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CONTRAVARIANT FORMS ON WHITTAKER MODULES
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ABSTRACT. Let g be a complex semisimple Lie algebra. We give a classifica-
tion of contravariant forms on the nondegenerate Whittaker g-modules Y (x, n)
introduced by Kostant. We prove that the set of all contravariant forms on
Y (x,n) forms a vector space whose dimension is given by the cardinality of
the Weyl group of g. We also describe a procedure for parabolically inducing
contravariant forms. As a corollary, we deduce the existence of the Shapo-
valov form on a Verma module, and provide a formula for the dimension of the
space of contravariant forms on the degenerate Whittaker modules M (x,n)
introduced by McDowell.

1. INTRODUCTION

This paper concerns a classical tool in the study of representations of Lie algebras:
contravariant forms. Contravariant forms are certain symmetric bilinear forms on
modules over a Lie algebra which are invariant under an antiautomorphism of the
Lie algebra (Definition B). Many well-studied classes of Lie algebra modules,
such as Verma modules, finite-dimensional irreducible modules, and, more generally,
highest weight modules in Bernstein—Gelfand—Gelfand’s category O, admit a unique
contravariant form up to a multiplier. In this paper we study a class of Lie algebra
modules for which this is not the case.

Let g be a complex semisimple Lie algebra with a fixed Borel subalgebra b C g
and Cartan subalgebra ) C b. Let n = [b, b] be the nilpotent radical of b, and W
the Weyl group of g. Denote by U(g) the universal enveloping algebra of g and by
Z(g) its center. In [Kos78|, Kostant introduced a family of Whittaker g-modules

Y (x,n) = U(g) X Z(g)®cU(n) Cyns

where C, , is the one-dimensional Z(g) ®c U(n)-module determined by the char-
acters x : Z(g) — C and n : n — C (Definition Z2). Each module Y (x,7) is
cyclically generated by a Whittaker vector w = 1® 1 € Y (x,7n) on which n acts by
a nondegenerate Lie algebra morphism 7 : n — C (Definition [Z]). The modules
Y (x,n) are infinite-dimensional and irreducible. The main result of this paper is a
classification of contravariant forms on Y (x,n).
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38 ADAM BROWN AND ANNA ROMANOV

Theorem 1.1 (Theorem B.I4). The set of contravariant forms on the Whittaker
module Y (x,n) is a finite-dimensional vector space whose dimension is given by the
cardinality of the Weyl group of g.

To prove Theorem [[LT| we construct a vector space isomorphism between the
space of contravariant forms on Y (x,n) and the space of Weyl group coinvariants
in the symmetric algebra S(h). By classical results in invariant theory, the space
of W-coinvariants in S(h) is isomorphic to the regular representation of W, so
this isomorphism lets us conclude that the space of contravariant forms is |W1-
dimensional.

The reason we can construct such an isomorphism has to do with the fact that
the modules Y (x, n) have an infinitesimal character; that is, the center Z(g) acts on
Y(x,n) by x : Z(g) = C. Contravariant forms on cyclic U(g)-modules are closely
related to linear functionals on U(g) which vanish on the annihilator of a generating
vector (Proposition[3.2]). The annihilator in U(g) of the generating Whittaker vector
w € Y(x,n) is generated by kern C U(n) and kerx C Z(g) (Proposition B.4).
Hence to determine the dimension of the space of contravariant forms on Y (x,n),
it suffices to determine the dimension of a vector space complement in U(g) to
the subspace spanned by Anng(q) w and its image under the antiautomorphism of
Definition B1] (Proposition B35 Lemma [30). Computing this codimension reduces
to determining a complement in U(h) to the image of the ideal generated by ker y
under an 7-twisted version of the Harish-Chandra homomorphism (Definition B20)).
The bulk of our argument in Section [3is dedicated to showing that this complement
can be realized as the space of W-coinvariants.

As a secondary result, we establish a procedure for parabolically inducing con-
travariant forms from nondegenerate Whittaker modules for a reductive subalgebra
[ C g to degenerate Whittaker modules for g.

Theorem 1.2 (Theorem H2l). Let n : n — C be a Lie algebra morphism, and
[, =0, ®hdn, C g the corresponding reductive Lie subalgebra generated by the
simple root spaces on which 1 does not vanish. Let p, be the standard parabolic
subalgebra with Levi factor I, C p,. Let V' be an irreducible finitely generated
U (l,))-module with the property that for each v € V, there exists k € Z~q such that
the U(ny,) action satisfies
(z —n(x)) v =0

for all x € n,,. Then the vector space Wy of contravariant forms on the l,-module V'
is isomorphic to the vector space \I/Indﬁ7 v of contravariant forms on the parabolically

induced g-module Indf’y7 V:=U(g) @uep,) V-

If n = 0, we have [,, = h and p,, = b. Then for A € h*, an application of Theorem
to the one-dimensional U (h)-module C, implies that the space of contravariant
forms on the Verma module

M(A) :==U(g) ®u(p) Cx

is one-dimensional. In particular, this implies the existence and uniqueness (up to
scaling) of the Shapovalov form on a Verma module [Sha72].

