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Abstract—Accelerators have become fundamental building blocks of
any modern architecture. Accelerators are often deployed on a platform
by evaluating performance and energy consumption, while assuming that
the software applications can be modified to invoke the accelerators. In
some contexts, however, this is impractical. For instance, in an Android-
based platform changing the applications to invoke an accelerator can
affect their portability. We present Hardroid, a heterogeneous platform
that allows an Android application to offload tasks to loosely-coupled
accelerators on an FPGA in a transparent way, i.e., without modifying
the code of the application. To demonstrate the Hardroid capabilities, we
design four accelerators for cryptography with high-level synthesis (HLS)
and we compare their efficiency with two libraries for cryptography, by
executing 29 Android applications. While we use FPGAs to implement
and evaluate Hardroid, our accelerators are designed so that they can be
integrated in a system-on-chip (SoC) and we report their energy efficiency
also for an ASIC implementation. The experimental results show that
Hardroid is an effective platform that can be used to evaluate the costs
and benefits of integrating accelerators, when these are called by real-
world Android applications. We show that invoking accelerators without
modifying the code of the applications can affect the energy efficiency of
the accelerators.

Index Terms—accelerators, cryptography, embedded systems, high-
level synthesis, system-level design, reconfigurable architectures.

I. INTRODUCTION

Modern architectures combine general-purpose CPUs with domain-

specific accelerators [11], [19]. Accelerators are hardware computing

engines that deliver energy-efficient and high-performance compu-

tations for specific tasks within a certain application domain. The

adoption of specialized accelerators has been quickly rising in the last

decade in several application domains, including graph analytics [27],

machine learning [13], database processing [56], brain-computer

interfaces [22], genome sequencing [24], video decoding [35], cryp-

tography [6], and many more. This has encouraged the development of

heterogeneous platforms that make the accelerators critical components

of their architecture, e.g., [5], [21], [33], [37], [46]. For example, the

NVIDIA Deep Learning Accelerator (NVDLA), a loosely-coupled

accelerator for deep learning [44], has been integrated in various

platforms [2], [25]. NVDLA is invoked by a processor with a device

driver and it performs its task autonomously, freeing up cycles from

the processor execution. In addition to loosely-coupled accelerators,

some platforms use tightly-coupled accelerators that are located in

the processor and called with custom instructions [5]. In this paper,

we focus primarily on loosely-coupled accelerators [14], [16].

The rise of accelerators has been supported by high-level synthesis

(HLS) [40], which makes accelerator design accessible to domain

experts with little knowledge of hardware. Cycle-accurate specifi-

cations at the register-transfer level (RTL) are replaced by untimed

specifications in C or SystemC, which are automatically synthesized

into corresponding RTL specifications. Hence HLS greatly simplifies

the task of accelerator design by abstracting away most of the low-level

circuit details that burden the development process [35], [47]. The

integration of an accelerator into a platform, however, remains in large

part responsibility of the designer, who has to write the software to

invoke the accelerator and evaluate performance and programmability.
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Fig. 1: Hardroid, an FPGA-based heterogeneous platform.

The simplification of accelerator integration through the abstraction of

architectural details has been investigated for years [51], [52], [55].

The integration of a loosely-coupled accelerator into a platform

typically relies on the assumption that the target software applications

can be modified. This requires the replacement of the function call

that is computed by the accelerator with an invocation to the driver

of the accelerator. In turn, this may require to allocate the memory

differently such that it is accessible to both the application and the

accelerator. With NVDLA [44], for example, a contiguous region of

memory is necessary to move the data from the application to the

accelerator and vice versa. Assuming that the software applications

can be changed is realistic in many contexts. This is the case, for

instance, of non-legacy software invoking accelerators in a system-

on-chip (SoC). In other situations, however, it is preferable to avoid

modifying the applications when an accelerator is integrated. Android

is an example as there is a huge number of applications that we should

not modify to preserve their portability across different platforms.

The goal of this paper is to investigate the problem of integrating

accelerators in Android-based systems under the assumption that the

applications cannot be modified to explicitly call the accelerators.

We discuss the extent to which this is possible, the requirements it

entails, and its implications on performance and energy consumption.

