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Uncertainty Quantification for Markov Random Fields*
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Abstract. We present an information-based uncertainty quantification method for general Markov random fields
(MRFs). MRFs are structured, probabilistic graphical models over undirected graphs and provide
a fundamental unifying modeling tool for statistical mechanics, probabilistic machine learning, and
artificial intelligence. Typically, MRFs are complex and high-dimensional with nodes and edges (con-
nections) built in a modular fashion from simpler, low-dimensional probabilistic models and their
local connections; in turn, this modularity allows one to incorporate available data to MRFs and
efficiently simulate them by leveraging their graph-theoretic structure. Learning graphical models
from data and/or constructing them from physical modeling and constraints necessarily involves un-
certainties inherited from data, modeling choices, or numerical approximations. These uncertainties
in the MRF can be manifested either in the graph structure or the probability distribution functions
and necessarily will propagate in predictions for quantities of interest. Here we quantify such un-
certainties using tight, information-based bounds on the predictions of quantities of interest; these
bounds take advantage of the graphical structure of MRFs and are capable of handling the inherent
high dimensionality of such graphical models. We demonstrate our methods in MRFs for medical
diagnostics and statistical mechanics models. In the latter, we develop uncertainty quantification
bounds for finite-size effects and phase diagrams, which constitute two of the typical prediction goals
of statistical mechanics modeling.
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1. Introduction. Probabilistic graphical models (PGMs) constitute one of the fundamen-
tal tools for probabilistic machine learning (ML) and artificial intelligence (AI), allowing for
systematic and scalable modeling of uncertainty, causality, domain knowledge, and data as-
similation [38, 49, 35]. The main idea behind PGMs is to represent complex models and
associated learning processes using random variables and their interdependence through a
graph. We achieve it by constructing structured, high-dimensional probabilistic models, in-
volving many parameters, nodes, and edges, from simpler ones with few parameters, nodes,
and edges, thus allowing for distributed probability computations, and by incorporating avail-
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able data, exploiting graph-theoretic model representations. PGMs are generally classified
into Markov random fields (MRFs) defined over undirected graphs and Bayesian networks
defined over directed acyclical graphs [49] that represent conditional independencies between
random variables, as well as mixtures of those two classes [35]. Furthermore, the modeling
flexibility of PGMs also allows one to combine dynamics, data, and deep learning in hidden
Markov models [38, 50, 47], as well as in recent work brings together multiscale modeling,
physical constraints, and neural networks [69, 41, 30].

Although the term random field may also refer to continuously indexed processes (e.g.,
Gaussian random fields), in this paper MRFs refer to structured probabilistic models defined
on undirected graphs; such PGMs are also referred to as Markov networks. MRF's arise in sta-
tistical mechanics where interactions between particles are usually bidirectional, or when there
may be no inherent evidence for causality (directionality) and thus undirected graphs are the
appropriate structure for such probabilistic models [38, 49, 70]. Other applications of MRF's
include image segmentation, image denoising [49, sect. 4.2], text processing [64, 56], bioinfor-
matics [61], computer vision [45], Markov logic networks [21], Gaussian Markov networks [49,
sect. 7.3], artificial intelligence [35], and statistical mechanics [55, sect. 19.4]. Overall, MRF's
provide a fundamental unifying modeling tool for statistical mechanics, probabilistic ML, and
AT [3, 38].

Learning MRF's can be based on available data; e.g., for learning the graph, we refer the
reader to [49, 32, 43] for score-based methods and [55, 44] for independence tests on the graph,
while maximum likelihood or Bayesian methods can be used for parameter identification [49].
On the other hand, MRFs in statistical mechanics can be constructed from physical modeling
and related constraints [68, 55]. Therefore, the learning stage of MRFs necessarily involves
uncertainties inherited from data, modeling choices, compromises on model complexity, or nu-
merical approximations. These uncertainties in the MRF can be manifested either in the graph
structure or the probability distribution functions, and necessarily will propagate through the
graph structure and the corresponding structured probabilistic model in the predictions for
quantities of interest (Qols). To understand and quantify the impact of such uncertainties on
model predictions, in this paper we present an information-based uncertainty quantification
(UQ) method for general MRFs.

Model uncertainty in probabilistic models. In general probabilistic models, uncertainties
arising just from the fluctuations of the Qols, associated with a given probabilistic model p,
are referred to as aleatoric and occur when sampling p [15]. They are handled by well-known
tools, e.g., central limit theorems, concentration inequalities, Bayesian posteriors, MCMC,
generalized polynomial chaos, etc. In contrast to this more standard type of UQ, in MRFs,
due to the learning process described earlier, we have model uncertainties (also known as epis-
temic), both in the structure (graph) and the probabilistic model itself—including parametric
ones.

Next, we briefly describe the information-theoretic formulation of model uncertainty for
general probabilistic models, without assuming any graphical model structures; see [39] for
more details. To practically address model uncertainty, we typically compromise by con-
structing a surrogate or approximation or baseline model p. We construct families Q of
(nonparametric) alternative models p to compare to p, while the “true” model p*, which may
be intractable or partly unknown, should belong to Q; for this reason, we can refer to Q as the
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ambiguity set, typically defined as a neighborhood of alternative models around the baseline
p:

(1.1) Q=0Q"={p:d(p,p) <n},

where 1 > 0 corresponds to the size of the ambiguity set and d = d(p, p) denotes a probability
metric or divergence. The next natural mathematical goal is to assess the baseline model
“compromise” and understand the resulting biases for the Qol f when we use p for predictions
instead of the real model p* € Q. We define the predictive uncertainty (or bias) for the Qol f
when we use the baseline model p instead of any alternative model p € Q (including the real
one p*) as the two worst case scenarios:

(1.2) sup/inf {Esf — E,f},
peEQM

where E;f denotes the expected value of the Qol f. Therefore, (1.2) provides a robust per-
formance guarantee for the predictions of the baseline model p for f within the ambiguity set
Q. This robust perspective for general probabilistic models p is known in operations research
as distributionally robust optimization (DRO); see, e.g., [36, 37]. While the definition (1.2)
is rather natural and intuitive, it is not obvious that it is practically computable since the
neighborhood Q7 is infinite-dimensional. However, it becomes tractable if we use for metric
d in (1.1) the Kullback-Leibler (KL) divergence R(p||p). Accordingly, n is a measure of the
confidence in KL we put in the baseline model p. In recent work [15, 23, 39|, it has been
demonstrated that (1.2) (an infinite-dimensional optimization problem) is directly comput-
able using the variational formula (following directly from the Donsker—Varadhan variational
principle [23]):

1
(1.3) sup/inf {Esf — E,f} = +inf [ log/eic(f_Epf)p(dx) +1
pEQN >0 |c c

In this formula, we recognize two main ingredients: 7 is model uncertainty from (1.1), while
the moment generating function (MGF) [ e p(dx) encodes the Qol f at the baseline model
p. In [23, 39], the authors have developed techniques to compute (exactly or approximately
via asymptotics [23]) as well as to provide explicitly upper and lower bounds on (1.2) in terms
of concentration inequalities [39]. Tightness, i.e., when the sup and inf in (1.2) are attained
by an appropriate measure p, has also been studied in [39]. Finally, related UQ bounds have
been derived for Markov processes using variational principles and functional inequalities [8]
and in rare events [2, 24].

Main results. The main thrust of our results here is to build on the aforementioned per-
spective for information-based UQ, in order to develop UQ methods for MRFs and to address
their specific UQ challenges. In particular, here we address both structure (graph) and prob-
abilistic uncertainties—including parametric ones—using tight, information-based bounds on
the predictions of Qols; although these new UQ bounds rely on (1.2), they specifically (a) take
advantage of the graphical structure of MRFs, and (b) are capable of handling the inherent
high dimensionality of such graphical models; i.e. there is a necessity for scalable UQ in the
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size of the system, namely the number of nodes in MRFs such as in the thermodynamic limit
of statistical mechanics models.

Regarding the scalability issue, in [46] the authors tested various model uncertainty metrics
in defining d(p,p) in (1.1) such as the Hellinger distance and y? divergence and inequalities
such as the Csiszar—Kullback—Pinsker and Hammersley—Chapman—Robbins inequalities [67],
in order to bound the model bias with respect to a Qol in the spirit of (1.3). It was shown
that among these bounds the only one that scales with the dimension of the model p is (1.3)
and d(p, p) should be the KL divergence.

Once we have settled on the use of the KL divergence for the aforementioned scalability
reasons, we turn our attention to the baseline MRF p, the ambiguity set (1.1), and the
corresponding alternative MRF's p. Based on the earlier discussion on model uncertainty for
MRFs arising from statistical learning of graph models or physical modeling, we introduce
a unifying perspective of three general types of alternative models p, based on their relative
structure to the baseline p: Type I MRF's, where the graph structures (nodes and edges) are
identical to the baseline p and the parameters of probability distributions are different; Type
II, where the nodes are the same but the edges and parameters are different; and Type III,
where the nodes, structures, and parameters are all different.

In general, MRFs satisfy the specific conditional independence properties discussed in
subsection 2.2. Contrary to Bayesian networks, their distributions cannot always be factorized
by a product of local conditional distributions or local functions over the graph. The celebrated
Hammersley—Clifford theorem, also known as the fundamental theorem of random fields [19, 42,
55], guarantees such a factorization along maximal cliques of the graph under the assumption
that p > 0. Here we make such an assumption for both baseline and Types I-1II MRFs.
Consequently, the KL divergence is finite without requiring absolute continuity with respect
to p.

We take advantage of all the above, and we study UQ problems by developing a unified
strategy for Types I-II MRF's, while Type I1I is not covered here as explained in section 3. We
focus on the two primary ingredients of (1.2), namely the KL divergence and the MGF and
how they manifest themselves on MRFs. In KL divergence, the factorization discussed earlier
is a crucial tool for its simplification and numerical calculation. It allows us to compare local
discrepancies in parameters and structures between the baseline p and alternative models. We
call these discrepancies excess factors of Types I-11 given p. We develop a unifying method
for computing the excess factors by interrelating the maximal cliques of alternative MRFs
and the baseline MRF p. As for the MGF, the choice of Qols is determinant. We focus on
two different Qols: those that are involved in the models (e.g., sufficient statistics) as well as
characteristic functions defined on events of interest.

Regarding the tightness of UQ bounds discussed earlier, we find specific distributions for
which the derived UQ bounds for MRFs are attainable. In addition, we go beyond that
and pose the following question: Given a Qol and a baseline MRF p, what are the possible
associated undirected graphs such that the conditional independence properties implied by the
graphs are satisfied by the distributions? Such a question introduces the concept of tightness
at a graph level. There are cases where we can explicitly determine the associated graphs and
others (when the structure is different from the baseline) that depend on the Qol. In the latter
case, we give an example that points out a unifying method to construct the right graph or
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at least a set of possible graphs.

Demonstration of U for MRFs. We first demonstrate all of the above concepts and UQ
methods in a fairly simple and low-dimensional MRF example from medical diagnostics. Sub-
sequently, we implement our approach on several high-dimensional statistical mechanics mod-
els, as they are fundamental in ML [3, 38]. We develop UQ bounds for finite-size effects and
phase diagrams, which constitute two of the typical prediction goals of statistical mechanics
modeling, and both require scalable UQ methods.