For partially degenerate 7, an application of Theorem to the [,-module
Y (x,n) implies that the dimension of the space of contravariant forms on the Whit-
taker module M (x,n) (equation ([@4])) introduced by McDowell in [McD85] is given
by the cardinality of the Weyl group of [,,.
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This paper is organized in the following way. In Section Bl we establish our
conventions and definitions. In Section Bl we prove Theorem [[.Il In Section [ we
prove Theorem and two corollaries. In Section [}l we provide a detailed sl3(C)
example to illustrate the main arguments of Section [l more explicitly.

2. PRELIMINARIES AND NOTATION

Let g be a complex semisimple Lie algebra. Fix a Cartan subalgebra b contained
in a Borel subalgebra b. Let Il C X7 C X C bh* be the corresponding sets of
simple and positive roots in the root system of g. Let W be the Weyl group
associated to this root system, and let p = %Zaez+ a. For a € X let g, =
{z € g | [h2] = a(h)z} be the a-root space of g, and choose a Chevalley basis
{Yas Tataes+ U {hatacn of g with 24 € ga, Yo € g—a, and h, € b such that
[TarYa] = ha. Let n = [b,b] = P, cx+ 9o be the nilpotent radical of b, and
n= @aEZ‘*‘ g-a-

For a Lie algebra a, we denote by U(a) the universal enveloping algebra of a
with center Z(a) C U(a). We call an algebra homomorphism y : Z(a) — C an
infinitesimal character.

We use the symbol 7 to refer to Lie algebra morphisms  : n — C. Such a
Lie algebra morphism 7 : n — C can be extended to an algebra homomorphism
7 : U(n) — C which we will call by the same name. Any Lie algebra morphism
7 :n — C determines a subset of simple roots

I, = {a € 1 | nly, #0}.
Definition 2.1. We say that a Lie algebra morphism 7 : n — C is nondegenerate
if II,, = IL.

Fix a nondegenerate Lie algebra morphism 7 : n — C and an infinitesimal
character x : Z(g) — C. Let C,, be the one-dimensional Z(g) ®c U(n)-module
defined by

2 ® v = x(n(x)

for z € Z(g), x € U(n), and v € C. Kostant introduced the following class of
U(g)-modules in [KosT78§].

Definition 2.2. Let

Y(x,n) = U(9) @z(@)ocUm) Cxn
be the U(g)-module given by left multiplication.

The modules Y (x,n) are generated by the vector w = 1 ® 1. The nilpotent
radical acts on w by n; that is,

x-w =n(r)w

for all x € n.

In a U(g)-module V', a Whittaker vector is a vector v € V with the property
that for all x € n, - v = n(z)v for some Lie algebra morphism n:n — C. A U(g)-
module which is cyclically generated by a Whittaker vector is called a Whittaker
module. Hence the modules Y (x,n) are nondegenerate Whittaker modules.

Kostant showed that the modules Y (x,n) are irreducible [Kos78, Thm. 3.6.1].
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3. CLASSIFICATION OF CONTRAVARIANT FORMS ON NONDEGENERATE
WHITTAKER MODULES

In this section we classify contravariant forms on the nondegenerate Whittaker
modules Y (x,n) introduced in Section 2l We show in Theorem 314 that the set of
contravariant forms on Y (x, ) is a finite-dimensional vector space whose dimension
is given by the cardinality of the Weyl group of g.

Definition 3.1. Let 7 : U(g) — U(g) be the antiautomorphism defined by 7(z,) =
Yo, T(Ya) = Ta, and 7(he) = ho. A contravariant form on a U(g)-module X is a
symmetric bilinear form (-,-) : X x X — C such that

(uv, w) = (v, 7(w)w)
for all w € U(g) and v, w € X.

Contravariant forms on U(g)-modules are closely related to 7-invariant linear
functionals on U(g). In fact, we can reformulate the classification of contravariant
forms on a cyclic U(g)-module to the classification of 7-invariant linear functionals
on U(g) which vanish on the annihilator of a generating vector of the module.

Proposition 3.2. The vector space of contravariant forms on a cyclic U(g)-module
X = Ul(g)v is isomorphic to the vector space of linear functionals ¢ : U(g) — C
satisfying the following conditions:

(a) ¢ (Anng g v) =0, and

(b) @(u) = p(r(u)) for all u € U(g).

Proof. Given a contravariant form (-,-) : X x X — C, define ¢ : U(g) — C by

o(u) = (uv,v).

The linear functional ¢ satisfies conditions (a) and (b). Conversely, given ¢ :
U(g) — C satisfying (a) and (b), define a bilinear form on X by

(3.1) (x,y) = (uv, u'v) = (7 (u)u)

for x = uv,y = v'v € X. Tt is straightforward to check that this form is symmetric,
bilinear, and contravariant. However, the choices of u,u’ € U(g) such that z = uv
and y = /v are not always unique, so it is not immediately apparent that the form
is well-defined. However, if x = tv and y = t'v, with t € U(g) and ¢’ € U(g), then

(uv, u'v) — (tv, t'v) = {(u — t)v,u'v) + (tv, (v’ —t')v)

= @(r(W)(u—1) + @(r(t) (W' =)
=0,

so equation (B.I]) does indeed define a contravariant form. Here the second equality
follows from condition (b) and the third equality follows from (a), since u — ¢t and
u' — t' are in the annihilator of v. O

