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CONTRAVARIANT FORMS ON WHITTAKER MODULES
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(Communicated by Sarah Witherspoon)

Abstract. Let g be a complex semisimple Lie algebra. We give a classifica-
tion of contravariant forms on the nondegenerate Whittaker g-modules Y (χ, η)
introduced by Kostant. We prove that the set of all contravariant forms on
Y (χ, η) forms a vector space whose dimension is given by the cardinality of
the Weyl group of g. We also describe a procedure for parabolically inducing
contravariant forms. As a corollary, we deduce the existence of the Shapo-
valov form on a Verma module, and provide a formula for the dimension of the
space of contravariant forms on the degenerate Whittaker modules M(χ, η)
introduced by McDowell.

1. Introduction

This paper concerns a classical tool in the study of representations of Lie algebras:
contravariant forms. Contravariant forms are certain symmetric bilinear forms on
modules over a Lie algebra which are invariant under an antiautomorphism of the
Lie algebra (Definition 3.1). Many well-studied classes of Lie algebra modules,
such as Verma modules, finite-dimensional irreducible modules, and, more generally,
highest weight modules in Bernstein–Gelfand–Gelfand’s categoryO, admit a unique
contravariant form up to a multiplier. In this paper we study a class of Lie algebra
modules for which this is not the case.

Let g be a complex semisimple Lie algebra with a fixed Borel subalgebra b ⊂ g

and Cartan subalgebra h ⊂ b. Let n = [b, b] be the nilpotent radical of b, and W
the Weyl group of g. Denote by U(g) the universal enveloping algebra of g and by
Z(g) its center. In [Kos78], Kostant introduced a family of Whittaker g-modules

Y (χ, η) := U(g)⊗Z(g)⊗CU(n) Cχ,η,

where Cχ,η is the one-dimensional Z(g) ⊗C U(n)-module determined by the char-
acters χ : Z(g) → C and η : n → C (Definition 2.2). Each module Y (χ, η) is
cyclically generated by a Whittaker vector w = 1⊗ 1 ∈ Y (χ, η) on which n acts by
a nondegenerate Lie algebra morphism η : n → C (Definition 2.1). The modules
Y (χ, η) are infinite-dimensional and irreducible. The main result of this paper is a
classification of contravariant forms on Y (χ, η).
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38 ADAM BROWN AND ANNA ROMANOV

Theorem 1.1 (Theorem 3.14). The set of contravariant forms on the Whittaker
module Y (χ, η) is a finite-dimensional vector space whose dimension is given by the
cardinality of the Weyl group of g.

To prove Theorem 1.1, we construct a vector space isomorphism between the
space of contravariant forms on Y (χ, η) and the space of Weyl group coinvariants
in the symmetric algebra S(h). By classical results in invariant theory, the space
of W -coinvariants in S(h) is isomorphic to the regular representation of W , so
this isomorphism lets us conclude that the space of contravariant forms is |W |-
dimensional.

The reason we can construct such an isomorphism has to do with the fact that
the modules Y (χ, η) have an infinitesimal character; that is, the center Z(g) acts on
Y (χ, η) by χ : Z(g) → C. Contravariant forms on cyclic U(g)-modules are closely
related to linear functionals on U(g) which vanish on the annihilator of a generating
vector (Proposition 3.2). The annihilator in U(g) of the generatingWhittaker vector
w ∈ Y (χ, η) is generated by ker η ⊂ U(n) and kerχ ⊂ Z(g) (Proposition 3.4).
Hence to determine the dimension of the space of contravariant forms on Y (χ, η),
it suffices to determine the dimension of a vector space complement in U(g) to
the subspace spanned by AnnU(g) w and its image under the antiautomorphism of
Definition 3.1 (Proposition 3.5, Lemma 3.9). Computing this codimension reduces
to determining a complement in U(h) to the image of the ideal generated by kerχ
under an η-twisted version of the Harish-Chandra homomorphism (Definition 3.6).
The bulk of our argument in Section 3 is dedicated to showing that this complement
can be realized as the space of W -coinvariants.

As a secondary result, we establish a procedure for parabolically inducing con-
travariant forms from nondegenerate Whittaker modules for a reductive subalgebra
l ⊂ g to degenerate Whittaker modules for g.

Theorem 1.2 (Theorem 4.2). Let η : n → C be a Lie algebra morphism, and
lη = nη ⊕ h ⊕ nη ⊂ g the corresponding reductive Lie subalgebra generated by the
simple root spaces on which η does not vanish. Let pη be the standard parabolic
subalgebra with Levi factor lη ⊂ pη. Let V be an irreducible finitely generated
U(lη)-module with the property that for each v ∈ V , there exists k ∈ Z>0 such that
the U(nη) action satisfies

(x− η(x))kv = 0

for all x ∈ nη. Then the vector space ΨV of contravariant forms on the lη-module V
is isomorphic to the vector space ΨIndg

lη
V of contravariant forms on the parabolically

induced g-module Indg
lη
V := U(g)⊗U(pη) V .

If η = 0, we have lη = h and pη = b. Then for λ ∈ h∗, an application of Theorem
1.2 to the one-dimensional U(h)-module Cλ implies that the space of contravariant
forms on the Verma module

M(λ) := U(g)⊗U(b) Cλ

is one-dimensional. In particular, this implies the existence and uniqueness (up to
scaling) of the Shapovalov form on a Verma module [Sha72].

For partially degenerate η, an application of Theorem 1.2 to the lη-module
Y (χ, η) implies that the dimension of the space of contravariant forms on the Whit-
taker module M(χ, η) (equation (4.4)) introduced by McDowell in [McD85] is given
by the cardinality of the Weyl group of lη.
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CONTRAVARIANT FORMS ON WHITTAKER MODULES 39

This paper is organized in the following way. In Section 2, we establish our
conventions and definitions. In Section 3, we prove Theorem 1.1. In Section 4 we
prove Theorem 1.2 and two corollaries. In Section 5 we provide a detailed sl2(C)
example to illustrate the main arguments of Section 3 more explicitly.

