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HOLLEY FRIEDLANDER ET AL.

document we establish a geometric model for the Gelfand spectra of nilpotent Gelfand
pairs (K,N) where the K-orbits in the center of N have a one-parameter cross section and
satisfy a certain non-degeneracy condition. More specifically, we show that the one-to-one
correspondence between the set ∆(K,N) of bounded K-spherical functions on N and the
set A(K,N) of K-orbits in the dual n∗ of the Lie algebra for N established in [BR08]
is a homeomorphism for this class of nilpotent Gelfand pairs. This result had previously
been shown for N a free group and N a Heisenberg group, and was conjectured to hold
for all nilpotent Gelfand pairs in [BR08].

1. Introduction

A Gelfand pair (G,K) consists of a locally compact topological group G and
a compact subgroup K ⊂ G such that the space L1(G//K) of integrable K-bi-
invariant functions on G is commutative. Such pairs arise naturally in harmonic
analysis and representation theory of Lie groups, with perhaps the best known
examples emerging in the case of a connected semisimple Lie group G with finite
center and maximal compact subgroup K. These pairs have played a critical role
in understanding the representation theory of semisimple Lie groups, and have
been studied extensively in the past 50 years [GV88], [Hel84]. We are interested in
a class of Gelfand pairs which arise in analysis on nilpotent Lie groups. Let N be
a connected and simply connected nilpotent Lie group, and let K be a compact
subgroup of the automorphism group of N . We say (K,N) is a nilpotent Gelfand
pair if L1

K(N) is an abelian algebra under convolution. In this setting, the pair
(K n N,K) is a Gelfand pair by our initial definition. By [BJR90, Thm. A], any
such N is two-step (or abelian), with center Z and top step V := N/Z. Nilpotent
Gelfand pairs have been classified in [Vin03], [Yak05], [Yak06]. In the case where
N is a Heisenberg group, such pairs have been extensively studied, and several
interesting topological models for their spectra exist in the literature [BJR92],
[BJRW96], [BR13]. In this paper, we develop a topological model for the spectra
of a more general class of nilpotent Gelfand pairs.

For a nilpotent Gelfand pair (K,N), let n = LieN and write n = V ⊕ z, where
z = LieZ is the center of n, V is K-invariant, and [V,V] ⊆ z. Let DK(N) be the
algebra of differential operators on N that are simultaneously invariant under the
action of K and left multiplication by N . The algebra DK(N) is freely generated
by a finite set of differential operators {D0, . . . , Dd}, obtained from a generating
set {p0, . . . , pd} of the algebra of K-invariant polynomials on N via quantization.
When (K,N) is a nilpotent Gelfand pair, it is known that DK(N) is abelian. In
this setting, a smooth function φ : N −→ C is called K-spherical if

• φ is K-invariant,
• φ is a simultaneous eigenfunction for all D ∈ DK(N), and
• φ(e) = 1, where e is the identity element in N .

Our object of interest is the set ∆(K,N ) of bounded K-spherical functions on
N . By integration against spherical functions, ∆(K,N ) can be identified with the
spectrum of the commutative Banach ?-algebra L1

K(N). Because of this identifica-
tion, we will refer to ∆(K,N ) as the Gelfand space (or Gelfand spectrum) of (K,N),
where the topology of uniform convergence on compact sets on ∆(K,N) coincides
with the weak-∗ topology on the spectrum of L1

K(N). There is an established
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AN ORBIT MODEL FOR THE SPECTRA

in DK(N). This technique was first used in [Wol06] to embed the spectrum of any
Gelfand pair into an infinite-dimensional Euclidean space using all D ∈ DK(N).
It was modified by Ferrari Ruffino in [FR07] to the precise topological description
in Theorem 1, which we will refer to as the “eigenvalue model.”

For a differential operator D ∈ DK(N) and a K-spherical function φ, we denote

the corresponding eigenvalue by D̂(φ); that is,

D · φ = D̂(φ)φ.

Theorem 1 ([FR07]). For any self adjoint generating set (D0, . . . ,Dd) of DK(N),

the map Φ : ∆(K,N) → Rd defined by φ 7→ (D̂0(φ), . . . , D̂d(φ)) is a homeomor-
phism onto its image.

Let E(K,N) denote the image of ∆(K,N) under Φ. In this paper, we develop a
different topological model for ∆(K,N ) (the promised “orbit model”), and the
existence of the eigenvalue model plays a critical role in proving our desired
convergence results. The eigenvalue model has proven to be a useful tool in the
analysis of nilpotent Gelfand pairs, as demonstrated by the sequence of papers
[FR07], [FRY12], [FRY18] in which V. Fischer, F. Ricci, and O. Yakimova use the
eigenvalue model to study K-invariant Schwartz functions on N. They have shown,
for certain classes of Gelfand pairs (K,N ), that these functions correspond to the
restriction of Schwartz functions on Rd to the Gelfand space.

In [BR08], the authors establish a bijection between ∆(K,N ) and a set A(K,N)
of K-orbits in the dual n∗ of n, which we refer to as K-spherical orbits (Definition
1). We describe this bijection precisely below. It is conjectured in [BR08] that
this bijection is a homeomorphism, and the goal of this paper is to prove the
conjecture for a certain class of nilpotent Gelfand pairs (Definitions 2 and 3). The
topological correspondence ∆(K,N )↔ A(K,N) is motivated by the “orbit model”
philosophy of representation theory, which asserts that the irreducible unitary
representations of a Lie group should correspond to coadjoint orbits in the dual
of its Lie algebra. For nilpotent and exponential solvable groups, orbit methods
have been established, and these methods provide a homeomorphism between the
unitary dual and the space of coadjoint orbits [Bro73], [LL94].

To describe such a model for nilpotent Gelfand pairs, let G = K n N , let Ĝ
denote the unitary dual of G, and let

ĜK = {ρ ∈ Ĝ | ρ has a 1-dimensional space of K-fixed vectors}.

For each ρ ∈ Ĝ, the orbit method of Lipsman [Lip80], [Lip82] and Pukanszky
[Puk78] produces a well-defined coadjoint orbit O(ρ) ⊂ g∗, and the orbit mapping

Ĝ→ g∗/Ad∗(G), ρ 7→ O(ρ)

is finite-to-one. If (G,K) is a Gelfand pair, then on ĜK , the correspondence is

one-to-one. In [BR08] it is shown that for each ρ ∈ ĜK , the intersection K(ρ) :=
O(ρ) ∩ n∗ is a single K-orbit in n∗.
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Definition 1. Let A(K,N) be the set of K-orbits in n∗ given by

A(K,N) := {K(ρ) | ρ ∈ ĜK}.

We call A(K,N) the set of K-spherical orbits for the Gelfand pair (K,N ).

A key result in [BR08] is that K-spherical orbits are in bijection with the
collection of irreducible unitary representations of G with K-fixed vectors.

Theorem 2 ([BR08]). The map K : ĜK → A(K,N) is a bijection.

The spherical functions for (K,N ) correspond with ĜK . Indeed, to each repre-
sentation of G with a K-fixed vector, one can obtain a spherical function φ by
forming the matrix coefficient for a K-fixed vector of unit length. This allows us
to lift the map K to a well-defined map

Ψ : ∆(K,N)→ n∗/K

sending φ 7→ K(ρφ), where ρφ ∈ ĜK is the K-spherical representation of G
that gives us φ. There is an alternate description of Ψ which is preferable for
calculations. The bounded spherical functions φ ∈ ∆(K,N) are parameterized by
pairs (π, α), where π and α are irreducible unitary representations of N and the
stabilizer Kπ of π in K, respectively. These are the Mackey parameters described
in Section 3. For the coadjoint orbit O = ON (π) ⊂ n∗ associated to π, one
can define a moment map τO : O → k∗π in such a way that the image of τO
includes the Ad∗(Kπ)-orbit OKπ (α) associated to the representation α ∈ K̂π (see
Section 4). Moreover, one can choose a spherical point `π,α ∈ O (Definition 4) with
τO(`π,α) ∈ OKπ (α) so that

Ψ(φπ,α) = K · `π,α.

This is the realization of Ψ that we will use in future arguments. A corollary of
Theorem 2 is the following.

Corollary 3 ([BR08]). The map Ψ : ∆(K,N)→ A(K,N) is a bijection.

