TORIC PRINCIPAL BUNDLES, PIECEWISE LINEAR MAPS AND TITS
BUILDINGS
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ABSTRACT. We define the notion of a piecewise linear map from a fan ¥ to B(G), the
cone over the Tits building of a linear algebraic group G. Let Xy be a toric variety
with fan 3. We show that when G is reductive the set of integral piecewise linear maps
from ¥ to B(G) classifies the isomorphism classes of (framed) toric principal G-bundles
on Xyx. This in particular recovers Klyachko’s classification of toric vector bundles, and
gives new classification results for the orthogonal and symplectic toric principal bundles.
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INTRODUCTION

In this paper we give a classification of torus equivariant principal bundles on toric vari-
eties (or toric principal bundles for short). It extends Klyachko’s well-known classification
of torus equivariant vector bundles on toric varieties [Klyachko89]. Klyachko’s classification
itself is an extension of the classification of equivariant line bundles on toric varieties by
integral piecewise linear functions. We show that, for a reductive algebraic group G, toric
principal G-bundles are classified by the data of integral piecewise linear maps to %(G), the
cone over (the underlying space of) the Tits building of G.

The first classification of toric vector bundles goes back to Kaneyama and
is in terms of certain cocycles. On the other hand, Klyachko’s classification in [Klyachko89|
is in terms of certain compatible filtrations on a finite dimensional vector space. As for toric
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principal bundles, recently in the interesting papers [BDP16, [BDP20] the authors give a
classification of toric principal bundles using certain data of homomorphisms and cocycles
as well as certain filtered algebras. It is not immediately clear (at least to us) that their
data defines a piecewise linear map to the cone over the building B(G) (in the sense of
this paper). The classification in [BDP16] seems to be in the spirit of Kaneyama. The
classification in the present paper is in the spirit of Klyachko. We also mention [PayneQ9)
where the author considers a family of Klyachko filtrations parametrized by vectors in the
fan. This is basically the same as our piecewise linear map in the case of toric vector bundles.

We start with a brief conceptual explanation for the appearance of buildings in the
classification of toric principal bundles: as a corollary of the Luna slice theorem, one shows
that torus equivariant principal G-bundles on a toric variety are trivial over toric affine
charts and in such a chart the torus acts via a homomorphism from the torus to G (see
Definition and Theorem [2.5)). The image of a torus under a homomorphism necessarily
lands in a maximal torus, and the arrangement of maximal tori in G is encoded in its Tits
building. Our classification of toric principal bundles crucially relies on a realization of the
Tits building of G as the set of one-parameter subgroups of G modulo certain equivalence
relation (Section [L.3)).

Throughout k denotes the ground field which we take to be algebraically closed. Let X be
a fan in R™ with Xy, its associated toric variety. Recall that a toric variety is a normal variety
equipped with an action of algebraic torus 7" such that T has an open orbit isomorphic to T’
itself. A toric line bundle £ on X is a line bundle with a T-linearization. It is well-known
that toric line bundles on Xy, are in one-to-one correspondence with functions ¢ : || — R
that are piecewise linear with respect to ¥ and are integral, i.e. map |X|NZ"™ to Z (here |X|
denotes the support of 3, the union of all cones in ¥). A toric vector bundle £ on a toric
variety X is a vector bundle equipped with a T-linearization. A toric principal G-bundle
on Xy, where G is a linear algebraic group, is a principal G-bundle together with a T-action
that commutes with the G-action. We often write the T-action on the left and the G-action
on the right. The isomorphism classes of rank r toric vector bundles are in natural bijection
with the isomorphism classes of toric principal GL(r)-bundles.

Recall that a building is an abstract simplicial complex together with a collection of
distinguished subcomplexes, called apartments, satisfying certain axioms (Definition .
To a linear algebraic group G, there corresponds a building A(G) whose simplices correspond
to parabolic subgroups of G, its maximal simplices (called chambers) correspond to Borel
subgroups, and its apartments correspond to maximal tori in G. We remark that, since
every parabolic subgroup contains the solvable radical of G, the building A(G) and that of
its semisimple quotient, i.e. A(Ggs), can naturally be identified. So as, far as the simplicial
complex structure of the building is concerned, we can always assume that G is semisimple.

Let G be semisimple. The abstract simplicial complex A(G) has a natural geometric
realization. That is, there is a topological space B(G) such that each simplex in A(G)
can be identified with a subset of B(G) homeomorphic to a standard simplex and these
simplices are glued along their common subsimplices (see Section . It is constructed
as follows. For each maximal torus H C G let AV(H) be its cocharacter lattice and let
AY(H) = AV(H) ®z R. The apartment corresponding to H is the triangulation of the unit
sphere in Ay (H) obtained by intersecting it with the Weyl chambers and their faces. Two
simplices, in different apartments, are glued together if the corresponding faces represent
the same parabolic subgroup in G. The topological space B(G) is obtained by gluing the
unit spheres in the AY(H), for all maximal tori H, along their common simplices. Similarly,
we construct the topological space %(G) by gluing the vector spaces AY(H), along their
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common faces of Weyl chambers. We think of %(G) as the cone over the topological space
B(G).

While in our notation, we distinguish between the building as an abstract simplicial
complex, i.e. A(G), and as a topological space, i.e. B(G), by abuse of terminology we refer
to both A(G) and B(G) as the Tits building of G.

Now let G be a linear algebraic group and let Gy = G/R(G) be the semisimple quotient
of G. The previous construction in the semisimple case works in this case as well and we can
define B(Q) (respectively B(G)) to be the topological space obtained by gluing the vector
spaces Af(H) (respectively unit spheres in the Ay (H)), for all maximal tori H C G, along
their common faces of Weyl chambers (respectively intersections of common faces with the
unit spheres). When G is reductive, the topological space ‘B(G) is the Cartesian product of
B(Gys) with the real vector space AV (Z) @R, where Z = Z(G)® is the connected component
of the identity in the center of G (see Definitions and [L.5)).