2. Preliminaries and notation

Let g be a complex semisimple Lie algebra. Fix a Cartan subalgebra h contained
in a Borel subalgebra b. Let Π ⊂ Σ+ ⊂ Σ ⊂ h∗ be the corresponding sets of
simple and positive roots in the root system of g. Let W be the Weyl group
associated to this root system, and let ρ = 1

2

∑
α∈Σ+ α. For α ∈ Σ, let gα =

{x ∈ g | [h, x] = α(h)x} be the α-root space of g, and choose a Chevalley basis
{yα, xα}α∈Σ+ ∪ {hα}α∈Π of g with xα ∈ gα, yα ∈ g−α, and hα ∈ h such that
[xα, yα] = hα. Let n = [b, b] =

⊕
α∈Σ+ gα be the nilpotent radical of b, and

n =
⊕

α∈Σ+ g−α.
For a Lie algebra a, we denote by U(a) the universal enveloping algebra of a

with center Z(a) ⊂ U(a). We call an algebra homomorphism χ : Z(a) → C an
infinitesimal character.

We use the symbol η to refer to Lie algebra morphisms η : n → C. Such a
Lie algebra morphism η : n → C can be extended to an algebra homomorphism
η : U(n) → C which we will call by the same name. Any Lie algebra morphism
η : n → C determines a subset of simple roots

Πη := {α ∈ Π | η|gα
�= 0}.

Definition 2.1. We say that a Lie algebra morphism η : n → C is nondegenerate
if Πη = Π.

Fix a nondegenerate Lie algebra morphism η : n → C and an infinitesimal
character χ : Z(g) → C. Let Cχ,η be the one-dimensional Z(g) ⊗C U(n)-module
defined by

z ⊗ x · v = χ(z)η(x)v

for z ∈ Z(g), x ∈ U(n), and v ∈ C. Kostant introduced the following class of
U(g)-modules in [Kos78].

Definition 2.2. Let

Y (χ, η) := U(g)⊗Z(g)⊗CU(n) Cχ,η

be the U(g)-module given by left multiplication.

The modules Y (χ, η) are generated by the vector w = 1 ⊗ 1. The nilpotent
radical acts on w by η; that is,

x · w = η(x)w

for all x ∈ n.
In a U(g)-module V , a Whittaker vector is a vector v ∈ V with the property

that for all x ∈ n, x · v = η(x)v for some Lie algebra morphism η : n → C. A U(g)-
module which is cyclically generated by a Whittaker vector is called a Whittaker
module. Hence the modules Y (χ, η) are nondegenerate Whittaker modules.

Kostant showed that the modules Y (χ, η) are irreducible [Kos78, Thm. 3.6.1].
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40 ADAM BROWN AND ANNA ROMANOV

3. Classification of contravariant forms on nondegenerate

Whittaker modules

In this section we classify contravariant forms on the nondegenerate Whittaker
modules Y (χ, η) introduced in Section 2. We show in Theorem 3.14 that the set of
contravariant forms on Y (χ, η) is a finite-dimensional vector space whose dimension
is given by the cardinality of the Weyl group of g.

Definition 3.1. Let τ : U(g) → U(g) be the antiautomorphism defined by τ (xα) =
yα, τ (yα) = xα, and τ (hα) = hα. A contravariant form on a U(g)-module X is a
symmetric bilinear form 〈·, ·〉 : X ×X → C such that

〈uv, w〉 = 〈v, τ (u)w〉

for all u ∈ U(g) and v, w ∈ X.

Contravariant forms on U(g)-modules are closely related to τ -invariant linear
functionals on U(g). In fact, we can reformulate the classification of contravariant
forms on a cyclic U(g)-module to the classification of τ -invariant linear functionals
on U(g) which vanish on the annihilator of a generating vector of the module.

Proposition 3.2. The vector space of contravariant forms on a cyclic U(g)-module
X = U(g)v is isomorphic to the vector space of linear functionals ϕ : U(g) → C

satisfying the following conditions:

(a) ϕ
(
AnnU(g) v

)
= 0, and

(b) ϕ(u) = ϕ(τ (u)) for all u ∈ U(g).

Proof. Given a contravariant form 〈·, ·〉 : X ×X → C, define ϕ : U(g) → C by

ϕ(u) = 〈uv, v〉.

The linear functional ϕ satisfies conditions (a) and (b). Conversely, given ϕ :
U(g) → C satisfying (a) and (b), define a bilinear form on X by

(3.1) 〈x, y〉 = 〈uv, u′v〉 = ϕ(τ (u′)u)

for x = uv, y = u′v ∈ X. It is straightforward to check that this form is symmetric,
bilinear, and contravariant. However, the choices of u, u′ ∈ U(g) such that x = uv
and y = u′v are not always unique, so it is not immediately apparent that the form
is well-defined. However, if x = tv and y = t′v, with t ∈ U(g) and t′ ∈ U(g), then

〈uv, u′v〉 − 〈tv, t′v〉 = 〈(u− t)v, u′v〉+ 〈tv, (u′ − t′)v〉
= ϕ(τ (u′)(u− t)) + ϕ(τ (t)(u′ − t′))

= 0,

so equation (3.1) does indeed define a contravariant form. Here the second equality
follows from condition (b) and the third equality follows from (a), since u − t and
u′ − t′ are in the annihilator of v. �

Notation 3.3. For a U(g)-moduleX, denote by ΨX the vector space of contravariant
forms on X. If X is a cyclic U(g)-module with generating vector v, denote by ΦX

the vector space of τ -invariant linear functionals on U(g) which vanish on AnnU(g) v.
By Proposition 3.2, for a cyclic U(g)-module X, ΨX � ΦX .
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CONTRAVARIANT FORMS ON WHITTAKER MODULES 41

Now we restrict our attention to the cyclic U(g)-module Y (χ, η) with generating
vector w = 1 ⊗ 1 (Definition 2.2). By Proposition 3.2, to study the vector space
of contravariant forms on Y (χ, η), we need to understand the annihilator of w.
Kostant described this annihilator in [Kos78]. Recall that any Lie algebra morphism
η : n → C can be extended to an algebra homomorphism η : U(n) → C. More
precisely, on a Poincaré–Birkhoff–Witt basis {xk1

α1
· · ·xkn

αn
| ki ∈ Z≥0} of U(n), we

define

η(xk1
α1

· · ·xkn
αn

) := η(xα1
)k1 · · · η(xαn

)kn and for c ∈ C, η(c) := c.