Notation 3.3. For a U(g)-module X, denote by ¥ x the vector space of contravariant
forms on X. If X is a cyclic U(g)-module with generating vector v, denote by ®x
the vector space of T-invariant linear functionals on U(g) which vanish on Anng(g) v.
By Proposition B2 for a cyclic U(g)-module X, ¥y ~ O .
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CONTRAVARIANT FORMS ON WHITTAKER MODULES 41

Now we restrict our attention to the cyclic U(g)-module Y (x, n) with generating
vector w = 1 ® 1 (Definition [Z2]). By Proposition B.2] to study the vector space
of contravariant forms on Y (x,7n), we need to understand the annihilator of w.
Kostant described this annihilator in [Kos78|. Recall that any Lie algebra morphism
7 :n — C can be extended to an algebra homomorphism 7 : U(n) — C. More
precisely, on a Poincaré-Birkhoff-Witt basis {zk! ---ak | k; € Z>o} of U(n), we
define

(e, vgn) = 1(ra,)
Let kern C U(n) refer to the kernel of the extended map 1 : U(n) — C.

ki n(z,,)k and for ¢ € C,n(c) := c.

Proposition 3.4 ([Kos78, Thm. 3.1]). Fiz a nondegenerate Lie algebra morphism
1 :n — C and infinitesimal character x : Z(g) — C. Letw = 1®1 be the generating
Whittaker vector in Y (x,n). Then

Anng gy w = U(g) kern + U(g) ker x.
Linear functionals in ®y(,,) (Notation B.3) must vanish on Anng)w +
7(Anng gy w). Accordingly, to determine the dimension of ®y-(, ), it will be help-

ful to determine a vector space complement to Anng gy w + 7(Anny g w) in U(g).
The following proposition is a first step.

Proposition 3.5. Letn:n — C be a Lie algebra morphism. There is a direct sum
decomposition

(3.2) U(g) = U(h) @ (7(U(g) kern) + U(g) kern).
Proof. Choose an order on the set of roots so that
(72! =yl oyl RD R a2l [ g € Zso)

forms a Poincaré-Birkhoff-Witt basis of U(g). Here I =(i1,...,in), J=j1,---,Jr)
and K = (k1,...,kp) are multi-indices, I = (in,...,41), and ¥ = Yay,s-- > Yay)s

h=(ha,,.-- ha ), & = (Tay,...,Ta,). Then we can write y'h/zX in the following
way:
y h! 2K = yThJ (xK _ n(xK)) + n(xK)yThJ
=y'h (% = (@) +n(@)r(h’a")
="’ (% = (")) + (@) (b7 (2 = n(a")) + ("))
= y'h’ (2% = (")) + (@) (b7 (2 = n(a"))) +n@")n")n’

y'h? (2" = (")) + 7 (n(=")n" (2" = n(z)) |+|n@")n@")n’.
The first box is in U(g) kern + 7(U(g) kern) and the second box is in U(h). By
extending linearly, we can write any vector of U(g) as a sum of a vector in

U(g)kern + 7(U(g)kern) and a vector in U(h). The intersection U(h) N
(U(g) kern + 7(U(g) kern)) = 0, so the sum is direct. O

(3.3)

Definition 3.6. Let
py:U(g) =U(h) @ (7(U(g) kern) + U(g) kern) — U(h)

be projection onto the first coordinate. We refer to p, as the n-twisted Harish-
Chandra projection.
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42 ADAM BROWN AND ANNA ROMANOV

Remark 3.7. Let
(3.4) U(g)o={x € U(g) | [h,z] =0 for all h € h}.

Note that if n = 0, the restriction of the projection pg in Definition to U(g)o is
exactly the Harish-Chandra homomorphism [Bou05l Ch. VIII, §6.4]. This justifies
our choice of terminology in Definition

Example 3.8. Let g = sl3(C), and let

i=(2 9= (b %)= (5 2)

be the standard basis. The universal enveloping algebra U(g) has a basis consisting
of monomials {y*h/z* | i,j,k € Z>o}. Let n: n — C be the Lie algebra morphism
sending x — 1. We can express the vector y € U(g) as
y=7(@)=7(x—1)+1=r7(x—n(z)+nl),

s0 py(y) = n(x).

For the remainder of this section, we fix a nondegenerate Lie algebra morphism
n:n — C. Recall that our goal is to determine the dimension of the space ®y ()
(Notation B.3). Because 7(U(g)kern) + U(g) kern C 7(Anny g w) + Anny g w,

any linear functional ¢ € ®y-(, ) must vanish on 7(U(g) kern) 4+ U(g) kern. Hence
for any ¢ € @y, and u € U(g),

(3.5) p(u) = p(py(u)).
Moreover, by Kostant’s description of the annihilator in Proposition B4l ¢ must
also vanish on U(g) ker x, so for v € U(g) ker x,

(3.6) p(v) = @(py(v)) =0
as well. Conversely, the following lemma shows that any linear functional in U(g)*
satisfying (B.5)) and [B.8) is in Py (y ).
Lemma 3.9. Let Q =U(h)/p,(U(g) ker x). As vector spaces,
Ly = Q"

