level using real interactions
from large populations. Our method narrows down the uncer-
tainty in epidemic modeling while maintaining the granularity
of interactions between individuals. In this paper we present
three novel contributions:

1) We propose a new methodology for building co-location
networks that serve as proxies for city-level digital
contact tracing using Foursquare (FS) geo-mobility data.

2) By providing a statistical analysis of the co-location net-
works, we identify recurring interactions among people
that can serve as the potential paths of infection across
cities like Austin (ATX) and New York City (NYC).

3) We show that applying a mechanistic epidemic model
on stably recurring human interaction networks not only
leads to more accurate predictions than using the raw
contact networks, but also decreases the model uncer-
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tainty significantly (as much as 95% based on FS data).
Taken together, our contributions provide a foundation for

utilizing highly granular digital contact tracing to model
epidemics at the meso-scale.

The remainder of this paper is organized as follows: Section
II presents some relevant prior work; Section III describes our
approach, while Section IV presents our experimental results.
Finally, Section V concludes the paper and provides some
directions for future work.

II. PREVIOUS WORK AND NOVEL CONTRIBUTION

The ongoing pandemic catalyzed the use of human mobility
data to predict the spatiotemporal spread of COVID-19 at the
individual level. However, until recently, researchers focused
largely on the macro- and micro-dynamics in both human
mobility and epidemics. Next, we provide a summary of
relevant prior work in these both directions.

A. Human Mobility Modeling

Human mobility research has focused thus far either on
characterizing trajectories at the population (e.g., region, coun-
try) or at the individual level. However, less is known about
collective behavior at the mesoscale (e.g., city, neighborhood).
For instance at macroscale, as observed in bank note tra-
jectories, bills are found to traverse short distances more
often than large distances [8]. To test that finding at the city
level using GPS data, researchers have discovered that trip
distances exhibit a power law distribution across many cities
[9]. Furthermore, it has been found that trajectories routinely
maintain a radius of gyration between stops, thus indicating
that people tend to frequent certain locations with regularity
[10]. Of note, the universal visitation law of human mobility
formally identifies that the regularity of which people visit
POIs also follows a power law distribution suggesting people
favor some places heavily over others [11].

Research at the microlevel of human mobility largely covers
next location prediction, as well as pedestrian dynamics. In
fact, we not only understand how pedestrians move in crowds
and navigate indoor locations for short periods of time [12],
[13], but also how pedestrians respond to the COVID-19 social
distancing mandates [14].These prior works are important in
characterizing the predictability of an individual’s trajectory;
however, we are now prompted by the COVID-19 pandemic
to analyze mobility behavior of pairs (or small communities)
of people, in spaces covering neighborhoods or cities.

Because the call for social distancing prompted the forma-
tion of quarantine bubbles, our work aims at characterizing
the nature of such co-locations between two (or more) people
rather than an individual’s mobility. Indeed, by examining the
frequency of interactions between two people across multiple
POIs, we can capture the strength of social forces [15] that
result in recurrent co-location of individuals.

B. Epidemic Modeling

Similar to mobility, epidemics modeling has been largely
studied at the micro- and macro-scale. At the interpersonal

level, researchers investigate avenues of transmission from one
person to another by analyzing air droplet trajectories from
coughs [16], indoor respiratory transmission [17], and viral
durability on surfaces [18]. Although the vein of this research
is useful in identifying the mechanisms of transmission at
the individual level, it falls short of being able to rule out
who infected whom at the meso-scale and therefore must be
expanded to meet the demand of large-scale contact tracing.

Conversely, at the macro-scale, epidemiologists utilize gen-
eralized mathematical and mobility models to simulate dif-
fusive processes related to the disease in question [19]. In
the early days of the SARS-CoV-2 outbreak, epidemiologists
turned to mathematical models used in the 2003 SARS and
2012 MERS outbreak to get an initial estimation of the
novel coronavirus impacts [20]. Although useful in predict-
ing macro-scale reproduction numbers, these models are too
ambiguous when used at local and city levels. When reflecting
on the uncertainty of early predictions, researchers critique that
even data-driven mechanistic models are subject to differences
in model calibration, data, and assumptions that may lead to
contradicting information [21], [22].

In response to this critique, a confluence of computer sci-
entists and epidemiologists opted for a data-driven approach
that addresses the heterogenous mixing of populations to
estimate a spatial outbreak. Some researchers chose to use
census data [23], commuter trajectory surveys [24], or mobility
tracing datasets such as SafeGraph [25] to estimate interac-
tions. Although these data sources provide an insight into the
population’s general mobility, these works start from real data
and then generate synthetic interactions which contribute to
large estimation uncertainties.