By slight abuse of terminology, for a linear algebraic group G, we refer to ‘B(G) as the
cone over the Tits building of G (strictly speaking, it is the cone over the Tits building only
in the semisimple case). Also, for a maximal torus H, we refer to Ay (H) as the cone over
the apartment of H and denote it by Ap.

We will see in Section that the set of lattice points in B(G) can be identified with
the set of one-parameter subgroups of G modulo certain equivalence relation (Deﬁnition

and Corollary [L.11)).
The following is the main definition in the paper (Definition .

Definition. We say that a function ® : |S| — B(G) is a piecewise linear map with respect
to ¥ if the following hold:

(1) For each cone o € X, the image ®(o) lies in a cone over an apartment A, = AY(H,)
(which of course is not necessarily unique). Here H, C G is the corresponding
maximal torus.

(2) For each o € ¥, the restriction @5 := &), : 0 — A, is an R-linear map.

We call ® an integral piecewise linear map if for each o € 3, ®, sends o N Z" to AV (H,).

Let G, G’ be reductive groups. A homomorphism of algebraic groups o : G — G’ induces
a natural map & : B(G) — B(G') (see Definition [1.13). If & : [£] — B(G) is a piecewise
linear map then a,(®) ;= do ® : |B| — B(G’) is also a piecewise linear map.

Throughout the paper we use the term “piecewise linear function” for a function with
values in R and the term “piecewise linear map” for a function with values in B(G) (see
Example for how a piecewise linear function is a special case of a piecewise linear map).

Let X5 be a toric variety. For the rest of the paper, we fix a point x( in the open torus
orbit in Xy. By a framed toric principal G-bundle we mean a toric principal G-bundle P
together with a choice of a point py € Py,. The choice of py € P, is equivalent to fixing a
G-isomorphism between P,, and G (regarded as a G-variety by multiplication from right).
Let @ : G — G’ be a homomorphism of algebraic groups. Let P (respectively P’) be a
framed toric principal G-bundle (respectively a framed toric principal G’-bundle) on Xx. A
morphism from P to P’ is a morphism of bundles that is equivariant with respect to « and
commutes with the T-action, and moreover, sends the frame py € Py, to the frame pj € Py
(see the second paragraph after Definition .

The main result of the paper is the following (see Theorem [2.2]).



Theorem 1 (Main theorem). Let G be a reductive algebraic group over k. There is a
one-to-one correspondence between the isomorphism classes of framed toric principal G-
bundles P over Xs, and the integral piecewise linear maps @ : |S| — B(G). Moreover, let
a: G — G be a homomorphism of reductive algebraic groups. Let P (respectively P') be a
framed toric principal G-bundle (respectively G'-bundle) with corresponding piecewise linear
map @ : || — B(G) (respectively ®' : |S| — B(G')). Then there is a morphism of framed
toric principal bundles F : P — P’, that is equivariant with respect to «, if and only if
D' = (D).

In fact, we prove a more general version of Theorem [I| that does not require G to be
reductive. Let us say that a toric principal G-bundle P over a toric variety Xy is locally
equivariantly trivial if the following holds: for any toric affine chart X, o € ¥, the restriction
P|x, is T-equivariantly isomorphic (as a principal G-bundle) to the trivial bundle X, x
G where T acts on X, x G diagonally, acting on X, in the usual way and on G via a
homomorphism ¢, : T — G (see Definition .

Theorem 2 (Main theorem, second version). Let G be a linear algebraic group over k.
There is a one-to-one correspondence between the isomorphism classes of framed toric prin-
cipal G-bundles P over Xy that are locally equivariantly trivial and the integral piecewise
linear maps ® : |S| — B(G). Moreover, let o : G — G’ be a homomorphism of linear alge-
braic groups. Let P (respectively P’) be a locally equivariantly trivial framed toric principal
G-bundle (respectively G'-bundle) with corresponding piecewise linear map ® : |S| — B(G)
(respectively ®' : | S| — B(G')). Then there is a morphism of framed toric principal bundles
F:P — P, that is equivariant with respect to «, if and only if ®' = a.(P).

When G is a reductive algebraic group the local equivariant triviality for toric principal
G-bundles is proved in [BDP20, Theorem 4.1] which in turn relies on [BR85, Prop. 8.5
proved using a Luna slice argument. Hence Theorem [1] follows from Theorem

We point out that the local equivariant triviality of a toric vector bundle over any field is
easy to prove (Proposition and [Klyachko89 Proposition 2.1.1]). We also remark that
the local triviality of toric principal G-bundles is not an immediate corollary of the local
triviality of toric vector bundles. Let G C GL(E) be a closed reductive subgroup. Then
a toric principal G-bundle P on an affine toric variety X, has an associated toric vector
bundle £ = P x ¢ E and P is a subbundle of the frame bundle of £. The equivariant triviality
of £ implies the equivariant triviality of its frame bundle but it does not immediately imply
the equivariant triviality of the subbundle P.

When the base field is C, in [BDP18] the local equivariant triviality is proved for any
linear algebraic group G. Hence when k = C, Theorem [l| holds for any linear algebraic
group G over C as well. We ask the following question:

Question. For an algebraically closed field k of positive characteristic, can one give an
example of a non-reductive linear algebraic group G and a toric principal G-bundle over an
affine toric variety that is not equivariantly trivial?

When G is the general linear group, Theorem [I]recovers Klyachko’s classification of toric
vector bundles (see Section and Example ‘

Theorem [I| readily gives Klyachko type classifications for toric principal bundles for other
classical groups such as the orthogonal and symplectic groups (see Example and Ex-
ample . We only discuss the cases of symplectic and even orthogonal groups. The
odd orthogonal group case can be dealt with in a similar fashion. Let (-,-) be a symmetric
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or skew-symmetric bilinear form on a vector space E = k?". Let G be the group of linear
isomorphisms of E preserving (-, -). Thus G = O(2r) or Sp(2r). Consider a flag of subspaces:

Fo=({0}C RS- S F.=E).

We say F, is an isotropic flag if for each j = 1,..., k we have Fjl = Fj_;. An integral labeled
isotropic flag (F,,ce) is an isotropic flag Fy whose subspaces are labeled by a decreasing
sequence of integers co = (¢1 > -+ > ¢) such that ¢; = —cpy1—j, for j = 1,... k.
Alternatively, we can think of an integral labeled isotropic flag as a Z-filtration of isotropic
subspaces in F (see Example .