The compact-open topology on ∆(K,N) corresponds to the Fell topology on

ĜK [BR08]. We give A(K,N) the subspace topology from n∗/K. Note that n∗/K
is metrizable since K is compact. In [BR08], the authors prove that Ψ is a bijection
for all nilpotent Gelfand pairs and a homeomorphism whenever N is a Heisenberg
group or a free group. Further, it is conjectured that Ψ is a homeomorphism for all
nilpotent Gelfand pairs. In this document, we show that this conjecture holds for
a certain class of nilpotent Gelfand pairs. To describe exactly which (K,N) our
result applies to, we first establish some terminology.

Definition 2. Let (K,N) be a nilpotent Gelfand pair. Let z be the center of the
Lie algebra n of N . We say that (K,N) has spherical central orbits1 if generic
orbits of the restricted action of K on z are of codimension one.

1Nilpotent Gelfand pairs with this property are sometimes said to have “rank one
center.”
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In Section 1 we endow n = V ⊕ z with an inner product 〈· , ·〉 such that V = z⊥.
If (K,N) has spherical central orbits, then z is K-irreducible. Since [n, n] is a K-
invariant subspace of z, this implies that for such pairs, z = [n, n]. If (K,N) has
spherical central orbits, then we can fix a unit base point A ∈ z, and define a
skew-symmetric form (v, w) 7→ 〈[v, w], A〉 on V.

Definition 3. We say that a nilpotent Gelfand pair (K,N ) is non-degenerate on
V if the skew-symmetric form

(v, w) 7→ 〈[v, w], A〉

is non-degenerate on V. Here v, w ∈ V and A ∈ z is the fixed unit base point.

The main result of this paper is the following.

Theorem 4. Let (K,N) be a nilpotent Gelfand pair with spherical central orbits
that is non-degenerate on V. Then the map Ψ is a homeomorphism.

We conclude this introduction with a discussion on our motivations for intro-
ducing Definitions 2 and 3 and a discussion on the class of nilpotent Gelfand pairs
to which Theorem 4 applies. The assumption that central K-orbits are spheres
implies that all generic, or Type I representations, are related by the K-action.
These representations have the same stabilizer in K, and factor through a common
Heisenberg group. There are uniform descriptions of eigenvalues across the Type
I and Type II orbits, which enable us to account for sequences of Type I points in
the Gelfand space converging to Type II points.

In [Vin03], Vinberg classifies all nilpotent Gelfand pairs (K,N) satisfying the
following three properties: the commutator subgroup of N coincides with its center,
the representation of K on V is irreducible, and the pair cannot be obtained by a
central reduction of a larger nilpotent Gelfand pair. In [BR08], [BR13], it is shown
through a case-by-case analysis that Ψ is a homeomorphism for nilpotent Gelfand
pairs with N abelian, N a Heisenberg group, or N a free group. This proves the
conjecture of [BR08] for all pairs on Vinberg’s list [Vin03] with dim z = 1. For
two-step nilpotent groups other than Heisenberg groups (that is, pairs with higher
dimensional center z), the action of K on z is no longer trivial, so the next step up
in complexity is to consider nilpotent Gelfand pairs where the K-orbits in z are of
codimension 1.

Table 1 in [FRY12] and Vinberg’s list [Vin03]) classify nilpotent Gelfand pairs
with spherical central orbits and higher dimensional center. There are ten of these
cases which satify our conditions. However, both this list and the Vinberg list
from which it is derived impose the extra requirement that the action of K on V
is irreducible. Our arguments do not depend on this irreducibility, which implies
that Theorem 4 also holds for some nilpotent Gelfand pairs that are not found on
these lists. An example is given in Section 6.

This document is organized in the following way. Section 1 establishes notation
and conventions. Section 2 reviews the orbit model for Heisenberg Gelfand pairs.
We include this information because certain parts of the proof of our main result
reduce to this setting. Section 3 describes the representation theory of the semi-
direct product group K n N to give a parametrization of the Gelfand space of
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(K,N). In Section 4 we define a moment map on coadjoint orbits in order to
calculate spherical points. The proof of our main result can be found in Section 5.
Section 6 provides a detailed example.

Acknowledgments. This project was initiated at an AMS Mathematics Research
Community in Snowbird, Utah in June 2016. This material is based upon work
supported by the National Science Foundation under Grant Number DMS 1321794.

1. Preliminaries and notation

• Throughout this document, N is a connected and simply connected 2-step
nilpotent Lie group, K is a (possibly disconnected) compact Lie subgroup of
the automorphism group of N , and (K,N) is a nilpotent Gelfand pair. In
Sections 3 and 4 we start by describing results which apply to all nilpotent
Gelfand pairs, then in the second half of each section restrict our attention
to nilpotent Gelfand pairs satisfying Definitions 2 and 3. In statements of
theorems, we always indicate the restrictions we are making on (K,N ).

• Let G = KnN be the semidirect product of K and N , with group multiplica-
tion

(k, x)(k′, x′) = (kk′, x(k · x′)).

• We denote Lie groups by capital Roman letters, and their corresponding Lie
algebras by lowercase letters in fraktur font. We identify N with its Lie algebra
n via the exponential map. We denote the derived action of k on n by A ·X
for A ∈ k and X ∈ n.

• We denote by Ĥ the unitary dual of a Lie group H. We identify representati-
ons that are unitarily equivalent, and we do not distinguish notationally
between a representation and its equivalence class.

• We denote the coadjoint actions of a Lie group H and its Lie algebra h on h∗

by

Ad∗(h)ϕ = ϕ ◦Ad(h−1) and

ad∗(X)ϕ(Y ) = ϕ ◦ ad(−X)(Y ) = −ϕ([X,Y ])

for h ∈ H, ϕ ∈ h∗, and X,Y ∈ h.

• We use the symbol O to denote a coadjoint orbit in n∗. If x ∈ n∗, Ox denotes
the coadjoint orbit containing x. If such an orbit is determined by a parameter
λ, we sometimes refer to the orbit as Oλ.

• We fix a K-invariant positive definite inner product 〈· , ·〉 on n, and let V = z⊥

so that n = V ⊕ z. Here z = LieZ is the center of n. We identify n and n∗ via
this inner product.

• We fix a unit base point A ∈ z, and use it to define a form

(v, w) 7→ 〈[v, w], A〉

on V. The letter A will be used throughout the document to refer to this fixed
unit base point.
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2. Heisenberg Gelfand pairs

In this section we will describe the orbit model for Gelfand pairs of the form
(K,Ha) where Ha is a Heisenberg group. As noted in the introduction, a more
complete discussion of the situation reviewed here can be found in [BJR92], [BR13],
[BJRW96]. We cover this case because our proof of Theorem 4 uses the proof of
this same result when N is a Heisenberg group.

1. Spherical functions and the eigenvalue model

In the rest of this subsection, as well as the next one, let HV = V ⊕ R, where V
is a complex vector space. Let 〈· , ·〉 be a positive definite Hermitian inner product
on V . The Lie algebra, hV , of HV can be expressed as

hV = V ⊕ R with Lie bracket [(v, t), (v′, t′)] = (0,−=〈v, v′〉).

Here =〈v, v′〉 denotes the imaginary part of 〈v, v′〉. Let K be a compact subgroup
of the unitary group U(V ) for V such that (K,HV ) is a nilpotent Gelfand pair.
This is equivalent [BJR90, Thm. B] to the fact that the action of K on V is a
linear multiplicity-free action [BR04, Def. 1.9.4]2. The group K acts on HV via

k · (v, t) = (kv, t).

We start by reviewing some facts about the multiplicity-free action K : V . Let
T ⊂ K be a maximal torus in K with Lie algebra t ⊂ k, and let h := tC be the
corresponding Cartan subalgebra in kC. Denote by H the corresponding subgroup
of the complexified group KC, and let B be a fixed Borel subgroup of KC containing
H. Let Λ ⊂ h∗ be the set of highest B-weights for irreducible representations of
KC (or, equivalently, K) occurring in C[V ], and denote by

C[V ] =
⊕
α∈Λ

Pα

the decomposition of C[V ] into irreducible subrepresentations of KC (and K). The
subspaces Pα consist of homogeneous polynomials of a fixed degree. For α ∈ Λ,
denote by |α| the degree of homogeneity of polynomials in Pα, denote by dα the
dimension of Pα, and fix a B-highest weight vector hα ∈ Pα (unique modulo C×).
If Pm(V ) is the space of holomorphic polynomials on V of homogeneous degree
m, then Pα ⊂ P|α|(V ). The highest weights in Λ are freely generated by a finite
set of fundamental weights {α1, . . . , αr} [BR13], which have the property that
the corresponding polynomial hi := hαi is irreducible. It follows that the highest
weight vector hα in each invariant subspace Pα has the form

hm = hm1
1 · · ·hmrr with highest weight αm = m1α1 + · · ·+mrαr.