Let ker η ⊂ U(n) refer to the kernel of the extended map η : U(n) → C.

Proposition 3.4 ([Kos78, Thm. 3.1]). Fix a nondegenerate Lie algebra morphism
η : n → C and infinitesimal character χ : Z(g) → C. Let w = 1⊗1 be the generating
Whittaker vector in Y (χ, η). Then

AnnU(g) w = U(g) ker η + U(g) kerχ.

Linear functionals in ΦY (χ,η) (Notation 3.3) must vanish on AnnU(g) w +
τ (AnnU(g) w). Accordingly, to determine the dimension of ΦY (χ,η), it will be help-
ful to determine a vector space complement to AnnU(g) w + τ (AnnU(g) w) in U(g).
The following proposition is a first step.

Proposition 3.5. Let η : n → C be a Lie algebra morphism. There is a direct sum
decomposition

(3.2) U(g) = U(h)⊕ (τ (U(g) ker η) + U(g) ker η).

Proof. Choose an order on the set of roots so that

{yIhJxK := yinαn
· · · yi1α1

hj1
α1

· · ·hjr
αr
xk1
α1

· · ·xkn
αn

| il, jl, kl ∈ Z≥0}
forms a Poincaré–Birkhoff–Witt basis of U(g). Here I=(i1, . . . , in), J=(j1, . . . , jr)
and K = (k1, . . . , kn) are multi-indices, I = (in, . . . , i1), and y = (yαn

, . . . , yα1
),

h = (hα1
, . . . , hαr

), x = (xα1
, . . . , xαn

). Then we can write yIhJxK in the following
way:

yIhJxK = yIhJ
(
xK − η(xK)

)
+ η(xK)yIhJ

= yIhJ
(
xK − η(xK)

)
+ η(xK)τ (hJxI)

= yIhJ
(
xK − η(xK)

)
+ η(xK)τ

(
hJ

(
xI − η(xI)

)
+ η(xI)hJ

)
= yIhJ

(
xK − η(xK)

)
+ η(xK)τ

(
hJ

(
xI − η(xI)

))
+ η(xK)η(xI)hJ

= yIhJ
(
xK − η(xK)

)
+ τ

(
η(xK)hJ

(
xI − η(xI)

))
+ η(xK)η(xI)hJ .(3.3)

The first box is in U(g) ker η + τ (U(g) ker η) and the second box is in U(h). By
extending linearly, we can write any vector of U(g) as a sum of a vector in
U(g) ker η + τ (U(g) ker η) and a vector in U(h). The intersection U(h) ∩
(U(g) ker η + τ (U(g) ker η)) = 0, so the sum is direct. �

Definition 3.6. Let

pη : U(g) = U(h)⊕ (τ (U(g) ker η) + U(g) ker η) → U(h)

be projection onto the first coordinate. We refer to pη as the η-twisted Harish-
Chandra projection.
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42 ADAM BROWN AND ANNA ROMANOV

Remark 3.7. Let

(3.4) U(g)0 = {x ∈ U(g) | [h, x] = 0 for all h ∈ h}.
Note that if η = 0, the restriction of the projection p0 in Definition 3.6 to U(g)0 is
exactly the Harish-Chandra homomorphism [Bou05, Ch. VIII, §6.4]. This justifies
our choice of terminology in Definition 3.6.

Example 3.8. Let g = sl2(C), and let

y =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
, x =

(
0 1
0 0

)

be the standard basis. The universal enveloping algebra U(g) has a basis consisting
of monomials {yihjxk | i, j, k ∈ Z≥0}. Let η : n → C be the Lie algebra morphism
sending x 
→ 1. We can express the vector y ∈ U(g) as

y = τ (x) = τ (x− 1) + 1 = τ (x− η(x)) + η(x),

so pη(y) = η(x).

For the remainder of this section, we fix a nondegenerate Lie algebra morphism
η : n → C. Recall that our goal is to determine the dimension of the space ΦY (χ,η)

(Notation 3.3). Because τ (U(g) ker η) + U(g) ker η ⊂ τ (AnnU(g) w) + AnnU(g) w,
any linear functional ϕ ∈ ΦY (χ,η) must vanish on τ (U(g) ker η) +U(g) ker η. Hence
for any ϕ ∈ ΦY (χ,η) and u ∈ U(g),

(3.5) ϕ(u) = ϕ(pη(u)).

Moreover, by Kostant’s description of the annihilator in Proposition 3.4, ϕ must
also vanish on U(g) kerχ, so for v ∈ U(g) kerχ,

(3.6) ϕ(v) = ϕ(pη(v)) = 0

as well. Conversely, the following lemma shows that any linear functional in U(g)∗

satisfying (3.5) and (3.6) is in ΦY (χ,η).

Lemma 3.9. Let Q = U(h)/pη(U(g) kerχ). As vector spaces,

ΦY (χ,η)
∼= Q∗.