Corollary 3 (Toric principal bundles for symplectic and orthogonal groups). Let G = O(2r)
or Sp(2r). With notation as above, the isomorphism classes of toric principal G-bundles on
Xy, are in one-to-one correspondence with the collections {(F, e, cpe) | p € X(1)} of integral
labeled isotropic flags that satisfy the following compatibility condition: for each cone o € 3,
there exists a normal frame L, = {Ls1,...,Lo2r} and a linear map ®, : (c N N) — Z"
such that for each ray p € o(1) the labeled isotropic flag associated to (L, P, (v,)) coincides
with (Fp.e,Cpe) (see Example[1.16 for the notion of normal frame).

A little application. The following illustrates an application of our building approach.
Let G be a reductive algebraic subgroup with K C G a closed subgroup. We say that a
toric principal G-bundle has an equivariant reduction of structure group to K if there is a
toric principal K-bundle P’ on Xy such that P is (T-equivariantly) isomorphic to P’ x g G.
This means that P has a T-equivariant trivializing open cover such that the corresponding
transition functions all lie in K. Let P be a toric principal G-bundle over Xx. We say that
P splits equivariantly if the structure group of P can be reduced equivariantly to a maximal
torus H C G. By Theorem [I] after choosing a frame, P corresponds to a piecewise linear
map ® from || to B(G). Suppose the image of ® lands in a single apartment (corresponding
to a maximal torus H C G). It follows from the proof of Theorem that all the transition
functions of P (with respect to the open cover by toric affine charts) can be taken to lie in
H and hence P splits. Now, consider the case X5 = P!. By the building axioms (Definition
we know that any two simplices lie in a common apartment. Since the fan of P! has
only two rays, we conclude that the image of ® lies in a single apartment (corresponding to
some maximal torus H C G) and hence P splits. This is the toric principal bundle version
of Grothendieck’s theorem on splitting of vector bundles over P!.

It is well-known that the equivariant Chow cohomology ring A% (Xy) can be identified
with the algebra of piecewise polynomial functions on ¥ (see [Payne06]). We can immediately
recover piecewise polynomial functions representing the equivariant characteristic classes of
a toric principal G-bundle P on Xy from its piecewise linear map ®. Fix a maximal torus
H C G and let p be a Weyl group invariant polynomial on the cocharacter lattice of H. The
polynomial p defines a well-defined function on the cone over the building ‘B(G) which we
also denote by p. We have the following (see Section |3| and Theorem [3.4).

Theorem 4. The image of a Weyl group invariant polynomial p under the equivariant
Chern-Weil homomorphism is given by the piecewise polynomial function p o ®.

As a special case of Theorem[d] one recovers the equivariant Chern classes of a toric vector
bundle. Each elementary symmetric function ¢; : R™ — R naturally gives an elementary
symmetric function €; : B(GL(r)) — R, i = 1,...,7 (see the end of Section . The T-
equivariant Chern classes of a rank r toric vector bundle £ can readily be obtained from its
piecewise linear map ®, that is, the composition ¢; o ® : |X| — R is exactly the piecewise
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linear map representing the i-th equivariant Chern class of £. This description of equivariant
Chern classes in not new and can be found in [Payne08| Proposition 3.1]).

Remark. The present paper is a companion paper to [KM] where the classification of toric
principal bundles is far extended to toric flat families. One of the main results there states
that torus equivariant flat families 7 : X — Xy, with reduced and irreducible affine fibers and
generic fiber Y = Spec(R) are classified by piecewise linear valuations on R. This valuation
perspective is then used to obtain results on finite generation of Cox rings of projectivized
toric vector bundles. This point of view also opens doors to the study of tropical geometry
over the semifield of piecewise linear functions.

Remark. It was suggested to us by Bogdan lon, that our Theorem [[] can be interpreted as
saying B(G) is a tropical or piecewise linear analogue of the classifying space of the group

G.
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Notation. Throughout the paper we will use the following notation:

k is the base field which we take to be algebraically closed.

G is a reductive algebraic group over k.

e For a maximal torus H C G, AV(H) denotes the cocharacter lattice of H and
AY(H)=AY(H)®R.

e A(G) is the Tits building of G as an abstract simplicial complex. The simplices in
A(G) correspond to parabolic subgroups of G and the apartments correspond to
the maximal tori in G (see Section |1.2)).

e B(G) is the topological space that is the union of unit spheres in AY(H), for all
maximal tori H C G and glued together along simplices corresponding to the same
parabolic subgroups (see Definition [L.4). When G is semisimple, B(G) is the un-
derlying space of the simplicial complex A(G). By slight abuse of terminology we
refer to B(G) as (the underlying space of ) the Tits building of G.

° ‘B(G) is the topological space that is the union of all the vector spaces Ay (H), for all
maximal tori H C G and glued together along faces of Weyl chambers corresponding
to the same parabolic subgroups (see Definition . When G is semisimple, B (G)
is the cone over B(G). For a reductive group G with semisimple quotient Gigs,
B(G) is the Cartesian product of B(Gs) with the real vector space AY(Z) @ R
corresponding to the identity component Z of the center of G. By slight abuse of
terminology, we refer to %(G) as the cone over the Tits building of G.

e [ = K" is a finite dimensional k-vector space. It is usually taken to be the fiber
over the distinguished point x( of a toric vector bundle.

o A(GL(E)) is the Tits building of GL(E). Its vertices correspond to flags of sub-

spaces in /. Apartments correspond to choices of frames in F, that is, direct sum

decompositions of F into 1-dimensional subspaces (see Example .
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o B(GL(E)) denotes the cone over B(GL(E)). We can identify B(GL(E)) with the
set of all prevaluations v : E'\ {0} — R (see Example and Section [L5)).

e T = (G}, denotes an algebraic torus with M and N its character and cocharacter
lattices respectively. In general, M and N denote rank n free abelian groups dual
to each other. We denote the pairing between them by (-,-) : M x N — Z. We let
Mr = M @R and Ng = N ® R to be the corresponding R-vector spaces.

e X, is the affine toric variety corresponding to a (strictly convex rational polyhedral)
cone o C Ng.

e Y is a fan in Ng with corresponding toric variety Xs. We denote the support of 3,
i.e. the union of cones in it, by |X|.

e p denotes a ray in ¥ with v, its primitive vector, i.e. the smallest nonzero integral

vector along p.

d : |¥| — B(G) is a piecewise linear map to the cone over the Tits building of G

(see Definition [2.1]).