To understand the orbit model for ∆(K,HV ), we review the representation
theory of K nHV . The irreducible unitary representations of HV are classified by

2Here, we are adopting the conventions of [BR04], where K : V is said to be a
multiplicity-free action if the representation ρ of K on C[V ] given by (ρ(k)f)(v) =
f(k−1 · v) for k ∈ K, f ∈ C[V ], v ∈ V is multiplicity-free.
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Kirillov’s “orbit method” [Kir04]3. One sees that the irreducible unitary representa-
tions of HV naturally split into two types according to their parametrization by the
coadjoint orbits in h∗V . In particular, the “type I” representations ρλ are indexed
by real numbers λ 6= 0, with associated coadjoint orbit (which we refer to as a
“type I” orbit)

Oλ = V ⊕ {λ},

and the “type II” representations χb correspond to one-point orbits Ob = {(b, 0)}
for b ∈ V .

A type I representation ρλ ∈ ĤV can be realized in the Fock space FV , which
is the L2- closure of C[V ] endowed with a Gaussian measure. For k ∈ K, we have
ρλ ◦k ∼= ρλ and the intertwining map is the natural action of K on C[V ]. From the

type I representation ρλ ∈ ĤV , a type I spherical function can be constructed by
taking the K-averaged matrix coefficient for ρλ on some Pα with α = αm for some
m. The type I spherical functions are denoted φλ,m with λ 6= 0 and m ∈ (Z≥0)r.

Type II representations are one-dimensional characters φb(v, t) = ei〈b,v〉. From
such a type II representation, a spherical function φb can be constructed by the
K-average

φb(v) :=

∫
K

ei〈b,k·v〉dk,

so that the Type II spherical function φb only depends on the k-orbit through b.
From this we have the following parametrization of the Gelfand space:

∆(K,HV )↔ {(λ,m) | λ 6= 0, m ∈ (Z≥0)r} ∪ (V/K). (1)

We now demonstrate how to calculate Φ(φ), where Φ : ∆(K,Ha) → E(K,Ha)
as in Section 1 and φ ∈ ∆(K,Ha). Aligning notation with [BR13], we denote by
C[VR]K the algebra of K-invariant polynomials on the underlying real vector space
for V , and PD(V )K the space of K-invariant polynomial coefficient differential
operators on V . By Schur’s lemma, each differential operator D ∈ PD(V )K acts
on the K-irreducible subspace Pαm by a scalar. In [BR08], it is shown that

ρλ(D)hm = D̂(φλ,m)hm.

In [BR04, §7], canonical bases for C[VR]K and PD(V )KC are constructed in the
following way. For each irreducible subspace Pα fix an orthonormal basis {qj | 1 ≤
j ≤ dα} with respect to the Fock inner product on C[V ]. Then define

pα(v) :=

dα∑
j=1

qj(v)qj(v).

The polynomial pα is homogeneous of degree 2|α|. Write pα(v, v) for the polynomial
pα(v), and construct a differential operator pα(v, ∂) ∈ PD(V )K by substituting
∂i for vi and letting derivatives act to the right of multiplication. This differential

3An explicit review of the orbit method is provided in Section 3 for two-step nilpotent
groups.
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operator p(v, ∂) is homogeneous of degree |α|. Then the sets {pα : α ∈ Λ} and
{pα(z, ∂)} form bases for C[VR]K and PD(V )K respectively. Note that C[VR]K

is generated by the set {pα1
, . . . , pαr}, where {α1, . . . , αr} are the fundamental

weights introduced at the beginning of this section.
We use the bases for C[VR]K and PD(V )K above to construct a generating set

for the algebra DK(HV ). We can consider a K-invariant polynomial p on V to be
a K-invariant polynomial on HV by letting p act trivially on the center. For any
K-invariant homogeneous polynomial p(v, v) of even degree sp on V , we construct

a differential operator Dp ∈ DK(HV ) so that for a type I representation ρ ∈ Ĥa

realized on Fock space,

ρλ(Dp) = (−2λ)sp/2p(v, ∂). (2)

Define the K-invariant polynomial p0 on HV by p0(v, t) = −it, and let pi :=
pαi be the generating elements for C[VR]K constructed above, considered as K-
invariant polynomials on HV . We choose labeling so that p1(v) = |v|2. The set
{p0, . . . , pr} forms a homogeneous generating set for the K-invariant polynomials
on N , where the degree of homogeneity of pi is 2|αi| for 1 ≤ i ≤ r. From p0 we
construct the differential operator D0 = −i∂/∂t ∈ DK(HV ), and from pi construct
Di ∈ DK(HV ) in the process outlined above. The resulting set {D0, . . . , Dr} forms
a homogeneous generating set for DK(HV ), where the degree of homogeneity of
Di is 2|αi| for 1 ≤ i ≤ r. Note that ρλ(Di) is a differential operator of degree |αi|
acting on C[V ].

The bounded K-spherical functions in ∆(K,HV ) are eigenfunctions for opera-
tors in the algebra DK(HV ), and our next step is to examine the corresponding
eigenvalues. We know from [BJR92] that the type I spherical function φλ,m is

φλ,m(v, t) = eiλtqα(
√
|λ|v)4, so for any homogeneous K-invariant polynomial p (of

even degree sp) on V ,

D̂p(φλ,m) = |λ|sp/2D̂p(φ1,m). (3)

To compute the eigenvalue of an operator Dp ∈ DK(Ha) on φ1,m, one computes
the action of Dp on the highest weight vector hm in the corresponding irreducible
K-subspace Pαm . (See [BR98, §4] for more details on this calculation.) We have

ρ(Dp)hm(v) = (−2)sp/2p(v, ∂)hm(v) = D̂p(φ1,m)hm(v).

Therefore the eigenvalues D̂p(φ1,m) are polynomials (not necessarily homogeneous)
in m = (m1, . . . ,mr) of degree sp/2. To emphasize this, we define

p̃(m) := D̂p(φ1,m)

to be this (degree sp/2) polynomial. Note that the differential operator Dp can
be defined by other methods (quantizations) and that this only affects the lower
order terms in the eigenvalue polynomial p̃.

We end this subsection by calculating D̂0(φλ,m) and D̂1(φ1,m). These eigenva-
lues are explicitly used in the proof of Theorem 4 in Section 5.

4Here qα ∈ C[VR]K is a certain K-invariant polynomial on VR whose top homogeneous
term is equal to (1/dα)pαm . See [BJR92] for details of this construction.
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Example 1. Applying the operator D0 = −i∂/∂t to φλ,m(v, t) = eiλtqα(
√
|λ|v)

we compute
D̂0(φλ,m) = λ.

To compute D̂1(φ1,m), we notice that since p1(v, v) = |v|2, p1(v, ∂) =
∑
vi∂i is

the degree operator. Hence,

D̂1(φ1,m) = −2|λ||m|,

where |m| := |αm| is the degree of the polynomials in Pαm .

2. The orbit model

In this section, we describe the orbit model for Heisenberg Gelfand pairs. These
results first appeared in [BR08], and were reviewed in [BR13]. We begin by intro-
ducing some general terminology involving moment maps, then specialize to the
Heisenberg setting and define moment maps on coadjoint orbits.

Let V be a Hermitian vector space and K ⊂ U(V ). We define the moment map
τ : V → k∗ by

τ(v)(Z) = − 1
2 〈v, Z · v〉

for v ∈ V and Z ∈ k. Then τ is K-equivariant, and it is known that the action of
K : V is multiplicity-free if and only if τ is one-to-one on K-orbits. We make this
assumption, and let

C[V ] =
∑
α∈Λ

Pα

be the multiplicity-free decomposition. Following [BR13, §2.4], we associate a
coadjoint orbit Oα in k∗ to each irreducible subspace Pα by first extending α ∈
Λ ⊂ t∗ to a real-valued linear functional on k by

αk(Z) =

{
−iα(Z) if Z ∈ t,

0 if Z ∈ t⊥,

and setting Oα = Ad∗(K)αk. Here t⊥ is the orthogonal complement of t with
respect to a fixed Ad(K)-invariant inner product on k. By [BJLR97, Prop. 4.1],
each coadjoint orbit Oα, α ∈ Λ, lies in the image of τ .

