2101.00587v1 [cs.AR] 3 Jan 2021

.
.

arxiv

DB4HLS: A Database of High-Level Synthesis
Design Space Explorations

Lorenzo Ferretti!, Jihye Kwon2, Giovanni Ansaloni’, Giuseppe Di Guglielmoz, Luca Carloni2, Laura Pozzi!
"Universita della Svizzera italiana, Lugano, Switzerland, 2Columbia University, New York, United States
JEPFL, Lousanne, Switzerland

Abstract—High-Level Synthesis (HLS) frameworks allow to
easily specify a large number of variants of the same hardware
design by only acting on optimization directives. Nonetheless,
the hardware synthesis of implementations for all possible
combinations of directive values is impractical even for simple
designs. Addressing this shortcoming, many HLS Design Space
Exploration (DSE) strategies have been proposed to devise
directive settings leading to high-quality implementations while
limiting the number of synthesis runs. All these works require
considerable efforts to validate the proposed strategies and/or
to build the knowledge base employed to tune abstract models,
as both tasks mandate the syntheses of large collections of
implementations. Currently, such data gathering is performed
ad-hoc, a) leading to a lack of standardization, hampering
comparisons between DSE alternatives, and b) posing a very high
burden to researchers willing to develop novel DSE strategies.
Against this backdrop, we here introduce DB4HLS, a database
of exhaustive HLS explorations comprising more than 100000
design points collected over 4 years of synthesis time. The open
structure of DB4HLS allows the incremental integration of new
DSEs, which can be easily defined with a dedicated domain-
specific language. We think that of our database, available at
https://www.db4hls.inf.usi.ch/, will be a valuable tool
for the research community investigating automated strategies for
the optimization of HLS-based hardware designs.

Index Terms—High-Level Synthesis, Databases, Machine

Learning, Big Data, Design Space Exploration.

I. INTRODUCTION

High-Level Synthesis (HLS) fostered a revolution in hard-
ware design. HLS frameworks allow the specification of hard-
ware components in languages such as C, C++, or SystemC.
As opposed to traditional Register Transfer Level (RTL) ap-
proaches, HLS flows do not require detailed descriptions of the
logic gates, memory elements and interconnects comprising
hardware implementations. Instead, these are automatically
generated, based on the high-level specifications and on a
set of directive values specifying optimizations such as the
unrolling factor of loops and the inlining of functions. By
decoupling specification from implementation, HLS allows
unprecedented productivity, leading to considerable reductions
in non-recurring engineering costs.

Nonetheless, while HLS allows to easily define vast de-
sign spaces for a given hardware specification, determining
the performance (latency) and resource requirements (area,
power) of each implementation still requires time-consuming
syntheses. The amount of possible implementations of a design
explodes exponentially with the number of applied directives,
while, in general, only a few of them are Pareto-optimal from

a performance/resources perspective. Exhaustive explorations
are therefore wasteful (since only Pareto implementations are
of interest) and impractical beyond very simple cases.

Various strategies, which we summarize in Section II, have
been proposed to identify (or approximate) the set of Pareto-
implementations while minimising the number of synthesis
runs [1] [2] [3]. This problem is named HLS-driven Design
Space Exploration (DSE). The proposed DSEs strategies are
typically validated against exhaustive explorations, which the
authors performed ad-hoc. Moreover, works such as [4] [5]
rely on prior knowledge to steer the HLS exploration pro-
cess. Performing the huge number of synthesis required for
validation or for generating a high-quality knowledge base
entails a very high effort, which at present must be repeated
ex-novo when investigating the performance of a novel DSE
methodology.

Against this backdrop, we introduce DB4HLS, a database of
high-level synthesis design space explorations. The database
comprises more than 100000 design points, reporting the syn-
thesis outcomes of exhaustive explorations performed on 39
designs from the MachSuite [6] benchmark suite. In addition,
we define a simple domain-specific language to define design
spaces, resulting in an open infrastructure that can be enriched
by further contributions from the research community.

We believe that, by providing standardized synthesis data
sets, our effort will allow easier comparisons among DSE
strategies, enabling fairer evaluations of the strengths and
weaknesses of each approach. It will also facilitate the de-
velopment and assessment of future design exploration frame-
works, spurring research in this challenging field.

