
1

DB4HLS: A Database of High-Level Synthesis

Design Space Explorations

Lorenzo Ferretti1, Jihye Kwon2, Giovanni Ansaloni3, Giuseppe Di Guglielmo2, Luca Carloni2, Laura Pozzi1

1Università della Svizzera italiana, Lugano, Switzerland, 2Columbia University, New York, United States
3EPFL, Lousanne, Switzerland

Abstract—High-Level Synthesis (HLS) frameworks allow to
easily specify a large number of variants of the same hardware
design by only acting on optimization directives. Nonetheless,
the hardware synthesis of implementations for all possible
combinations of directive values is impractical even for simple
designs. Addressing this shortcoming, many HLS Design Space
Exploration (DSE) strategies have been proposed to devise
directive settings leading to high-quality implementations while
limiting the number of synthesis runs. All these works require
considerable efforts to validate the proposed strategies and/or
to build the knowledge base employed to tune abstract models,
as both tasks mandate the syntheses of large collections of
implementations. Currently, such data gathering is performed
ad-hoc, a) leading to a lack of standardization, hampering
comparisons between DSE alternatives, and b) posing a very high
burden to researchers willing to develop novel DSE strategies.
Against this backdrop, we here introduce DB4HLS, a database
of exhaustive HLS explorations comprising more than 100000
design points collected over 4 years of synthesis time. The open
structure of DB4HLS allows the incremental integration of new
DSEs, which can be easily defined with a dedicated domain-
specific language. We think that of our database, available at
https://www.db4hls.inf.usi.ch/, will be a valuable tool
for the research community investigating automated strategies for
the optimization of HLS-based hardware designs.

Index Terms—High-Level Synthesis, Databases, Machine
Learning, Big Data, Design Space Exploration.

I. INTRODUCTION

High-Level Synthesis (HLS) fostered a revolution in hard-

ware design. HLS frameworks allow the specification of hard-

ware components in languages such as C, C++, or SystemC.

As opposed to traditional Register Transfer Level (RTL) ap-

proaches, HLS flows do not require detailed descriptions of the

logic gates, memory elements and interconnects comprising

hardware implementations. Instead, these are automatically

generated, based on the high-level specifications and on a

set of directive values specifying optimizations such as the

unrolling factor of loops and the inlining of functions. By

decoupling specification from implementation, HLS allows

unprecedented productivity, leading to considerable reductions

in non-recurring engineering costs.

Nonetheless, while HLS allows to easily define vast de-

sign spaces for a given hardware specification, determining

the performance (latency) and resource requirements (area,

power) of each implementation still requires time-consuming

syntheses. The amount of possible implementations of a design

explodes exponentially with the number of applied directives,

while, in general, only a few of them are Pareto-optimal from

a performance/resources perspective. Exhaustive explorations

are therefore wasteful (since only Pareto implementations are

of interest) and impractical beyond very simple cases.

Various strategies, which we summarize in Section II, have

been proposed to identify (or approximate) the set of Pareto-

implementations while minimising the number of synthesis

runs [1] [2] [3]. This problem is named HLS-driven Design

Space Exploration (DSE). The proposed DSEs strategies are

typically validated against exhaustive explorations, which the

authors performed ad-hoc. Moreover, works such as [4] [5]

rely on prior knowledge to steer the HLS exploration pro-

cess. Performing the huge number of synthesis required for

validation or for generating a high-quality knowledge base

entails a very high effort, which at present must be repeated

ex-novo when investigating the performance of a novel DSE

methodology.

Against this backdrop, we introduce DB4HLS, a database of

high-level synthesis design space explorations. The database

comprises more than 100000 design points, reporting the syn-

thesis outcomes of exhaustive explorations performed on 39

designs from the MachSuite [6] benchmark suite. In addition,

we define a simple domain-specific language to define design

spaces, resulting in an open infrastructure that can be enriched

by further contributions from the research community.

We believe that, by providing standardized synthesis data

sets, our effort will allow easier comparisons among DSE

strategies, enabling fairer evaluations of the strengths and

weaknesses of each approach. It will also facilitate the de-

velopment and assessment of future design exploration frame-

works, spurring research in this challenging field.

II. RELATED WORKS

State of the art DSE frameworks for HLS follow three

main approaches. Black-box methodologies aim, after an

initial phase, at iteratively refining explorations by smartly

selecting additional design points. To this end, they employ

unsupervised learning strategies such as clustering [2], random

forest [1], lattice traversing [3] and response surface models

[7]. Model-based strategies, on the other hand, estimate per-

formance and resource requirements of implementations by

developing an analytical formulation of the effect of directives

when applied to a design. Typically, they can well approximate

the Pareto set of best-performing implementations with few

synthesis, but are restricted in the type of targeted optimiza-

tions (e.g., loop unrolling and dataflow in [8]). The authors of

a
rX

iv
:2

1
0
1
.0

0
5
8
7
v
1

[c

s.
A

R
]

 3
 J

a
n
 2

0
2
1

2

TABLE I: DSEs available in the database. Each entry reports
benchmark, function name, and number of configurations (|CS|). All
functions are from Machsuite [6].