1. PRELIMINARIES

1.1. Preliminaries on toric vector bundles. In this section we review Klyachko’s classi-
fication of toric vector bundles [Klyachko89]. We mainly follow the exposition in [Payne08|
Section 2]. The first classification of toric vector bundles goes back to [Kaneyama75]. We
refer the reader to [Payne08|, Section 2.4] for a nice brief history of the subject.

Let T = G}, denote an n-dimensional algebraic torus over an algebraically closed field k.
We let M and N denote its character and cocharacter lattices respectively. We also denote
by Mg and Ny the R-vector spaces spanned by M and N. For cone ¢ € Ny let M, be the
quotient lattice:

M, = M/(c" N M).

Let ¥ be a (finite rational polyhedral) fan in Ng and let X5 be the corresponding toric
variety. Also X, denotes the invariant affine open subset in Xy corresponding to a cone
o € ¥.. We denote the support of ¥, that is the union of all the cones in X, by |¥|. For each
1, X(1) denotes the subset of i-dimensional cones in Y. In particular, ¥(1) is the set of rays
in ¥. For each ray p € (1) we let v, be the primitive vector along p, i.e. v, is the unique
vector on p whose integral length is equal to 1.

We say that £ is a toric vector bundle on Xy if £ is a vector bundle on Xy equipped with
a T-linearization. This means that there is an action of T" on £ that lifts the T-action on
X5 such that the action map &, — &., for any t € T, x € Xy, is linear. By a morphism of
toric vector bundles on Xy we mean a T-equivariant morphism of vector bundles.

We fix a point zp € Xy C Xy in the dense orbit Xy. We often identify Xy with T and
think of o as the identity element in T. We let E' = &, denote the fiber of £ over xg. It
is an r-dimensional vector space where r = rank(&).

For each cone o € ¥ we have an invariant open subset X, C Xyx. The space of sections
I'(X,, &) is a T-module. We let T'(X,, &), C I'(X,, &) be the weight space corresponding
to a weight u € M; these spaces define the weight decomposition:

[(X,,&) = EB I Xy, &)
ueM
Every section in I'(X,, £), is determined by its value at xo. Thus, by restricting sections to
E =¢&,,, we get an embedding I'(X,, ), < E. Let us denote the image of I'(X,, &), in E
by EZ. Note that if v’ € 0¥ N M then multiplication by the character X“/ gives an injection
7



NXs,E)u = IN( Xy, E)u—w. Moreover, the multiplication map by X“/ commutes with the
evaluation at o and hence induces an inclusion EJ C E?__,. If u’ € o' then these maps
are isomorphisms and thus EJ depends only on the class [u] € M, = M/(c- N M). For a
ray p € X(1) we write

EY = B,
for any v € M with (u,v,) =1 (all such u define the same class in M,). Equivalently, one
can define Ef as follows (see [Klyachko89, §0.1]). Pick a point z, in the orbit O, and let:

Ef ={ecE| t.Tl(}I_I:T X“(t) 7 (t - e) exists in £},
zo—z,

where ¢ varies in 1" in such a way that ¢ - zo approaches x,. One checks that Ef does not
depend on the choice of z, and only depends on i = (u,v,).
We thus have a decreasing filtration of E:

(1) ~--DEl | DE!/DE[ D

K3

An important step in the classification of toric vector bundles is that a toric vector bundle
over an affine toric variety is equivariantly trivial. That is, it decomposes T-equivariantly
as a sum of trivial line bundles. Let o be a strictly convex rational polyhedral cone with
corresponding affine toric variety X,. Given u € M, let £, be the trivial line bundle X, x A'
on X, where T acts on Al via the character u. One observes that the toric line bundle £,
in fact only depends on the class [u] € M,. Hence we also denote this line bundle by L.
One has the following:

Proposition 1.1. Let £ be a toric vector bundle of rank r on an affine toric variety X,.
Then & splits equivariantly into a sum of line bundles L, :

€= @ ﬁ[ug‘]
j=1

where [u;] € M,.

Proof. Without loss of generality we can assume that o is a full dimensional cone. Let z,
denote the unique T-fixed point in X,. One knows that every vector bundle over an affine
variety is globally generated [Hartshorne77, Example II 5.16.2]. Thus the restriction map
H°(X,,E) — &,, is a surjective T-equivariant map. Hence we can find weight sections
81,58 € HY(X,,&) such that their restrictions form a basis for £, . Now the set of
x € X, where the set {s1(z),...,s.(z)} is linearly dependent is a closed T-invariant subset
which does not contain x,, hence it must be the empty set. The weight sections s; then
provide an equivariant trivialization of £. ]

We usually denote the multiset {[ui],...,[u,]} € M, by u(c). The above shows that
the filtrations (Ef);ez, p € X(1), satisfy the following compatibility condition: There is a

K3
decomposition F = @;:1 L; of E into a direct sum of 1-dimensional subspaces L; and a

multiset u(o) = {[u1], ..., [ur]} C M, such that for any ray p € o(1) we have:
(2) Ef = Y L
(uj,vp)>i

We call a collection of decreasing Z-filtrations {(E?) | p € (1)} a compatible collection

of filtrations if for any o € ¥ there is a direct sum decomposition £ = @’_, L; of E

into 1-dimensional subspaces and a multiset {[u1],...,[ur]} C M, such that holds. We

also need the notion of a morphism between compatible filtrations. Let E, E’ be finite
8



FIGURE 1. An apartment in the Tits building of SL(3). It is a triangulation
of the circle.

dimensional vector spaces with compatible collections of filtrations {(Ef) | p € (1)} and
{(E"?) | p € (1)} respectively. A morphism between these compatible collections is a linear
map F : E — E’ such that F(E?) C E'?, for all i € Z and p € £(1).