Specifically, we consider as a baseline model p an Ising-spin system with Kac-type inter-
actions; see [57]. Such a model combines sufficient complexity—since it is not a mean field
model—but it is still analytically fairly tractable to serve as a good benchmark problem for
a high-dimensional MRF. Alternative models p considered here are (1) Ising models with
perturbed interaction potentials with respect to the baseline, (2) models with truncated in-
teractions to facilitate computational implementations [68], and (3) perturbations by a long
range interaction (even longer than a Kac interaction). As we discuss in section 6, these
systems are typically defined in bounded domains with boundary conditions being a given
configuration outside of the domain. To have a graph description of these systems, MRFs
need to be modified to account for conditioning a Gibbs distribution on an eliminated set of
nodes identified as a configuration defined outside of the domain by using reduced Markov
random fields (rMRFs) (see [49]). Typical questions we address in these examples include the
following: (i) how to capture the phase diagram of a perturbed model through its compari-
son with the baseline phase diagram by bounding the model bias, and (ii) how to truncate
an interaction so that the phase diagram of the baseline model and the truncated one are
close within a prescribed tolerance. Note that an extensive analysis on the intersection be-
tween other concepts and methods from statistical mechanics—also including nonequilibrium
statistical mechanics—and deep learning have been reviewed in [3].

Related methods. We note that existing general-purpose UQ and sensitivity analysis meth-
ods, e.g., gradient and ANOVA-based methods [63, 60, 29], cannot handle UQ with model
uncertainties, due to their inherently parametric nature, while it is not clear how they can
take advantage of the graphical, causal structure in MRFs. Furthermore, there is earlier work
on model uncertainty that represents missing physics with a stochastic noise but without the
detailed structure of a graphical model [51, 65]. In our work, there is a natural structure
embedded in the model uncertainty, arising through the graph structure of the MRFs.

Sensitivity analysis also has a long history in statistical mechanics, known as linear and
nonlinear response theory [59, 4], addressing the impact of small and larger parametric per-
turbations, respectively. These types of methods are covered by our approach, as models with
perturbed weights are clearly of Type I.

Furthermore, in contrast to these results, a key point in our work here, also immediately
clear from (1.3), is that the model perturbations we can consider are not necessarily small.
For instance, the parameter 7 in (1.3) does not need to be small, allowing for global and
nonparametric sensitivity analysis, the latter since the KL divergence allows us to consider
models outside a specific parametric family, e.g., comparing statistical mechanics models with
different potentials. Similarly, we explicitly compute the UQ bounds for large perturbations
in a medical diagnostics example.

Sensitivity analysis in MRF's has also been studied in [14]. The authors tackle fundamental
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questions such as bounding belief change between Markov networks with the same structure
but different parameter values. They propose a distance measure and bound the relative
change in probability queries by the relative change in parameters (Type I). Global sensitivity
in parameters has been studied in [17]. In particular, the authors developed an algorithm
that checks the robustness of a MAP configuration, i.e., the most likely configuration, in
discrete probabilistic graphical models under global perturbations. The present work goes
beyond local or global parametric sensitivity analysis that allows us to consider perturbations
in both parameters and edges of the graph of the MRF and examines their impact on the
prediction of specific Qols. Special cases of our results for mean field and nearest neighbor Ising
models were considered earlier in [46]. Finally, we note that parametric sensitivity analysis for
the other class of (directed) probabilistic graphical models, namely Bayesian networks, was
developed in [16] using tools similar to those in [14]. Parametric sensitivity analysis based on
mutual information for multiscale partial differential equations and neural networks informed
by Bayesian network priors was developed in [69, 66]. Model UQ based on information theory
inequalities in the spirit of (1.3) was recently introduced for Bayesian networks arising in
chemical sciences [30].

This article is organized as follows: We start with some concepts from graph theory to fix
notation, and then we give a brief background of MRFs/rMRFs (section 2). Supplementary
background behind rMRFs is provided in Appendix A. We formally introduce the idea of graph
interconnections, the impact on distributions, and alternative models in section 3. The main
results are presented in section 4 and provide UQ bounds for rMRFs, preparing the ground for
applications to statistical mechanics models. In section 5, we present a simple example from
medical diagnostics. Section 6 is devoted to UQ for finite-size effects, scalability, and finally
UQ for phase diagrams for generic interactions and the Ising—Kac model. In the remaining
sections of the appendix, we further discuss the Ising—Kac model, we provide the technical
background required for the UQ analysis of section 6 (e.g., the Lebowitz—Penrose (LP) limit),
and we include the proofs of the main results and explicit calculations of the UQ for medical
diagnostics example and statistical mechanics.

2. Preliminaries.

2.1. Definitions from graph theory. We start with some notation and terminology from
graph theory. A graph is a data structure G consisting of a set of nodes V = {1,2,..., N} and
a set of edges &, i.e., all pairs of nodes 7,5 € V which are connected by an edge, denoted by
(7,7). An edge can be directed, denoted by 7 — j, or undirected, denoted by ¢ — j. A graph is
directed (resp., undirected) if all the edges are directed (resp., undirected). The nodes i,j € V
are adjacent if and only if (i,j) € €. The neighborhood of node i, denoted by N, is the set of
nodes to which ¢ is adjacent. For sets of nodes A, B, and C, C separates A from B, denoted
by {i € A} Lg {j € B} | {k: k € C}, if and only if when we remove all the nodes in C there is
no path connecting any node in A to any node in B. Last, if M C V), the induced subgraph of
G is defined as GIM] = (M, E’), where &£’ includes all the edges (i, j) € £ such that i,j € M.

2.2. Conditional independence properties and MRFs. In this subsection, we define three
conditional independence properties that are necessary for MRFs.
Let G = (V,€), and let Y = {Yl}pjl be a set of random variables such that each one is
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attached to a node and |V| denotes the cardinality of V.

e Pairwise Markov property (P): Any two nonadjacent variables are conditionally
independent (CI) given the rest; i.e., a conditional joint can be written as a product of
conditional marginals; CI is denoted by Y; L Y; | {Y; : k #1,5}.

e Local Markov property (L): Any variable Y; is conditionally independent of all the
others, given its neighbors, that is, ¥; L {Yy : k ¢ N;} [ {Yr : k € N;}.

e Global Markov property (G): If A, B,C are sets of nodes, then any two sets of
variables, Y4 = {Y; :i € A} and Yp = {Y; : i € B}, are conditionally independent, given a
separating set of variables Yo = {Y; :i € C}, thatis, Y4 L Yp | Y¢.

It is obvious that (G) implies (L), which implies (P).

Definition 2.1. Let G = (V, &) be an undirected graph where V = {1,2,...,N} is the set of
nodes and & is the set of edges. Let us also consider a set of random variables Y = (Y;)icy

indexed by V where each Y; takes values on a finite set S. Their joint probability distribution
is denoted by p. We say that (Y,p) is an MRF if and only if (G) is satisfied.

As MRFs are defined on an undirected graph, it does not allow one to use the chain
rule of conditional probabilities and further describe the probability distribution p(y). A
factorization rule for MRFs (i.e., for undirected graphs and the conditional independencies) is
important and is provided by Hammersley and Clifford in their unpublished work [42, 40]. To
state their result, we need a few more definitions. Let G = (V, ) be a graph, and let ¢ C V:

(i) cis called clique if any pair of nodes in ¢ is connected by some edge.

(i) cis called mazimal clique if any superset ¢ of ¢ (i.e., ¢ D ¢) is no longer a clique. The

set of all maximal cliques of graph G is denoted by Cg.

Hammersley—Clifford theorem. A positive distribution p(y) > 0 satisfies one of (P), (L),
and (G) of an undirected graph G if and only if p parametrized by some parameters w =
{weleees can be represented as a product of clique potentials, i.e.,

(2.1) PY(y) = ply | w) = Z(lw) TT velye | wo).
ceCqg

where U (y. | w.) is a positive function defined on the random wvariables in clique ¢ and
parametrized by some parameters w. and is called a clique potential. Also, Z(w) is the
partition function given by

(2.2) Z(w) =Y [] Pelye | we).

Yy CGCg

The theorem states that the set of all joint distributions on an undirected graph G that can
be factorized as in (2.1) is identical to the set of joint distributions that satisfy the conditional
independence properties, under the restriction of strictly positive distributions.

Remark 2.2. Without the assumption of strict positiveness of the joint distribution p, the
theorem is not valid. A counterexample has been obtained in [54].

Remark 2.3. The KL divergence or any other f-divergences between a baseline MRF
that is assumed nonnegative and alternative MRFs of Types II-1II (different structures; see
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the introduction) could be infinite due to the loss of absolute continuity. In that case, the
Wasserstein metric or the I'-divergence [25] could potentially be good alternatives for the KL
divergence in defining (1.1). The implementation of the Wasserstein metric or the I'-divergence
is still unexplored in the context of such MRFs. For this purpose, the development of new
methods constitutes an important step towards comparing MRF's with different structures and
nonnegative distributions. In this article, we restrict our attention to the Hammersley—Clifford
theorem and we assume strictly positive probability distributions.

Given an MRF (Y, p), an rMRF is obtained by conditioning p on some observation U = u
with U C Y. Hence, the distribution of the resulting rMRF has a reduced number of clique
potentials. As we discuss in section 6, rMRFs are appropriate for formulating statistical
mechanics models defined on bounded domains with a given configuration outside of the
domain in a graph language. Next, we formally introduce rMRFs.

2.2.1. Reduced Markov random fields (rMRFs). Let Y = {Y;};cy be a collection of
random variables indexed by a set of nodes V of a graph G = (V, &), taking values in some
space VY = ®Y_,)i. Let p = p(:|w) be a strictly positive joint probability distribution of Y
parametrized by w such that (Y, p(-|w)) is an MRF.

Let u be a context, and let M C V. If U = {Y;};em with U = u, we construct the corre-
sponding tMRF as follows: let Z = {Y;};cy\ p1, and let ¢(z[w) be the probability distribution
factorized according to Proposition A.2 (the analogue of the Hammersley—Clifford theorem
for tMRFs): ¢(z) = q(z|lw) = m [Teec, Pelul(ze | we). More details on tMRF's are given
in Appendix A.

The next two sections are presented for rMRFs, as we can then recall formulas and the
main results directly in the UQ analysis of statistical mechanics models in section 6. Their
formulation and analysis hold for MRFs, and, when required, we will be providing more details
for their implementation to MRFs.

3. Mathematical formulation of UQ on MRFs/rMRFs. Let ¢ be an rMRF constructed
by learning from available data or from physical modeling and related constraints. Con-
structing such a model involves uncertainties either in the graph structure or the probability
distribution functions and necessarily will propagate through the graph structure and the
corresponding structured probabilistic model in the predictions for Qols. We quantify the im-
pact of such uncertainties on model predictions by constructing ambiguity sets such as (1.1)
consisting of alternative rMRF's given by

(3.1) Q" = {rMRFs G : R(qllq) <n},

where 17 > 0 corresponds to the size of the ambiguity set. The alternative models ¢ in (3.1) can
be classified into Type I MRFs, where the graph structures (nodes and edges) are identical
to the baseline ¢ and the parameters of probability distributions are different; Type II, where
the nodes are the same but the edges and parameters are different; and Type III, where the
nodes, structures, and parameters are all different. Next, we mathematically formulate the
alternative models.

_3.1. Alternative models. Let (G, w,p) and (g~,v~v~,15) be two MRFs with G = (V,€) and
G = (V, &) being the associated graphs, where V and V are the sets of nodes and £ and £ are
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the sets of edges.

Definition 3.1. (G, w,p) and (G,w,p) can have one of the following interconnections:
Type I: V=V, E=E, and w # w; or

Type 1I: V=V, ECE&, and w # w; or

Type IIl: ~ V#V, E#E, and W # w.

From now on, we refer to the baseline model when we use the notation (G,w,p) and
without loss of generality we assume & C €. This assumption simplifies the presentation of
our approach, but intuitively speaking, the fewer edges an rMRF has, the more information
it provides since in a sparser graph, there are more conditional independencies specified.

Based on that, we interrelate the maximal cliques of Types I-II models with those of p. In
particular, for Type I there is a one-to-one correspondence between maximal cliques. Changes
on the set of edges of a Type II model lead to different sets of maximal cliques, and one needs
to examine the nature of the new edges and their impact on the maximal cliques of p. Finally,
the new set of nodes of a Type III model leads to a drastically new structure that makes such
interrelation of maximal cliques hard to achieve. Therefore, this case is not examined here.