Benchmark Function name |CS|
spmv ellpack ellpack 1600

bfs bulk bulk 2352

md knn md kernel 1600

viterbi viterbi 1152

gemm ncubed gemm 2744
gemm blocked bbgemm 1600

fft strided fft 64

sort merge
ms mergesort 4096
merge 4096

stencil stencil2d stencil 1344
stencil stencil3d stencil3d 1536

radix sort

update 2400
hist 4704
init 484
sum scan 1280
last step scan 800
local scan 704
ss sort 1792

aes

aes addRoundKey 500
aes subBytes 50
aes addRoundKey cpy 625
aes shiftRows 20
aes mixColumns 18
aes expandEncKey 216
aes256 encrypt ecb 1944

backprop

get delta matrix weights1 21952
get delta matrix weights2 31213
get delta matrix weights3 21952
get oracle activations1 2401
get oracle activations2 1372
product with bias input layer 1372
product with bias second layer 686
product with bias output layer 392
backprop 2048
add bias to activations 1372
soft max 64
take difference 512
update weights 1024

all these works adopt as figure of merit either the Hypervolume

or the Average Distance from Reference Set (ADRS) for

validation, and both require the computation of true Pareto

frontiers from exhaustive explorations. Recently, a promising

research avenue has focused, instead, on exploiting prior

knowledge in order to perform Design Space Exploration in

hardware design. These works [4] [5] leverage the availability

of a comprehensive knowledge base, such as the one we

describe in our paper, to achieve exploration results close to

that of model-based strategies while being much more flexible

in the number and type of supported directives.

While benchmark suites dedicated to hardware design are

available, such as CHStone [9], MachSuite [6], Rosetta [10]

and S2CBench [11], they only provide specifications (in the

form C/C++ code) as benchmarks. Conversely, our DB4HLS

suite offers rich and well-defined design spaces and related

synthesis outcomes, greatly easing the burden of performing

comparative evaluations of exploration methodologies. To the

best of our knowledge, this is the first database of HLS

implementation made publicly available with the intent of

standardize the evaluation process, and provide a source of

knowledge for ML strategies.

benchmark designalgorithm

configuration

space
configuration

implementation
synthesis

information

resource 

 results

performance

results

nameMany-to-one One-to-one Entity

middle

bottom

top

Fig. 1: Simplified scheme of the Entity-Relationship Diagram (ERD)
of the DB4HLS syntheses database.

III. AVAILABLE DESIGN SPACE EXPLORATIONS

We provide a rich set of DSEs by targeting the benchmarks

of the MachSuite collection of designs [6]. We have performed

DSEs for 39 out of 50 functions in the benchmark suite,

discarding those having a variable latency due to input-

dependent control flows, and those having very small design

spaces. The considered functions present on average 40 lines

of code, with the biggest having 308 lines of code.

We performed an exhaustive exploration of each design–

according to the configuration space defined by the user–

running more than 100000 synthesis. Table I lists all the

designs explored and their configuration space size.

We used Vivado HLS [12] version 2018.2 to perform the

syntheses , and we targeted a ZynqMP Ultrascale+ (xczu9eg)

FPGA chip, with a target clock of 10ns.

To restrain the design spaces sizes, we have constrained

directive set values with a numerical range (e.g., the unrolling

factor) to power-of-two or integer divisor of the maximum

admissible values (e.g., number of loop iterations). Moreover,

for some designs, different optimizations are forced to have the

same values when intuitively such choice would lead to better

cost/performance trade-offs (e.g., binding the loop unrolling

factor to the array partitioning one).

Even when considering these constraints, the data collection

required more than 4 years of single-core machine time. To

speed up this process, GNU Parallel was adopted to collect

synthesis results from 60 parallel Vivado HLS instances,

allowing us to populate the database in approximately 25 days

of wall-clock time.

IV. DB4HLS INFRASTRUCTURE

In addition to the DSE data, the DB4HLS framework offers

a) a database infrastructure hosting DSE in a structured and

easy-to-access way, b) a domain-specific language used to

describe a configuration space for a target design, c) an

interface to generate new explorations and further enrich the

database. The remaining of this section describes these further

contributions in details.

A. A database for DSEs

3

Snippet 1: last_step_scan design (C code).

1 void last step scan(int bucket[SIZE], int sum[RADIX]){
2 int i, j, k;
3 loop 1:for(i = 0; i < RADIX;i++){
4 loop 2:for(j = 0; j < BLOCK; j++) {
5 k = (i * BLOCK) + j;
6 bucket[k] = bucket[k] + sum[i];
7 }
8 }
9 }

Snippet 2: Configuration Space of last_step_scan.