Proof. First we note that Q* is canonically isomorphic to the space of linear func-
tionals on U(h) which vanish on p,(U(g)kerx). We will show that restriction of
linear functionals from U(g) to U(h) defines an isomorphism of ®y(, ,,y with Q*:

resu(p) : Pypem — Q
v = elue)-
For any ¢ € ®y(y,y), ©lu(y) vanishes on p, (U(g)ker x) by ([B.8]), so resy () is well-

defined. The inverse of the restriction map is given by
Q" = Py
¢ = popy.
To see that this inverse map is well-defined, we must show that ¢ o p, vanishes

on the annihilator Anng g w and is 7-invariant. We can write a € Anng g w as
a=n+u with n € U(g) kern and u € U(g) ker x by Proposition B4 and

¢ o pyla) = d(py(n)) + ¢(py(u)) =0
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CONTRAVARIANT FORMS ON WHITTAKER MODULES 43

because ¢ is assumed to vanish on p,(U(g)kery) and p,(n) = 0. To see that
¢ o p, is T-invariant, we write any u € U(g) as u = h + m, where h € U(h) and
m € 7(U(g) kern) + U(g) kern using (B:2). Then,

¢opy(u) = gop,(h+m) = gop,(h) = dopy(7(h)) = ¢op,(T(m)+7(h)) = ¢op,(7(u))

since p,(7(m)) = 0.
The function ¢ = @[y () for ¢ € Py (y ) and the function ¢ — ¢op, for ¢ € Q*
are inverse functions by (B3)). O

Lemma reduces the study of ®y(, ., to the study of the space of linear
functionals on U(h) which vanish on p,(U(g) ker x). To determine the dimension
of this space, we will identify a vector space complement to p,(U(g) ker x) in U(h)
which is isomorphic to the regular representation of W, and hence must be |W|-
dimensional. Before making this identification, we need to establish two technical
lemmas.

Let U(g)p be as in 34). The following lemma will be needed in the proof of
Lemma [3.12

Lemma 3.10. U(g)o N (7(U(g) kern) + U(g) kern) C U(g) kern.
Proof. We return to the multi-index notation from the proof of Proposition
The vector space U(g)o is spanned by monomials of the form

I J, .1 in r in
h _ya" . yalhjl . hj DR

Qr Otl Qn”

By B3), for such a monomial,
po(y'h72") = n(a")n(")n’
U(g) kern) + U(g) kern) exactly when
8)o N (T(U(g) kern) +U(g) kern), then

Hence a monomial y'h’z! € U(g 1)o is in (7
x! € kern. We conclude that if thJxI eU

—~ o~

y'h’ 2! € U(g)kern. O
In particular, Lemma implies that
(3.7) Z(g) C U(g)o C U(h) & Ul(g) kern.

By B7), any element z € Z(g) can be expressed as a sum z = py(z) + n for
n € U(g) kern, and for any h € U(h),

(3.8) pn(hz) = py(hpy(2) + hn) = hpy(2).

In what follows, we identify U(h) with S(h), and consider it as a representation
of W in the natural way. Let
(3.9) S=(Sm)Y)

be the ideal in S(h) generated by the W-invariant homogeneous polynomials with
positive degree. Clearly S is W-stable, and by [Bou02, Ch.V, §5.2, Thm. 2(i)], it
admits a W-stable complement C' C S(h) such that

(3.10) Sh)=Ca s

is a graded, W-stable decomposition. Moreover, for any such W-stable complement
C C S(b), the representation of W in C is isomorphic to the regular representation
C[W] of W [Bou02, Ch.V, §5.2, Theorem 2(ii)]. In particular, dimC = |W|. Fix
such a W-stable complement C. We refer to C as the space of W -coinvariants.
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44 ADAM BROWN AND ANNA ROMANOV

Remark 3.11. There are many possible W-stable complements to S in S(h). For
example, one such complement is the space of W-harmonic polynomiald] which
arise as solutions to a certain system of partial differential equations determined by
a generating set of S(h)". For more details on this perspective, see [Ber09, §8.2].
For our purposes, it does not matter which complement we choose, as we are only
interested in its dimension.

The following technical lemma will be needed for induction arguments in the
proof of Lemma [3.13]

Lemma 3.12. Let S be as in BY), and let p, be the n-twisted Harish-Chandra
projection (Definition [3.6]).
(a) If s € S, then there exist an element r € p,(U(g)ker x) and an element
e € U(h) such that

s=r+e and deg(e) < deg(s).

(b) Additionally, if r' € p,(U(g)kerx), then there exist an element s’ € S and
an element f € U(h) such that

r' =5+ f and deg(f) < deg(r’).

Proof. Let t, be the algebra automorphism of U(h) induced by the p-twisting map
h — h — p(h) for h € h. The composition of the Harish-Chandra homomorphism
po (Definition B0l Remark B.7) with ¢, provides an algebra isomorphism

tpyopo: Z(g) = S(H)Y

[BouO5l, Ch. VIII, §8.5, Thm. 2].