Let u be a context, and let M C VN V. For U = {Y;}jcp with U = u, we construct
the corresponding rMRFs (Z, q(-|w)) and (Z, §(:|W)) parametrized by w and W, respectively.
Based on the structural classification Types I-1II, the probability distributions of ¢ are treated
as follows.

Type 1. Let B C Cg be the set of maximal cliques whose weights differ; i.e., for each
c € B, w. # w.. The clique potentials of ¢(-|W) can be rewritten as

(32) Bl 5 = { e ey e e

We call @ [u](- | W., w.) > 0 a g-excess factor of Type I relative to q on ¢ defined on variables
Z. in clique ¢ € B. Cliques where no change on weights has occurred remain the same.

Type 1. In this type, the class of maximal cliques C; is different. The analysis becomes
more complicated, and clique potentials need to be carefully considered. We look into the
nature of one or more new edges by categorizing it as one of the following types: a new edge
(i) can create a totally new maximal clique (see Figure 1, third graph), (ii) can connect two
or more already existing maximal cliques (see Figure 1, second graph), and (iii) can enlarge
an already existing maximal clique (see Figure 1, fourth graph).

By adding more than one new edge, the new maximal cliques of G can be obtained by a
combination of (i), (ii), and (iii). We introduce the following sets:

(3.3) By={¢€Cs\Cqg:¢=Ujc for ¢; € Cg},
Bc = {¢ € Cs\ Cg : there exists ¢ € Cg s.t. ¢ C ¢},
(3.5) Bhew = (Cg U By U Bc)*.
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108 148 148 148
g ¥ ¥ ¢

Figure 1. (First) Baseline MRF model p demonstrated by graph G. (Second) Alternative model p with
the associated graph obtained by adding the yellow edge (4—7) and connecting two maximal cliques of the p
model, {3,4,6} and {3,6,7T}; thus, p has a new mazimal clique {3,4,6,7}. (Third) Alternative model p with
the associated graph obtained by adding the red edge (6—10); thus, p has a totally new mazimal clique {6,10}.
(Fourth) Alternative model p with the associated graph obtained by adding the blue edge (5—10) and enlarging
the already existing clique, {5,8}, to {5,8,10}.

Then the clique potentials of ¢ can be rewritten as

[L., Ve, [ul(ze, | we,) 0 [u)(zz | we, We) if & € By,
(

56)  Balul(z | wo) — 3 Ve[l (ze | we) @l fu]((ze | we, W) it ¢ € Be,
0 ez [l Uelul(zz | we) if ¢ € Bhew,
U.[ul(z. | w.) if ¢ € Cg.

We call <I>((~:”), @ém) > 0 G-excess factors of Type Il relative to q on ¢ defined on the variables
of ¢. In fact, the two functions play the role of the discrepancy at a distribution level when
new maximal clique ¢ has been created by connecting existing maximal cliques ¢; and by
enlarging an existing maximal clique. When ¢ € Byew, there is no need to express the clique
potential through the potentials of ¢(- | w). For simplicity, we assume that clique potentials
on common maximal cliques between G and Q~ do not change. However, one can consider
different potentials, and in that case, a term ® should be introduced similar to (ii) and (iii).
For convenience, we establish one last unifying terminology. We call

(3'7) @L(Z) = Hq)c[u](zc )

ceB
(3.8) o(z) = [] Welul(Z: | we) [ @2 l(Zo) [T @8 ul((Ze) | %e)
CEBnew ceBy ceBc

total G-excess factors of Types 1 and 11 relative to q, respectively. The total g-excess factor
of Type I relative to ¢ captures all the parameter changes, while the total g-excess factor of
Type II relative to g captures all the structural discrepancies. In the case of an MRF, we
drop the context u from (3.7) and (3.8) and Z is replaced by Y. Equations (3.3)—(3.8) are
explicitly specified in the medical diagnostics application in section 5 and its detailed analysis
in Appendix D, as well as in statistical mechanics; see section 6. In Type III, there exists the
total G-excess factor of Type III relative to q. However, due to the high degree of discrepancies,
we cannot interrelate maximal cliques of Type III model with ¢, and by extension each ¢-
excess factor cannot be determined. The next results are straightforward but essential in
our calculations. To avoid heavy notation, we remind the reader that ¢(-) = ¢(- | w) and

() = (- | ).
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Partition function of alternative models. Based on the above description of alternative mod-
els, the partition function of ¢ is given in the next lemma.

Lemma 3.2. Let (Z,q) be an TMRF. Then for any alternative tMRF (Z,q) of type i with
i =111, its partition function is expressed as

(3.9) Zu(W) = Bq[®y] Zu(w),

where ®1, is given by (3.7) and (3.8).

Proof. The proof is based on the method of interrelating the distribution g and ¢, utilizing
the total g-excess factors relative to ¢ given by (3.7) and (3.8). The explicit computation is
provided in Appendix B.1. |

Likelihood ratio. The following lemma provides the likelihood ratio between ¢ and ¢ and
constitutes the key ingredient for the simplification of (4.2) and the UQ bounds provided in
(4.1).

Lemma 3.3. Let (Z,q) be an TMRF. Then for any alternative rMRF (Z,q) of type i with
i =111, the corresponding likelihood ratio satisfies
dg @y
dg  Eg[®y]’

(3.10)

where ®1, is given by (3.7) and (3.8).

The proof is omitted, as the lemma is a direct consequence of the method of interrelating
two distributions discussed above and Lemma 3.2. Note that both results hold for MRFs
denoted by (Y,p) and (Y,p), dropping the context u from ®!, in (3.10).

3.2. KL divergence. As we see in section 4, our UQ methods rely on the KL divergence
as a means to measure “distance” between baseline and alternative MRFs. The fact that it
scales correctly with the dimension of the baseline model [23] as well as the commonalities
in parameters and structures between baseline and alternative models combined with the
Hammersley—Clifford theorem allows the KL divergence to be expressed in a simplified and
informative form. In particular, we show that KL divergence (which is finite due to the
positive probabilities ¢ and ¢) depends only on the total G-excess factor relative to ¢ given by
(3.7) and (3.8). To simplify the notation, we omit the dependence of Z from x;, f, and ®i,.

Lemma 3.4. Let (Y,p%), (Y,p") be two MRFs defined over graphs G = (V,&) and G =
(V,g), respectively. Let u be a context, and let M C V. We consider the corresponding
rMRFs (Z,q),(Z,q):

(a) If q is type i, with i =1 or 11, then the KL divergence is given by

. q q, ¢
R(qllq :E~[log]:E [log]
(qllq) = Eq . 0|, o8,

(3.11) = Egllog ®,,] — log E,[®,,] =

where ®L, is defined in (3.7) and (3.8) accordingly.
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(b) If q is type i, with i =1 or 11, then for any f satisfying (4.3), the KL divergence is
given by
E, [i®})]

(3.12) R(qllq) = CiE;[f] + E, [0}

log B, 8], ®L(Z) = DD
Proof. (a) We express the KLi divergence as follows:
_ q q, 4q
qu:E~[lo ]:E [lo }
(dllq) g (108 q 19 g p

Then we use Lemma 3.3 and we obtain (3.11). For (b), we additionally recall (4.3). [ ]

Remark 3.5. As mentioned in Lemma 3.3, the result holds for MRFs denoted by (Y, p)
and (Y, ), dropping the context u from ®i .

4. Main results. In this section, we present an information-based UQ method on the
predictions for Qols for general MRFs/rMRFs by quantifying the model uncertainty for
MRFs/rMRFs arising from statistical learning of graph models or from physical modeling.
Our starting point is the Donsker—Varadhan variational principle [22], which in turn implies
the Gibbs variational principle for the KL divergence (see [15, 23]):

1) . { A (—A)A— R(q]q)] } < B{f] < inf {A£ (A) + R(dllq)] } |

A>0 - A>0 )\

As mentioned earlier, we focus on KL divergence, as it scales correctly with the dimension of
the baseline model [23]. In the above inequality, ¢ is the baseline rMRF and ¢ is an alternative
model in the ambiguity set defined in (3.1). We note that at an MRF point of view, (4.1)
holds as well. Moreover, A{; (A) is the cumulant generating function (CGF) computed with
respect to p given by

(4.2) Al () == log Ele?],

while f is a Qol. The class of Qols that we examine here is discussed in the next subsection.

We take advantage of the total g-excess factors relative to g, the likelihood ratio, and an
explicit formula for KL divergence on MRFs/rMRFs (see Lemma 3.4) in section 3, as well as
of the handling of the inherent high dimensionality of such graphical models, and we obtain
tight and scalable, information-based bounds on the predictions for Qols. Finally, we prove the
tightness of the UQ bounds; i.e., we prove that the bounds are attainable by MRFs/rMRFs,
we compute their probability distributions, and we develop a strategy to determine their
associated graph structures.

4.1. Quantities of interest. We primarily consider two classes of Qols f(Z). The first
has Qols that are expressed as a characteristic function on events of interest such as (5.1) in
the medical diagnostics example presented in section 5. The second class consists of Qols that
are sufficient statistics for the models ¢ and ¢ and are also present in the total §-excess factor
of Types I and II relative to g; i.e., we consider f(Z), which satisfies

1

(4.3) f(Z) = G (log ®(Z) + ri(Z)), i=11I,
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for some nonzero constant Cj = Cij(w,w,u) < 1 and a function ki(-) = k;i(- | w, W, u) that
may depend on w, W, u; see also (3.12). Such a class covers observables involved in finite-size
effects and phase diagrams for the statistical mechanics models examined later (e.g., averages
of spins given by (6.12)). The CGF given by (4.2) is computable for Qols in both classes.

4.2. UQ bounds. The next theorem is a UQ result on rMRFs that is obtained by consol-
idating the total g-excess factors relative to g, likelihood ratio, KL divergence, and Qols. Part
(a) provides the UQ bounds for a general Qol, and hence we use such bounds for Qols exam-
ined in the medical diagnostics application in section 5. Part (b) is particularly applicable for
Qols that satisfy (4.3), so they are exploited in the statistical mechanics section.

Theorem 4.1. Let (Y,p), (Y,p) be two MRFs defined over graphs G = (V,€) and G =
(V,g), respectively. Let u be a context, and let M C V. We consider the corresponding
rMRFs (Z,q),(Z,q). If § is of type i, with i =1 or 11, then we have the following:

(a) For any Qol f(Z), the following bounds hold:

1

1 . . .
(4.4) +FE;[f] < inf{logE M+ ——F, [@! log @l ] — log E, [ }
Q[ ] AS0 )\ Q[ ] Eq[éh] q [ u u] q[ u]

(b) For any QoI f(Z) that satisfies (4.3), the following bounds hold:

(4.5) +E;[f] < inf 1{ log E,[e*M] — log E, [®1,] + W@J}

1-— Ci A>0 A Eq [‘I){l]

where ®, is the total G-excess factor relative to q given by (3.7) and (3.8), and k; and C; are
defined in (4.3). Note that when § is of Type 1, Zy(W) = Zyu(W).

The proof given in Appendix B.2 is based on Lemma 3.4 and the characterization of the
exponential integrals. An application to a single parameter exponential family is given in
Appendix B.2.

4.3. Tightness of UQ bounds for MRFs/rMRFs. Here we prove that the inequalities
(4.4) and (4.5) are tight, i.e., they become an equality for a suitable model § € Q" given by
(3.1) standing for the worst case scenarios. The practical interpretation of the tightness of
UQ bounds is that these distributions are reasonable, as they belong to the ambiguity set in
(3.1).