II. RELATED WORKS

State of the art DSE frameworks for HLS follow three
main approaches. Black-box methodologies aim, after an
initial phase, at iteratively refining explorations by smartly
selecting additional design points. To this end, they employ
unsupervised learning strategies such as clustering [2], random
forest [1], lattice traversing [3] and response surface models
[7]. Model-based strategies, on the other hand, estimate per-
formance and resource requirements of implementations by
developing an analytical formulation of the effect of directives
when applied to a design. Typically, they can well approximate
the Pareto set of best-performing implementations with few
synthesis, but are restricted in the type of targeted optimiza-
tions (e.g., loop unrolling and dataflow in [8]). The authors of

TABLE I: DSEs available in the database. Each entry reports
benchmark, function name, and number of configurations (|C'S|). All
functions are from Machsuite [6].

Benchmark Function name |CS]
spmv ellpack ellpack 1600
bfs bulk bulk 2352
md knn md_kernel 1600
viterbi viterbi 1152
gemm ncubed gemm 2744
gemm blocked bbgemm 1600
fft strided fft 64
srt merge ms_mergesort 4096
merge 4096
stencil stencil2d | stencil 1344
stencil stencil3d | stencil3d 1536
update 2400
hist 4704
init 484
radix sort sum_scan 1280
last_step_scan 800
local_scan 704
ss_sort 1792
aes_addRoundKey 500
aes_subBytes 50
aes_addRoundKey_cpy 625
aes aes_shiftRows 20
aes_mixColumns 18
aes_expandEncKey 216
aes256_encrypt_ecb 1944
get_delta_matrix_weights1 21952
get_delta_matrix_weights2 31213
get_delta_matrix_weights3 21952
get_oracle_activations 1 2401
get_oracle_activations2 1372
product_with_bias_input_layer 1372
backprop product_with_bias_second_layer | 686
product_with_bias_output_layer 392
backprop 2048
add_bias_to_activations 1372
soft_max 64
take_difference 512
update_weights 1024

all these works adopt as figure of merit either the Hypervolume
or the Average Distance from Reference Set (ADRS) for
validation, and both require the computation of true Pareto
frontiers from exhaustive explorations. Recently, a promising
research avenue has focused, instead, on exploiting prior
knowledge in order to perform Design Space Exploration in
hardware design. These works [4] [5] leverage the availability
of a comprehensive knowledge base, such as the one we
describe in our paper, to achieve exploration results close to
that of model-based strategies while being much more flexible
in the number and type of supported directives.

While benchmark suites dedicated to hardware design are
available, such as CHStone [9], MachSuite [6], Rosetta [10]
and S2CBench [11], they only provide specifications (in the
form C/C++ code) as benchmarks. Conversely, our DB4HLS
suite offers rich and well-defined design spaces and related
synthesis outcomes, greatly easing the burden of performing
comparative evaluations of exploration methodologies. To the
best of our knowledge, this is the first database of HLS
implementation made publicly available with the intent of
standardize the evaluation process, and provide a source of
knowledge for ML strategies.

benchmark M algorithm [design top
. configuration
configuration PHH ig
space
I middle
synthesis . .
5y . H—K implementation
information
¥ X
£ =+
resource erformance
pers bottom
results results
H Many-to-one 4+ One-to-one Entity

Fig. 1: Simplified scheme of the Entity-Relationship Diagram (ERD)
of the DB4HLS syntheses database.

III. AVAILABLE DESIGN SPACE EXPLORATIONS

We provide a rich set of DSEs by targeting the benchmarks
of the MachSuite collection of designs [6]. We have performed
DSEs for 39 out of 50 functions in the benchmark suite,
discarding those having a variable latency due to input-
dependent control flows, and those having very small design
spaces. The considered functions present on average 40 lines
of code, with the biggest having 308 lines of code.

We performed an exhaustive exploration of each design—
according to the configuration space defined by the user—
running more than 100000 synthesis. Table I lists all the
designs explored and their configuration space size.

We used Vivado HLS [12] version 2018.2 to perform the
syntheses , and we targeted a ZyngMP Ultrascale+ (xczu9eg)
FPGA chip, with a target clock of 10ns.