The ideal S is generated by S (h)f, so any element of S can be expressed as a
sum of elements of the form

it (pol2)

for various z € Z(g) and h € S(h) = U(h). Our first step in the proof is to show
that any element of the form ht,(po(z)) satisfies (a).

Because Z(g) C U(g)o, any z € Z(g) is a linear combination of Poincaré-
Birkhoff-Witt basis elements of the form

in
o

TpJ, I ._  in i1 1 Jr pt1
yh x ._ya”...yalhal...haT.xal...‘/E

(see proof of Lemma [310). Hence we can express z as a sum

(3.11) z=po(2)+ Y arsy'h’a,
I,J
where a7 ; € C and ary = 0if I = (0,...,0). Because the composition ¢, o

po : Z(g) — S(H)W induces an isomorphism between the corresponding graded
objects (with the grading of Z(g) induced by the natural filtration of U(g) by g)
[Bou05 Ch.VIIT §8.5 proof of Thm. 2], we have

(3.12) deg(h”) < deg(po(z)) for all J such that a; y # 0.
By applying p,, to (B11I) and using equation (B.3), we obtain
(3.13) Po(2) = po2) + > arm(r(y")a)h’.

1,J

IUnder a suitable choice of orthonormal basis of b, these W-harmonic polynomials are solutions
to Laplace’s equation, so they are harmonic in the usual sense of the word.
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Hence the image of z € Z(g) under the n-twisted Harish-Chandra projection p,
and the image of z under the Harish-Chandra homomorphism pg agree up to lower
degree terms. To increase readability in the arguments below, we will introduce
some notation to describe this phenomenon in general. Write LD P for an element
in U(h) with degree strictly lower than the element immediately preceding it in an
expressionE For example, by ([812), we can rewrite (B13]) as

Pn(2) = po(z) + LDP.
Similarly, for all h € U(h), t,(h) = h+ LDP. Therefore, we have
(3.14) ht,(po(2)) = ht,(py(2) + LDP) = hpy,(z) + LDP.
By (B.8) and the linearity of p,, we have
(3.15) hpy(2) = py(hz) = py(h(z = x(2))) + hx(2).
Combining (314) and BIH), we obtain
(3.16) Bty (po(2)) = palh(z — X(2))) + LDP.

We conclude that any element of S which is equal to ht,(po(z)) for some h € U(b)
and z € Z(g) satisfies (a).

An arbitrary element s € S is a sum of elements of the form ht,(po(z)) for
various h € U(h) and z € Z(g), so by the linearity of p,,, there exists k € U(g) ker x
such that

s =py(k)+ LDP.
This proves (a).

Part (b) follows from an analogous argument. Any ' € p, (U(g) ker x) is equal

to a sum of elements of the form

pn(u(z — x(2)))
for various u € U(g) and z € Z(g). We claim that
Py(u(z = x(2))) = pn(pn(u)(z = x(2))).

Indeed, using equality ([3:2) to express u as a sum u = p,(u) + m + n for m €
7(U(g) kern) and n € U(g) kern, we have

Py (u(z = X(2))) = py((pn(u) +m +n)(z = x(2)))
= Pn(pn(u)(z = x(2)) + m(z — x(2)) + (z = x(2))n)
= Py(Py(u)(z = x(2)))-
By (BI6), we conclude that
Py(u(z = x(2))) = py(W)tp(po(2)) + LDP.

For each z € Z(g), t,(po(z)) € S(h)", and therefore is equal to the sum of an
element of S and a constant polynomial. Hence for each z € Z(g) and u € U(g),
there exists s € S such that

pn(u(z — x(2))) = s+ LDP.
Because each ' € p,(U(g)kery) is equal to a sum of elements of the form

pn(u(z — x(2))), there exists s’ € S such that ' = s’ + LDP, which proves (b). O

2Here LDP stands for “lower degree polynomial”.
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Our final step in establishing the dimension of the space ®y () is to show
that the |W|-dimensional vector space C, which is defined by the decomposition
(BI0) to be a vector space complement to S in U(h), also forms a vector space
complement to p,(U(g) ker x) in U(h). Because we can realize linear functionals in
Py (v, as linear functionals on U(h) which vanish on p, (U(g) ker x) by Lemma 3.9
the dimension of a complement of p, (U(g) ker x) in U(h) determines the dimension

of CI)Y(XJI)'
Lemma 3.13. Let C be the W-stable complement to S = (S(h)¥) in equation

BI0). As vector spaces,
U(h) = C @ p,(U(g) ker x).
Proof. We begin with the graded decomposition
Ubh)=CaS

and proceed by induction on degree. The base case is trivial, as p,(U(g) ker x)
contains no nonzero constant polynomials. Let U(h); denote the set of polynomials
with degree less than or equal to i. Assume U(h); = C; @ p,(U(g) ker x); for all
j <i. Let h € U(h)iy1. Then

h=c+s,
where ¢ € C;11 and s € S;11. By Lemma BI2] we can write s as
s=r+e
with r € p,(U(g) ker x) and deg(e) < deg(s) < ¢+ 1. Therefore
h=c+r+e.

By the induction assumption, e can be written uniquely as e = ¢/ + 1/, with ¢/ € C}
and ' € p,(U(g) ker ), for some j < i. So we have a decomposition of h given by

h=(c+cd)+ (r+1).