Theorem 4.2. Let (Z,q) be an rMRF defined in subsection 2.2.1 and f(Z) be a Qol with
a finite MGF Eq[e)‘f(z)] in a neighborhood of the origin. Then there exist 0 < ny < oo such
that for any n < n+ there exist probability measures ¢& = q*(n) € Qy, where Q, is given in
(3.1), such that (4.4) and (4.5) become an equality. Furthermore, ¢* = ¢+, with

erxf

4. dott = —
(+6) ! Eqler+T]

dq

and A+ being the unique solutions of R(q**||q) = n. In particular, the total ¢*-excess factor
relative to q, denoted by ®E, satisfies

u’

@ﬁ =M and G =My, ki =0, respectively.
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Proof. See Appendix B.3. [ |
The result holds also for MRFs. The corresponding quantities involved in the theorem are
denoted by p, p*+, and +.

Remark 4.3. For convenience, we use its MRF version. Given a baseline MRF (Y, p),
its associated graph G, and a Qol f, Theorem 4.2 guarantees the existence of probability
distributions p*+ such that (4.4) and (4.5) become an equality (this is not an unlikely extreme
case) and also specifies the distributions explicitly. However, it does not imply how different
the associated graphs of p* are, compared to the graph associated to p, or, grossly speaking,
if they are Type I or II. Depending on f, there are cases where this can be determined. In
fact, by recalling the Hammersley—Clifford theorem, we express

et S

(4.7) dp)‘i = Ep[e)‘if]Z(lw') H \Ifc(yc ‘ Wc) = Z:t(/\li,vv) H 6Aif\1/c(yc | Wc)a

ceCqg ceCqg

where Z+ (A, w) = E,[e*+/]Z(w) is the partition function of p*+.

We turn our attention to the product in (4.7). Each factor is defined on a maximal clique
of G apart from e/, We focus on f. Suppose that f is a Qol with domain Dom(f) and
cannot be written as a sum of more than two functions, e.g., sample average. If there is a
maximal clique ¢y such that Dom(f) C ¢, then it turns out that all clique potentials of prE
and p are equal except \ifco = er=f V., and hence

1

(4.8) dprt = B Z(w)

A, H Uo(ye | we).
————

- c#co
Weo

The associated graphs of p** are apparently of Type I, as no change on maximal cliques
occurs. If Dom(f) N ¢ # B for more than two maximal cliques ¢, then the graphs associated
to p*+ have been changed and thus are Type II. An example is discussed in subsection 5.1.
On the other hand, if f can be expressed as a sum of some functions f =), f;, then we may
have more than one candidate graph associated to p** that is either Type I or II. In fact, the
exponential can be factorized further (e.g., e*f = IL eM i), giving rise to more than one
way of matching the clique potentials in the sense of (4.8).

Remark 4.4. The parameter n in Theorem 4.2 is also called the misspecification parameter,
and it can be thought of as a nonparametric “stress test” for the rMRF and can be tuned
by hand so one can explore how the level of uncertainty affects Qols. Alternatively, 1 can
be computed as the KL divergence from the available data (e.g., data used to construct the
baseline model in medical diagnostics; see section 5) in the form of a histogram or a KDE and
thus subs for the distance of the baseline model from the unknown true model [30].

5. UQ for medical diagnostics. Let us introduce a simple example from medical diag-
nostics. We exploit its simplicity and low dimensionality to demonstrate MRF modeling with
parameters and structures learned from data as well as the types of uncertainties that arise
naturally in MRF modeling.
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Setup. Consider the problem of investigating interdependence (structure) and its strength
(parameters) between smoking (S), asthma (A), lung cancer (L), and cough (C) [20]. It is
assumed there are prior expert knowledge and data encoded by a probabilistic model (distri-
bution) p* defined on {S,C, L, A}. Due to limitations in expert knowledge and data, the true
distribution p* itself may be altogether unknown. This, in turn, forces us to build a surrogate
baseline model p, which therefore is uncertain in ways we will specify next.

Baseline MRF. Let D = {d[1],...,d[N]} be a large collection of patient records sampled
from p*. Using a structure-learning algorithm on the data D (for instance, a greedy score-
based structure search algorithm for log-linear models [49, 38]), a model with the structure
of G illustrated in Figure 2(left) is built [20]. We assume that the graph is undirected, as the
directionality associated with the variable dependencies is not known (or is not expected).
Subsequently, by parameter learning (for instance, using maximum likelihood estimation [49])
the weights w become specified from the available data. From now on the resulting model
(G,w,p) is called the baseline model.

4 4 4 \ 4

Figure 2. (Left) MRF structure (Y,p) = ({S,C,L, A}, p) over G with joint probability distribution p.
S € {so,s1}, L € {lo,l1}, A € {ao,a1}, and C € {co,c1}. For example, the values so and s1 can be thought as
smoking and nonsmoking, respectively, and so forth. The random variables Y = {Y1,Y2,Ys,Ya} ={S,L, A, C}
are accordingly attached to the nodes in V = {1,...,4} with edges in € = {1 —2,2—3,2—4,3 —4}. The class
of maximal cliques is Cg = {{1,2},{2,3,4}}. (Right) A Type 11 model (G,w,p) over Y = {S,C, L, A} with
joint probability distribution p. The associated graph is demonstrated by G = v, c‘:') with € =€ U {1—4}. The
new edge is shown in red.

As in [20], the joint probability distribution could be a log-linear model (see [49, section
4.4]) and thanks to the Hammersley—Clifford theorem is factorized over the maximal cliques
with clique potentials W (y. | w.) = e@ele0e) w = {wc}eees, where f. is often called a
feature.

Alternative models. Both learning steps can induce uncertainties in structure and/or pa-
rameters on the baseline. Next, we model and quantify such uncertainties by considering
alternative models to the baseline of Types I and II: we focus on graphical models that may
have been obtained by learning structure and parameters from either a different data set
D = {d[1],...,d[N]} or the same data set D but with different prior (expert) knowledge. We
denote the corresponding alternative models (Q~ , W, p) and assume they can also be represented
by an MRF with p > 0 in the class of log-linear models with clique potentials being given by
T (y.) = ePfe¥e) . We consider the following Qols defined as

(5.1) 9(Y) =14 for any event of interest A C .

For instance, A ={patient is smoker with asthma} = {w = (w1, ws, w3, wy) : w1 = Sp,ws = ap}.
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Type 1. We consider the class of log-linear models p over G with weight change in one
maximal clique after learning weights from D. Let ¢ be the maximal clique that a weight
change occurred. If p; = p(B,) and a € [—1, 1] (depending on p), then for any event of interest
A, the following holds:

+A awe
(5.2) + 5(A) < inf {log <p(A)e +1 _p(A)> e }
A>0 A eWepr + 1 — pr eWepr + 1 — pr
where a € [—1, 1] stands for the model uncertainty of alternative models of Type I and w, is
the weight on ¢ of p. The derivation of the UQ bounds in (5.2) is given in Appendix D, while
their demonstration as functions of the uncertainity parameter a for any event of interest A
with p(A) = 0.3 and when p; = 0.2 is given in Figure 3.

T T 3
—=—-=Upper bound
= = Lower bound | |

09r p(A) = 0.3

0.8

Figure 3. For any event of interest, A with p(A) = 0.3, the red dashed-dot and the blue dashed curve are
the upper bound and lower bounds for p(A) provided in (5.2), computed as functions of the weight change a.

Type 1I. We consider the class of log-linear models p over G with V = V, € = £ Ue,
where the new edge e (see, e.g., Figure 2(right)) enlarges an already existing maximal clique
¢ in the sense of the analysis in subsection 3.1 after structure learning from D. The model
uncertainties lie in the binary function f; defined on ¢ and the new weight wz. The binary
function fz induces a set Bz = {(w1, w2, ws,wy) : fo(ws) = 1}. The set B; satisfies one of the
following: BN B. = () or BzN B, # 0. For B:N B, =0, if p; = p(B.), put = p(B;), and a € R,
then for any event of interest A, the following holds:

i 1 p(A)e* +1 - p(A)
+p(A) < inf =< 1
P = )\{ o (1 — (1= ellFawe)py — (1 — eme)py

wce_wcpl - (1 + a)wc€(1+a)wcpﬂ
1— (1 — €(1+a)wc)p11 — (1 — e_wC)pI ’
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The derivation of the UQ bounds in (5.3) is given in Appendix D, while their demonstration
for any event A with p(A) = 0.3 as functions of the uncertainty parameters a (when p; = 0.2,
we = 1.5, and pyy=0.7) and py; (when py = 0.2, w. = 1.5, and a = —0.2) is given in Figure 4.
Note that the case where Bz N B, # () is more complicated. However, the KL divergence is
still explicitly computable (see Remark D.1).

s —-—- Upper bound
vol — — Lower bound ]
p(A) = 0.3

Figure 4. A is an event of interest with p(A) = 0.3. (Left) For p1 = 0.2, w. = 1.5, and a = —0.2, the red
dash-dot and the blue dashed curves are the upper bound and lower bounds for p(A) provided in (5.3), computed
as functions of pu. (Right) For p1 = 0.2, w. = 1.5, and piu = 0.7, the red curve and the blue are the upper
bound and lower bounds for p(A), computed as functions of the weight change a € [—2,2].

5.1. Tightness. Let g be the Qol given by (5.1). By applying Theorem 4.2, there exist
probability measures p* = p*(n) € Q7, where Q" is given in (3.1), such that (4.4) becomes

an equality and p™ = p** are given by dp+ = m

solution of R(p**||p) = 1. Depending on the event of interest A, we can determine the graph
associated with p*+. Specifically, if A = N;A;, where all A; are defined on the same maximal
clique of G given in Figure 2, then the graph associated with p*+ is G, and hence both models
are Type L. If at least two A;, A; are defined on different maximal cliques, the associated graphs
are different from G; e.g., let A = {patient is smoker with asthma} = {w = (w1, w2, ws3,wy) :
w1 = sp,w3 = ag} = {w:w; = s} N{w: w3 =ag}. Since the total p*-excess factor relative
to p ®* = e*+14 cannot be further factorized, the new graph has the same set of nodes with
an extra edge 1 — 3, that is, E=EU {1 — 3}. In that case, both models are Type II.

dp, with A4 being the unique

6. UQ for statistical mechanics. Large-scale physical systems of interacting particles,
such as gases, liquids, and solids, are at the core of statistical mechanics and in particular of
equilibrium statistical mechanics. The macroscopic properties of a system can be understood
through its underlying microscopic description, which fundamentally requires the microscopic
states and an interaction between microscopic constituents. Statistical mechanics models
such as the Ising model are fundamental in ML, especially energy-based probabilistic models
(generally defined as (6.6)) such as Boltzmann machines [38]. Furthermore, methods from
equilibrium statistical mechanics combined with information theory can provide first insights
into profound cornerstones of deep learning. For example, although we use the KL divergence
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defined in Lemma 3.4 for UQ, KL between an energy-based model and available data equals
the difference between Gibbs and Helmholtz free energy and is a natural “distance” to use
for statistical learning. Note that both UQ and statistical learning can be considered as
dual concepts [7]. A more extensive analysis of these ideas and generally on the intersection
between statistical mechanics—also including nonequilibrium statistical mechanics—and deep
learning have been reviewed in [3].

a8
WO00UV000239029020290:--'90--90202090290902000V0OVOO

2R

Figure 5. One-dimensional Ising-spin lattice on A (light grey area with blue, red, and white particles). The
spin located at © € A (red particle) interacts only with spins located at y in Bz(R) (blue particles) with strength
of interaction J(x,y). The red spin does not interact with the white ones, as they are located at distance greater
than R from x.