Proof. First we note that Q∗ is canonically isomorphic to the space of linear func-
tionals on U(h) which vanish on pη(U(g) kerχ). We will show that restriction of
linear functionals from U(g) to U(h) defines an isomorphism of ΦY (χ,η) with Q∗:

resU(h) : ΦY (χ,η)
∼−→ Q∗

ϕ 
→ ϕ|U(h).

For any ϕ ∈ ΦY (χ,η), ϕ|U(h) vanishes on pη(U(g) kerχ) by (3.6), so resU(h) is well-
defined. The inverse of the restriction map is given by

Q∗ → ΦY (χ,η)

φ 
→ φ ◦ pη.
To see that this inverse map is well-defined, we must show that φ ◦ pη vanishes
on the annihilator AnnU(g) w and is τ -invariant. We can write a ∈ AnnU(g) w as
a = n+ u with n ∈ U(g) ker η and u ∈ U(g) kerχ by Proposition 3.4, and

φ ◦ pη(a) = φ(pη(n)) + φ(pη(u)) = 0
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CONTRAVARIANT FORMS ON WHITTAKER MODULES 43

because φ is assumed to vanish on pη(U(g) kerχ) and pη(n) = 0. To see that
φ ◦ pη is τ -invariant, we write any u ∈ U(g) as u = h + m, where h ∈ U(h) and
m ∈ τ (U(g) ker η) + U(g) ker η using (3.2). Then,

φ◦pη(u) = φ◦pη(h+m) = φ◦pη(h) = φ◦pη(τ (h)) = φ◦pη(τ (m)+τ (h)) = φ◦pη(τ (u))
since pη(τ (m)) = 0.

The function ϕ 
→ ϕ|U(h) for ϕ ∈ ΦY (χ,η) and the function φ 
→ φ◦pη for φ ∈ Q∗

are inverse functions by (3.5). �

Lemma 3.9 reduces the study of ΦY (χ,η) to the study of the space of linear
functionals on U(h) which vanish on pη(U(g) kerχ). To determine the dimension
of this space, we will identify a vector space complement to pη(U(g) kerχ) in U(h)
which is isomorphic to the regular representation of W , and hence must be |W |-
dimensional. Before making this identification, we need to establish two technical
lemmas.

Let U(g)0 be as in (3.4). The following lemma will be needed in the proof of
Lemma 3.12.

Lemma 3.10. U(g)0 ∩ (τ (U(g) ker η) + U(g) ker η) ⊂ U(g) ker η.

Proof. We return to the multi-index notation from the proof of Proposition 3.5.
The vector space U(g)0 is spanned by monomials of the form

yIhJxI := yinαn
· · · yi1α1

hj1
α1

· · ·hjr
αr
xi1
α1

· · ·xin
αn

.

By (3.3), for such a monomial,

pη(y
IhJxI) = η(xI)η(xI)hJ .

Hence a monomial yIhJxI ∈ U(g)0 is in (τ (U(g) ker η) + U(g) ker η) exactly when

xI ∈ ker η. We conclude that if yIhJxI ∈ U(g)0 ∩ (τ (U(g) ker η)+U(g) ker η), then

yIhJxI ∈ U(g) ker η. �

In particular, Lemma 3.10 implies that

(3.7) Z(g) ⊂ U(g)0 ⊂ U(h)⊕ U(g) ker η.

By (3.7), any element z ∈ Z(g) can be expressed as a sum z = pη(z) + n for
n ∈ U(g) ker η, and for any h ∈ U(h),

(3.8) pη(hz) = pη(hpη(z) + hn) = hpη(z).

In what follows, we identify U(h) with S(h), and consider it as a representation
of W in the natural way. Let

(3.9) S = 〈S(h)W+ 〉
be the ideal in S(h) generated by the W -invariant homogeneous polynomials with
positive degree. Clearly S is W -stable, and by [Bou02, Ch.V, §5.2, Thm. 2(i)], it
admits a W -stable complement C ⊂ S(h) such that

(3.10) S(h) = C ⊕ S

is a graded, W -stable decomposition. Moreover, for any such W -stable complement
C ⊂ S(h), the representation of W in C is isomorphic to the regular representation
C[W ] of W [Bou02, Ch.V, §5.2, Theorem 2(ii)]. In particular, dimC = |W |. Fix
such a W -stable complement C. We refer to C as the space of W -coinvariants.
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44 ADAM BROWN AND ANNA ROMANOV

Remark 3.11. There are many possible W -stable complements to S in S(h). For
example, one such complement is the space of W -harmonic polynomials1 which
arise as solutions to a certain system of partial differential equations determined by
a generating set of S(h)W . For more details on this perspective, see [Ber09, §8.2].
For our purposes, it does not matter which complement we choose, as we are only
interested in its dimension.

The following technical lemma will be needed for induction arguments in the
proof of Lemma 3.13.

Lemma 3.12. Let S be as in (3.9), and let pη be the η-twisted Harish-Chandra
projection (Definition 3.6).

(a) If s ∈ S, then there exist an element r ∈ pη(U(g) kerχ) and an element
e ∈ U(h) such that

s = r + e and deg(e) < deg(s).

(b) Additionally, if r′ ∈ pη(U(g) kerχ), then there exist an element s′ ∈ S and
an element f ∈ U(h) such that

r′ = s′ + f and deg(f) < deg(r′).

Proof. Let tρ be the algebra automorphism of U(h) induced by the ρ-twisting map
h 
→ h − ρ(h) for h ∈ h. The composition of the Harish-Chandra homomorphism
p0 (Definition 3.6, Remark 3.7) with tρ provides an algebra isomorphism

tρ ◦ p0 : Z(g)
∼−→ S(h)W

[Bou05, Ch. VIII, §8.5, Thm. 2].
The ideal S is generated by S(h)W+ , so any element of S can be expressed as a

sum of elements of the form
htρ(p0(z))

for various z ∈ Z(g) and h ∈ S(h) = U(h). Our first step in the proof is to show
that any element of the form htρ(p0(z)) satisfies (a).