Definition 4. If α ∈ Λ is a positive weight of the K action on P (V ), then a
spherical point of type α is any point vα ∈ V such that τ(vα) = αk.

Since the action of KC on V is multiplicity-free, there is an open Borel orbit in
V . Let B be a Borel subgroup of KC with Lie algebra b as defined in Section 1,
and let vα be a spherical point of type α. Then the highest weight vector hα ∈ Pα
is a weight vector for b. That is, we can extend α to b so that Z ·hα = α(Z)hα for
all Z ∈ b.

Definition 5. We say that the spherical point vα is well-adapted if

hα(vα) 6= 0 and if 2∂ihα(vα) = (vα)ihα(vα).
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We provide some motivation for this definition by showing that any vα in the
B-open orbit is well-adapted. We note that this will be true for generic α, but is
not necessarily true for the generators of Λ. Since hα is a semi-invariant for B, we
must have hα(vα) 6= 0. For Z ∈ b, we have

Z · hα = α(Z)hα = τ(vα)(Z)hα = − 1
2 〈vα, Z · vα〉.

Additionally, we have

Z · hα(vα) =
d

dt

∣∣∣∣
0

hα(exp(−tZ) · vα) = −∂Z·vαhα(vα).

By openness, any derivative is of the form ∂Z·vα , including those in the basis
directions. Thus we have

2∂ihα(vα) = (vα)ihα(vα).

It has been shown that all multiplicity-free actions have well-adapted spherical
points.

Now we apply these results to the Heisenberg Gelfand pair (K,Ha) to calculate
the spherical points and define the map Ψ described in Section 1. The space V
is a Hermitian vector space with form 〈· , ·〉, and K ⊂ U(V ), so by the preceding
paragraphs, we have a moment map τ : V → k∗ defined as above. We use this
moment map to define moment maps on coadjoint orbits. For a type I orbit Oλ =
V ⊕ {λ}, the moment map τλ : Oλ → k∗ is given by

τλ(v, λ) =
1

λ
τ(v). (4)

This relationship lets us compute the spherical points in a type I coadjoint orbit
Oλ = V ⊕{λ} for the moment map τλ, which we will use to define our orbit model.
For each αm ∈ Λ (the set of highest weights of the representation of K on C[V ]),
choose vm ∈ V with τ(vm) = αmk. Note that all choices for vm will be in the same
K-orbit. Then the point (

√
λvm, λ) ∈ Oλ is a spherical point of τλ of type αm.

Next we relate the values of K-invariant polynomials on these spherical points
to the eigenvalues described in Section 1. This relationship is the key observation
that drives our main argument in Section 5. Recall from Section 2 that p̃(m) =

D̂p(φ1,m) is a degree sp/2 polynomial on V . Write top p̃(m) for the highest order
homogeneous term in m.

Lemma 5 ([BR13]). Let p(v, v) be a K-invariant polynomial on V , homogeneous
of degree sp. Given a well-adapted spherical point vm ∈ V of type αm for the
moment map τ : V → k∗, we have

top p̃(m) = (−1)sp/2p(vm, vm).
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Proof. Consider the following:

2∂ihm = 2∂i(h
m1
1 · · ·hmrr ) = 2

(
m1

∂ih1

h1
+ · · ·+mr

∂ihr
hr

)
hm.

We define a vector η(m, v) with entries

ηi(m, v) = m1
∂ih1

h1
+ · · ·+mr

∂ihr
hr

=
∂ihm
hm

.

For any partial derivative ∂a =
∏

(∂i)
ai , up to lower-order terms in m, we have

(2∂)ahm = (2η)ahm + LOT (m).

Thus

(2∂)ahm(vm) = (vm)ahm(vm).

Let p(v, v) be a K-invariant polynomial.

p(−v, 2∂)hm = p(−vm, 2η(m, vm))hm + LOT (m).

Then p(−v, 2∂) acts on hm by a scalar, and the highest order term for the eigen-
value is

top p̃(m) = p(−vm, 2η(m, v)),

independent of the choice of v. If we use a well-adapted spherical point vm, then
2η(m, vm) = vm, so we get

top p̃(m) = p(−vm, vm) = (−1)sp/2p(vm, vm). �

Using equation (3), we immediately obtain the following corollary.

Corollary 6. For a type I spherical function φλ,m ∈ ∆(K,Ha), a spherical point
vm ∈ V of τ , and a homogeneous K-invariant polynomial p on V , we have

top D̂p(φλ,m) = (−|λ|)sp/2p(vm).

For type II spherical functions, the eigenvalues are obtained by evaluation on
spherical points, as can be seen in the following lemma.

Lemma 7. Let φb(v) :=
∫
K
ei〈b,k·v〉dk be a spherical function associated to a

type II representation, let p be a K-invariant polynomial on V , and let Dp be
the corresponding differential operator. Then

D̂p(φb) = p(ib).
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Proof. Let {ej}1≤j≤2a be a (real) basis for V which is orthonormal with respect
to the real inner product 〈 , 〉. Then the corresponding vector fields Ej on Ha act
as follows:

Ej · ei〈b,v〉 =
d

dt

∣∣∣∣
t=0

ei〈b,v+tej〉

=
d

dt

∣∣∣∣
t=0

ei〈b,tej〉ei〈b,v〉

= ibje
i〈b,v〉.

For a K-invariant poynomial p(v1, . . . , v2a) on V , we have

Dpφb(v) = p(E1, . . . , E2a)

∫
K

ei〈b,kv〉dk

=

∫
K

p(E1, . . . , E2a)ei〈k
−1b,v〉dk

=

∫
K

p(ik−1b)ei〈k
−1b,v〉dk

=

∫
K

p(ib)ei〈b,kv〉dk = p(ib)φb(v). �

Finally, using Lemma 5, Corollary 6, and Lemma 7, one can prove that the map
Ψ is a homeomorphism, and hence prove Theorem 4, for the Heisenberg Gelfand
pair (K,Ha). This was shown in [BR13] and we refer the reader to the proof of
Theorem 1.2 in that paper.

Theorem 8 ([BR13]). The map Ψ : ∆(K,Ha)→ A(K,Ha) given by

Ψ(φλ,m) = K · (
√
λvm, λ)

in the type I case, and
Ψ(χb) = K · (b, 0)

in the type II case, is a homeomorphism.

3. Representation theory of K n N

In this section we recall the representation theory of the group G = K n N ,
where (K,N) is a nilpotent Gelfand pair, following the treatment in [BR08]. Then
we give a more detailed description of these results for the specific class of nilpotent
Gelfand pairs we are interested in — those satisfying the conditions in Definitions 2
and 3. We conclude the section by describing the eigenvalue model for the Gelfand
space of such nilpotent Gelfand pairs.

As a first step in this process, we review the representation theory of the
nilpotent group N . Representations of simply connnected, real nilpotent Lie groups
are classified by Kirollov’s “orbit method” [Kir04], which proceeds as follows. Given
an element ` ∈ n∗, one selects a subalgebra m ⊆ n which is maximal isotropic
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(i.e., subject to the condition `([m,m]) = 0). One then defines a character χ` of
M = expm by χ`(expX) = ei`(X) and constructs the representation π` := indNM χ`
of N . From Kirillov, we know that each irreducible, unitary representation of N
is of the form π` for some `, and π` ∼ π`′ if and only if ` and `′ are in the same
coadjoint orbit in n∗. That is, the association N · ` 7→ π` yields a bijection between
coadjoint orbits in n∗ and irreducible unitary representations of N .

In our setting, N is a two-step nilpotent Lie group. This extra structure allows
us to make a canonical choice of an “aligned point” in each coadjoint orbit. We
describe this process now. Recall that the Lie algebra of N is n = V ⊕ z, where z
and V are orthogonal with respect to the inner product 〈· , ·〉 (see Section 1). For
a coadjoint orbit O ⊂ n∗, we choose ` ∈ O so that O = Ad∗(N)`, then we define
a bilinear form on n by

BO(X,Y ) = `([X,Y ]).