Moreover, since deg(c’), deg(r’) < i+ 1, we have that (c+¢') € Ciyq1 and (r+1') €
po(U(g) Ker )1

To complete the proof, it remains to show that C;11 N p,(U(g)ker x)i1 = 0.
Assume z € Cip1 Npy(U(g) ker x)i+1. By Lemma B12] = s+ f, where f € U(h)
has lower degree than x and s € S. We can decompose f as f = ¢+ s’ with ¢ € C;
and s € S;. Sox = s+c+s’. Therefore s+ s’ € SNC, which implies that s+s =0
and z = ¢. But dege <4, so x € C; N p,(U(g) ker x);. Hence z must be 0 by the
induction hypothesis. O

Lemma [3.13] implies our main result.

Theorem 3.14. Let Wy (y ) be the vector space of contravariant forms on the
nondegenerate Whittaker module Y (x,n). Then

dim \I’Y(XJI) = ‘W|
Proof. The vector space C' has dimension dimC' = |W| because C' is isomorphic
to C[W] [Bou02, Ch. V, §5.2, Theorem 2(ii)]. Both Q* and C* are isomorphic to

the space of linear functionals on U(h) which vanish on p, (U(g) ker x). Therefore
Q* = C*. By Lemma[3.9] and Proposition we conclude that

Uy (xm) = C
Hence dim Wy (, ,,y = [W]. O
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4. INDUCTION OF CONTRAVARIANT FORMS

In this section, we prove that the induction functor from the category of non-
degenerate Whittaker modules for a Levi factor [ C g to degenerate Whittaker
modules for g induces an isomorphism of the corresponding spaces of contravariant
forms. In particular, this implies the existence of the Shapovalov form on a Verma
module as a corollary to Theorem B.14l It also gives a formula for the dimension
of the space of contravariant forms on the standard degenerate Whittaker modules
introduced by McDowell in [McDS85].

For a reductive Lie algebra a with a fixed Cartan subalgebra ¢ C a and trian-
gular decomposition a = m @ ¢ $ m, let N(a) be the category of finitely generated
U(a)-modules which are locally Z(a)-finite and locally U(m)-finite. This category
was introduced by Mili¢ié—Soergel in [MS97] as a natural category containing both
Kostant’s nondegenerate Whittaker modules Y (x,n) from Section B and all mod-
ules in Bernstein-Gelfand-Gelfand’s category O [BGGT6]. For a fixed Lie algebra
morphism 7 : m — C, the collection of modules V' € N (a) with the property that
for each v € V, there exists k € Z~q such that for all z € m, (z — n(x))*v = 0,
forms a full subcategory N(a), C N(a). For n nondegenerate (Definition 2],
the category N(a), contains the a-modules Y (x,n) for all infinitesimal characters
X : Z(a) — C. The categories N(a), for n nondegenerate are very simple: each
such N (a), is equivalent to the category of finite-dimensional Z (a)—modulesE and
the Y'(x,n) exhaust the irreducible objects in N (a),,.

Now let g = 1 h ® n be a semisimple Lie algebra and return to the setting
of Section 2l Fix a Lie algebra morphism 7 : n — C, and as in Section [ let II,
be the set of simple roots with the property that n £ 0 on the corresponding root
subspace of g. Let ¥, C h* be the root system generated by 1I,, and W,, C W the
corresponding Weyl group. The morphism 7 determines several Lie subalgebras of
g. In particular, we name

[n:h@@gaann: @gavnn: @ gmpn:[n@nnv
a€sy, acsF acs+-xF

and define n,, and n” in the obvious way. Then [, is a reductive Lie subalgebra of
g, and 7|y, is nondegenerate.

There is an induction functor from the category of nondegenerate Whittaker
modules for the Levi factor [, to the category of degenerate Whittaker modules for
all of g.

Definition 4.1. Define the induction functor
Ind?ﬁ N(1y)y = N(g)y
by Ind} (V) = U(g) ®u(p,) V for a module V€ N(L),,.

When applied to irreducible modules, the functor Indﬂ7 induces an isomorphism
on the space of contravariant forms.

Theorem 4.2. Fiz a Lie algebra morphism n: n — C. For any irreducible module
V e N(I,))y, there is a vector space isomorphism

Py ~ \IIInd?n v
3This fact is originally due to Kostant [Kos78|, a proof in language more closely aligned with

this paper can be found in [MS14] Thm. 5.9].
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between the vector space Wy of contravariant forms on the l,-module V and the
vector space \Illnd? v of contravariant forms on the g-module Ind?} V.
., ,

Proof. All irreducible modules in N ([,), are of the form Y (x,n) for some infini-
tesimal character x : Z(l,)) — C. Fix an [,,-module Y (x,n). Because Y (x,n) is
cyclically generated by the vector w = 1 ® 1, Proposition implies that

Uyt = Py ()
where ®y(, ) is the vector space of 7-invariant linear functionals on U(l,) van-
ishing on Anng () w, as in Notation 3.3l The g-module Indﬁ7 Y (x,n) is cyclically

generated by the vector w = 1 ® w, so again by Proposition [3.2] the vector space
of contravariant forms on Indﬁ] Y (x,n) is isomorphic to the vector space of linear

functionals on U(g) vanishing on Anng (g W:
\Illnd?" Y(xm) = (I)Ind?n Y (x,m)*
Hence the result follows from the following proposition.