Because Z(g) ⊂ U(g)0, any z ∈ Z(g) is a linear combination of Poincaré–
Birkhoff–Witt basis elements of the form

yIhJxI := yinαn
· · · yi1α1

hj1
α1

· · ·hjr
αr
xi1
α1

· · ·xin
αn

(see proof of Lemma 3.10). Hence we can express z as a sum

(3.11) z = p0(z) +
∑
I,J

aI,Jy
IhJxI ,

where aI,J ∈ C and aI,J = 0 if I = (0, . . . , 0). Because the composition tρ ◦
p0 : Z(g) → S(h)W induces an isomorphism between the corresponding graded
objects (with the grading of Z(g) induced by the natural filtration of U(g) by g)
[Bou05, Ch.VIII §8.5 proof of Thm. 2], we have

(3.12) deg(hJ) < deg(p0(z)) for all J such that aI,J �= 0.

By applying pη to (3.11) and using equation (3.3), we obtain

(3.13) pη(z) = p0(z) +
∑
I,J

aI,Jη(τ (y
I)xI)hJ .

1Under a suitable choice of orthonormal basis of h, these W -harmonic polynomials are solutions
to Laplace’s equation, so they are harmonic in the usual sense of the word.
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Hence the image of z ∈ Z(g) under the η-twisted Harish-Chandra projection pη
and the image of z under the Harish-Chandra homomorphism p0 agree up to lower
degree terms. To increase readability in the arguments below, we will introduce
some notation to describe this phenomenon in general. Write LDP for an element
in U(h) with degree strictly lower than the element immediately preceding it in an
expression.2 For example, by (3.12), we can rewrite (3.13) as

pη(z) = p0(z) + LDP.

Similarly, for all h ∈ U(h), tρ(h) = h+ LDP . Therefore, we have

(3.14) htρ(p0(z)) = htρ(pη(z) + LDP ) = hpη(z) + LDP.

By (3.8) and the linearity of pη, we have

(3.15) hpη(z) = pη(hz) = pη(h(z − χ(z))) + hχ(z).

Combining (3.14) and (3.15), we obtain

(3.16) htρ(p0(z)) = pη(h(z − χ(z))) + LDP.

We conclude that any element of S which is equal to htρ(p0(z)) for some h ∈ U(h)
and z ∈ Z(g) satisfies (a).

An arbitrary element s ∈ S is a sum of elements of the form htρ(p0(z)) for
various h ∈ U(h) and z ∈ Z(g), so by the linearity of pη, there exists k ∈ U(g) kerχ
such that

s = pη(k) + LDP.

This proves (a).
Part (b) follows from an analogous argument. Any r′ ∈ pη(U(g) kerχ) is equal

to a sum of elements of the form

pη(u(z − χ(z)))

for various u ∈ U(g) and z ∈ Z(g). We claim that

pη(u(z − χ(z))) = pη(pη(u)(z − χ(z))).

Indeed, using equality (3.2) to express u as a sum u = pη(u) + m + n for m ∈
τ (U(g) ker η) and n ∈ U(g) ker η, we have

pη(u(z − χ(z))) = pη((pη(u) +m+ n)(z − χ(z)))

= pη(pη(u)(z − χ(z)) +m(z − χ(z)) + (z − χ(z))n)

= pη(pη(u)(z − χ(z))).

By (3.16), we conclude that

pη(u(z − χ(z))) = pη(u)tρ(p0(z)) + LDP.

For each z ∈ Z(g), tρ(p0(z)) ∈ S(h)W , and therefore is equal to the sum of an
element of S and a constant polynomial. Hence for each z ∈ Z(g) and u ∈ U(g),
there exists s ∈ S such that

pη(u(z − χ(z))) = s+ LDP.

Because each r′ ∈ pη(U(g) kerχ) is equal to a sum of elements of the form
pη(u(z−χ(z))), there exists s′ ∈ S such that r′ = s′ +LDP , which proves (b). �

2Here LDP stands for “lower degree polynomial”.
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Our final step in establishing the dimension of the space ΦY (χ,η) is to show
that the |W |-dimensional vector space C, which is defined by the decomposition
(3.10) to be a vector space complement to S in U(h), also forms a vector space
complement to pη(U(g) kerχ) in U(h). Because we can realize linear functionals in
ΦY (χ,η) as linear functionals on U(h) which vanish on pη(U(g) kerχ) by Lemma 3.9,
the dimension of a complement of pη(U(g) kerχ) in U(h) determines the dimension
of ΦY (χ,η).

Lemma 3.13. Let C be the W -stable complement to S = 〈S(h)W+ 〉 in equation
(3.10). As vector spaces,

U(h) = C ⊕ pη(U(g) kerχ).

Proof. We begin with the graded decomposition

U(h) = C ⊕ S

and proceed by induction on degree. The base case is trivial, as pη(U(g) kerχ)
contains no nonzero constant polynomials. Let U(h)i denote the set of polynomials
with degree less than or equal to i. Assume U(h)j = Cj ⊕ pη(U(g) kerχ)j for all
j ≤ i. Let h ∈ U(h)i+1. Then

h = c+ s,

where c ∈ Ci+1 and s ∈ Si+1. By Lemma 3.12, we can write s as

s = r + e

with r ∈ pη(U(g) kerχ) and deg(e) < deg(s) ≤ i+ 1. Therefore

h = c+ r + e.

By the induction assumption, e can be written uniquely as e = c′+ r′, with c′ ∈ Cj

and r′ ∈ pη(U(g) kerχ)j for some j ≤ i. So we have a decomposition of h given by

h = (c+ c′) + (r + r′).

Moreover, since deg(c′), deg(r′) < i+1, we have that (c+ c′) ∈ Ci+1 and (r+ r′) ∈
pη(U(g) kerχ)i+1.