6.1. Ising model. An illustrative example is the Ising model, where the space of all mi-
crostates is the collection of all spin configurations on a bounded region A C Z%:

Q= {£1)2 = {m = {oa(2)}sen : oa(z) € {+1, _1}}

as in Figure 5; see [57, 49]. An interaction between spins can be short, long range, or a
combination (such as the Lennard-Jones potential [58]), positive (ferromagnetism), etc; see
[57, 31, 34]. Here we consider a d-dimensional Ising-spin system on A with a generic interaction
J ={J(z,y) : z,y € A} satisfying three properties: for all z,y € A and z € RY,

(6.1) J(x+z,y+2)=J(z,y) (translational invariance),
(6.2) J(z,y) = J(y, z) (symmetry),
(6.3) Z |J(0,z)| < oo (summability),

x#0

and for an external field, h € R. Let R > 0 be the length of the range of interaction. For = €
7% B.(R) = {y € Z% : ||z —y|lq < R} is the set of all spins that the spin located at x interacts

with and ||z — y||q := \/Z?:l |z; — yi|?. For convenience, we denote BfR .= Bz(R) \ z.
6.1.1. Boundary conditions. Boundary conditions are a fundamental concept in statisti-

cal mechanics [62]. For simplicity, let us assume that A is a hypercube. We consider a system

where particles not only interact with particles in A but also with particles “outside” of A.

Let oac be a given fixed configuration of spins on the complement of A denoted by A€; see
Figure 10. The Hamiltonian energy of the system is given by

(6.4) H"(oaloac) = H " (oa) =D Y J(x,y)oa(@)oaly),
TEA yeAc
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where

(6.5) HM M (op) ——fZZnyaA )= hY  oa(x)

rEA yeA TEA

The Gibbs measure with boundary condition gac is defined as

1 .
(6.6) 18 sn(oa | Gac) = oo P al0a0),
o O'AC( 67 )

where Z5,.(J,8,h) =3>_,, e~PH?"(0al0a) i the partition function.

6.1.2. rMRF formulation. A system with configuration as boundary conditions does not
admit an MRF description. So, we describe the system using rMRFs. The set of nodes is Z¢,
the set of edges can be constructed by looking at all (x,y) such that ||z — y|lq < R, and the
context is u = gac, which corresponds to a fixed boundary condition. (oa, M.%ﬂ,h(' | oac)) is

then an rMRF with maximal cliques ¢, = {y € A :y € Bjcé R} (spins in ¢, interact with all
spins in ¢;). Let w = {w¢_}rea with w., = (J.,,58,h) and J., = {J(z,y) : y € c.}. We
express each clique potential as

(6.7) V. =exp{ Boa(z) h+ = Z J(z,y)oa(y Z J(x,y)one(y)
yeA yEAC
yeB;th yeBiR

Note that we may resume the full notation when needed, that is, ¥., = ¥, [Gac](oc, | We, ),
where o, is the Ising-spin configuration defined on all y € c;.

6.2. UQ formulation.

6.2.1. Alternative models. We consider models on a lattice with perturbed interaction
in the strength (Type I) and/or range (Type II) such as truncated or long range interaction.
Given J as in subsection 6.1, an interaction F'(z,y) satisfying (6.1)—(6.3) with length of range
Ry, we say that J¥ = {JF(x,y) : 2,y € Z%} is a perturbed interaction if

(6.8) JE (@) = J(@,9) 1 aeylu<r + F@0) L jeylu<rr + F@9) 1 my)u>Re-
We say that a perturbed interaction is Type I if and only if

(6.9) R = Ry and supp(F) = {(,y) : [ — ylla < Re}-

We say that a perturbed interaction is Type II if and only if

(6.10) R = Rp and supp(F) = {(z,y) : ||z — y|la > Rr}.

The rMRF formulation of the system with JF goes similarly as in subsection 6.1.2. Note that
the graph representation simplifies a possible complexity of J, F, and J¥ as we connect nodes
x,y according to the range of J, F, and JF and assign the corresponding strengths J(x,y),
F(z,y), and J¥ (z,y).
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6.2.2. Total ga-excess factor relative to ga.

Lemma 6.1. Let J¥ be defined in subsection 6.2.1 with support given by (6.9) or (6.10),
and let ga(-) := M.%B,h(' | oac), Gal:) == ujAF BFL(' | 5ac) be the corresponding Gibbs measures
defined in (6.6). The total ga-excess factor for i = 1,11 is given by

‘I’EAC(UA)Zexp{ﬁzGA(ﬂf)((ﬁ—h)ﬂL; > F(z,y)oaly)

zEA yeALNA

(6.11) + > Flz,y) UAC(?J))}7

yeALNAe

where for each x € A, AL = B,(R) and Al = B,(R)¢, with B.(R)¢ being the complement of
B:(R).

The proof is straightforward (see Appendix E.2). Both (h — h) and F(z,y) in the total
ga-excess factor relative to ga point out how gifferent the external fields and interactions are,
respectively, as the latter satisfies F(x,y) = JF (z,y) — J(z,y).

6.2.3. Quantities of interest. The use of phase diagrams is central in physics and material
science. A phase diagram is defined as a graphical representation of equilibrium states under
different thermodynamic parameters, such as external field h, temperature T, and pressure
P. It is typically computed in the thermodynamic limit (i.e., a limiting process with A * Z¢
such that the ratio between interatomic distances and macroscopic lengths vanishes) [57].
Equilibrium states are characterized by order parameters such as magnetization. For that, we
consider the following observable:

(6.12) on)

|A| 2 o)

zEA

where |A| stands for the volume of a hypercube A C Z9. As A invades the whole Z¢, the
expectation of m(oa) yields the magnetization. Other Qols could also be considered, e.g.,

correlation functions v(oa) = ﬁ dowen 2oyen oa(@)oa(y).

6.2.4. CGF. Let A be a hypercube in Z¢. Given a configuration dac, the baseline model
is an Ising model with interaction J defined in subsection 6.1. We compute the CGF defined
by (4.2) with respect to the baseline model ga (the computation is given in (E.3)):

(6.13) Ausiamiem (EN) = BIAI (PR, 4 y(0a) = Py a(0s)).
where th‘/& 5 stands for the thermodynamic pressure [57], defined as

Z(Jvﬁa h‘a 6AC)

Py 5(0ac) = N
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6.2.5. KL divergence. Here we utilize Lemma 3.4 and specify the KL divergence in terms
of ki and ®, as involved in (3.12) when the alternative models are Ising models with a
perturbed interaction J¥ defined in subsection 6.2.1. Then we bound it by using Lemma 6.3.
Before that, we use a well-established tool in statistical mechanics referred to as norm-|| - |1
[62] to alternatively bound the KL divergence. After all, we conclude that our UQ approach
gives a narrower area (i.e., the area between the upper and lower UQ bound) provided by
Theorem 4.1 and thus has less uncertainty; see Figure 6.

Norm-|| - ||1: Let %77 (5x) be the following quantity:

A,O’Ac
—%BJ(.T,y)O'A(J?)O'A(y), X = {xay}v 96752/7
(6.14) @7 (0x) = —6aa(x)(h+2yeBszc J(x,y)oac(y), X ={z},
0 otherwise,

and similarly we define ® ’6 ’ ( ox). Then

h p—d bl )
(6.15) BH M (oaloac) = Y. @Y (ox).
X:XNAZD
Also, BH:]F’B(O'A‘E'AC) is defined similarly. Then the norm-||-||; of @Zﬁaig - @Z% . is defined
as
h7 7'] h ’ h ’ h ’
(6.16) ||‘I)A,BC—W - AﬁaAc Z ||‘I’A6W ABUAC lloo

03X

h.8, h,B,J¥ B8,J B,
where \\@AiM - (I)A,BaAc oo = SUP, |¢A’BUAC (ox) — (I)ABUAC (ox)| for X c 7.

Lemma 6.2. Let F be an interaction satisfying (6.1)—(6.3) with support given by (6.9) or
(6.10); then

~ hv» h’
R(iallas) < 21A[@%%T — oh2T" ) < 28|A] [ R - bl + S [F(0,2))
z#0

Proof. See Appendix E.1. [ |

Let us turn to our approach developed in section 4. We recall the total §a-excess factor
relative to ga from subsection 6.2.2 as well as the quantities from section 4.1, and we express
log @UAC (oca) = Ci|Alm(oa) + ki(oa), with

(6.17) Cr=B(h—h) <1, ri(oa)=8> oa(x) (; > F(:n,y)aA(y)) + BF (Al ac),

T€EA yeALNA
where F(Aloac) = > ca ZyeA;nAc F(z,y)aac(y). We bound ki(oa)as
0A
(6.18) 0 < ki(oa) < B|A| ( ||A|’) D |F(x

70

where we use the next lemma.
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Lemma 6.3. Let L and OA be the side and the boundary of the hypercube A, respectively,
with L >> Rp. Then, for any interaction F = {F(x,y) : x,y € Z} satisfying (6.1)—(6.3)
and range Rp, the following hold:

(i) If the support of F' is given by (6.9), then

> Y Flz,y) < Rpl0A] D |F(0,2)].
TEA yEAC z#£0
yeBw Rp

(ii) If the support of F' is given by (6.10), then

ZZ (x,y) <Rp]A|Z]F033|

TeA yeAc z#0

Proof. The bounds are straightforward once we split the sum as follows:

Y. > Fly= Z ST Py + Y. Y Flay) < RelA,

TEA yeAc ) yEAC ) wG% yeAC

yEBz Ry dist(x A )<RF yEB;‘i Ay dist(xz,A°)>Rp
where dist(z, A°) = inf{|lz — y|| : y € A°}. Note that when L < Rp, both (i) and (ii) are
bounded by Rp|A|>-, 4 [F(0,z)]. [ ]

6.3. UQ for finite-size effects and boundary conditions. Having computed all the in-
gredients needed for the analysis of subsections 3.2, 4.1, and 4.2 under the above statistical
mechanics formulation through rMRFs, we capture the behavior of m(oa) given in (6.12)
with respect to the perturbed model Gga. The analysis from now on refers to models of Type
I. Although Type II models can be worked on similarly, one example of Type II is discussed
in Appendix F. To get the UQ bounds for Eg, [m(ca)], for f(Z) = |Alm(ca) we can either
apply (4.1) using the crude bound in Lemma 6.2,

A A
{ P »57 Ph’B7J

(6.19) +E;, [m(oa)] < inf VE

A>0

B -
2X(|h_ h| +J—")},

or Theorem 4.1:

1 PhiAﬁJ*PhAﬁJ B |OA|
2 +FE; < —inf A - — 1
(6.20) qA[m(JA)]_l_B(h_h)go{ i +/\J-'< + Rp A|>}

with OA being the boundary of the hypercube A and F := 3 ., [F(0,z)|, which is bounded
due to the property (6.3) and Rrp = R.

Furthermore, inequality (6.20) implies a new UQ formula for systems with a fixed config-
uration outside of the domain that here is considered as a Dirichlet-type boundary condition.
In particular, it allows us to quantify the effect of the boundary conditions on JA on the Qols,
as can be seen more clearly when h = h. Note that the term % in (6.20) comes from a more
careful bound on the KL divergence using Lemma 6.3, while this term has been eliminated in
(6.19) due to the relative crudeness of the bound of KL in Lemma 6.2; see also Figure 6.
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6.4. UQ for phase diagrams. Here we capture the phase diagram of the perturbed model
da looking at the magnetization defined in subsection 6.2.3. We study the limit of the bounds
obtained in subsection 6.3. The high dimensionality of statistical mechanics models requires
scalable bounds at the thermodynamic limit. In fact, the MGF and the KL divergence scale
correctly with the size of the system |A| (all are multiplied by |Al; see (6.13), Lemma 6.2,
and (6.18)). Let M(J¥, 3, h) be the limit as A 7 Z? of Ej,[m(oa)]. Then the limit A * Z¢
of (6.20) is

(6.21) +M(JF, B, h) < L inf

T 1= B(h—h) A>0 ey

2B )

{ (Phi%,ﬁ,.] — Pupa) B }

with limp sza P2 5 = Py by Theorem 2.3.3.1 in [57] and lima e 98! = 0, while in the
limit of (6.19) the thermodynamic pressure is only replaced by its limit P g 3. The bounds
for the B # 5 can be adjusted similarly.