The following is the main result in classification of toric vector bundles (see [Klyachko89|
Theorem 2.2.1]).

Theorem 1.2 (Klyachko). The category of toric vector bundles £ on Xy, is naturally equiva-
lent to the category of compatible collections of filtrations on finite dimensional vector spaces
E.

1.2. Tits Buildings. A building is an (abstract) simplicial complex together with a collec-
tion of distinguished subcomplexes called apartments that satisfy certain axioms. One can
think of the notion of building as a “discretization” of the notion of symmetric space from
Lie theory and differential geometry. While symmetric spaces exist for real and complex
groups, buildings can be defined for any linear algebraic group over a field.

There are two important kinds of buildings: spherical buildings and affine buildings. Each
apartment in a spherical building is a triangulation of a sphere whereas each apartment in
an affine building is a triangulation of an affine space. To a linear algebraic group G one
associates its Tits building which is an example of a spherical building. Similarly, to a
linear algebraic group G over a discretely valued field one associates its Bruhat-Tits building
which is an example of an affine building. In this paper we will only be concerned with Tits
buildings.

We denote the Tits building, as a simplicial complex, of a linear algebraic group G
by A(G). We recall that the simplices in A(G) correspond to parabolic subgroups of G.
For parabolic subgroups P;, P, the simplex corresponding to P; lies in the boundary of
that of Py if P, C P;. The apartments in A(G) correspond to maximal tori in G. The
apartment corresponding to a maximal torus H is the union of all simplices corresponding
to parabolic subgroups P that contain H. Let AY(H) denote the cocharacter lattice of H
and put A (H) = AY(H) ®z R. The apartment corresponding to H is the Cozeter complex
of (G, H) which lives in Ay (H) (see Figure [1)).

Remark 1.3 (Reducing to the semisimple case). Every parabolic subgroup contains the
solvable radical R(G) of G. This implies that the building A(G), as a simplicial complex,
can be identified with that of its semisimple quotient Gss = G/R(G).

By Remark without changing the building (as an abstract simplicial complex), we
can always reduce to the semisimple case. Let G be a semisimple linear algebraic group. The
abstract simplicial complex A(G) has a natural geometric realization, that is, a topological
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space B(G) such that each simplex in A(G) can be identified with a subset of B(G) homeo-
morphic to a standard simplex and these simplices intersect, as subsets of B(G), along their
common subsimplices. Below we explain the construction of B(G).

Let H be a maximal torus and let Ay denote the sphere obtained by taking the quotient
of AY(H) \ {0} by the positive scalars Rso. If we fix an inner product on Ay (H), this
quotient can be identified with the unit sphere in Af(H). When G is semisimple, the Weyl
chambers are simplicial cones and the Coxeter complex of (G, H) can be realized as the
triangulation of Ay obtained by the images of Weyl chambers (see Figure [1)).

There is a one-to-one correspondence between the faces of Weyl chambers in Ay (H) and
the parabolic subgroups containing H. Suppose a parabolic subgroup P has two maximal
tori H and H’ respectively. In Section (Proposition we will see that there is a
natural linear isomorphism between the face in AY(H) corresponding to P and the one
in A (H') corresponding to P. Moreover, this linear isomorphism sends lattice points to
lattice points (i.e. sends the points in AY(H) to the points in AV (H’)).

Definition 1.4 (Underlying space of the Tits building). Let G be a linear algebraic group.
Consider the topological space B(G) obtained by gluing the spheres Ay, for all maximal
tori H C G, along the simplices corresponding to the same parabolic subgroups. We remark
that when G is semisimple, the topological space B(G) is the underlying space of the
simplicial complex A(G), that is, every simplex in A(G) corresponds to a subset of B(G)
homeomorphic to a standard simplex.

By slight abuse of terminology, for a linear algebraic group G, we refer to B(G) as the
underlying space of the Tits building of G (or just the Tits building of G for short). We also
refer to Ay as the underlying space of the apartment associated to H.

Definition 1.5 (Cone over the Tits building). Let G be a linear algebraic group. We
let %(G) to be the topological space obtained by gluing the vector spaces Ay (H), for all
maximal tori H C G, along faces of Weyl chambers corresponding to the same parabolic
subgroups. When G is semisimple, B(G) is the cone over B(G). If G is a reductive group
with semisimple quotient Gy, B(G) is the Cartesian product of B(Gy) with the real vector
space AV (Z) ® R, where Z denotes the identity component in the center of G.

By slight abuse of terminology, for a linear algebraic group G, we refer to B(G) as the
cone over the Tits building of G. For a maximal torus H, we denote the vector space Ay (H)
by le and refer to it as the cone over the apartment Ay. We denote the subset of ‘B(G)
obtained by taking the union of lattices AV (H), for all maximal tori H, by Bz(G) and refer
to it as the set of lattice points in B(G).

In this paper we only deal with the Tits building associated to a linear algebraic group
and we are not concerned with the general theory of buildings. Nevertheless we recall the
definition of a building, as an abstract simplicial complex, here.

Definition 1.6 (Building as an abstract simplicial complex). A d-dimensional building
A is an abstract simplicial complex that is a union of subcomplexes A called apartments
satisfying the following axioms:

(a) Every k-simplex of A is within at least three d-simplices if k < d.

(b) Any (d — 1)-simplex in an apartment A lies in exactly two adjacent d-simplices of
A and the graph of adjacent d-simplices is connected.

(¢) Any two simplices in A lie in some common apartment A. If two simplices both lie
in apartments A and A’, then there is a simplicial isomorphism of A onto A’ fixing
the vertices of the two simplices.

10



A d-simplex in A is called a chamber. The rank of the building is defined to be d + 1.

1.3. Tits buildings and one-parameter subgroups. We present a natural way to realize
(the cone over) the Tits building of G, namely, as the space of all algebraic one-parameter
subgroups of G modulo a certain equivalence relation. This construction of the Tits building
of a linear algebraic group from one-parameter subgroups also appears in [MFK94l Section
2.2]. The difference between our approach in this section and that of [MFK94l Section 2.2]
is that the latter is interested in describing the Tits building whereas we are interested in
describing the cone over the Tits building.