To complete the proof, it remains to show that Ci+1 ∩ pη(U(g) kerχ)i+1 = 0.
Assume x ∈ Ci+1 ∩ pη(U(g) kerχ)i+1. By Lemma 3.12, x = s+ f , where f ∈ U(h)
has lower degree than x and s ∈ S. We can decompose f as f = c+ s′ with c ∈ Ci

and s ∈ Si. So x = s+c+s′. Therefore s+s′ ∈ S∩C, which implies that s+s′ = 0
and x = c. But deg c ≤ i, so x ∈ Ci ∩ pη(U(g) kerχ)i. Hence x must be 0 by the
induction hypothesis. �

Lemma 3.13 implies our main result.

Theorem 3.14. Let ΨY (χ,η) be the vector space of contravariant forms on the
nondegenerate Whittaker module Y (χ, η). Then

dimΨY (χ,η) = |W |.
Proof. The vector space C has dimension dimC = |W | because C is isomorphic
to C[W ] [Bou02, Ch. V, §5.2, Theorem 2(ii)]. Both Q∗ and C∗ are isomorphic to
the space of linear functionals on U(h) which vanish on pη(U(g) kerχ). Therefore
Q∗ ∼= C∗. By Lemma 3.9, and Proposition 3.2 we conclude that

ΨY (χ,η)
∼= C∗.

Hence dimΨY (χ,η) = |W |. �
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4. Induction of contravariant forms

In this section, we prove that the induction functor from the category of non-
degenerate Whittaker modules for a Levi factor l ⊂ g to degenerate Whittaker
modules for g induces an isomorphism of the corresponding spaces of contravariant
forms. In particular, this implies the existence of the Shapovalov form on a Verma
module as a corollary to Theorem 3.14. It also gives a formula for the dimension
of the space of contravariant forms on the standard degenerate Whittaker modules
introduced by McDowell in [McD85].

For a reductive Lie algebra a with a fixed Cartan subalgebra c ⊂ a and trian-
gular decomposition a = m⊕ c⊕m, let N (a) be the category of finitely generated
U(a)-modules which are locally Z(a)-finite and locally U(m)-finite. This category
was introduced by Miličić–Soergel in [MS97] as a natural category containing both
Kostant’s nondegenerate Whittaker modules Y (χ, η) from Section 3 and all mod-
ules in Bernstein–Gelfand–Gelfand’s category O [BGG76]. For a fixed Lie algebra
morphism η : m → C, the collection of modules V ∈ N (a) with the property that
for each v ∈ V , there exists k ∈ Z>0 such that for all x ∈ m, (x − η(x))kv = 0,
forms a full subcategory N (a)η ⊂ N (a). For η nondegenerate (Definition 2.1),
the category N (a)η contains the a-modules Y (χ, η) for all infinitesimal characters
χ : Z(a) → C. The categories N (a)η for η nondegenerate are very simple: each
such N (a)η is equivalent to the category of finite-dimensional Z(a)-modules,3 and
the Y (χ, η) exhaust the irreducible objects in N (a)η.

Now let g = n ⊕ h ⊕ n be a semisimple Lie algebra and return to the setting
of Section 2. Fix a Lie algebra morphism η : n → C, and as in Section 2, let Πη

be the set of simple roots with the property that η �= 0 on the corresponding root
subspace of g. Let Ση ⊂ h∗ be the root system generated by Πη and Wη ⊂ W the
corresponding Weyl group. The morphism η determines several Lie subalgebras of
g. In particular, we name

lη = h⊕
⊕
α∈Ση

gα, nη =
⊕
α∈Σ+

η

gα, n
η =

⊕
α∈Σ+−Σ+

η

gα, pη = lη ⊕ nη,

and define nη and n
η in the obvious way. Then lη is a reductive Lie subalgebra of

g, and η|nη
is nondegenerate.

There is an induction functor from the category of nondegenerate Whittaker
modules for the Levi factor lη to the category of degenerate Whittaker modules for
all of g.

Definition 4.1. Define the induction functor

Indg
lη

: N (lη)η → N (g)η

by Indg
lη
(V ) = U(g)⊗U(pη) V for a module V ∈ N (lη)η.

When applied to irreducible modules, the functor Indg
lη

induces an isomorphism

on the space of contravariant forms.

Theorem 4.2. Fix a Lie algebra morphism η : n → C. For any irreducible module
V ∈ N (lη)η, there is a vector space isomorphism

ΨV � ΨIndg

lη
V

3This fact is originally due to Kostant [Kos78], a proof in language more closely aligned with
this paper can be found in [MS14, Thm. 5.9].
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48 ADAM BROWN AND ANNA ROMANOV

between the vector space ΨV of contravariant forms on the lη-module V and the
vector space ΨIndg

lη
V of contravariant forms on the g-module Indg

lη
V .

Proof. All irreducible modules in N (lη)η are of the form Y (χ, η) for some infini-
tesimal character χ : Z(lη) → C. Fix an lη-module Y (χ, η). Because Y (χ, η) is
cyclically generated by the vector w = 1⊗ 1, Proposition 3.2 implies that

ΨY (χ,η) � ΦY (χ,η),

where ΦY (χ,η) is the vector space of τ -invariant linear functionals on U(lη) van-

ishing on AnnU(lη) w, as in Notation 3.3. The g-module Indg
lη
Y (χ, η) is cyclically

generated by the vector w = 1 ⊗ w, so again by Proposition 3.2, the vector space
of contravariant forms on Indg

lη
Y (χ, η) is isomorphic to the vector space of linear

functionals on U(g) vanishing on AnnU(g) w:

ΨIndg

lη
Y (χ,η) � ΦIndg

lη
Y (χ,η).

Hence the result follows from the following proposition.