Proposition 4.3. The restriction map ¢ > <p|U([n) induces an isomorphism
resy(,) (I)Ind[gn Y (x,m) = Py (x.m)-

Proof. Let ¢ € ®ppqs y(yy)- The U(ly)-module Y(x,n) is naturally embedded
in the induced module Indﬁ] Y(x,n), and this embedding maps w € Y (x,n) to
w e Indf’?7 Y (x,n). Hence Anny((yw C Anny(q)w.
Because ¢ vanishes on Anng (4w, we have that ¢ (AnnU([")w) = 0. Moreover,
by the 7-invariance of ¢, we have
w(u) = ¢(r(u)) for all w € U(I,) C U(g).

Therefore, the image of resy () is contained in @y (, ,) as claimed. We complete
the proof by constructing an inverse to resyy, ).
Using the Poincaré-Birkhoff-Witt theorem, we can decompose U(g) as

(4.1) Ulg) = U(l,) © (@"U(g) + U(g)n").
Let 7, denote the corresponding projection map from U(g) to U(l,). Note that
(4.2) (7 (w)) = 7(my (w))

for any u € U(g).
The remainder of the proof will be devoted to showing that the map

extr, @ Py (y,m) — (Plnd?n Y (x.n)

¢'_>¢O7Tn

is well-defined and is the inverse of resy(,). The 7-invariance of ¢ o m, follows

immediately from the 7-invariance of ¢ and equation ([@2)). To show that ¢ o
Tn(Anny gy W) = 0, and therefore extr, ¢ € Pryqs y(y,y), We will establish the
following equality: 7
(4.3) U(L)wnn"U(g)w = 0.

To prove equation ([d3]), we recall some facts about the structure of the modules
Indﬁ7 Y (x,n) which were established in [McD83]. Let 3 = radl,, and let w € 3*

be the restriction of x : Z(I,)) — C to 3 C Z(I,). By [McD85 Prop. 2.4], 3 acts
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semisimply on Indf’y7 Y (x,n), and there is a partial order on the 3-weights which
index the irreducible factors in this decomposition. The unique maximal nonzero
3-weight space of Indﬁ] Y (x,n) with respect to this partial order has weight w, and

is equal to the U([;)-span of w:
(Indﬁ] Y(X,n)>w = U(1,)®.

Because w generates Indﬁ7 Y(x,n) as a U(g)-module,

nU(g)w = n" (Indﬁ7 Y (x, 77)) )
By [McD85l Prop. 1.8(c)],
A (Ind?n Y(X,n)> cP (Indﬁ? Y(x,n))

p<w
Therefore, (n"U(g)w),, = 0, and U(L,)wN(n"U(g))w = 0. This establishes equation
(@.3), which we now use to show that ¢ o m,(Anng ) @) = 0.
Let a € Anny () w and use @I) to write a = m,(a) +n + m for n € 07U (g),
m € U(g)n". Then

m

aw = (my(a) + n+m)w = m,(a)w + nw = 0,
because m € Anng (g w. Hence by (&3)
m(a)w = —nw = 0,

and 7, (a) € Anny((, )W = Anng, ) w. It follows that ¢ o m,(Anny (g W) = 0, and
therefore extr, is well-defined. It is then clear that extr, and resy () are inverse

maps, which concludes the proof. O
Theorem now follows immediately from Proposition 3] a

Corollary 4.4. Let A € b*, and let M()\) = U(g) ®u(p) Cx be the corresponding
Verma module. There exists a unique contravariant form on M(X) up to scaling.

Proof. Let n : n — C be the Lie algebra morphism sending x +— 0 for all z € n. Then
[, = b, and N(h), is the category of finite-dimensional U(h)-modules. Applying
Theorem [L.2] to the one-dimensional U(h)-module Cy proves the corollary. O

Remark 4.5. Shapovalov defined a contravariant form on a Verma module M (X)
by the recipe
<u 1® 15 v-1® 1> = A(pO(T(U)U)),

where u,v € U(g), 1 ® 1 € M(\) is the generating highest weight vector, and py :
U(g) = U(h)o(mU(g)+U(g)n) — U(h) is the Harish-Chandra projection (Definition
3.6, Remark [3.7). Shapovalov showed that this is the unique contravariant form on
M () with the property that (1® 1,1 ® 1) =1 [Sha72]. Corollary 4] implies the
existence of the Shapovalov form.

In [McD85], McDowell defines a class of U(g)-modules which include both the
Verma modules M () and the Whittaker modules Y (x,n) from Section Bl These
modules are constructed by applying the parabolic induction functor of Definition
M1 to irreducible modules in N(,) as n varies. Specifically, for a Lie algebra
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morphism 7 : n — C and an infinitesimal character x : Z(I,) — C, McDowell
defines a U(g)-module

(44) M(x,n) == Tnd{ Y (x, ).