Let G be a linear algebraic group. By an algebraic one-parameter subgroup of G (or a one-
parameter subgroup for short) we mean a homomorphism of algebraic groups A : G,,, — G.

Definition 1.7 (Equivalence of one-parameter subgroups). Let A1, A2 be one-parameter
subgroups of G. We say that A\; and Ay are equivalent and write Ay ~ Ao if the the function
MA; ! Gy, — G extends to a regular function from A' to G, that is, if lim,_o A (8) Ao (s)
exists in G.

We will see (Corollary that the equivalence classes of ~ can be identified with
B7(@G), the set of lattice points in the cone over the Tits building B(G) (Definition .

To a one-parameter subgroup A : G,, — G there corresponds a parabolic subgroup
Py C G defined as follows (see [MEK94, Section 2.2, Definition 2.3/Proposition 2.6], [Milnel
Chapter 21, Section d]):

Py={geG| lin}) A(s)gA(s) ™! exists in G}.
S—r

Fix a faithful representation G < GL(FE) where E is a finite dimensional vector space.
The one-parameter subgroup A then gives a G,,-action on F. Let E = @le W; be the
weight space decomposition of E and let ¢; € Z be the weight of the weight space W;. We
assume ¢ > - -+ > ¢. This gives rise to a flag of subspaces

F.:({O}CF1C~~-CFk:E),

where F; = @7_, W;. The stabilizer of the flag Fy in GL(E) is a parabolic subgroup of
GL(E). One can show that the parabolic subgroup Py is the stabilizer of Fy in G. The
following proposition gives alternative characterizations of the equivalence of one-parameter
subgroups. Item (c) in Proposition is used in [MFK94, Section 2.2, Definition 2.5] to
define a variant of the equivalence ~ of one-parameter subgroups.

Proposition 1.8. Let A1, A2 be one-parameter subgroups of G. Fiz a faithful representation
G — GL(E). Fori=1,2, let F; 4 and ¢} > --- > ¢, be the flag and weights associated to
the linear action of \; on E respectively. The following are equivalent:

(a) Al ~ )\2.

(b) A1 and Ay have the same flags and the set of weights, that is, F1,. = Fbe and
cd=¢c2,j=1,...,k.
7 ]7 ) )

(c) There exists g € Py, such that Ay = gh1g™".
We need the following lemma in the proof of Proposition [I.8]

Lemma 1.9. Let A\ : G,, — GL(E) be a one-parameter subgroup with the corresponding

flag Fy and let \ be diagonal in a basis B for E. Let X' be another one-parameter subgroup

which fizes the flag Fs. Then there is x € Py such that xXNx~! is diagonal in the basis B.
11



Proof. For each j = 1,...,k, let B; = BN F}, where F} is the j-th subspace in the flag.
Then Bj is a basis for F;. We know )\’ fixes every subspace Fj. Let Bj be a basis for F}
consisting of weight vectors for A’. Extend Bj to a basis Bj for Fy consisting of weight
vectors for A'. Continuing this way we arrive at a basis B’ for E of weight vectors for X'
Now let z € GL(E) be a linear transformation which sends B;- to Bj, j =1,...,k. Then
x € Py because it fixes the flag F,. One sees from the construction that 2\ z~! is diagonal
in the basis B. |

Proof of Proposition[1.8 It is well-known that given two flags in E one can find a basis B
that is adapted to both of the flags, that is, any subspace appearing in either flag is spanned
by a subset of B. This is in fact one of the axioms in the definition of a building for the
Tits building of GL(E) (see Definition c¢) and Example and can be deduced as
a corollary of the proof of Jordan-Holder theorem (see [ABOS8, Section 4.3]). On the other
hand, by Lemmawe can find z; € Py,, ¢ = 1,2, such that both A\, = J:i/\iaci_l are diagonal
in the basis B. Now, for i = 1,2, since x; € Py,, we have lim;_,o \; (¢)z;\;(t) ™! exists. This
implies that lim;_,o A;(£)\;(£)~! also exists which means \; ~ \,. Thus, without loss of
generality, we can replace \; with A;. Since A} and )} are diagonal in the same basis, one
observes that A} ~ A, if and only if \] = A,. The proposition is straightforward to verify
for A} and X,. That is, A} = X5 if and only if they have the same flags and the same set of
weights, if and only if X5 = g\jg~! for some g € Py,. This concludes the proof. O

Let H C G be a maximal torus. It is well-known that the parabolic subgroups P contain-
ing H are in one-to-one correspondence with the faces of Weyl chambers in the vector space
Ay (H). For a parabolic subgroup P C G we let A}, (H) denote the set of one-parameter
subgroups in AV (H) that lie on the face corresponding to P. That is, A}, (H) consists of one-
parameter subgroups in AV (H) that act on Lie(P) with non-negative weights. Alternatively,
we have:

AY(H) = {A € A(H) | Py = P}.

Given two maximal tori H, H' in P, the next proposition gives a natural linear iso-
morphism between the faces of Weyl chambers in Ag(H) and AY(H’) corresponding to the
parabolic subgroup P.

Proposition 1.10. Let P C G be a parabolic subgroup.

(a) Let H, H' be mazimal tori in P. Then for every \ € AL(H) there is a unique
N € AV(H') such that X ~ X'.

(b) Moreover, A — X extends to a linear isomorphism from the cone associated to P in
AY(H) to the cone associated to P in Ay (H').