Let aO = {v ∈ V | `([v, n]) = 0}. Since N is two-step nilpotent, BO only depends
on `|z, and hence both BO and aO do not depend on our choice of ` ∈ O. For each
coadjoint orbit O, this process gives us a decomposition

n = aO ⊕wO ⊕ z,

where wO = a⊥O ∩ V , and BO is non-degenerate on wO. We can define a map
wO → O by

X 7→ Ad∗(X)` = `− ` ◦ [X,−]. (5)

Since N is two-step nilpotent, this map is a homeomorphism [BR08], and thus
gives us an identification of wO with O. Note that this identification does depend
on the choice of `. However, in [BR08] it is shown that there is a canonical choice
of ` in the following sense.

Definition 6. A point ` ∈ O is called an aligned point if `|wO = 0.

This gives us a canonical identification wO ' O. Furthermore, the action of
K on n∗ sends aligned points to aligned points, which implies that the stabilizer
KO = {k ∈ K | k · O = O} of a coadjoint orbit coincides with the stabilizer
K` = {k ∈ K | k · ` = `} of its aligned point. (See [BR08, Sect. 3.2] for a full
discussion.)

Next we recall the process for describing Ĝ in terms of representations of N and
subgroups of K. This is the Mackey machine. There is a natural action of K on
N̂ by

k · π = π ◦ k−1,

where k ∈ K and π ∈ N̂ . Let π be an irreducible unitary representation of N
corresponding to a coadjoint orbit O ⊂ n∗ as described above. Denote the stabilizer
of π under the K-action by

Kπ = {k ∈ K | k · π ' π}.

Here ' denotes unitary equivalence. Note that by the discussion above, Kπ = KO.
By Lemma 2.3 of [BJR99], there is a (non-projective) unitary representation Wπ

of Kπ given by
k · π(x) = Wπ(k)−1π(x)Wπ(k).
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Mackey theorey establishes that we can use such representations Wπ to build all
irreducible unitary representations of G.

Theorem 9 ([BR08]). Let (K,N) be any nilpotent Gelfand pair. Given any irre-
ducible, unitary representation α of Kπ, the representation

ρπ,α := indKnN
KπnN ((k, x) 7→ α(k)⊗ π(x)Wπ(k))

is an irreducible representation of G. The representation ρπ,α is completely deter-

mined by the parameters π ∈ N̂ and α ∈ K̂π. All irreducible, unitary representa-
tions of G are of this form, and ρπ,α ∼= ρπ′,α′ if and only if the pairs (π, α) and
(π′, α′) are related by the K-action.

We say that ρ = ρπ,α has Mackey parameters (π, α). For a coadjoint orbit

O ⊂ n∗ with aligned point ` ∈ O, the corresponding representation π ∈ N̂ factors
through

NO = exp(n/ ker(`|z)).

The group NO is the product of a Heisenberg group H and the (possibly trivial)
abelian group aO. The inner product 〈· , ·〉 can be used to construct an explicit
isomorphism ϕ from H to the standard Heisenberg group Ha := V ⊕R, where V is
a unitary Kπ space (see [BR08, Sect. 5.1]). This construction allows us to realize π
as the standard representation of HV in the Fock space FV on V , and thus realize
Wπ as the restriction to Kπ of the standard representation of U(V ) on FV .

Now we specialize to the case of nilpotent Gelfand pairs satisfying the conditions
in Definitions 2 and 3.

As in Section 1, we fix A ∈ z to be a unit base point. For any ` = (b, B) ∈ n∗

with B 6= 0, we have B = λA with λ > 0. The form (v, w) 7→ 〈[v, w], A〉 is non-
degenerate on V, and hence the orbit through ` is O = V ⊕ λA with aligned point
(0, λA).

For ` = (b, 0), the coadjoint orbit through ` is a single point. We conclude that
we have two types of coadjoint orbits:

• Type I orbits : When the parameter λ > 0, we have an aligned point of the
form ` = (0, λA). We call the corresponding coadjoint orbits type I orbits and

the corresponding representations πλ ∈ N̂ type I representations. Since these
orbits depend only on the parameter λ ∈ R+, we denote them OλA.

• Type II orbits : When λ = 0, the corresponding coadjoint orbits contain only
the aligned point ` = (b, 0), where b ∈ V . We call such coadjoint orbits type II

orbits and the corresponding representations χb ∈ N̂ type II representations.
Since these orbits depend only on the parameter b ∈ V , we denote them Ob.

Consider a type I coadjoint orbit OλA with aligned point ` = (0, λA) and

corresponding type I representation πλ ∈ N̂ . The coadjoint orbit is of the form

OλA = V ⊕ λA.

The representation πλ has codimension 1 kernel in z, and factors through

NOλA = exp(n/ ker(`|z)).
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where NOλA = HA := V ⊕ RA is a Heisenberg group. On HA, our representation
is a type I representation ρλ of the standard Heisenberg group, which can be
realized on Fock space (see Section 1 for a construction of such representations).
We can make this explicit by describing the map ϕ between HA and the standard
Heisenberg group, which we will use to relate our nilpotent Gelfand pairs to the
established results in the Heisenberg setting.

The stabilizer Kπλ of πλ in K is equal to the stabilizer KA of A. The skew-
symmetric form (v, w) 7→ 〈[v, w], A〉 defines a linear transformation Jz : V → V by
mapping v ∈ V to the element JAv ∈ V defined by

〈JAv, w〉 = 〈A, [v, w]〉.

Since the form (· , ·) is non-degenerate, JA is invertible. Since JA is also skew-
symmetric, we can decompose V =

∑
Vµ, where JA on Vµ is of the form µJ where

J =

(
0 Im
−Im 0

)
and Im is the m×m identity matrix for some m ∈ N. We define

a KA-equivariant group isomorphism

ϕ : HA = V ⊕ RA→ HV ,

where HV = V ⊕ R is as in Section 1, in the following way. For v =
∑
vµ ∈ V , let

ϕ(v) =
∑ 1
√
µ
vµ,

and for (v, tA) ∈ HA, let

ϕ(v, tA) = (ϕ(v), t).

This gives us a the precise relationship between type I representations πλ ∈ N̂ and
type I representations ρλ ∈ ĤV :

πλ = ρλ ◦ ϕ.

Type II orbits are of the form

Ob = {(b, 0)}

for b ∈ V . They correspond to 1-dimensional representations

ψb(v, z) = ei〈v,b〉

for v ∈ V and z ∈ z. The stabilizer Kχb of a type II representation χb is the
stabilizer Kb of b in K, and the representation Wχb is the trivial one-dimensional
representation 1Kb of Kb, so the second Mackey parameter for type II representa-
tions is trivial.

From this discussion, we have the following corollary to Theorem 9.
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Corollary 10. Suppose that the nilpotent Gelfand pair (K,N) satisfies the con-
ditions in Definitions 2 and 3. Fix A ∈ z with norm 1. Then each representation
ρ ∈ Ĝ is unitarily equivalent to one of the form ρπλ,α for λ ∈ R+ and α ∈ K̂A, or

one of the form ρχb = indKnN
KbnN (1⊗ χb).

We complete this section with a parametrization of the Gelfand space and a
description of the eigenvalue model of the Gelfand space. By the discussion above,
type I representations πλ of N are parameterized by λ > 0 and they factor through
a unique type I representation ρλ of HV . Therefore, the corresponding type I
spherical functions in ∆(K,N ) are parameterized by pairs (λ,m), where λ > 0
and m = (m1, . . .mr), where αm = m1α1 + · · · + mrαr is a highest weight of an
irreducible subrepresentation of KA on C[V ], as in Section 1. We denote the type
I spherical function in ∆(K,N ) corresponding to the parameters (λ,m) by ψλ,m.
From a type II representation χb, one constructs a spherical function ψb by

ψb(v, z) :=

∫
K

ei〈b,k·v〉dk.

Thus, we have the following parametrization of the Gelfand space.

∆(K,N)↔ {(λ,m) | λ > 0,m ∈ (Z≥0)r} ∪ (V/K).

The eigenvalue model mentioned in Section 1 gives us a useful geometric model
of ∆(K,N).