6.5. Ising—Kac model. Here we consider an Ising-spin model with a Kac-type interaction
as a baseline model. Such a model combines sufficient complexity since it is not a mean
field model —but is still analytically fairly tractable to serve as a good benchmark problem
for a high-dimensional rMRF. We illustrate the uncertainty area of the phase diagram for
both (6.21) and the limit of (6.19) when the alternative models are a Kac perturbation and a
truncated Kac interaction.

An Ising-spin model with a Kac-type interaction behaves like a mean field (or Van der
Waals model in a gas lattice) in the limit with the convexity of free energy emerging naturally
in the limit, contrary to mean field or Curie-Weiss models where Maxwell’s equal area law is
required to refine the nonconvex free energy (double well shape) [57]. Such a discrepancy comes
from the fact that each spin interacts with all particles in the same way and independently.
The idea of Kac was to keep such a picture on large regions but relatively small compared
to the range of interaction. Then the thermodynamic incorrectness of the free energy (i.e.,
the nonconvex free energy) on these large regions looks refined at the scale of interaction.
Therefore, the system contains a two-scale behavior that was carried out by introducing a
small parameter v > 0 known as Kac scaling. As we suppose that an Ising-spin model is
endowed by such an interaction, the model overall has three scales: the lattice spacing is 1,
the range of interaction is v~!, and the size of the system is much larger than v~!, and all are
well-separated, contrary to the mean field model where the range of interaction is the same
as the size of the system. Next, we formally introduce the model.

6.6. Mathematical background of Ising—Kac model. A Kac-type interaction is defined
as

(6.22) Iy (z,y) =y (v, vy), =,y € 24,

where v is a positive parameter sufficiently small and J is a nonnegative (ferromagnetic
interaction), even, symmetric function (i.e., J(r,7’) = J(r,r) for every 7,7’ € R?) and a
translational invariant (i.e., J(r,7") = J(r' +a,r 4 a) for every r,7’ € R% and a € R?) function
such that J(r) = 0 for all |r| > 1, [pu J(r)dr = J, and J € C*(R%). The use of J, stands
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for the collection of J,(z,y), that is, J, = {J,(2,y)}zixze. As 7 becomes smaller, more
particles are included in a spin neighborhood with y~! diameter and while the strength of the
interactions becomes weaker.

Let A be a bounded, Pﬂgc)l—measurable region, with L > y~! (see Appendix C.1), 8 > 0 be
the inverse temperature, i € R be the external magnetic field, and Gac be a given configuration
on its complement (see Figure 5 with R = ~~1).

Hamiltonian energy. The Hamiltonian energy of a spin configuration oa given gac is

HI"(oa | oac) = —% > Twyoa@oaly) = Y Jy(@,y)oalx)sac(y)

THAYEA TEA,
(STANS
(6.23) —h Z on(z) (Hamiltonian energy).

Finite volume Gibbs measure. The Gibbs measure given a fixed boundary condition ac is
defined as follows:

1

(6.24) ,uﬁg’h(- | oac) = me_m{g’h(%;&“) (finite volume Gibbs measure),
OAC » M

where Zz,.(J,5,h) is the normalization (partition function). To simplify the notation, we

shall often drop v and the given configuration in the complement of A from the Gibbs measure,

resuming the full notation when needed, and therefore we write ,ué”hA = /,L;AAC:‘W]’}Z.
Thermodynamic pressure. The thermodynamic pressure for the Ising—Kac model denoted

by PJAf} 5, 1s defined as

- lOg Z5’c J7ﬁ7h
(6.25) PJéﬁ’:Yh(O'Ac) = é|(A‘ )

Its Lebowitz—Penrose (LP) limit (i.e., lim, o lima »z4) p3 g is given by

1
(6.26) pypn=— mei[rifm{_hm + ¢3,80(m)}, ¢3,8,n(Mm) 1= {—‘ng - hm} - Bf(m)

(see also Appendix C.4 for further discussion). The rMRF formulation of such a model and
its perturbations considered next is structured analogously to the ones in subsection 6.1.2,
and for that reason we omit it.
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Magnetization (J = 1)
Magnetization (77 = 1.1) |
Magnetization (77 = 0.9)

|| [l:-Upper Bound
|| - lli-Lower bound

—-—- Upper Bound

4 === Lower bound

L L L L L
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 6. The curves in blue, magenta, and dark yellow are the magnetizations of the Ising model with
Kac interaction at inverse temperatures = ﬁ =11, h = h and total strengths J = 1, Jr=11 (a =0.1),
and 0.9 (a = —0.1) (validation), respectively. The black dashed-dot curves are the UQ upper and lower bounds
provided by Corollary 6.5 and viewed as functions of h € [—2,2]. The grey area depicts the size of the uncertainty
region. The light blue dashed-dot curves are the UQ upper and lower bounds obtained using norm-|| - ||1. The
uncertainty area of the phase diagram in grey is significantly better than the uncertainty area between the light
blue dashed-dot curves. This comes from the fact that the difference between the limit of (6.19) and (6.21) lies
on the term %7-' which is multiplied by 2.

6.6.1. Phase diagram of perturbed Kac model. Let us define a perturbation of a Kac
potential.

Definition 6.4. Let F, be an even function satisfying (6.1)—(6.3) and (6.22) with length of
range v~ ! and F := fRd r)dr. We define

(6.27) j,f(x,y) = Jy(z,y) + Fy(z,y), such that F =aJ, a€[—-1,1].

The parameter a represents the percentage of increase or decrease of the total strength of
interaction J¥ = f]Rd JF Ydr = (1+a)J.

Corollary 6.5. Let JE be the interaction gien in Definition 6.4. Then, for v > 0 small
enough, the UQ bounds (6.19) and (6.20) hold for Rp = R =~ and F = |a|J. The ther-
modynamic pressure PJAﬁ . is given in (6.25). Let M (J¥, B, h) be the LP limit of Eg,[m(oa)].

Then the UQ bounds (6.21) and LP limit of (6.19) hold with the LP limit of Pﬁé?h being p3 g,n
given in (6.26).

Remark 6.6. Inequality (6.19) represents crude bounds, as norm-|| - ||; (subsection 6.2.5)
has been used, while (6.20) obtained by Theorem 4.1 includes more details. The difference is
illustrated in Figure 6. Furthermore, even if there is a y~! in the term 27_1% in (6.19), the
order of the LP limit makes it vanish as L — oo.

Validation. Given 3, h, J, and a tolerance n > 0, we can construct with the use of norm-
| - |l1 and Lemma 6.2 a class of models such that Q}I = {qa : 2faJ < n}. This is the
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subclass of Q7 defined in (1.1) with the KL divergence in place of d. In Figure 6, § = 1.1 and
J =1, while the external field h varies from —2 and 2. The positive parameter n = 0.1 and
the perturbed model with 10% decrease (a = —0.1) of the total strength (magnetization in
magenta) is in Q%).l as demonstrated in dark yellow.

Figure 7. (Left) The red curve is a Kac interaction, and the blue curve is a truncation of it. The two curves
coincide at all v with |r] <1 — €. The embedded picture demonstrates the two interactions at the microscopic
level. The red particle located at the site x € A C Z* interacts with the particles in the blue and the light red
through J,.The particle interacts only with the particles in the blue area through j;”’ with range v~ (1 — €).
(Right) The red curve is an example of Kac interaction (piecewise constant) with J(r) = 11 (r), and the blue

curve is a perturbation given by G(r) = 7%10% (r) for some a > 0.

6.6.2. Phase diagram of truncated potential. From a computational point of view,
macroscopic properties of high-dimensional systems can be studied through simulation models
where one can consider an appropriate truncated interaction which can reduce the computa-
tional overhead associated with the interaction [68, Chapter 3]. In our context, a truncated
interaction can be thought of as follows: The support of the interaction J is [—1,1] as in
Figure 7. J is cut off at 1 — € and —1 + ¢ for some parameter € € [—1,1]. Then the resulting
interaction is called the truncated interaction of J and its support is [—1 + €, 1 — €] of length
2¢. The introduced parameter € quantifies the impact of the truncation of the interaction J.
Moreover, Figure 8 quantifies how the uncertainty area becomes smaller as € becomes smaller
(and hence the truncated interaction tends to be the original J). We mathematically define
such an interaction as follows.

Definition 6.7. Let 0 < e < 1. We define the truncated interaction as

= J(O,7r), |r|<1l—ce
J _ ) ) )
(6.28) J0,r) = { 0 otherwise.

The truncated model can be viewed as Type II. However, to be consistent with the as-
sumption £ C € in Definition 3.1, we view it as perturbed interaction of Type I arising from
the subtraction of .J (also explains the notation J~7 in (6.28)) on regions of radius greater
than 1 — € as illustrated in Figure 7.
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8=11,e=009 B=11,e=005 B=11e=001

Figure 8. The three graphs demonstrate the uncertainty area in grey for different values of €. In all graphs,
the blue solid line is the magnetization of the d-sing model with Kac interaction at inverse temperatures f = 1.1,
[ J]loo = 1, and b = h. The black dashed-dot curves are the upper and lower bounds of magnetization of the
truncated interaction J~7, viewed as functions of h. (Left) e = 0.09. (Center) ¢ = 0.05. (Right) ¢ = 0.01.

Corollary 6.8. Let J=7 be the interaction given in Definition 6.7. Then, for 0 < e < 1 and
v > 0 small enough, the UQ bounds (6.19) and (6.20) hold for R_y = y~" and F < €||J | o-
The thermodynamic pressure PJAﬁ’Vh is given in (6.25). Let M(J¥,B,h) be the LP limit of

Eg,[m(oa)]. Then the UQ bounds (6.21) and LP limit of (6.19) hold with the limit of Pfﬁ’?h
being py gn given by (6.26).

Remark 6.9. Given S, ||J|cc, we can choose € = €(f3,||J|loo) sufficiently small. Conse-
quently, the phase diagrams of the two models are close to each other, as the uncertainty area
is very small (Figure 8). The parameter ¢ quantifies the length of the area that one cuts off
the initial interaction.

The same methods are applicable to other perturbations, e.g., the very long range in
Appendix F and perturbations in “contexts” /configuration as boundary conditions.

Conclusion and future work. In this article, we developed an information-based UQ method
for MRs/rTMRFs. We considered a surrogate (baseline) MRF/rMRF constructed by physical
modeling or by learning structure and parameters from data, and we quantified uncertainties
inherited from data, modeling choices, or numerical approximations that are also propagated
in predictions for Qols. Our UQ method quantifies uncertainties not only in parameters but
also in structures as well as is capable in handling the inherent high dimensionality of systems
that admit an MRF/rMRF formulation. This was achieved by obtaining tight and scalable,
information-based bounds on the predictions for Qols.

We demonstrated our UQ method in an example from medical diagnostics as well as several
high-dimensional equilibrium statistical mechanics models defined on bounded domains with
suitable boundary conditions. We aim to extend the developed approach to nonequilibrium
statistical mechanics systems [58] also arising in ML [3]. Furthermore, motivated by [30] we
plan to develop robust UQ for Bayesian networks defined on directed acyclical graphs.

Appendix A. Reduced Markov random fields (rMRFs). Let Y = {Y;};,cy be an MRF
indexed by a set of nodes V (finite or infinite) of a graph G. Let us consider M C V. Let
also U = {Y}iem, and let u be an assignment to them, namely U = u. If Z := {Y; }icy\ m15
what does the underlying graph corresponding to Z | U = u look like? Can the conditional
probability p(z | U = u) still keep a product structure/factorization as the joint distribution
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given in (2.1)7 To answer the questions, we need a special class of MRFs which are called
reduced Markov random fields (rMRFs).