Other works, instead, have focused on enabling Android applications to

invoke accelerators directly, e.g., by means of IPC mechanisms [54] or

user-level drivers [17]. In pursuing our goal, we focus on cryptographic

(crypto) accelerators given their potential for a massive use across

Android applications.

To evaluate the integration of accelerators in Android, we need a

platform where we can easily combine general-purpose processors and

hardware accelerators. Most of the current heterogeneous computing

platforms, e.g., [2], [5], [21], [33], [37], [46], do not support Android.

A few, however, support Android, e.g., [3], [17], [54], [59] (see

Section VI). Among them, we chose Mentor Embedded Android that

is an open-source porting of Android 8.1 for Xilinx FPGAs [3].

We extended it by providing support for invoking accelerators

from Android applications through a transparent software layer.

We developed Hardroid, an FPGA-based platform that enables the
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invocation of loosely-coupled accelerators from Android applications

(Fig. 1). Hardroid uses a general-purpose processor to run the Android

operating system and four accelerators for crypto that we designed

and implemented with HLS. Hardroid utilizes a Java software layer

(HW Cryptographic Provider in Fig. 1) to allow the applications to

invoke the accelerators in a transparent way, i.e., without requiring

changes to the code. We make the following contributions:

(1) We design four accelerators for crypto: SHA1, SHA2, AES,

and RSA. We synthesized them with commercial HLS tools

by targeting both FPGA and ASIC technologies;

(2) We design Hardroid, an FPGA-based heterogeneous platform

for supporting loosely-coupled accelerators in Android;

(3) We develop the Hardware Cryptographic Provider, a library

that allows Android applications to call accelerators for crypto

without requiring modifications to the code of the applications;

(4) We compare the energy efficiency of our accelerators against

two libraries for crypto used in Android: BouncyCastle [9] and

AndroidOpenSSL (conscrypt) [15], the Google’s optimized

porting of OpenSSL [45] for Android systems;

(5) We show that invoking crypto accelerators without changing

the applications can affect performance and energy efficiency,

because of software overheads for the invocations;

(6) We run 29 Android applications and report results on perfor-

mance and energy efficiency of the accelerators.

II. PRELIMINARIES

Three critical crypto operations that are usually implemented in all

systems are: (1) hashing, (2) symmetric encryption, and (3) asymmetric

encryption [32], [38]. We designed accelerators for these operations.

Crypto hash functions take as input an arbitrary amount of data

(e.g., a document, an image, etc.) and produce hash values, called

message digests [42]. Crypto hash functions are often used to verify

data integrity, for instance to check if a document we received has

been tampered during its transmission. Some well-known families of

hash functions are SHA1 and SHA2. SHA1 produces digests of 20

bytes, while SHA2 consists of SHA224, SHA256, SHA384, SHA512,

SHA512/224, and SHA512/256, with digests from 28 to 64 bytes.

Symmetric encryption makes data unintelligible. A block cipher,

e.g., AES [41], takes as input a block of data and a key and it produces

the encrypted or decrypted output block. A decrypted block is called

plaintext, while an encrypted block is called ciphertext. A padding

scheme must be applied when the data size is not a multiple of the

block size. Block ciphers support operation modes, which determine

how multiple blocks are encrypted or decrypted. Electronic codebook

(ECB) encrypts and decrypts each block independently. Counter mode

(CTR) uses a counter that must be incremented at each encryption or

decryption. Cipher block chaining (CBC) xors each block of plaintext

(ciphertext) with the previous block of ciphertext (plaintext) at each

encryption (decryption). The initialization vector (IV) is an additional

input block that is xored with the very first data block. Galois/counter

(GCM) is an operation mode used for authenticated encryption, which

provides additional protection against chosen ciphertext attacks.

Asymmetric encryption [49] is used when it is difficult to have a

symmetric key shared between two entities. Asymmetric encryption

uses two keys, a public key and a private key. The data is encrypted

with the public key and can only be decrypted with the corresponding

private key. RSA is one of the most popular algorithms.

III. MOTIVATION

We focus on crypto accelerators because the tasks they implement

are performed by many Android applications directly or with third-

party libraries. For the experiments discussed in Section V, we
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Fig. 2: Usage percentage of SHA1, SHA2, AES, and RSA.

executed 29 applications on Hardroid. Fig. 2 shows the percentage

of these applications that use each of the four crypto accelerators.