1 resource;last step scan;bucket;{RAM 2P BRAM}
2 resource;last step scan;sum;{RAM 2P BRAM}
3 array partition;last step scan;bucket;1;{cyclic,block

};{1−>512,pow 2}
4 array partition;last step scan;sum;1;{cyclic,block};{1−>128,

pow 2}@bind a
5 unroll;last step scan;last 1;{1−>128,pow 2}@bind a
6 unroll;last step scan;last 2;{1,2,4,8,16}
7 clock;{10}

Fig. 2: Left: Snippet of the last_step_scan C code function from MachSuite [6]. We rewrote the code to increase the readability
without affecting its functionality. Right: An associated Configuration Space Descriptor (CSD).

The database structure, implemented in MySQL, comprises

a description of the design targeted for exploration (top part of

Figure 1), and that of the explored HLS optimizations applied

to each design (middle part of Figure 1). Finally, it reports

the resource and performance results obtained by synthesis

(as described in the bottom part of the figure). Each of these

components is described more in detail in the following.

Similarly to the taxonomy adopted in MachSuite [6],

applications are identified by the benchmark they be-

long to (e.g.: aes), by the algorithm they realize (e.g.:

aes256_encrypt) and by the design implementing such

algorithms. As an example, two variants are provided by

MachSuite for the aes256_encrypt algorithm (one using

lookup tables to store encryption keys and one generating

the values online), each corresponding to a separate design

specified as C++ code.

A descriptor of the HLS optimizations considered for the

DSEs are stored as entries in configuration space table. Multi-

ple explorations (hence, rows in the configuration space table)

for the same design are possible, corresponding to different

choices of optimizations, or explorations targeting different

tools/FPGAs, or even contributions from different researchers.

An entry in the configuration space table is linked to many

entries of the configuration table, where each entry indicates

a specific element of the design space.

A line in the configuration table (that indicates the set

of HLS optimizations defining a design space element) is

linked to an entry in the implementation table. Furthermore,

the synthesis information table provides additional information

on each performed synthesis: the synthesis timestamp, the

contributor that originated the data, the employed synthesis

tool and version, and the targeted FPGA. Finally, each im-

plementation links to one or more entries in the resources

and performance tables, which report the synthesis outcomes.

Resources are expressed as employed Flip-Flops, Look-Up

Tables, Block RAMs (BRAM) and DSP blocks, while per-

formances are reported in terms of effective latency.

B. A domain-specific language for DSEs

Generating the different configurations associated with an

DSE is a tedious and error-prone process when performed by

hand. We therefore developed a Domain-Specific Language

(DSL) to automatically and concisely define configuration

spaces by employing Configuration Space Descriptors (CSDs).

Each line of a descriptor encodes a knob, which comprises

a directive type, a label corresponding to its location in the

design C/C++ code, and one or multiple sets of values. The

number of sets is equal to the number of parameters required

by the directive type. Values can be numerical when expressing

optimizations such as loop unrolling or array partitioning

factors, or categorical when determining the type of employed

FPGA resources such as BRAM types. A shorthand is pro-

vided for expressing regular value series (e.g., a succession

of power-of-two values). Finally, we provide a @bind dec-

orator, which constraints the values associated with different

directives.

Figure 2 shows, for the last_step_scan function in

Snippet 1, an example of DSL descriptor created to define its

configuration space (Snippet 2) created using the DSL. The

DSL descriptor defines seven different knobs. Lines 1 and 2

of Snippet 2 show two knobs associating a dual-port BRAM

to the input array bucket, and sum respectively. Lines 3 and 4

define knobs specifying the array partitioning directive. These

directives are created as combinations of partitioning strategies

and partitioning factors. Both line 3 and 4 combine two

partitioning strategies (cyclic and block) with the associated

directive values set for the partitioning factors–all the powers

of two from 1 up to 512 for knob 3, and all the powers of

two from 1 up to 128 for knob 4. Then line 5 and 6 define for

loop_1 and loop_2 the associated set of unrolling factors to

consider during the exploration, all the powers of two from 1

up to 128 and 16, respectively. Both line 4 and 5 have a binding

decorator (@bind_a), that specifies that the array partitioning

directive and the unrolling one must have the same partitioning

and unrolling factor for all the configurations described by the

CSD. Finally line 7 defines the target clock.

The configuration space resulting from a DSL descriptor

having N different knobs is the Cartesian product of all knob

values: CS = K1×K2×· · ·×KN ; where Ki is the directive

values set related to knob i, taking into account the restrictions

imposed by the bind decorator. In case of directives requiring

multiple parameters, the knob Ki is itself the Cartesian product

among each set of values associated to the knob. Lastly, the

total number of configurations, i.e., the configuration space

size, is given by its cardinality (|CS|).

The configuration space descriptor of Figure 2 in Snippet

2 describes a configuration space with 1600 different config-

urations. Without the binding decorator, the cardinality of the

configuration space would be 12800.

	I Introduction
	II Related Works
	III Available design space explorations
	IV DB4HLS infrastructure
	IV-A A database for DSEs
	IV-B A domain-specific language for DSEs
	IV-C A framework for parallelizing HLS runs

	V Case Study
	VI Conclusions
	References