Definition A.1. Let Y = {Yi}iey be a collection of random variables indexed by a set of
nodes V (finite or infinite) of a graph G. If (Y,p) is an MRF, u a context, M C V, and
U = {Yi}iem, we define as an tMRF an MRF Z = {Y;}iey\am indezed by the set of nodes
V\ M of the subgraph G[V \ M| with joint distribution Q such that

(A1) 4(z) = Q(Z = 2) = p(z | U = u).

Therefore, Z | U = u could be thought as an induced subgraph of G with set of nodes
V \ M, that is, eliminating any node corresponding to random variables U and any edge
adjacent to them. Furthermore, according to Definition A.1, Z is clearly an MRF and therefore
the conditional probability p(z | U = u) is expected to have a product structure. All of the
above are summarized in the following proposition.

Proposition A.2. Let Y be an MRF with probability distribution p > 0 parametrized by
some parameters W = {Wc}eec, given in (2.1), and let U, Z be defined in the beginning of the
subsection. Then q parametrized by w is expressed as

1

(A.2) ¢"(2)=p(z| U=uw) = ) 1T welul(ze | we),
u ceCqg

where for every ¢ € Cg

(A.3) U ul(ze | we) := Ue(ze, ue | we).

Moreover, Zy(w) is given by

(A.4) Za(w) =Y ] Telul(ze | we).

Y ceCg

We refer the reader to [49, 55] for further discussion about MRFs, rMRFs, and the proofs
of the Hammersley—Clifford theorem and Proposition A.2.

A.1. Partition of the class of maximal cliques. We further investigate the structure of
the class of all maximal cliques. Precisely, we collect ¢ € Cg such that UNY . # (. This leads
to a partition of the set of maximal cliques Cg = Cy U Cp, with

(A.5) Cu={c:UNY.#0} and Cy={c:UNY,. =10}

(see the example shown in Figure 9). On top of that, the partition of Cg makes the joint
distributions ¢ take the form

1
Zu(w)

(A.6) q(z) = Py'[ul(z) = H Ve(ye | we) H U [uf(zc | we).

CEC@ ceCuy
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%
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/ /
L L
Figure 9. The set of nodes is V = {1,...,10} and M = {4,9}. Left: Y = {Vi}};%
with joint distribution p is an MRF over G. The set of mazximal cliques is given by Cg =

{{1,2},{2,3},{3,4,6,},{3,6,7},{4,5,6},{5,8},{8,9,10}}. Right: Z = {Yi},ev\am with joint distribution
q is the corresponding TMRF over G' with U = {Y4,Ys} and u = {us,u9}. The rMRF is demonstrated
by removing nodes 4 and 9 (faded nodes) from the graph G. Cu = {{3,4,6,7},{4,5,6},{8,9,10}}, while
Co = {{1,2},{2,3},{5,8}}.

Appendix B. Proofs of the main results.

B.1. Proof of Lemma 3.2. In the following computation, we use either (3.2) for Type I
or (3.6) for Type II:

:ZH@M(ZE
_ZHW (2. | w.)® (z)
:Z@l H\If 1(ze | we)
i 2o | Wo)
w)gcb H\IJ (z | CZu(w)

= Zu(w)E,[@(2)].

B.2. Proof of Theorem 4.1. This is mostly based on the proof of the characterization of
the exponential integrals (see, e.g., [22]). Let the probability measure R be defined by

dR/dg = /@ | E,[f(Z)).
Note that R(q||q) < oo since ¢, > 0. Thus,
(B.1) “R(dlla) + Eqlf(Z)] = ~R(G1R) +log E,[e )] < log Byfe! @],

where for the last inequality we use that R(g||R) > 0 and R(g||R) = 0 if and only if § = R
[22, Lemma 1.4.1]. For part (a), we combine (3.11) of Lemma 3.4 and (B.1) and get

E4lf(2)] < log Egle’ ] + Eq [®y log @] — log Ey[®y,].
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By replacing f(Z) to +\f(Z), we obtain

LE3f(Z)) < ]

u

> | =

{ log E, [eﬂ‘f(z)] + E, [@L log @{1] —log E, [<I>1u] }

By optimizing over A > 0 (see [15, 53]), the following tight estimates are obtained:

1
E,[®

ul

+E;(f(2)] < /1\1;% ;\{ log E,[etM(2)] 4 E, [®} log ®L] — log Eq[q)iu]}.

Part (b) is proved similarly, utilizing (3.12) instead of (3.11).

Ezample B.1 (single-parameter exponential families). This is a straightforward example and
a simple illustration of the ideas in the proof of part (b) of Theorem 4.1, giving us insights
into how well the ideas work together with a rearranging argument. The simplicity of this
example arises from the fact that the exponential family is single parametric, and therefore
the structural part is not present. The probability density function of a random variable X,
with range R(X), is given by

P (z) = PY(X = 1) = @)—F(0)

taken with respect to some measure dv where F(#) = log [ @ y(dz) and ¢(z) is a real-
valued function also known as a sufficient statistic. Suppose a second probability density
function of the same single-parameter exponential family associated with ¢:

p9+c(1’) = P9+<(X =x)= e(0+Q)¢(x)—F(6+C)

for some ¢ < 1. One may want to investigate how sensitive the model is to such a change in 6
by ¢ with respect to ¢(X) as a means to bound Epe+¢[¢(X)] or to find the error in replacing
the first distribution by the “perturbed” one and being phrased as bound Epeic[p(X)] —
Epo[¢(X)]. The second exponential family is apparently a perturbation on parameters by (,
so we can think of the model as Type I. In addition, after employing UQ bounds, the CGF
and KL divergence are the two main ingredients to compute: for any A > 0,

A%y (N) = log Epo[*X)] = F(0 + \) - F(0),
R(PP|| P?) = CEposc[¢(X)] — log Epa[e¢*™)].

The above expression for KL divergence comes from the calculation of expressing F'(6 + A)
in terms of F(#) and that every term is computed with respect to PY. By substituting the
quantities to the UQ bounds and by doing a delicate rearrangement of terms that is feasible
because the Qol is a sufficient statistic for the model, we get

1 FO+ XN —F(0 1
+Epo+c[p(X)] < 1_(/1\2%{ 6+ ; ( >—|—/\10ng9[64¢()()]}.
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B.3. Proof of Theorem 4.2. The existence and the explicit form of the distribution ¢*
relies on [39, Theorem 2]. Consequently, given a Qol f, we identify the total g-excess factor
relative to ¢ explicitly, that is, ®F = e*+/. However, the new element is that by utilizing the
HammersleyClifford theorem, ¢* defined on Z are rMRFs, they lie in the class Q7, and the
total g-excess factor relative to ¢ is explicitly determined.

Appendix C. Coarse-graining, Kac, and Hamiltonian estimates.

QP90 00DPVVVLV -V VVVLVIIOGOIIOGOIOSGOSGO

Figure 10. One-dimensional Ising-spin lattice on A (white spins) with configuration boundary conditions
on the complement of A denoted as Gac (black spins).

C.1. Coarse-graining. We divide R? into cubes of size | = v~1/2. We denote by P(l) the
partition of RZ. Namely, for every i € I1Z% we set
(C.1) Li={reR': iy <m<ip+lLk=1,..,d}
(rt and i being the kth coordinates of r and 7). Then we call
(C.2) PY) = {1, i€z
the collection of all the above cubes.

Definition C.1 (see [57]). (1) A function f(r) is 77(3 measurable if it is constant in each
cube I ;, i € 174,
(2) A region A C R? is 73(2 -measurable if it can be written as a union of cubes of 73]1(;3 (or

()

its characteristic is Ppg-measurable).
(3) Any A C Z% can be identified as a union of cubes with length 1.
(4) The size of each cube is given by

(C.3) [l = 1| =17 =72
for every i € IZ%. For notational simplicity, we drop v from L.
For any bounded region A Plgg -measurable, we denote A := ANZ. Hence, I; = I; N Z°.

C.2. Coarse-grained interaction. We introduce a new interaction .J, which describes the
interaction between cubes. More precisely, for every 4, j € IZ® with i # j, we consider

(C.4) Jy (i ZZJ (z,y),

zel; yel;
and for ¢ = j, we define

(C.5) Jy(i,i) = T0=1 |I| Z Z Jy(x,y).

:EEI z€l;,
YAz
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Lemma C.2. For fized and small v > 0, for any x € I; and any y € 1;, 1,5 € 1Z% with
i # j, we have

= 1
(C6) |‘]’Y($ay) - J'y(%]” < ’yd+2 ||DJ||OO]-\zfy|§2'y—1'
Also, for any i € 1Z% and any x,y € I;, we have
(C.7) |y (2, y) = Ty (0, 8)] < 29| [l

Proof. Let x € I;, and for any y € I, 4,7 € 172, with i # j, we have

[y (@, y) = Iy (2, y)| = (2 T |2 SN Tz w)

zel; wel;
WPZENJ” Jy(z0)
zel; wel;
’1‘2 Z Z Y ||DJ‘|007|'%'_ _z+w|1|r y|<y—1
zel; wel;

< PRIy 1

= 7d+§ ||DJH001|:chy\§7*1

We prove (C.7) similarly. [ ]

C.3. Coarse-grained Hamiltonian energy. In this section, we analyze the Hamiltonian
energy by using the new interaction defined in (C.4) and the estimates in Lemma C.2. We
start by introducing some notation: for any r € R, we define the following quantity as a block
spin configuration:

(C3) A7) = 3 o)
|I‘ IGIT
so that
oy = L[ g
111 /s,

Let A C R%bea Plgc),—measurable region. We denote by Mgim) all Pﬂgg—measurable functions
on A with values in

oy g __ 1
(C.9) MO )__{ 1, 1+7_d/2,...,1 7_d/,z,l.
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—1/2
For any bounded Pﬂg )_measurable region A and ma € ng ), we define as a coarse-grained

Hamiltonian energy
_= 1
HI, (ma;mac) :—/ dpn(ma(r))dr + / / (") [ma(r) — ma () ?drdr’
v A 4 JaJa
1
+ / / T, (r, ") [ma(r) — mac(r'))drdr’
2 A JAcC

1

—// I (r, 7" Ymae (') drdr’
2 Ja Jac
1

(C.10) +/ I(ma(r))dr,
B Ja
where
1-m 1-m 14m 14+m
(C.11) I(m) = — 5 log 7~ 3 log 5

with ¢y g,(m) being given in (6.26). We recall that J = [ J(r)dr.

Lemma C.3. Let A be any bounded Pﬂgo),—measumble region A; then there exists a constant

C > 0 such that the following estimate holds:

_ _ = —1/2y _(n—1/2
(C.12) H:y]’h(O'A;O'Ac) — H%/],h<‘7(g );Ugc ))‘ < C’A"ylﬂ,

where 0271/2) and 62;1/2) are defined in (C.8).
C.4. Estimates for the thermodynamic pressure of an Ising—Kac model. We recall that

— log Za'c(J /8 h)
PAJ OAc) = L e
408 = g0

and

= — inf —h .
P3Gk mel[rll,l]{ m+ ¢30(m)}

If €(y) = v"/2 + 4%¥21og~y~!, then the following bounds hold: there exist constants ¢,¢ > 0
such that

-1
(C.13) Pf”’yh(ﬁAc) <p3ypn+ (C’YL + ce(’y)) (upper bound).
Let m* be the minimizer of ¢34, then py g = —d3 5(m*), and then
A !
(C14) P 5ac) > by — |63, 5(m* ) — b3,5(m")] —ee() — ¢ L= (lower bound),

where [m*], is the value in (C.9) closest to m*.
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C.5. Limit as A ' Z% and then v — 0. By using the estimates for the Hamiltonian
energy given in (C.12), (C.13), and (C.14), we can prove that

. . A —

1) limsup lim, Pyfh(@ac) < 2o
. . A _

(C.16) liminf lim Py (0ac) 2 o,

and therefore, if Py, = limp_,za Pfﬁ’:yh, then

C.17 lim P/, , = =— inf {-hm+ m)}.
(C.17) Jimy Pylg p = Pa,ph me[—l,l]{ ¢3,80(m)}
Hence, the thermodynamic pressure converges to the mean field pressure at the LP limit,
namely

lim lim Py =

S AI/n%d 3,6,h = PI.Bhs
where py g 1, is defined in (6.26). The convexity properties are provided by the limit as A * Z4
and then preserved by v — 0.