Proof. (a) Since maximal tori are conjugate, there exists g € P = Py such that gHg~! = H'.
Let X = gA\g~!. Then X € AV(H’) and A ~ X by Proposition ¢). Also, no two one-
parameter subgroups in AY(H') are equivalent which proves the uniqueness of \'. (b)
Clearly A — gAg~! is a group isomorphism from AV (H) to AV(H’) and maps A} (H) onto
AV (H'). |
For a parabolic subgroup P, let A}, C s3Z(G) be the set of equivalence classes of one-
parameter subgroups of G that act on Lie(P) by non-negative weights. Alternatively:
Ap={\| Py =P}/ ~.
It follows from Proposition that, for each maximal torus H C P, the set A} can be

identified with AY,(H), the set of lattice points in the face associated to P.
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The following is the main conclusion of this section and is an immediate consequence of
Proposition [1.10

Corollary 1.11. The set By(G) of lattice points in the cone over the Tits building (Defi-
nition can be identified with the set of equivalence classes of one-parameter subgroups
of G.

Remark 1.12. The above realization of the Tits building of G in terms of equivalence
classes of one-parameter subgroups (Corollary is analogous to the description of the
Tits building of a symmetric space as the set of equivalence classes of geodesics (see [Ji,
Section 3]).

A homomorphism of algebraic groups induces a map between the corresponding cones
over the Tits buildings. Realizing the set of lattice points in the cone over the Tits building
as a quotient of space of one-parameter subgroups gives an easy way to construct this map.

Definition 1.13. Let a : G — G’ be a homomorphism of linear algebraic groups. If
A : G,, = G is a one-parameter subgroup of G then avo X : G,,, — G’ is a one-parameter
subgroup of G’. It follows from the definition that if A ~ A then ao A ~ a o \. Hence
A= a o\ gives a well-defined map & : B(G) — B(G’). If H C G is a maximal torus then
a(H) is contained in a maximal torus H' of G’ and hence &(Ag) C Ay

1.4. Examples. In this section we describe (the cones over) the Tits buildings of the general
linear group, the symplectic group and the even orthogonal group.

Example 1.14 (Tits building of the general linear group). Let F be a k-vector space
of dimension r. The (cone over the) Tits building of G = GL(E) has a nice concrete
description as follows. Each one-parameter subgroup A : G, — GL(E) is a diagonal matrix
diag(t*,...,t*"), v; € Z, in some basis B = {b,...,b.} for E. After reordering the basis
elements if necessary we can assume vy > --- > v,.. The ordered basis B gives rise to a
complete flag of subspaces

V.:({()};Vl;...;VTZE),
where V; = span{by,...,b;}. Suppose
V=" =Vjy D Vi1 = =Vjy > =V > Vi +1 = = V4, = Up.
Thus, v;;, > -+ > v;, = v, are the distinct numbers among the v;. For j = 1,...,k, let
cj =v;; and F; =V, and put ¢g = (c1 > --- > ¢p)and Fo = ({0} G 1 G --- G Fr. = E).
We conclude that a one-parameter subgroup in GL(F) is uniquely determined by the pair
(Fo,ce). Let us call (F,,ce), where ¢ = (c; > -+ > ¢;) is a decreasing sequence of

real numbers, a labeled flag. The cone over the building B(GL(E)) can be realized as the
collection of labeled flags in F.

Remark 1.15. Alternatively, we can think of the integral labeled flags (i.e. the points in
B7(GL(E)) C B(GL(E))) as decreasing Z-filtrations (E;) in E. Namely, given an integral
labeled flag (F.,ce) the corresponding filtration (E;) is defined as follows: we let E; = F;
whenever ¢; > % > cjy1, j =1,...,k = 1. If ¢, > ¢ welet E; = E, and if ¢ > ¢; we let
E; = {0}.

A frame in E is a direct sum decomposition

E= EBL
i=1
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into one-dimensional subspaces. Maximal tori in GL(E) are in one-to-one correspondence
with frames in E. For a frame L = {Lq,..., L.} giving a maximal torus H, the correspond-
ing cone over the apartment A, = Ap is the r-dimensional R-vector space of all functions
from the finite set {Ly,..., L.} to R. We say that a flag F, is adapted to a frame L if every
subspace F; in it is spanned by some of the one-dimensional subspaces in L.

The abstract simplicial complex, A(GL(E)) can be described as follows. Its vertices are
the proper nontrivial vector subspaces of E. Two subspaces U; and U, are connected if one
of them is a subset of the other. The m-simplices of A(GL(FE)) are formed by sets of m + 1
mutually connected subspaces, namely a flag Fo = ({0} S F1 & -+ G Fruy1 G Fug2 =
E). Maximal connectivity is obtained by taking r — 1 proper nontrivial subspaces and the
corresponding simplex corresponds to a complete flag.

Example 1.16 (Tits buildings of the orthogonal and symplectic groups). Next let us de-
scribe (the cones over) the Tits buildings of the symplectic group and the even orthogonal
group. The odd orthogonal group can be treated in a similar fashion.

Let E be a 2r-dimensional vector space over k. Let (-, -) be a non-degenerate symmetric or
skew-symmetric bilinear form on E. When (-, -) is symmetric (respectively skew-symmetric)
denote the subgroup of GL(E) preserving (-,-) by O(E) (respectively Sp(E)). Throughout
the rest of this example, G denotes O(E) or Sp(FE).

Consider a partial flag of subspaces

Fo=({0}SFR G- G F=E).
We call F' an isotropic flag if for each 0 < 57 < k we have
(3) Fi- = Fy_j.

This implies that F}; is an isotropic subspace, for j = 1,...,|k/2]. Note that the Fj,
j=1,...,|k/2], determine the whole isotropic flag F,. We mention that in the literature
sometimes an isotopic flag is defined to be a flag consisting of isotropic subspaces, that is,
F1 G --- G F|j/5) in our notation.