Theorem 11 ([FR07]). There is a homeomorphism

Φ : ∆(K,N)→ E(K,N)

given by Φ(ψ) = (D̂0(ψ), . . . , D̂r(ψ)), where Di are invariant differential operators
obtained from a generating set {p0, . . . , pr} of K-invariant polynomials on n.5

Without loss of generality, we may choose this generating set {p0, . . . , pr} to
consist of homogeneous polynomials. (Indeed, because the K-action is linear, it
will preserve homogeneous terms of each degree, so each homogeneous term is
itself an invariant polynomial.) In addition, we choose our enumeration so that the
first two polynomials are the invariants p0(v, Y ) = |Y |2 and p1(v, Y ) = |v|2.

4. Moment map and spherical points

In this section we define moment maps on coadjoint Ad∗(N)-orbits for a general
nilpotent Gelfand pair (K,N ), following [BR08]. We then specialize to the setting
of our class of nilpotent Gelfand pairs and calculate the spherical points that we
use to define the map Ψ discussed in Section 1.

5We remind the reader that we are identifying N and n via the exponential map, so
this theorem is equivalent to Theorem 1 stated in Section 1.
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Definition 7. Let O ⊂ n∗ be a coadjoint orbit for N , KO the stabilizer of O in
K and kO its Lie algebra. The moment map τO : O → k∗ is defined via

τO(Ad∗(X)`O)(Z) = − 1
2BO(X,Z ·X) = − 1

2`O[X,Z ·X]

for Z ∈ kO, X ∈ n. Here `O is the unique aligned point in O.

Now we specialize to nilpotent Gelfand pairs (K,N ) satisfying Definitions 2 and
3 and identify the spherical points in A(K,N). We start by analyzing the moment
map τO of the preceding definition in more detail for the type I orbit OA with
aligned point `A = (0, A). Let τA := τOA be the moment map defined above. Then

`A([v, Z · v]) = 〈A, [v, Z · v]〉.

For v, w ∈ V ,

Ad∗(v)`A(w) = `A(w − [v, w]) = −〈A, [v, w]〉 = −〈JAv, w〉,

since V and z are orthogonal with respect to 〈· , ·〉. So if we identify OA with V in
the sense of equation (5), we have Ad∗(v)`A = −JAv, and

τ(JAv)(Z) = 1
2 〈A, [v, Z · v]〉 = τA(Ad∗(v)`A)(Z).

Here τ : V → k∗A is the moment map τ(v)(Z) = − 1
2 〈v, Z · v〉 defined in Section 2.

Recall that by equation (4), the relationship between this moment map τ and the
moment map τλ : Oλ → k on a type I coadjoint orbit Oλ ⊂ h∗ of the Heisenberg
group is given by 1

λτ(v) = τλ(v, λ).

The moment maps on all other type I orbits OλA can be obtained from τA by
scaling. Indeed, if τλA := τOλA is the moment map on a type I orbit OλA with
aligned point `λA = (0, λA), then

τλA(Ad∗(X)`λA)(Z) = − 1
2 〈λA, [v, Z · v]〉 = λτA(Ad∗(v)`A)(Z),

for v ∈ V and Z ∈ k∗A. This gives us the following relationship between moment
maps:

τλA(Ad∗(v)`λA) = λτA(Ad∗(v)`A) = λτ(JAv) = λ2τλ(JAv, λ). (6)

This relationship allows us to compute type I spherical points of τλA using type
I spherical points of τλ, which we established in Section 2 are (

√
λvm, λ) ∈ Oλ

for vm ∈ V a spherical point of τ of type αm. Under our association of n and n∗

via 〈· , ·〉 (see Section 1), one can compute the coadjoint action on aligned points
(0, λA). For v ∈ V ,

Ad∗(v)(0, λA) = (λJAv, λA).
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Using this action and (6), we compute

τλA(
√
λvm, λA)(Z) = τλA

(
Ad∗

( 1√
λ
J−1
A vm

)
`λA

)
(Z)

= λτ
( 1√

λ
vm

)
(Z)

= −λ
2

〈
1√
λ
vm, Z ·

1√
λ
vm

〉
= − 1

2 〈vm, Z · vm〉
= τ(vm)

= αm.

This proves the following lemma.

Lemma 12. Let OλA = V⊕λA be a type I orbit in n∗. The type I spherical points
contained in OλA are (

√
λvm, λA), where (

√
λvm, λ) is a spherical point in the

associated Heisenberg coadjoint orbit Oλ ⊂ h∗.

Since type II orbits Ob contain a single point (b, 0) and the moment map τOb :
Ob → k∗ is the zero map, the point (b, 0) is a spherical point of τOb .

Next we will relate invariant polynomials on n to invariant polynomials on
HV . Let p be a K-invariant polynomial on n. Then we can define a KA-invariant
polynomial pA on HV by

pA(ϕ(v), t) = p(v, tA), (7)

where ϕ : HA → HV is the map from Section 3.
Let DpA and Dp denote the corresponding differential operators on HV and n,

respectively. Recall that for a type I representation πλ ∈ N̂ and associated type I
representation ρλ ∈ ĤV , we have the relationship πλ = ρλ ◦ϕ on HV . This implies
that

ρλ(DpA) = πλ(Dp).

This tells us that
D̂pA(φλ,m) = D̂p(ψλ,m). (8)

Here, φλ,m is a type I spherical function in ∆(K,Ha) and ψλ,m is a type I spherical
function in ∆(K,N ). (Note that type I spherical functions for (K,N ) have the
same parametrization as type I spherical functions for (K,HV ), so we distinguish
between the two by using φ to refer to functions in ∆(K,HV ) and ψ for functions
in ∆(K,N).)

Similarly, if φb is a type II spherical function with corresponding orbit Ob =
{(b, 0)} ⊂ n∗ and representation πb ∈ N̂ , then we still have the relationship πb =

ρb◦ϕ, where ρb ∈ ĤV is the corresponding type II representation of the Heisenberg
group. This implies that, as in the type I case, for any K-invariant polynomial p
on n,

D̂pA(φϕ(b)) = D̂p(ψb).

Therefore, using Lemma 7,

D̂p(ψb) = D̂pA(φϕ(b)) = pA(iϕ(b), 0) = p(ib, 0). (9)

Now we can explicitly define Ψ.
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Definition 8. Define the map Ψ : ∆(K,N)→ A(K,N) by

Ψ(ψλ,m) = K · (
√
λvm, λA)

for type I spherical functions, and

Ψ(ψb) = K · (b, 0)

for type II spherical functions. Here vm is a spherical point of the moment map
τ : V → k∗ defined by τ(v)(Z) = − 1

2 〈v, Z · v〉, as described in Section 2.

This is the same map defined in Section 1 (see [BR08, Prop. 5.3]). Our main
result is that Ψ is a homeomorphism. The following section is dedicated to the
proof of this fact.

5. The orbit model

In this section we establish the orbit model for nilpotent Gelfand pairs which
have spherical central orbits and are nondegenerate on V, namely those satisfying
the conditions in Definitions 2 and 3. Again, we assume (K,N ) is one such Gelfand
pair. The goal of this section is to show that Ψ is a homeomorphism. Before starting
the proof, we need two more tools.

Lemma 13. Let p be the K-invariant polynomial on V given by p(v) = |v|2. Then

for a spherical point vm of τ : V → k∗, D̂p(ψλ,m) = −λ|vm|2 = −2λ|m| and

D̂p(ψb) = −|b|2.

Proof. We have πλ(Dp) = −2λ
∑
j vj∂/∂vj acts on Pαm by the degree |m|. Thus

D̂p(φλ,m) = −2λ|m| = −λ|vm|2. �

The following fact from invariant theory is vital.

Theorem 14 ([OV12]). The orbits of a compact linear group acting in a real
vector space are separated by the invariant polynomials.

Now we are ready to prove Theorem 4. From Theorem 11, we know that a
sequence {ψ(n)} of spherical functions converges in ∆(K,N ) to ψ if and only if

the corresponding sequence of eigenvalues {D̂p(ψ(n))} converges to D̂p(ψ) for all
K-invariant polynomials p. Therefore, to prove Theorem 4, it is enough to show
that a sequence in A(K,N) converges if and only if the corresponding sequence in
∆(K,N) or E(K,N) converges.

Without loss of generality, we can assume that any convergent sequence in
A(K,N) consists of orbits corresponding entirely to type I representations or
entirely to type II representations, and any convergent sequence in ∆(K,N ) or
E(K,N) has the same property. We refer to elements of E(K,N) which correspond
to type I (type II) representations as “type I (type II) eigenvalues,” and elements
of A(K,N) which correspond type I (type II) representations as “type I (type II)
orbits.”