Proposition 4.3. The restriction map ϕ 
→ ϕ|U(lη) induces an isomorphism

resU(lη) : ΦIndg

lη
Y (χ,η)

∼−→ ΦY (χ,η).

Proof. Let ϕ ∈ ΦIndg

lη
Y (χ,η). The U(lη)-module Y (χ, η) is naturally embedded

in the induced module Indg
lη
Y (χ, η), and this embedding maps w ∈ Y (χ, η) to

w ∈ Indg
lη
Y (χ, η). Hence AnnU(lη)w ⊂ AnnU(g)w.

Because ϕ vanishes on AnnU(g)w, we have that ϕ
(
AnnU(lη)w

)
= 0. Moreover,

by the τ -invariance of ϕ, we have

ϕ(u) = ϕ(τ (u)) for all u ∈ U(lη) ⊂ U(g).

Therefore, the image of resU(lη) is contained in ΦY (χ,η) as claimed. We complete
the proof by constructing an inverse to resU(lη).

Using the Poincaré–Birkhoff–Witt theorem, we can decompose U(g) as

(4.1) U(g) = U(lη)⊕ (nηU(g) + U(g)nη).

Let πη denote the corresponding projection map from U(g) to U(lη). Note that

πη(τ (u)) = τ (πη(u))(4.2)

for any u ∈ U(g).
The remainder of the proof will be devoted to showing that the map

extπη
: ΦY (χ,η) → ΦIndg

lη
Y (χ,η)

φ 
→ φ ◦ πη

is well-defined and is the inverse of resU(lη). The τ -invariance of φ ◦ πη follows
immediately from the τ -invariance of φ and equation (4.2). To show that φ ◦
πη(AnnU(g) w) = 0, and therefore extπη

φ ∈ ΦIndg

lη
Y (χ,η), we will establish the

following equality:

(4.3) U(lη)w ∩ n
ηU(g)w = 0.

To prove equation (4.3), we recall some facts about the structure of the modules
Indg

lη
Y (χ, η) which were established in [McD85]. Let z = rad lη, and let ω ∈ z∗

be the restriction of χ : Z(lη) → C to z ⊂ Z(lη). By [McD85, Prop. 2.4], z acts
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semisimply on Indg
lη
Y (χ, η), and there is a partial order on the z-weights which

index the irreducible factors in this decomposition. The unique maximal nonzero
z-weight space of Indg

lη
Y (χ, η) with respect to this partial order has weight ω, and

is equal to the U(lη)-span of w:(
Indg

lη
Y (χ, η)

)
ω
= U(lη)w.

Because w generates Indg
lη
Y (χ, η) as a U(g)-module,

n̄ηU(g)w = n̄η
(
Indg

lη
Y (χ, η)

)
.

By [McD85, Prop. 1.8(c)],

n̄η
(
Indg

lη
Y (χ, η)

)
⊂

⊕
μ<ω

(
Indg

lη
Y (χ, η)

)
μ
.

Therefore, (n̄ηU(g)w)ω = 0, and U(lη)w∩(nηU(g))w = 0. This establishes equation
(4.3), which we now use to show that φ ◦ πη(AnnU(g) w) = 0.

Let a ∈ AnnU(g) w and use (4.1) to write a = πη(a) + n + m for n ∈ n
ηU(g),

m ∈ U(g)nη. Then

aw = (πη(a) + n+m)w = πη(a)w + nw = 0,

because m ∈ AnnU(g) w. Hence by (4.3)

πη(a)w = −nw = 0,

and πη(a) ∈ AnnU(lη) w = AnnU(lη) w. It follows that φ ◦ πη(AnnU(g) w) = 0, and
therefore extπη

is well-defined. It is then clear that extπη
and resU(lη) are inverse

maps, which concludes the proof. �

Theorem 4.2 now follows immediately from Proposition 4.3. �

Corollary 4.4. Let λ ∈ h∗, and let M(λ) = U(g) ⊗U(b) Cλ be the corresponding
Verma module. There exists a unique contravariant form on M(λ) up to scaling.

Proof. Let η : n → C be the Lie algebra morphism sending x 
→ 0 for all x ∈ n. Then
lη = h, and N (h)η is the category of finite-dimensional U(h)-modules. Applying
Theorem 4.2 to the one-dimensional U(h)-module Cλ proves the corollary. �

Remark 4.5. Shapovalov defined a contravariant form on a Verma module M(λ)
by the recipe

〈u · 1⊗ 1, v · 1⊗ 1〉 := λ(p0(τ (v)u)),

where u, v ∈ U(g), 1 ⊗ 1 ∈ M(λ) is the generating highest weight vector, and p0 :
U(g) = U(h)⊕(nU(g)+U(g)n) → U(h) is the Harish-Chandra projection (Definition
3.6, Remark 3.7). Shapovalov showed that this is the unique contravariant form on
M(λ) with the property that 〈1 ⊗ 1, 1 ⊗ 1〉 = 1 [Sha72]. Corollary 4.4 implies the
existence of the Shapovalov form.

In [McD85], McDowell defines a class of U(g)-modules which include both the
Verma modules M(λ) and the Whittaker modules Y (χ, η) from Section 3. These
modules are constructed by applying the parabolic induction functor of Definition
4.1 to irreducible modules in N (lη) as η varies. Specifically, for a Lie algebra
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50 ADAM BROWN AND ANNA ROMANOV

morphism η : n → C and an infinitesimal character χ : Z(lη) → C, McDowell
defines a U(g)-module

(4.4) M(χ, η) := Indg
lη
Y (χ, η).

Remark 4.6. There is an alternate definition of M(χ, η) in terms of generators and
relations. The U(g)-module M(χ, η) is the U(g)-module generated by w subject to
the relations

(1) x · w = η(x)w for all x ∈ n, and
(2) z · w = χ(z)w for all z ∈ Z(lη).

An immediate consequence of Theorem 3.15 is the following.