C.6. Thermodynamics of an Ising-spin model with a Kac potential. It is shown that
when v > 0 is sufficiently small, the phase diagram of an Ising-spin model with a Kac potential
is close to the phase diagram of a mean field model. Precisely, in [13, 11] (see also [57]) it is
proved that for d > 2, if h # 0, then there exists a unique DLR measure [58]. If h = 0, there
exists a critical value of inverse temperature S.(y) > 0 such that for any 8 < B.(v), there
exists one DLR measure, while for § > .(7) there are at least two distinct DLR measures
u;}cﬁ. Finally, there is an absence of phase transition when + is kept small (for more details,
see [57, 58] and references therein).

Appendix D. Detailed analysis of medical diagnostics.

D.1. Baseline model. Let us consider the undirected graph in Figure 2 [20] denoted by
G. The class of maximal cliques is Cg = {{1,2},{2,3,4}}. The distribution defined over the
graph is a log-linear model with clique potentials given by W.(y. | w.) = e®efe™e) where
all the weights w,. and the binary functions f. are known. For example, for ¢ = {1,2},
W{L?} = 1.5 and

L yg2 € {(s1,1), (51,00); (s0,10)},

Faay(yiey) =
{1,23\U{1,2} O7 Y{L?} € {(507l1)}‘

Each binary function f. induces a set B. = {(w1,w2,ws,wq) : fe(w.) = 1}. For example,
By gy = {w twii2y € {(s1,01), (s1,10), (s0, lo)}}. We compare predictions between the base-
line and alternatives of Types I and II (see section D.2) for the following Qols:

9(Y) =14 for any event of interest A C Q.

For instance, A ={patient is smoker with asthma} = {w = (w1, we, w3, ws) : w1 = Sp,ws = ap}.
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D.2. Alternative models.

D.2.1. Type |. First, we consider the class of log-linear models p over G with weight
change in one maximal clique. Let ¢ be the maximal clique that a weight change occurred.
Then the clique potential is given by

Bolye) = eelelve).

The weight after increasing or decreasing by 100a% equals w. = (1 + a)w,, where a € [—1,1]
stands for the model uncertainty of alternative models of Type I and w, is the weight on ¢ of
the baseline model p. For example, for {1,2}, the corresponding clique potential is expressed
as

U1y (v | Wiigy) = Pl (o)

=V (Yo | Wi Py (yiney | Wigy),s
with
OV | Wiy = e 020 lna o)

since we consider the simplest case where f{172} (Y{1,2y) = fri2y(y{1,2}) as well as the fact that
Wy 2y — wyi 2y = —0.2wyy 2). Note that B = {c}, where B is defined in subsection 3.1.

Derivation of (5.2). We compute all the quantities involved in (4.4) explicitly. Let us start
with the CGF:

AJ(N) =log Eye?] =log | Y eMp(y) + Y ¥p(y)
yEA y¢A

= log (e)‘p(A) +1-— p(A)) .
It is straightforward to see that
d]; Q)I eawcfc

dp — Ep[®]  emepr+1—pr’

(D.1)

and we now go through the computation of E,[®]:

Ep[@] =) '(y)p(y) =Y e p(y,)
y

y
_ Z eawcfc(yc)p(y) + Z eawaC(yC)p(Y)

y€Be yé¢Be
=e™epr+1 —pr.
Similarly, we prove that
(D.2) E,[®'log ®'] = aw.e™pr.

Overall, by recalling (3.11) the KL divergence equals

awce* " py
e®epr +1 —pr

awe

R(pllp) = —log (e"™pr+1 —pr).
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D.2.2. Type Il. We consider the class of log-linear models p over GwithY =V, £ = EUe,
where e is a new edge (see, for example, Figure 2(right)). We assume that the edge e enlarges
an already existing maximal clique in the sense of the analysis in subsection 3.1. The model
uncertainties arising from structure learning from either a new data set D and/or different
prior knowledge (see, for example, Figure 2(right)) lie in the binary function fz defined on
¢ and the new weight Wz, where ¢ is the enlargement of an existing maximal clique ¢. The
weight wz can also be expressed with respect to we: Wz = (1 + a)w.. This time a € R, not
necessarily in [—1,1] as before (e.g., w. = 1.5 and @z = 5). Then the corresponding clique
potential is given by i i

‘i’E(YE) — eWelelye) — (Ha)wefa(ye)
The binary function fz induces a set B; = {(w1,ws, ws,ws) : fa(ws) = 1}. For example, let
G # G (also Cg # Cg) and w # w. Intuitively, a change on the set of edges can be thought of
as structure learning from either a new data set D and/or different prior knowledge; see, for
example, Figure 2(right), where only one new edge has been added.

The set Bz satisfies one of the following: Bz N B, = () or Bz N B, # ). Note that Bc = {¢}
and By = Byew = 0, with Bc, By and By, being defined in subsection 3.1.

Derivation of (5.3). The CGF is the same as in the derivation of (5.2). Let us compute
the expected value of the total p-excess factor of Type II relative to p with respect to p:

B0 =Y olly)p(y) = Y eltrouelemuelep(y)

y
_ Z eawch(yC)p(y) + Z 6(1+ll)wcf5_wcfcp(y) + Z e(l-l—a)wcfé_wacp(y)
YEB.: YEB: y¢B.UB;
(D.3) = eIH ey 4 e™Wepr 41— pr — pir.

We split the sum into the three sums since B. N Bz = (). Similarly, we prove that
(D.4) Ep[@"log @) = —wee % pr + (1 4 a)wee T Wepy,
Overall, by recalling (3.11) the KL divergence equals

—wee epr + (14 a)wee T Wepy

R(p =
?llp) elIF@)wepy 4+ e~wepr + 1 — pr — pi1

— log <_wc6_wcpl +(1+ a)wc€(1+a)wcp11> .

Remark D.1. If B. N Bz # 0, then we need to split the sum of (D.3) as follows: Let
U = B.N Bg; then

Ep[@" =3 o"(y)p(y) =) elitayvefemvelep (y)

Yy
= Z eawaC(yC)p(y) + Z e(1+a)wcf~5_wcfcp(y) + Z e(1+a)wcfé_wcfcp(y)
yEBAU yeEB:\U yeU

+ Z 6(1+a)w0f6—1UCfcp(y)
Y¢BCUBE

= eI (pry — p(U)) + e (pr = p(U)) + e™p(U) + 1 = pr = prr + p(U).
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Note that pr, pr1, and p(U) are computable, as p is known.
Appendix E. Analysis of UQ for statistical mechanics.

E.1. Proof of Lemma 6.2. Tt is not difficult to show (see also Proposition I1.1.2 and
Lemma I1.2.2C in [62]) that

1108 Zone (3, B, 1) — 108 Zg e (JF, B, 1)| < B|H> " (0al5Ac) — HY H(oaloac)|loo
(E.1) < |Al[@%ET — @hBIT

A,O’Ac A SOAC

which in turn gives

(E.2) R(Gallaa) < 21A[|@4%7 — @427,

A, pc A,Gac

since
~ _ JF i _
R(aallaa) = 8 (Bas [H(0a]00)] = Egs [ " (0a]0e)])
+ lOg ZE'AC (J7 ﬁv h’) - lOg Zﬁ'Ac (jF’ Ba B)

A straightforward bound yields that

h? 7'] bl )
|82~ @hB I < g (|- R+ S |F(0,2)]
x#0

E.2. Proof of Lemma 6.1. It is a straightforward computation after subtracting the
Hamiltonian energies with interaction J and

JE (2, y) = J(@, )1 jaeyu<r + F(@,9)Ljoyl<r (TypeI)

and
JF(x,y) = J(x7y)1||:c—y||d§R + F($7y)1||x—de>R (Type II)
E.2.1. Cumulant generating function for f(Z) = |A|m(oa).

AA| L onl(x
AQA§|A|m(O'A)(i)‘) = IOgE‘IA[e AT 2rea 7l )]

1
— log ((6 ZeAZzEAO—A(I) _5H‘I h(O’A|O'Ac)>
O'Ac 7

_ log (exzzeA UA(I)—/BHJ’h(UA|0'AC)> —log Zs,. (3, B, h)
(£.3) = 108 Zae (3.5, 5) ~ log Zane (3.5, ).

Then, by using the definition of the thermodynamic pressure in (6.25), we get

1

A, A,
(E.4) WAQA§|A|W(UA)(:E)‘) =B <Phi’;,lg‘] Ph ﬁ?])
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Appendix F. Phase diagram of a long range perturbation.

F.1. Thermodynamics of a long range perturbation of one-dimensional Kac model.
There are a significant number of works in the literature studying the phase diagram of a one-
dimensional ferromagnetic Ising model with long range interactions of the form 1/7*, with &
indicating the decay of interaction and k < 2. For k < 2, the occurrence of phase transition
has been proved (see [26, 27, 28]). For k = 2, the existence of a spontaneous magnetization at
a low temperature is proved in [33]. The establishment of the existence of phase transition,
proving the discontinuity of the magnetization at a critical point, also known as the Thouless
effect, was proved by Aizenman et al. in [1]. In [12], the authors study the phase diagram
of the system with interaction defined in (F.1) with F' given in Definition F.1 as illustrated
in Figure 7(right). Precisely, they have shown that there is a critical value of the inverse
temperature depending on a and « sufficiently small such that the system exhibits phase
transition.

F.1.1. Phase diagram of a long range perturbation. We consider a one-dimensional
ferromagnetic Ising-spin system with interactions that correspond to a 1/r2 long range per-
turbation of the usual Kac model; see Figure 7(right).

Definition F.1. Let JY"(z,y) = 7d1‘xiy|<%(i.e., a special case of Kac-type interaction

where in fact JV"(x,y) is piecewise constant interaction). Then we define
; I 0 r—y[ < (29)7

F.1 JE (z,y) = { R = =\ ’

Y PO E ), el > @)

with F(x,y) = g for some number a € (0,00); see Figure 7(right).

The range of the perturbation F' is clearly Type II. We derive the UQ bounds as follows:

logq)UAC oA) BZUA (il—h—i-; Z F(z,y)oa(y)

T€EA yeAllnA

(F.2) + > Flay UAC(Z/));

yeAlInAe

then C™' := B(h — h), and then

k1 :ZBZJA(@”)G Y. Flayoaly)+ Y F(fﬂ,y)ﬁm(y))

zEA y€AINA yeAIINAe
We bound k17 based on the following;:
> 2 Faw)sIal Y Foy =AY
TEA ye AlINA yeAll yeAII

(F.3) < CvlA|

eAH
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for some constant C' arising from }, Al ?;% < 00. Then k1 < 2Cv|A| and the UQ bounds
for long range perturbation with B(h — h) < 1 are

PAv'Y _ PAa’Y
(F.4) LB, [m(oa)] < L ip | MERAT T By
. an |TN\O = 1n -
q A= 1T 80h — n) 5o \/B Pl

In the LP limit, we get

- - 1 ) phi%ﬁ,J — Ph,p3J
(F.5) +MJ7,5,h) < = inf
1— B(h— h) x>0 A/B
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