In either model, E(K,N) or A(K,N), a type II sequence can only converge
to another type II element. Indeed, if {(D0(ψb(n)), . . . , Dr(ψb(n)))} is a convergent
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sequence of type II eigenvalues, then D0(ψb(n)) = p0(b, 0) = 0 by equation (9). This
implies that the limit of the sequence of eigenvalues must be a type II eigenvalue.
Similarly, if {K · (b(n), 0)} is a convergent sequence of type II orbits in A(K,N),
then the limit of the sequence of orbits must be a type II orbit since K · (b(n), 0) ⊂
V. In contrast to this, type I sequences in either model can converge to either a
type I element or a type II element. In the following arguments we treat each of
these three possibilities separately.

We begin with the type II case. Since we know type II sequences converge to
type II elements in either model, we only need to show that these type II elements
correspond to each other under the map Ψ. By equation (9), the eigenvalues of a
type II spherical function are exactly the values of the invariant polynomials on
the spherical point. This implies that for a sequence {b(n)} of parameters of type

II spherical functions, D̂p(ψb(n)) → D̂p(ψb) if and only if p(b(n)) → p(b) for all
invariant polynomials p on V. Since invariant polynomials separate points (Lemma
14), this happens exactly when K · (b(n), 0)→ K · (b, 0).

Next we address convergent type I sequences. Note that a type I sequence in
either model cannot be convergent unless the sequence {λ(n)} ⊂ R>0 is convergent.
Indeed, let {K · (

√
λ(n)vm(n), λ(n)A)} be a convergent sequence of type I orbits.

Since the action of K on z is unitary, the norm on z is an invariant polynomial: it
is the polynomial p0 in our enumeration in Section 3. By Theorem 14, the values
of p0 on the sequence of K-orbits must converge, so λ(n) → λ for some λ ≥ 0.
Now let {(D0(ψλ(n),m(n)), . . . , Dr(ψλ(n),m(n)))} be a convergent sequence of type
I eigenvalues. By the reductions in Section 4 and Example 1, we have eigenvalues
D̂0(ψλ(n),m(n)) = λ(n). Since Φ is an isomorphism, λ(n)→ λ, for λ ≥ 0. In either
model, if the limit point λ is strictly greater than zero, the sequence converges to
a type I element. If the limit point λ = 0, then the sequence converges to a type
II element. We now address each of these two cases.

Let {K · (
√
λ(n)vm(n), λ(n)A)} be a sequence of type I orbits that converges to

the type I orbit K · (
√
λvm, λA), where λ > 0. By moving to subsequences, we can

assume that the sequence {(
√
λ(n)vm(n), λ(n)A)} of spherical points converges,

with λ(n)→ λ. By Theorem 14, the convergence of orbits implies that the sequence
{p1(

√
λ(n)vm(n)) = λ(n)|m(n)|} converges to p1(

√
λvm) = λ|m|. This implies

that {m(n)} is bounded. Since {m(n)} lies on a discrete lattice and {m(n)} is
bounded, the sequence {m(n)} must eventually be constant, so we can assume
without loss of generality that m(n) = m for all n. By equation (8), for any
invariant polynomial p on n, there is an invariant polynomial pA on HV such that

D̂p(ψλ(n),m) = D̂pA(φλ(n),m).

Now the sequence of KA-orbits KA ·(
√
λ(n)vm, λ(n)) converges to KA ·(λvm, λ)

in h∗V , so by the corresponding result for the Heisenberg group, we have

D̂pA(φλ(n),m)→ D̂pA(φλ,m),

and therefore
D̂p(ψλ(n),m)→ D̂p(ψλ,m).
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Conversely, suppose that {ψλ(n),m(n)} is a sequence of type I spherical functions
which converges to the type I spherical function ψλ,m. Then by Theorem 11, for

all invariant polynomials p on n, D̂p(ψλ(n),m(n))→ D̂p(ψλ,m). As observed above,
this implies that λ(n)→ λ. By Lemma 13, the sequence

{λ|vm(n)|2 = 2λ(n)|m(n)|}

is convergent. Since {m(n)} is a discrete set, this convergence is only possible if
m(n) is eventually constant, so we can assume m(n) = m. Then, the corresponding
sequence of spherical points

{(
√
λ(n)vm, λ(n)A)}

converges to (
√
λvm, λA) in n∗, and so K · (

√
λ(n)vm, λ(n)A)→ K · (

√
λvm, λA).

Our final step is to address the case of a type I sequence converging to a type
II element. Assume that {K · (

√
λ(n)vm(n), λ(n)A)} is a sequence of type I orbits

converging to the type II orbit K ·(b, 0). By moving to subsequences, we can assume
that λ(n)→ 0 and

√
λ(n)vm(n) → b′ ∈ K · b.

The map ϕ defined in Section 3 sends spherical points to spherical points,
so (ϕ(

√
λ(n)vm(n)), λ(n)) is a spherical point in h∗V for each n, and we have

the convergence (ϕ(
√
λ(n)vm(n)), λ(n)) → (ϕ(b), 0) in h∗V . This implies that the

corresponding KA-orbits for the Heisenberg setting converge:

KA · (ϕ(
√
λ(n)vm(n)), λ)→ KA · (ϕ(b), 0)

in h∗V/KA. Let p be a K-invariant polynomial on n, and let pA be the corresponding
KA-invariant polynomial on HV . By the theorem for Heisenberg groups ([BR08,
Prop. 7.1]), equation (8) and Lemma 7, we have

D̂p(ψλ(n),m(n))=D̂pA(φλ(n),m(n))→D̂pA(φϕ(b))=pA(ϕ(b), 0)=p(b, 0)=D̂p(ψϕ(b)).

Conversely, suppose that type I eigenvalues {D̂p(ψλ(n),m(n))} converge to the

type II eigenvalue D̂p(ψb) for all K-invariant polynomials p on n. Then λ(n)→ 0,
and for p1(v, Y ) = |v|2,

D̂1(ψλ(n),m(n)) = −λ(n)|vm(n)|2 = −2λ(n)|m(n)| → −|b|2 = D̂1(ψb)

by Lemma 13. Thus the sequences {λ(n)vm(n)} and {λ(n)vm(n)} are bounded. If
necessary, we can go to convergent subsequences.

Let p be a homogeneous, KA-invariant polynomial on V. Then on HV ,

D̂p(φλ(n),m(n)) = (−λ(n))sp/2p̃(m(n)),

where p̃(m) is a polynomial of degree sp/2. Since the sequence {λ(n)m(n)} is
bounded, the sequence {(λ(n))sp/2 top p̃(m(n))} will be bounded, and the lower
order terms will go to zero. Hence

lim
n→∞

D̂p(φλ(n),m(n))= lim
n→∞

(−λ(n))sp/2top p̃(m(n))=(−1)sp/2 lim
n→∞

p(
√
λ(n)vm(n)).

880



AN ORBIT MODEL FOR THE SPECTRA

Thus if p is a K-invariant polynomial on V of degree sp, then

D̂p(ψλ(n),m(n)) = D̂pA(φλ(n),m(n))→ (−1)sp/2p(b, 0),

and therefore p(
√
λ(n)vm(n))→ p(b, 0).

If p is a mixed invariant on V ⊕ z, homogeneous of degree sp on V and zp 6= 0
on z, then

pA(ϕ(v), t) = p(v, tA) = tzpp(v,A),

and so with the KA-invariant polynomial q(v) = p(v,A), we have

D̂p(ψλ(n),m(n)) = D̂pA(φλ(n),m(n)) = (iλ(n))zpD̂q(φλ(n),m(n))→ p(ib, 0) = 0.

On the other hand,

lim
n→∞

D̂q(φλ(n),m(n)) = lim
n→∞

q(
√
λ(n)vm(n)),

and hence

lim
n→∞

p(
√
λ(n)vm(n), λ(n)A) = lim

n→∞
λ(n)zpq(

√
λ(n)vm(n)) = 0 = p(b, 0).

Thus for all K-invariant polynomials p on n, we have

p(
√
λ(n)vm(n), λ(n)A)→ p(b, 0),

and so every limit point of the sequence (
√
λ(n)vm(n), λ(n)A) is in K · (b, 0), and

therefore K · (
√
λ(n)vm(n), λ(n)A) → K · (b, 0). This completes the proof of the

theorem.