Remark 4.6. There is an alternate definition of M (x,7) in terms of generators and
relations. The U(g)-module M(x,n) is the U(g)-module generated by w subject to
the relations

(1) z-w=mn(z)w for all x € n, and
(2) z-w = x(z)w for all z € Z(L,).
An immediate consequence of Theorem is the following.

Corollary 4.7. The vector space of contravariant forms on M(x,n) has dimension
(Wl

This corollary generalizes Shapovalov’s results to McDowell’s modules M (x,n).

5. EXAMPLE

In this section, we illustrate the arguments of Section [B] more concretely by
showing that the vector space of contravariant forms on a nondegenerate s[(2, C)-
Whittaker module Y (x,7) is isomorphic to the vector space C2. For the remainder
of this section, set g = sl(2,C). Let

(0= b %)= )

be the standard basis of g, and Q = £h*+h+2yz € Z(g) the Casimir element, which
generates Z(g). The antiautomorphism 7 : U(g) — U(g) maps 7(z) =y, 7(h) = h,

and 7(y) = x.
Let 1 € chn be the Lie algebra morphism sending x + 1. Since II = ¥ = {«}
consists of a single root and g, = Cz, this choice of 7 is nondegenerate. Let

X : Z(g) — C be the algebra homomorphism sending 2 — 0. Let

Y(Xa 77) = U(g) ®Z(g)®U(n) Cx,m
as in Section Y(x,n) is an irreducible g-module generated by the Whittaker
vector w =1® 1.

Let @y (y,;) be the vector space of 7-invariant linear functionals on U(g) which
vanish on Anngy g w. By Proposition B2, ®y (., is isomorphic to the vector
space of contravariant forms on Y(x,n). Define a map ¢ : C2 — Dy (y,n) send-
ing (co,c1) = Yep,e; =: ¢ as follows.

e On the Poincaré-Birkhoff-Witt basis element y"h%z' € U(g), r, s,t € Z>o,
Py h*a’) = n(a" (k) = o(h*).
e Define ¢(h®) inductively: set (1) = ¢g, @(h) = ¢1, and for s > 2, define
p(h*) = —p(2h*~1 + 40 2ya).
This is well-defined because rewriting h* 2yz in terms of the Poincaré-
Birkhoff-Witt basis results in a sum whose terms only include powers of
h which are equal to or lower than s — 2. (For example, h?yx = yhz —

4yhx + 4yz.) Hence inductively, ¢ is already defined on 2h*~! + 4h*2yz.
e Extend linearly to define ¢ on all of U(g).
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It is clear from this construction that if (o, c1) # (do, d1) € C?, then pe, ¢, # Pdo,d »
so  defines an injection

Y :C*— U(g)*.
Proposition 5.1. ¢ : C? — Oy (y,n) 18 an isomorphism of vector spaces.

Proof. By construction, 1 is linear and injective, so it remains to show that imy =
Dy (- We need to show that ¢ := ¢, ¢, is contained in ®y(, ,) by showing that
it satisfies: (1) p(7(u)) = ¢(u), and (2) @(Annyg)(w)) = 0. We begin by noting
two consequences of the definition of ¢.

o Forany u € U(g), p(uz) = n(z)p(u) = ¢(u).

e For any u € U(g), p(yu) = n(z)p(u) = ¢(u).
First we check that ¢ satisfies (1) on the Poincaré-Birkhoff-Witt basis element
yrhsxt:

p(y"h*a’) = p(h*) = p(y'ha") = o(r(y"h*z")).
Extending linearly, we conclude that ¢ satisfies (1) for any v € U(g).
Next we check (2). Note that Ann(w) = U(g)Q2 + U(g)(z — n(x)) (Proposition

B4), so a generic element of the annihilator is a sum of elements of the form
Yy hextQ + yihi 2k (x — n(x)). Then

ey h*z'Q + y' W ab(x — n(z)))
= (n(@")p(h*Qa")) + (oY’ a*z) — n(z)e(y'hiz*))
= %gp(h5+2) + <,0(h5+1 + 2h°yx)

1
= —590(2h5+1 + 4hfyz) + (AT + 205 yx)
=0.

By extending linearly, we see that for any a € Ann(w), ¢(a) = 0. This proves that
imy C ®y(, . To show that imi) = Py (, ), we make the following observations
about any ¢ € @y (y -

e The value of ¢(y"h*z!) is completely determined by ¢(h®). This follows
from three facts: first, any Poincaré-Birkhoff-Witt basis element y"h*x?
can be expressed as u(z — n(x)) + ay"h® for some u € U(g) and a €
C by “peeling off” 2’s (i.e., rewriting y"h*z! = y"hsz!~(z — n(x)) +
n(x)y"h*xt~1); second, ¢ vanishes on the annihilator of w; and third, ¢
is T-invariant.

e The value of ¢(h?®) is completely determined by ¢(1) and ¢(h). This follows
from the fact that we can rewrite h® = 2h572Q — 2h°~! — 4h° 2y, and

Q € Ann(w).
Therefore, a choice of ¢(1) and ¢(h) in C completely determines a linear functional
© € Py (y,y), 80 Y : C?— Qy (v, is surjective. O

Hence the vector space of contravariant forms on the sly(C)-module Y (x,n) is
two-dimensional. Note that this is also the cardinality of W = Z/2Z.
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