With FS data, rather than simulating population mixing, we
have direct access to individual visits and dwell times which
can serve as a proxy for digital contact tracing. Our use of the
FS POI dataset and mechanistic model maintains the granu-
larity of interactions between individuals, while being scalable
enough to work on large populations. We build on the prior
work on both mobility and epidemics to analyze the strength
of co-mobility among a city’s population whose co-locations
then serve as potential avenues for disease transmission.

III. PROPOSED APPROACH

In this section, we propose a novel network-based epidemics
surveillance method to 1) sense meaningful interactions from
real mobility data and 2) predict disease transmission at the
meso-scale. To support our investigations, we utilize the FS
dataset that contains over 1.3 million individuals and their
respective POI visits in ATX and NYC throughout 2020.

To this end, we first build dynamic contact networks where
a node is a person, and an edge is formed when two people
co-locate at a POI for over 15 minutes. Second, we deploy
a classic Susceptible-Exposed-Infected-Recovered (SEIR) net-
work diffusion model [26] and fit model calibrations to ATX’s
COVID-19 infection dynamics. Third, we explore whether we
can reduce model uncertainty by pruning the networks for
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stable interactions. Finally, we verify our approach’s scalability
by extending our analysis to NYC.

A. Foursquare Dataset

With over 11M users, 5M places, and 1.5B logged visits
in the United States throughout 2020, the FS dataset offers
an extensive resource for analyzing human mobility. The
strength of the dataset differs from existing competitors in
that it makes available visits, dwell times, and demographic
information about each user such as age, home zip code,
and sex. This granularity exceeds the usefulness of, say,
SafeGraph’s aggregated POI traffic by giving us explicit visit
information at the individual level. Furthermore, compared to
collecting raw GPS trajectories from sources like X-mode [27],
FS employs stop detection to give usable dwell times for each
visit. To preserve privacy, FS assigns anonymous identifiers
and filters out all predicted home and work visits. Though
it would be helpful to know someone’s living situation or co-
worker cohort for digital based contact tracing purposes, these
POI visits capture when someone makes a non-work-related
trip outside of home and can therefore give us some insight
into the social gatherings between two or more individuals.

B. Building the Co-location network

Although these large-scale dynamic contact networks offer
a network topology through which we can simulate who
infects whom, let us consider the potential sources of model
uncertainty exemplified in Figure 1. In each day of the SEIR
simulation, a contagious person infects a percentage of its
neighbors. We tune the percentage of infected neighbors when
fitting our model to the real infection curves in ATX and NYC.
Furthermore, we set the incubation period to 5 days and the
infectious period to 12 days to reflect COVID-19 [28].

As shown in Figure 1, the diffusion process is inherently dy-
namic because of time evolving node transitions, as well as the
dynamic edges. We can see that the simulation outcomes vary
greatly by virtue of who is patient zero. In this toy example,
the two simulations result in predictions ranging from 90%

Fig. 1. Example of two SEIR simulations run on the same dynamic contact
networks varying only patient zero (shown in red). By the end of simulation
in scenario (a), 90% of nodes are either infected or incubating (red or orange)
versus the 40% of nodes being infected or incubating in scenario (b).

Fig. 2. (a) Ego network exemplifying various strengths of repeated co-
locations (shown in edge thickness). By studying frequency of interaction and
context of the Point of Interest (POI), we can get a sense of the predictability
behind these interactions that lead to the social bubble shown in part (b).

of nodes infected (1a) to less than half (1b). The wide range
of predictions could make for unreliable interpretations of a
city’s outbreak threat level and therefore need to be addressed
when performing meso-scale epidemiological analysis.

Upon this observation, we hypothesize that our network-
based COVID-19 simulations would be more accurate if we
sense recurring interactions that are likely to serve as disease
vectors in the real world, and then use those interactions as
the backbone topology to simulate our SEIR epidemiological
diffusion process. Although the POIs in FS data do not
allow us to know whether the members of these communities
know each other personally, their frequency of interaction
can indicate the higher probability of being in each other’s
presence on a recurring basis.

Consider the ego network shown in Figure 2a where the
central person (in grey) interacts with those on the periphery
through different contexts and frequencies. Although we do
not explicitly know the social relationship behind their inter-
actions, we do know the type of POI (e.g. coffee shop, gym)
and how often these people co-locate.