6. Example

In this section we provide a detailed description of the orbit model of the specific
nilpotent Gelfand pair (K,N ) where K = U2 × SU2 and N = V ⊕ z, with V =
C2⊗C2 and z = su2(C) is the center. Along the way, we provide explicit calculations
of the relevant objects described in greater generality in the previous sections.

We define the bracket on n by

[(u,A), (v,B)] = uv∗ − vu∗ − 1
2 tr(uv∗ − vu∗) ∈ z.

The action of k = (k1, k2) ∈ K on x = (u,A) ∈ n is given by

k · x = (k1uk
∗
2 , k1Ak

∗
1),

where u ∈ V is a 2× 2 complex matrix.
If one considers K = U2×T2 acting on N as above, then we also have a Gelfand

pair which satisfies our hypotheses, but V is no longer irreducible.
We can identify V∗ with V via the real inner product 〈w, v〉V = tr(wv∗).

Additionally, we can identify z∗ with z via the real inner product 〈A,B〉z =
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− 1
2<(tr(AB)), where <(tr(AB)) denotes the real part of tr(AB). This allows us

to identify n∗ with n via the inner product 〈(w,A), (v,B)〉n = 〈w, v〉V + 〈A,B〉z.
We use the orbit method to construct the representations of N, so we construct

the coadjoint orbits of N. Let ` ∈ n∗ be given by pairing with the element (w,A) ∈
n. If X = (u,B) ∈ n and Y = (v, C) ∈ n, we have the action

Ad∗(X)`(Y ) = `(Y − [X,Y ])

= 〈v, w〉V + 〈A,C〉z + 〈A, [u, v]〉z.

One readily computes that 〈A, [u, v]〉 = −〈Au, v〉 where Au is the usual matrix
multiplication. In particular,

Ad∗(X)`(Y ) = 〈(w +Au,A), Y 〉.

Thus, we see that our representations of N are broken into the type I and type II
orbits described in Section 3, according to A 6= 0 or A = 0.

Since each matrix in su2(C) can be unitarily diagonalized, each non-zero K-orbit
in z has a representative of the form(

λi 0
0 −λi

)

for λ ∈ R+. Let A =

(
i 0
0 −i

)
be the fixed unit base point in z, and consider the

type I representation π = π(0,A). In this case, we see that the stabilizer Kπ of the
isomorphism class of π in K is

Kπ = (U1 ×U1)× SU2.

As in Section 1, we realize π in Fock space P (V). Regarding x ∈ V as a
2 × 2 complex matrix, the elements of P (V) are holomorphic polynomials in
the coordinates x11, x12, x21 and x22. As noted in [HU91], under the action of
U(2) × U(2), the space C[V ] has highest weight vectors generated by g1(x) = x11

and g2(x) = det(x). Since the action of K on C[V ] is multiplicity-free, we have the
decomposition

C[V ] =
∑
α

Vα ⊗ V ∗α ,

where the highest weight vector of Vα ⊗ V ∗α is a monomial in g1 and g2, and α
corresponds to a two-rowed Young diagram.

Restricting to Kπ amounts to restricting from U(2) × U(2) to Kπ = (U(1) ×
U(1))×SU(2). The left Vα’s split into one-dimensional subspaces, and the highest
weight vectors of the representation of Kπ on C[V ] are monomials in h1(x) = x11,
h2(x) = x21, and h3(x) = det(x). Then the above decomposition becomes

C[V ] =
⊕
m

Vm
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where m = (m1,m2,m3) ∈ Λ ' (Z≥0)3 is the monoid of all appearing highest
weights, and Vm is the irreducible subspace with highest weight hm = hm1

1 hm2
2 hm3

3 .
One computes the corresponding highest weights α1, α2, and α3 explicitly by

computing the action of Kπ on {h1, h2, h3}. Let k = (t−1, s) ∈ Kπ with t−1 =
(t1, t2) an element of the torus of U(2) and s = (s1, s

−1
1 ) an element of the torus

of SU(2), with X = (xij) ∈ V . Then

k · h1(X) = h1(tXs∗) = t1s1h1(X),

and hence α1 = (1, 0, 1). Similar computations show us that α2 = (0, 1, 1) and α3 =
(1, 1, 0). Thus, if h = hm1

1 hm2
2 hm3

3 is the highest weight vector corresponding to the
irreducible representation V of Kπ, then the highest weight of V is (m1 +m3,m2 +

m3,m1 +m2). Note that since type II representations π ∈ N̂ are one-dimensional
characters, the action of Kπ is trivial, and the representation of Kπ is the trivial
one-dimensional representation. Therefore, the only highest weight vector in a
type II representation space is the (unique) unit vector with corresponding highest
weight 0.

We use the generators for K-invariant polynomials found in [FRY12]:

p1(v, z) = |z|2,
p2(v, z) = |v|2,
p3(v, z) = | det(v)|2 = det(vij) det(vij), and

p4(v, z) = itr(v∗zv),

with corresponding differential operators D1, D2, D3, D4 in DK(N).
Our choice of quantization produces the following operators on Fock space:

πλ(D1) = λ2,

πλ(D2) =
∑

vij
∂

∂vij
,

πλ(D3) = det(vij)

[
∂

∂v11

∂

∂v22
− ∂

∂v12

∂

∂v21

]
,

πλ(D4) = λ

[
v11

∂

∂v11
− v21

∂

∂v21
+ v12

∂

∂v12
− v22

∂

∂v22

]
.

We then compute the eigenvalues of all type I spherical functions by applying
these operators to the highest weight vectors hm1

1 hm2
2 hm3

3 , obtaining:

D̂1(ψπ,α) = λ2,

D̂2(ψπ,α) = λ(m1 +m2 + 2m3),

D̂3(ψπ,α) = λ2m3(1 +m1 +m2 +m3),

D̂4(ψπ,α) = λ2(m1 −m2).
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Similarly, the type II eigenvalues can be directly computed as

D̂1(χb) = 0,

D̂2(χb) = |b|2,

D̂3(χb) = |det(b)|2,

D̂4(χb) = 0.

Recall from Section 5 that we construct the orbit model by using a moment
map to identify the spherical points in A(K,N). We define the moment map
τO : O → k∗O on a coadjoint orbit O ⊂ n∗ with aligned point ` = (0, A) as in
Section 4. Let

u =

[
u11 u12

u21 u22

]
∈V , γ=

[
γ1 0
0 γ2

]
∈u(1)× u(1), δ=

[
δ11 δ12

−δ̄12 −δ11

]
∈su2(C).

Note that τ(u) must be diagonal if u is to map to a weight of K. We directly
compute that

τ(u) = γ1(|u11|2|u12|2)+γ2(|u21|2+|u22|2)+δ̄11(|u11|2−|u12|2+|u21|2−|u22|2)

− δ12(u11ū12+u21ū22)+δ̄12(ū11u12+ū21u22)

In particular, τ(u) is diagonal if and only if u11ū12 = −u21ū22 or equivalently,
when u has orthogonal columns. Comparing coefficients, the integrality conditions
imply we must have

|u11|2 + |u12|2 = m1 +m3,

|u21|2 + |u22|2 = m2 +m3,

|u11|2 + |u21|2 − |u12|2 − |u22|2 = m1 +m2.

Evaluating our invariant polynomials on type I spherical points (
√
λu, λA) gives

p1(
√
λu, λA) = λ,

p2(
√
λu, λA) = λ(m1 +m2 + 2m3),

p3(
√
λu, λA) = λ2m3(m1 +m2 +m3),

p4(
√
λu, λA) = λ2(m1 −m2).

If (w, 0) is a spherical point corresponding to a type II representation, one can
directly compute that

p1(w, 0) = 0,

p2(w, 0) = |w|2,
p3(w, 0) = |det(w)|2,
p4(w, 0) = 0.

This example illustrates the behavior of type I spherical points as λ → 0,
with λm bounded. For example, the lower order term (in m) of the eigenvalues

D̂3(ψπ,α) = λ2m3(1+m1 +m2 +m3) go to zero, thus approaching the value of the

invariant p3(
√
λu, λA) = λ2m3(m1 + m2 + m3) on spherical points. In addition,

the eigenvalues D̂4(ψπ,α) = λ2(m1 −m2) for the mixed invariant p4 go to zero.
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