Specifically, SHA1 is used by 76% of the applications, while almost

all the applications use SHA2 (97%). About 45% of the applications

use AES, while about 14% invoke the RSA accelerator.

Android-based systems support an ecosystem where it is possible

to run real-world applications and evaluate accelerators in realistic

scenarios. In this context, it is preferable to avoid changing the code of

the applications to support accelerator invocation. In this way, we can

preserve the portability of the applications across different platforms,

where certain hardware accelerators may or may not be available. We

use Android as a case study, but in other contexts there are similar

requirements for the applications.

Hardroid addresses these challenges by allowing Android applica-

tions to invoke an accelerator without requiring modifications to their

code. In general, applications must be modified to invoke a loosely-

coupled accelerator. The software function that can be performed by

means of an accelerator must be replaced with code that performs

the accelerator invocation. This requires to write application-specific

and error-prone code that configures the accelerator, prepares the

input data, calls a device driver, uses a synchronization mechanism

to wait for the completion of the accelerator, and obtains the results.

Alternatives ways to invoke accelerators, specifically for Android,

include using custom libraries, which abstract away the low-level

details, and intents [17], [54]. In this work, we exploited the concept

of provider, which is the basis for the Java crypto library [31]. In

Java, the applications perform crypto operations through a common

set of application programming interfaces (APIs). These APIs can be

implemented by multiple providers and the applications do not need

to know which particular provider is used to perform an operation. We

develop a new provider (Section IV-B) such that applications call our

accelerators on the FPGA. The concept of provider is well-known and

we exploited it to invoke accelerators on the FPGA. Other approaches

may be used to invoke accelerators transparently.

IV. THE HARDROID PLATFORM

A. Hardware Architecture

Hardroid combines general-purpose processors that are responsible

for the execution of the Android Software Stack (Android 8.1) and

accelerators for crypto (Fig. 3). The processors are hard-core units,

while the accelerators are soft-core units deployed on the FPGA. The

accelerators are fixed-function, i.e., they do not execute instructions.

The accelerators are loosely-coupled [14], [16]. We offload tasks to

an accelerator by means of a device driver. Each accelerator has some

memory-mapped configuration registers that are exposed to software.

These registers define where the input and the output of the accelerator

are located and the values of accelerator-specific parameters, e.g., the

number of input bytes and the operation mode used for encryption.

Once configured, the accelerator executes the task on behalf of the

application, without interrupting the main processors until the task

is completed. To communicate with software, the accelerator uses a

DMA buffer, which is a contiguous memory region (CMA) that is

accessible by both software and hardware (allocated with [30]).
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Fig. 6: The figure reports the energy consumption of performing crypto operations in Hardroid. We compare (i) the best software implementation

(best sw), (ii) our accelerators by considering the software overheads for invoking them (sw+fpga), (iii) our FPGA accelerators only (fpga),

and (iv) our ASIC accelerators only (asic). The values are relative to the energy consumed by the ASIC accelerators for the smallest inputs.

A. Custom Applications

We designed our crypto accelerators with HLS for FPGA and

ASIC. TABLE I (a) reports the results for FPGA in terms of clock

frequency (MHz), FFs, LUTs, and BRAMs. TABLE I (b) shows

the results for the ASIC implementations in terms of area (mm2).

We synthesized the accelerators with the same frequency (187 for

SHA1, SHA2 and AES and 149 for RSA) for both ASIC and FPGA

and the same architecture2 (Section IV-A). The RSA code generated

with HLS was difficult to close at a higher frequency due to the use

of large operators. The goal was to get a conservative estimation of

what can be obtained in ASIC. For real ASIC deployment, it is likely

that the accelerators are synthesized at the same frequency of the

processor (1.2 GHz), thus obtaining an additional speedup of about

6× (8× for RSA). For power estimations, we use the dynamic power

returned by Vivado and the dynamic power reported by simulations

based on switching activity after synthesis with Catapult HLS.