For example, let’s say that the orange person (G) filled up

Fig. 3. Rerunning SEIR in Figure 1 on a pruned dynamic contact network
results in reducing the model uncertainty between simulation 3 (a) 50% of
nodes infected and simulation 4 (b) 40% infected. This shows the importance
of pruning contact networks for stable interactions.

2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

425



the gas tank near the grey person (A) long enough to show
up on our co-location network. However, this interaction is
not likely to repeat, nor lead to a real infection; therefore,
the edge between these two people could be safely removed
from the simulation space. Similarly, the person in pink (C)
frequents the same grocery store as the grey person (A) but
has only co-located with them once. In contrast, the frequency
of interaction with the purple (B), blue (F), green (E), and
yellow (D) people indicate a regularity that could more likely
propagate a virus among the group. The interactions in part
2a can be abstracted to the social bubble shown in Figure 2b
where, from the perspective of a highly transmissible disease,
these reliable interactions can serve as a point of vulnerability,
if one of these people contracted the virus.

C. Pruning the Contact Network

Let us now revisit the toy example discussed in Figure 1,
however this time using pruned networks shown in Figure 3a
and 3b. As before, the only variation between simulation runs
is the choice of patient zero. Although the runs result in both
different paths and overall number of infections, the spread of
uncertainty decreased substantially, where the simulation in
Figure 3a has 50% of nodes infected, whereas the simulation
in Figure 3b has 40%. This reduction of ”noise” is intuitive
because the traversal space for the infection is limited to
reliable interactions rather than volatile interactions.

We define our model as such: let Gt = (Vt, Et) represent
one co-location network at time t where Vt is the set of nodes
and Et is the set of edges. We define the aggregated frequency
network as F = (P,R) where P are the set of nodes and R
are the set of weighted edges. We build F by iterating over
N co-location networks G = [G1, G2, ..., GN ] and aggregate
the edges as shown in the equations below.

R ⊆ {{x, y, w}|x, y ∈ V[1,N ], Et(x, y) ∈ E[1,N ]} (1)

w(x, y) =
N∑
t=1

{
1 if E(x, y) ∈ Et

0 otherwise
(2)

EF ∈ Et if EF ≥ λ (3)

To calculate the edge weight w(x, y), we keep a counter
of how many times an edge Et(x, y) occurred in the N co-
location networks as shown in equation (2). For example, if
node x and y co-locate on days 1, 4, and 8, i.e., E(x, y) ∈
[E1, E4, E8], then edge weight w(x, y) = 3. After forming
the frequency network F , we prune the original co-location
networks G to contain the edges that have a weight of λ
or more, where λ is the minimum frequency of interactions
within a period that we deem to be non-volatile as shown in
equation (3). Rather than using the raw co-location networks
that consider when two people have been near each other only
once, we hypothesize that pruning dynamic contact networks
for recurring interactions decreases the noise.

In summary, our approach first builds co-location networks
from FS data, then aggregates the networks to see which

interactions are recurring vs. those that are fleeting. Once
the volatile edges are identified, we prune them from the
co-location networks leaving the network topology of the
recurring social bubbles. We hypothesize that agent-based
modeling on the pruned co-location networks will yield less
noisy and more accurate results. As a departure from the state
of the art, our approach allows for the confluence of digital
contact tracing and epidemic predictions at the meso-level.

IV. EXPERIMENTAL RESULTS

We first perform general contact network analysis on ATX’s
co-location networks to verify the expected trends resulting
from the COVID-19 lockdown. After exploring the metrics,
we then deploy our pruning and mechanistic model on both
ATX and NYC contact networks.

When first comparing ATX’s network metrics (e.g., number
of nodes, average degree, and clustering coefficient) for both
2019 and 2020, we notice a major discrepancy in the volume
of data. To investigate the discrepancy, we note the raw number
of POIs visited per day as shown in Figure 4. As expected,
the number of POIs visited substantially drops from 2019 to
2020 even before SARS-CoV-2 reached ATX in mid-March.
Upon further investigation, we find this trend to hold across
the entire FS dataset. To account for the underlying volume
difference in data between these two years, we normalize the
number of nodes (Figure 5) based on the population percentage
rather than raw number of people.