To restrain the design spaces sizes, we have constrained
directive set values with a numerical range (e.g., the unrolling
factor) to power-of-two or integer divisor of the maximum
admissible values (e.g., number of loop iterations). Moreover,
for some designs, different optimizations are forced to have the
same values when intuitively such choice would lead to better
cost/performance trade-offs (e.g., binding the loop unrolling
factor to the array partitioning one).

Even when considering these constraints, the data collection
required more than 4 years of single-core machine time. To
speed up this process, GNU Parallel was adopted to collect
synthesis results from 60 parallel Vivado HLS instances,
allowing us to populate the database in approximately 25 days
of wall-clock time.

IV. DB4HLS INFRASTRUCTURE

In addition to the DSE data, the DB4HLS framework offers
a) a database infrastructure hosting DSE in a structured and
easy-to-access way, b) a domain-specific language used to
describe a configuration space for a target design, c) an
interface to generate new explorations and further enrich the
database. The remaining of this section describes these further
contributions in details.

A. A database for DSEs

Snippet 1: last_step_scan design (C code).

1 void last_step_scan(int bucket[SIZE], int sum[RADIX]){
2 int i, j, k;

3 loop_1:for(i = 0; i < RADIX;i++){

4 loop_2:for(j = 0; j < BLOCK; j++) {

5 k = (i * BLOCK) + j;

6 bucket[k] = bucket[k] + sum][i];

7

8)

9 }

Snippet 2: Configuration Space of last_step_scan.

1 resource;last_step_scan;bucket;{RAM_2P_BRAM}
resource;last_step_scan;sum;{ RAM_2P_BRAM}

3 array_partition;last_step_scan;bucket;1;{cyclic,block
}{1->512,pow_2}

4 array_partition;last_step_scan;sum;1;{cyclic,block };{1->128,
pow_2}@bind_a

5 unroll;last_step_scan;last_1;{1->128,pow_2} @bind_a

6 unroll;last_step_scan;last_2;{1,2,4,8,16}

7 clock;{10}

Fig. 2: Left: Snippet of the last_step_scan C code function from MachSuite [6]. We rewrote the code to increase the readability
without affecting its functionality. Right: An associated Configuration Space Descriptor (CSD).

The database structure, implemented in MySQL, comprises
a description of the design targeted for exploration (top part of
Figure 1), and that of the explored HLS optimizations applied
to each design (middle part of Figure 1). Finally, it reports
the resource and performance results obtained by synthesis
(as described in the bottom part of the figure). Each of these
components is described more in detail in the following.

Similarly to the taxonomy adopted in MachSuite [6],
applications are identified by the benchmark they be-
long to (e.g.: aes), by the algorithm they realize (e.g.:
aes256_encrypt) and by the design implementing such
algorithms. As an example, two variants are provided by
MachSuite for the aes256_encrypt algorithm (one using
lookup tables to store encryption keys and one generating
the values online), each corresponding to a separate design
specified as C++ code.

A descriptor of the HLS optimizations considered for the
DSEs are stored as entries in configuration space table. Multi-
ple explorations (hence, rows in the configuration space table)
for the same design are possible, corresponding to different
choices of optimizations, or explorations targeting different
tools/FPGAs, or even contributions from different researchers.
An entry in the configuration space table is linked to many
entries of the configuration table, where each entry indicates
a specific element of the design space.

A line in the configuration table (that indicates the set
of HLS optimizations defining a design space element) is
linked to an entry in the implementation table. Furthermore,
the synthesis information table provides additional information
on each performed synthesis: the synthesis timestamp, the
contributor that originated the data, the employed synthesis
tool and version, and the targeted FPGA. Finally, each im-
plementation links to one or more entries in the resources
and performance tables, which report the synthesis outcomes.
Resources are expressed as employed Flip-Flops, Look-Up
Tables, Block RAMs (BRAM) and DSP blocks, while per-
formances are reported in terms of effective latency.

B. A domain-specific language for DSEs

Generating the different configurations associated with an
DSE is a tedious and error-prone process when performed by
hand. We therefore developed a Domain-Specific Language
(DSL) to automatically and concisely define configuration
spaces by employing Configuration Space Descriptors (CSDs).