We compared the execution time and power consumption of our

accelerators against those of the implementations of the corresponding

algorithms in the BouncyCastle and the AndroidOpenSSL libraries,

which are executed on the ARM Cortex-A53 processor. We measured

the performance on FPGA by executing Android applications that we

developed. We installed the Android applications and interacted with

2The coding style we used for AES for Vivado HLS is not fully compatible
with Catapult HLS. Thus, to obtain the results for ASIC we used a 32-bit AXI4
interface (instead of 128 bits) and adjusted the size of the internal memories.
Similarly, we estimated the power of AES/GCM from the power of AES/CBC
by considering the area difference.

them to trigger accelerator invocations. Just-In-Time (JIT) compilation

is combined with Ahead-of-Time (AOT) compilation in Android [4].

JIT uses heuristics to cache the translation of methods that are executed

at run-time. To obtain better performance for the BouncyCastle library,

we warmed up the JIT cache so that the overheads of the JIT caching

mechanism are not considered. For the power of the accelerators, we

consider the power of the task that they execute in a particular test.

For example, for SHA256 we used the power for SHA256, rather than

the power of the whole SHA2 accelerator, which includes SHA512.

We account for the power spent by the CPU to interact with the

accelerator (i.e., configuring it, preparing the input data in memory,

and retrieving the output data from memory) but not for the power

of the CPU while it is idle during the accelerator execution.

Fig. 6 shows the results obtained from multiple executions on the

FPGA. On the x-axis we report the size in bytes of the inputs. On the

y-axis we report the energy consumption (in log scale) for the best

software implementation (best sw in Fig. 6), for the FPGA accelerators

including the software overheads due to the invocation (sw+fpga), for

the FPGA accelerators only (fpga), and for the ASIC accelerators only

(asic). The best software implementation is either AndroidOpenSSL

or BouncyCastle depending on the crypto task and the input size.

Note that the results are relative to the energy consumed by the ASIC

accelerators to perform the smallest tasks (for the smallest task in

each graph, the ASIC energy consumption is 1). We can observe that

the energy overhead of the software to invoke the accelerators is very

high, especially for smaller input sizes. Part of this overhead is due

to the data copies of the inputs and outputs of the accelerator. For
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Fig. 7: Energy consumption (geometric mean) of the 29 applications.

SHA1 and SHA2 the copy overhead is more manageable as the output

size has a fixed dimension (20 bytes for SHA1 and up to 64 bytes for

SHA2). For AES, this becomes a more important issue as the output

size scales with the input size. For RSA, this is less of an issue as

the input sizes are relatively small. If one is allowed to change the

applications to invoke the accelerators, part of this overhead could be

mitigated by avoiding data copies [36]. Some software overhead is

due to the time required to set up the DMA buffer and to handle the

different configuration options of the accelerators. If we take a look

at the energy consumption of the FPGA accelerators (or the ASIC

accelerators), we can see how the software overhead impacts their

efficiency. By moving towards larger input sizes, the relative distance

in energy consumption between the best software implementation (best

sw) and the FPGA accelerators (fpga) becomes smaller. Switching

to HP ports would provide better performance for larger inputs [39].

Note that the energy consumption is sometimes higher for smaller

input sizes; although we report the average of multiple runs, short

execution times can be affected by other processes and/or Java.

B. Android Applications

We downloaded 29 applications from the Google Play Store. We

installed each application in Hardroid and we interacted with the

graphical user interface (GUI) of the application (with keyboard and

mouse). Being already supported by Mentor Embedded Android [3],

this is not part of our contributions. A contribution of Hardroid,

however, is that the actions on the GUI can trigger accelerator

invocations. We interacted with the applications and generated about

3000 invocation calls to our crypto accelerators. The invocations

are for SHA1, SHA256, SHA512, AES-CBC, AES-GCM, and RSA.

As explained in Section IV-B, none of the 29 applications required

modifications. In order to evaluate the performance and check the

correctness of our accelerators, we modified our provider such that it

invokes also BouncyCastle and AndroidOpenSSL. We monitored the

logging system of Android to collect the performance measurements.