A. Co-location Network Analysis

As shown in Figure 5, the number of people co-locating
at POIs fluctuates according to ATX’s lockdown and lifting
restrictions. The 2020 co-location networks most dramatic
deviation from 2019 is on March 15th (day 75) when ATX
shuts down all non-essential businesses and mandates social
distancing. The number of co- locations then later increases in
response to the relaxation of lockdown orders in the summer
of 2020. Furthermore, the minor fluctuations on a smaller scale
show that the size of co-location networks correspond to the
day of the week where larger congregations of people take
place over the weekend versus during the weekday.

Similarly, Figure 6 shows that the average node degree
in 2019 and pre-pandemic 2020 fluctuates with the day of
the week where most people have more co-locations on the
weekend than during the weekday. This makes sense because
the FS data only records non-work and non-home POI visits.
Furthermore, the 2019 major blips correspond to ATX’s music
festivals in the spring, summer, and fall. In response to
COVID-19 lockdown on March 15, 2020, the average degree
declines reflecting the effort to minimize non-essential trips
and socially distance. The decline in number of nodes per
day indicate an overall decrease in the population co-locations
whereas the decline of average degree per day shows that those
who are co-locating are encountering fewer people on average
compared pre- pandemic POI behavior.

In Figure 7, the clustering coefficient fluctuations reveal
ATX’s volatility in connectivity as less people are visiting POIs
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Fig. 4. Comparison of Points of Interest (POI) visited per day in ATX for
years 2019 and 2020. Though the ATX COVID-19 lockdown occurred on day
75, March 15th (red dashed line), the raw POI visits were less than in 2019
even before the lockdown.

Fig. 5. Number of people (nodes) in co-location networks per day from 2019
through 2020 in ATX. To account for the dataset-wide population difference
between 2019 and 2020, we show the normalized number of nodes that
makeup the subset of people co-locating at POIs.

at the same time. In addition, we note that ATX’s co-location
networks became more disjointed in comparison to the 2019
networks. This suggests that people within ATX, whether
through city mandate or personal intention, were adhering to
forming social interaction bubbles.

B. Pruning Networks

In effort to sense the COVID-19 social bubbles that formed
in response to the lockdown, we aggregate the co-location
networks within a month (N = 31 days) to capture the fre-
quency of stable interactions. We then validate the significance
of the interaction frequency by building synthetic random
networks from the original population and then shuffling their
connections. For example, if a pair of nodes have a co-
location frequency of 14 times within one month period, their
nodes would get 14 edge rewires in the synthetic network.
By shuffling the links, we test whether a frequency occurs
by chance or is statistically significant. We then compare the
co-location frequency in Figure 8, which reveals a large gap
between the real frequency networks and the random control
networks. Furthermore, the largest amount of people with
higher co-location frequencies occurred for both ATX (Figure
8a) and NYC (Figure 8b) in January of 2020, compared

Fig. 6. Average node degree in co-location networks per day from 2019
through 2020 in ATX. The largest peak in 2019’s average node degree
corresponds to a major music festival (ACL).

Fig. 7. Average clustering coefficient in co-location networks from 2019
through 2020 in ATX. As shown above, connectivity fluctuates in response to
COVID-19 lockdown restrictions making the city more disjointed as a means
to mitigate disease transmission.

to the post-pandemic co-location networks. Additionally, as
shown in the ‘Random Interaction’ curves in Figure 8(a-b), the
percentage of population that randomly co-locates more than
twice a month (λ = 2) is less than 1% during the pandemic
and under 3% pre-pandemic. This informs our decision to
prune the edges that only occur once within a month from
our dynamic contact networks.

C. COVID-19 Dynamics Analysis

After building both raw co-location and pruned networks,
we deploy the SEIR diffusion model on both sets of networks
to compare against the real infection outbreak recorded during
July 2020 in both ATX and NYC. We hypothesize that
the pruned networks will not only reveal a narrower set of
potential outcomes, but also provide more accurate predicted
number of infections per day.

As shown in Figure 9(a-b), the SEIR simulations based on
raw co-location contact networks (in red) overshoot the real
infection curve (in green) exponentially. This can intuitively be
explained by the concept previously pointed out (see Figure 1)
where volatile interactions account for the difference between
simulations diffusing the infection across network hubs and

2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

427



Fig. 8. Complimentary Cumulative Distribution Function (CCDF) comparing the frequency of visits throughout ATX (a) and NYC (b) for pre-pandemic and
post-pandemic months. The CCDF shows both the discrepancy in real frequencies vs synthetic frequencies, as well as the decrease in co-location frequency
due to lockdown restrictions.