Corollary 4.7. The vector space of contravariant forms on M(χ, η) has dimension
|Wη|.

This corollary generalizes Shapovalov’s results to McDowell’s modules M(χ, η).

5. Example

In this section, we illustrate the arguments of Section 3 more concretely by
showing that the vector space of contravariant forms on a nondegenerate sl(2,C)-
Whittaker module Y (χ, η) is isomorphic to the vector space C2. For the remainder
of this section, set g = sl(2,C). Let

y =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
, x =

(
0 1
0 0

)

be the standard basis of g, and Ω = 1
2h

2+h+2yx ∈ Z(g) the Casimir element, which
generates Z(g). The antiautomorphism τ : U(g) → U(g) maps τ (x) = y, τ (h) = h,
and τ (y) = x.

Let η ∈ ch n be the Lie algebra morphism sending x 
→ 1. Since Π = Σ+ = {α}
consists of a single root and gα = Cx, this choice of η is nondegenerate. Let
χ : Z(g) → C be the algebra homomorphism sending Ω 
→ 0. Let

Y (χ, η) = U(g)⊗Z(g)⊗U(n) Cχ,η,

as in Section 2. Y (χ, η) is an irreducible g-module generated by the Whittaker
vector w = 1⊗ 1.

Let ΦY (χ,η) be the vector space of τ -invariant linear functionals on U(g) which
vanish on AnnU(g) w. By Proposition 3.2, ΦY (χ,η) is isomorphic to the vector

space of contravariant forms on Y (χ, η). Define a map ψ : C2 → ΦY (χ,η) send-
ing (c0, c1) 
→ ϕc0,c1 =: ϕ as follows.

• On the Poincaré–Birkhoff–Witt basis element yrhsxt ∈ U(g), r, s, t ∈ Z≥0,

ϕ(yrhsxt) = η(xr+t)ϕ(hs) = ϕ(hs).

• Define ϕ(hs) inductively: set ϕ(1) = c0, ϕ(h) = c1, and for s ≥ 2, define

ϕ(hs) = −ϕ(2hs−1 + 4hs−2yx).

This is well-defined because rewriting hs−2yx in terms of the Poincaré–
Birkhoff–Witt basis results in a sum whose terms only include powers of
h which are equal to or lower than s − 2. (For example, h2yx = yh2x −
4yhx+ 4yx.) Hence inductively, ϕ is already defined on 2hs−1 + 4hs−2yx.

• Extend linearly to define ϕ on all of U(g).
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It is clear from this construction that if (c0, c1) �= (d0, d1) ∈ C2, then ϕc0,c1 �= ϕd0,d1
,

so ϕ defines an injection

ψ : C2 ↪→ U(g)∗.

Proposition 5.1. ψ : C2 → ΦY (χ,η) is an isomorphism of vector spaces.

Proof. By construction, ψ is linear and injective, so it remains to show that imψ =
ΦY (χ,η). We need to show that ϕ := ϕc0,c1 is contained in ΦY (χ,η) by showing that
it satisfies: (1) ϕ(τ (u)) = ϕ(u), and (2) ϕ(AnnU(g)(w)) = 0. We begin by noting
two consequences of the definition of ϕ.

• For any u ∈ U(g), ϕ(ux) = η(x)ϕ(u) = ϕ(u).
• For any u ∈ U(g), ϕ(yu) = η(x)ϕ(u) = ϕ(u).

First we check that ϕ satisfies (1) on the Poincaré–Birkhoff–Witt basis element
yrhsxt:

ϕ(yrhsxt) = ϕ(hs) = ϕ(ythsxr) = ϕ(τ (yrhsxt)).

Extending linearly, we conclude that ϕ satisfies (1) for any u ∈ U(g).
Next we check (2). Note that Ann(w) = U(g)Ω + U(g)(x − η(x)) (Proposition

3.4), so a generic element of the annihilator is a sum of elements of the form
yrhsxtΩ+ yihjxk(x− η(x)). Then

ϕ(yrhsxtΩ+ yihjxk(x− η(x)))

=
(
η(xr)ϕ(hsΩxt)

)
+

(
ϕ(yihjxkx)− η(x)ϕ(yihjxk)

)

= η(xr+t)ϕ

(
hs

(
1

2
h2 + h+ 2yx

))

=
1

2
ϕ(hs+2) + ϕ(hs+1 + 2hsyx)

= −1

2
ϕ(2hs+1 + 4hsyx) + ϕ(hs+1 + 2hsyx)

= 0.

By extending linearly, we see that for any a ∈ Ann(w), ϕ(a) = 0. This proves that
imψ ⊆ ΦY (χ,η). To show that imψ = ΦY (χ,η), we make the following observations
about any ϕ ∈ ΦY (χ,η).

• The value of ϕ(yrhsxt) is completely determined by ϕ(hs). This follows
from three facts: first, any Poincaré–Birkhoff–Witt basis element yrhsxt

can be expressed as u(x − η(x)) + ayrhs for some u ∈ U(g) and a ∈
C by “peeling off” x’s (i.e., rewriting yrhsxt = yrhsxt−1(x − η(x)) +
η(x)yrhsxt−1); second, ϕ vanishes on the annihilator of w; and third, ϕ
is τ -invariant.

• The value of ϕ(hs) is completely determined by ϕ(1) and ϕ(h). This follows
from the fact that we can rewrite hs = 2hs−2Ω − 2hs−1 − 4hs−2yx, and
Ω ∈ Ann(w).

Therefore, a choice of ϕ(1) and ϕ(h) in C completely determines a linear functional
ϕ ∈ ΦY (χ,η), so ψ : C2 → ΦY (χ,η) is surjective. �

Hence the vector space of contravariant forms on the sl2(C)-module Y (χ, η) is
two-dimensional. Note that this is also the cardinality of W = Z/2Z.
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