Fig. 7 reports the estimated energy consumptions as the geometric

mean across 29 applications. Each set of three bars report the

energy consumption for the best software implementation, the FPGA

accelerator with the addition of the invocation overhead in software,

and the standalone FPGA accelerator, respectively. The reported values

are relative to the energy consumption of the ASIC implementations

of these accelerators, which are used as baseline. The results confirm

that the invocation cost in software is high, especially considering

that the input sizes for many invocations of the accelerators consist

of only hundreds of bytes. We could mitigate the energy cost of the

software in invoking the accelerators by executing the smaller tasks

with the ARM core rather than using the accelerators, while leaving

the bigger tasks to the accelerators for better energy efficiency.

Fig. 8 reports the accelerator performance as the geometric mean

across 29 applications relative to the best software implementations,

which are used as baseline in this case. By considering only the

accelerator execution time (fpga), we can observe that we obtain better
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Fig. 8: Performance (geometric mean) of the 29 applications.

performance than software, thanks to the ACP port that guarantees

higher performance for small inputs.

VI. RELATED WORK

The increasing adoption of domain-specific accelerators has fostered

the development of several heterogeneous architectures and platforms,

for example [2], [5], [7], [21], [33], [37], [46], which have been

often made available open-source. All these platforms support Linux-

based environments, but they do not support Android applications.

There are, however, platforms that can run Android applications. In

particular, to develop Hardroid, we started from Mentor Embedded

Android [3]. This is an open-source porting of Android 8.1 to some

Xilinx FPGAs. The same platform has been used to support dynamic

reconfiguration of the FPGA [23]. Zedroid, a platform that supports

Android on a Zynq SoC [59], has been used to accelerate a kernel

for network traffic analysis [8]. Ting et al. [53], [54] show how

to provide accelerator services for machine learning to Android

applications. Their platform supports multiple applications invoking

the accelerators as well as multiple accelerators. Similar mechanisms

can be added to Hardroid. Coughlin et al. [17] described an approach

to add reconfigurable hardware into an Android-based system. ‘App

Hardware’ are accelerators that can be deployed on the FPGA and

called by the traditional applications (‘App Software’). Our goal is

different because Hardroid is a platform to evaluate the integration

of accelerators in Android-based system before these are taped out

as components of a new chip.

There are several papers about accelerator integration. For example,

Giri et al. [26] describe the advantages of supporting multiple cache-

coherence models for different accelerators. They also show how to

seamlessly integrate third-party accelerators [25], e.g., NVDLA, into

the ESP architecture [37]. Min et al. [39] evaluate approaches that

can be used to integrate accelerators on an FPGA-based platform. Lee

et al. [34] focus on improving the programmability of data-parallel

accelerators. Our paper complements these works by discussing the

trade-offs between programmability and performance in integrating

accelerators in Android systems.

VII. CONCLUSIONS

We presented Hardroid, an FPGA-based heterogeneous platform

that allows Android applications to call crypto accelerators on

an FPGA in a transparent way. The applications do not need

to be modified to perform accelerator invocations thanks to the

decoupling of providers and services in the JCE/JCA. We believe

that the same approach can be used to invoke the accelerators for

other important application domains. We explored the trade-offs

between programmability, performance and energy efficiency for

crypto accelerators, showing that programmability benefits can affect

performance and energy efficiency. In the future, we will evaluate

more approaches for better accelerator design and integration and we

will explore their applicability to other domains.

6



ACKNOWLEDGMENTS

This work was supported in part by DARPA (C#:HR0011-18-C-

0122) and the National Science Foundation (A#:1764000). The views

and conclusions expressed are those of the authors and should not

be interpreted as representing the official views or policies of the

Department of Defense or the U.S. Government.

REFERENCES

[1] M. Abadi et al., “Tensorflow: A System for Large-scale Machine
Learning,” in Proc. of the USENIX Symposium on Operating Systems

Design and Implementation (OSDI), 2016.
[2] A. Amid et al., “Chipyard: Integrated Design, Simulation, and Imple-

mentation Framework for Custom SoCs,” IEEE Micro, vol. 40, no. 4,
2020.

[3] https://github.com/MentorEmbedded/mpsoc-manifest, Android for Xilinx
Zynq UltraScale+ MPSoC.

[4] https://source.android.com/devices/tech/dalvik/jit-compiler, ART JIT.
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