Each line of a descriptor encodes a knob, which comprises
a directive type, a label corresponding to its location in the

design C/C++ code, and one or multiple sets of values. The
number of sets is equal to the number of parameters required
by the directive type. Values can be numerical when expressing
optimizations such as loop unrolling or array partitioning
factors, or categorical when determining the type of employed
FPGA resources such as BRAM types. A shorthand is pro-
vided for expressing regular value series (e.g., a succession
of power-of-two values). Finally, we provide a @bind dec-
orator, which constraints the values associated with different
directives.

Figure 2 shows, for the last_step_scan function in
Snippet 1, an example of DSL descriptor created to define its
configuration space (Snippet 2) created using the DSL. The
DSL descriptor defines seven different knobs. Lines 1 and 2
of Snippet 2 show two knobs associating a dual-port BRAM
to the input array bucket, and sum respectively. Lines 3 and 4
define knobs specifying the array_partitioning directive. These
directives are created as combinations of partitioning strategies
and partitioning factors. Both line 3 and 4 combine two
partitioning strategies (cyclic and block) with the associated
directive values set for the partitioning factors—all the powers
of two from 1 up to 512 for knob 3, and all the powers of
two from 1 up to 128 for knob 4. Then line 5 and 6 define for
loop_1 and loop_2 the associated set of unrolling factors to
consider during the exploration, all the powers of two from 1
up to 128 and 16, respectively. Both line 4 and 5 have a binding
decorator (@bind_a), that specifies that the array partitioning
directive and the unrolling one must have the same partitioning
and unrolling factor for all the configurations described by the
CSD. Finally line 7 defines the target clock.

The configuration space resulting from a DSL descriptor
having NV different knobs is the Cartesian product of all knob
values: CS = K X Ky X --- x Kx; where K; is the directive
values set related to knob i, taking into account the restrictions
imposed by the bind decorator. In case of directives requiring
multiple parameters, the knob K is itself the Cartesian product
among each set of values associated to the knob. Lastly, the
total number of configurations, i.e., the configuration space
size, is given by its cardinality (|C'S]).

The configuration space descriptor of Figure 2 in Snippet
2 describes a configuration space with 1600 different config-
urations. Without the binding decorator, the cardinality of the
configuration space would be 12800.

[— LS = i Collect
; . . : fi
i| configuration 1 configuration 2 configuration N Lol
3 /. :
............................. v
gnu-parallel
synthesis synthesis synthesis Database
invocation 1 invocation 2 invocation M 'y
------------) S § | ! 5
synthesis synthesis synthesis ‘_ I _,
process 1 process 2 process M i Collect
.. results

Fig. 3: Adding DSE to DB4HLS with parallel processing.

C. A framework for parallelizing HLS runs

Figure 3 gives a high-level view of the infrastructure,
realized through Bash and Python scripts, which we provide
to automate DSE and commit their outcomes in DB4HLS.
Starting from a user-provided design and Configuration Space
Descriptor (CSD), configuration files are automatically gener-
ated and stored in the database. Then, using GNU Parallel [13],
a tunable number of instances of an employed HLS tool (we
use Vivado HLS for the data collection described in Section
IIT) are concurrently and independently executed, one for
each configuration. As synthesis runs terminate, the retrieved
performance and resources information are also stored in
DB4HLS, and new HLS processes are launched until all
configurations have been explored.

MySQL statements can then be used to retrieve data from
the tables in the database and to access the design’s implemen-
tations and the associated performance and resources results.

V. CASE STUDY

Herein, we showcase two possible uses of DB4HLS. We
use the database both to compare the results of two DSE
methodologies, and as a source of knowledge for one of
them. We employed a lattice-based strategy (LB) from [3],
and one leveraging prior knowledge (PK) [5], to perform
DSEs for the 1ocal_scan design space available in DB4HLS.
Figure 4 reports the Pareto curve obtained by LB and PK
for the local_scan design space. Grey dots represent the
area and latency of the 704 implementations belonging to the
local_scan design space provided by DB4HLS. The figure
also reports the approximated Pareto fronts retrieved by the
lattice methodology described in [3] (LB) and by the prior-
knowledge strategy in [5] (PK).