Fig. 9. Network-based SEIR simulation runs on raw dynamic co- location networks (red) and pruned dynamic co-location networks (blue) for the month
of July 2020. Both real (a) ATX and (b) NYC’s reveal a closer fit to the simulation runs when using pruned networks. (c) By varying the percentage n of
volatile interactions used in simulation, the projection of infection spread exhibits a polynomial relationship to the average error.

bridges. In essence, the outbreak can traverse any interaction
thus amplifying the “noise” from volatile interactions.

In comparison, the pruned interactions reveal a much more
reasonable fit to ATX’s real infection outbreak going from an
average residual of ± 3,163 people to only ±140 people. Sim-
ilarly, simulating an outbreak on NYC’s pruned interactions
decreased the average residual by 70%.

To account for the effect of volatile interactions on the dif-
fusion process, we vary the percentage of noise (i.e., deleting
a percentage of co- locations that occur only once within a
month) preserved in the pruned networks. As hypothesized,
the volatile interactions accelerate the disease process and
thus amplify the noise. (Figure 9c) This can be interpreted
intuitively in that a disease can traverse through a network
in a plethora of ways for every simulation run. Namely, every
volatile interaction gives the simulation run an option to spread
the virus to a new region in ATX or NYC, or a new social
bubble. Of note, we hypothesize that there exists a pruning
edge cutoff that leads to underestimating the infection spread.
However due to the limited infection data during July 2020,
such a small portion of ATX’s and NYC’s population had

COVID-19 that we did not observe such a cutoff. Although
in the real world, a volatile interaction can be to blame for
introducing a virus to a new community, when simulating an
outbreak at a city-level from individual trajectories, the noise
of these interactions overpowers the predictability gained from
these digital mobility-based epidemic simulations.

Epidemic predictions become useful to policy makers when
they can be used to inform not only the size of the outbreak,
but also the regional severity of a forecasted outbreak. The
map in Figure 10a shows a normalized view of the July 2020
spatial outbreak of COVID-19 in ATX.

Figure 10b depicts the predicted spatial outbreak from the
pruned interactions, and lastly the map in Figure 10c shows
the forecast from raw co-locations. Figure 10(e-g) exhibit the
same comparison between real cases (e), simulate cases from
pruned interactions (b), and all interactions (g) in NYC. As in
the case for both ATX and NYC, simulating an agent-based
epidemic model using digitally traced interactions leads to an
exaggeration of threat level both on the number of infections
predicted, as well as the spatial representation of the outbreak.
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Fig. 10. (a-c). Comparison of real COVID-19 infection spread in ATX during July 2020 (a) and the network-based SEIR simulations using (b) pruned
interactions and (c) all interactions. The maps shown in (e-g) exhibit the same comparison using (e) NYC real cases, simulated on (f) pruned interactions,
and on (g) all interactions. The dark grey regions in NYC correspond to zipcodes that do not have registered residents (parks).

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the use of GPS enabled
mobility tracking and network-based methods to both scale up
contact tracing and scale down epidemic modeling to provide
actionable disease prediction at the meso-scale. Approximating
interactions from real individual’s POI visits throughout ATX
and NYC, we have modeled outbreaks directly from digital
contact networks to get an estimate of not only of their size, or
which region, is getting sick – but also identify the individuals
likely to get infected.

Finally, we have found that directly applying the classic
SEIR model to dynamic contact networks can result in large
uncertainty due to volatile interactions. In the mobility data,
we have observed and utilized the fact that people regularly
co-locate among different POIs revealing groups of people
likely to infect each other if contagious. Furthermore, we
have found that the co-location frequencies reveal a power
law distribution; we can interpret the range of co-location
frequencies as the strength of attraction between two people
that then form stable micro-communities within the city.

We have found that pruning dynamic contact networks for
stably reoccurring interactions gives a more accurate city-
level topology an infectious disease is likely to traverse.
When compared to the real number of infections vs time,
our pruning method decreases the average error of simulated
number of infections from ± 3,163 people to ± 140 people
in ATX’s projections and reduces noise by 70% in NYC’s
simulations. Our method to prune dynamic contact networks
not only provides a solution to denoise large city-level health
projections, but also lays the groundwork for a scalable, fast-
acting, ‘always on’ approach to epidemic surveillance.

Future work can extend our noise reduction method by in-
stalling a feedback loop that allows people to indicate whether
they have the virus. Both reducing the volatile interactions and
updating which people are sick during the simulations can lead
to a framework that simultaneously digitally contact traces and
monitors an ongoing outbreak at the meso-scale. Building such
framework will serve as a major contribution in the effort to
plan for the next pandemic.
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