In this scenario, DB4HLS is employed to comparatively
evaluate the two strategies, without requiring to re-run ex-novo
a large number of time-consuming synthesis runs. Besides,
for PK, the database mandates the availability of a set of
source design spaces in order to extract previous knowledge.
In fact, DB4HLS can be effectively employed in these cases,
or in similar ML-based methods [4], to provide the required
knowledge base.

0.6
— PK - LB Exhaustive
0.4
<
2 L
< 0.2 1
0.0{ 3 keseicdf 4

0 1000 2000 3000 4000 5000 6000
Effective latency [ns]

Fig. 4: Example of DSEs comparison employing DB4HLS.

VI. CONCLUSIONS

DB4HLS offers an extensive set of DSEs targeting functions
from MachSuite [6]. The data collection is made publicly
available and will be will be updated increasing the number
of design explorations and targeted benchmarks. In addition,
further design spaces can be effectively defined through a
novel domain-specific language and a framework to efficiently
contribute novel explorations to DB4HLS. Both the DB4HLS
database and the framework for DSE generation are publicly
available at https://www.db4hls.inf.usi.ch/.

REFERENCES

[1] H.-Y. Liu and L. P. Carloni, “On learning-based methods for design-
space exploration with high-level synthesis,” in Proceedings of the 50th
Design Automation Conference, Jun. 2013, pp. 1-6.

[2] L. Ferretti, G. Ansaloni, and L. Pozzi, “Cluster-based heuristic for
high level synthesis design space exploration,” IEEE Transactions on
Emerging Topics in Computing, no. 99, pp. 1-9, Jan. 2018.

, “Lattice-traversing design space exploration for high level syn-
thesis,” in Proceedings of the International Conference on Computer
Design, Oct. 2018, pp. 210-217.

[4] Z. Wang, J. Chen, and B. C. Schafer, “Efficient and robust high-
level synthesis design space exploration through offline micro-kernels
pre-characterization,” in 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE). 1EEE, 2020, pp. 145-150.

[5] L. Ferretti, J. Kwon, G. Ansaloni, G. Di Guglielmo, L. Carloni,
and L. Pozzi, “Leveraging prior knowledge for effective design-space
exploration in high-level synthesis,” in CASES. IEEE, 2020, pp. 145-
150.

[6] B.Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, “Machsuite:
Benchmarks for accelerator design and customized architectures,” in
Proceedings of the IEEE International Symposium on Workload Char-
acterization, Oct. 2014, pp. 110-119.

[7]1 S. Xydis, G. Palermo, V. Zaccaria, and C. Silvano, “SPIRIT: Spectral-
Aware Pareto Iterative Refinement Optimization for Supervised High-
Level Synthesis,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 34, no. 1, pp. 155-159, Oct. 2015.

[8] G. Zhong, V. Venkataramani, Y. Liang, T. Mitra, and S. Niar, “Design
Space Exploration of Multiple Loops on FPGAs Using High Level
Synthesis,” in Proceedings of the International Conference on Computer
Design, Dec. 2014, pp. 456—463.

[9] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii, “Chstone: A

benchmark program suite for practical c-based high-level synthesis,” in

2008 IEEE International Symposium on Circuits and Systems. 1EEE,

2008, pp. 1192-1195.

Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. Srivastava, H. Jin, J. Featherston,

Y.-H. Lai, G. Liu, G. A. Velasquez et al., “Rosetta: A realistic high-

level synthesis benchmark suite for software programmable fpgas,”

in Proceedings of the 2018 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, 2018, pp. 269-278.

B. C. Schafer and A. Mahapatra, “S2cbench: Synthesizable systemc

benchmark suite for high-level synthesis,” IEEE Embedded Systems

Letters, vol. 6, no. 3, pp. 53-56, 2014.

“Vivado high-level synthesis.” [Online]. Available: https://www.xilinx.

com/products/design-tools/vivado/integration/esl-design.html

0. Tange, “Gnu parallel - the command-line power tool,” February 2011.

(3]

[10]

(11]

[12]

[13]

	I Introduction
	II Related Works
	III Available design space explorations
	IV DB4HLS infrastructure
	IV-A A database for DSEs
	IV-B A domain-specific language for DSEs
	IV-C A framework for parallelizing HLS runs

	V Case Study
	VI Conclusions
	References