From linear algebra one knows that there exists a basis B = {e1,..., e, f1,..., fr} for E
such that:

<eivej> :Oa VZ,]
<ei7fi> = 1) Vi
<ei7fj>:05 Viajv 7’7&]

We call such a basis B a normal basis for (E, (-,-)). Note that for any nonzero ti,...,t, €
k, {tie1,...,trep,t; f1,. .. t7 £} is also a normal basis. We call a normal basis up to
multiplication by the ¢; a normal frame. The normal frames are in one-to-one correspondence
with maximal tori of G. In fact, an ordered normal basis (e1,..., e, fr,..., f1) gives the
maximal torus 7" defined by:

T = {diag(t1, ..., tet Y t7 ) | t1, ...t € K}

We note that one can reorder {ej,...,e,} as well as switch any e; with +f; (depending
on whether (-,-) is symmetric or skew-symmetric) and still have a normal basis. FEach
one-parameter subgroup A : G,, — G is given by a diagonal matrix

diag(t’t, ...t t7 .. T, v € Z,
14



in some ordered normal basis B = (e1,...,€r, fr,..., f1). After reordering vy,...,v, and
switching some of the v; with —v; if necessary, we can assume

vp 2 2ve 202 o2 2 o

To simplify the notation, for ¢ = 1,...r we let v,4; = —v,41—;. The ordered basis B gives
rise to a complete flag ({0} C Vi C --- C Vo, = E) defined by:

Vi= Span{ela BERE) ei}
V'r+i = Span{eh N ) fTa cevy fr+17i'}u

where i = 1,...,r. One observes that Vf = Vo,_;. Let the indices 1 <11 < ... <14 = 2r
be such that:

vlz...:vil >U’i1+1:"':vi2>"'vik,1 >vik71+1:...fvik:7v1'

That is, v;; > --- > v;, are the distinct numbers among the +v;. For j = 1,...,k put
¢j = v, and Fj = V;,. We thus get an isotropic flag Fo = ({0} G F1 G --- G F}, = E)
and a labeling ¢ = (1 > -+ > ¢) with ¢;j = —cgr1-;. Let us call (Fe,ce), where
Ce = (€1 > -+ > ¢y) is a decreasing sequence of real numbers with ¢; = —cp41—;, a labeled
isotropic flag. The cone over the building %(G) can be realized as the collection of labeled
isotropic flags. We say that an isotropic flag F, is adapted to a normal frame L if every
subspace F; in it is spanned by some of the one-dimensional subspaces in L.

The abstract simplicial complex A(G) can be described in a similar fashion to that of
GL(FE). The simplices in A(G) correspond to isotropic flags Fy and apartments correspond
to normal frames. A simplex is contained in an apartment if the corresponding isotropic
flag is adapted to the corresponding normal basis.

Alternatively, in a similar way as explained in Remark the integral labeled isotropic
flags (i.e. the points in Bz(G) C B(G)) can be realized as decreasing Z-filtrations on E
consisting of isotropic subspaces.

1.5. Tits building of the general linear group and prevaluations. A useful realization
of the (cone over the) Tits building of GL(E) is as the space of all prevaluations on E. The
authors have not been able to find a reference for this realization in the literature. This is
an analogue of the Goldman-Iwahori realization of the Bruhat-Tits building of GL(E) as the
space of non-Archimedean norms on F (see [RITW15, Section 1.2] or [JSY07]). We recall
that to a linear algebraic group G over a discretely valued field, there corresponds an affine
building called its Bruhat-Tits building.

Definition 1.17. Let E be a finite dimensional k-vector space. We call a function v :
E\ {0} — R a prevaluation if the following hold:

(1) For all 0 # e € E and 0 # ¢ € k we have v(ce) = v(e).
(2) (Non-Archimedean property) For all0 # e1,es € E, e1+ey # 0, the non-Archimedean
inequality v(e; + e2) > min{v(e;),v(e2)} holds.

It is convenient to extend v to the whole E and define v(0) = co. We call a prevaluation
v integral if it attains only integer values, i.e. v : E'\ {0} — Z. The term prevaluation is
taken from the paper [KKh12l Section 2.1]. Prevaluation is a standard commutative algebra
notion although in most of the literature the term valuation on a vector space is used. We
use the term prevaluation to distinguish it from valuations on rings.

The value set v(E) of a prevaluation v is the image of E\ {0} under v, i.e.

v(E) = {v(e) | 0 £ e € E}.
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It is easy to verify that |v(E)| < dim(F) and hence v(F) is finite. Each integral prevaluation
v on E gives rise to a filtration F, = (E,>q)ecz o0 E by vector subspaces defined by:

E,>o ={e€ E|v(e) > a}.

If v(E) = {a1 > --- > aj} then we have an integral labeled flag Fy = (Fi,>q, ;Cé . ;Cé Fy>a,)
where F,>,, is labeled with a,. Conversely, a decreasing filtration Eq = (Eq)qez such that
Nucz Ea = {0} defines a prevaluation vg, by:

vg,(e) =max{a € Z | e € E,},

for all e € E. The assignments v — E, and E, — vg, are inverse of each other and give
a one-to-one correspondence between the set of integral prevaluations on E and the set of
decreasing Z-filtrations on FE.

Recall that a frame L = {Lq,...,L,} is a collection of 1-dimensional subspaces L; such
that £ = 692:1 L;. We say that a frame L is adapted to a prevaluation v if every subspace
Fy>q is a sum of some of the L;. This is equivalent to the following: For any 0 # e € E let
us write e = ) . e; where e; € L;. Then:

v(e) = min{v(e;) | €; # 0}.

The set of prevaluations v : E \ {0} — R can naturally be identified with B(GL(E)),
the cone over the building of GL(E). Given a frame L the corresponding cone over the
apartment A consists of all prevaluations adapted to L.

2. TORIC PRINCIPAL BUNDLES AND TITS BUILDINGS

Let G be a linear algebraic group over k. As usual we denote the cone over the Tits
building of G by ‘B(G) Recall that for each maximal torus H C G we identify the corre-
sponding cone over the apartment A with the R-vector space Ay (H) = AV (H) ® R, where
AV (H) denotes the cocharacter lattice of H.

Throughout, X is a fan in an R-vector space Ng with support |X|.

Definition 2.1 (Piecewise linear map to B(G)). We say that a map ® : |Z| — B(G) is a
piecewise linear map if the following hold:

(1) For each cone o € ¥ the image ® (o) lies in a cone over an apartment A, = AY(H,)
(which of course is not necessarily unique). Here H, C G is the maximal torus
corresponding to A,.

(2) For each o € ¥ the restriction &, := &, : 0 — A, is an R-linear map.

We say that ® is integral if for every cone o, the map &, restricts to give a Z-linear map
®,:0NN — AV(H,). We note that N = AV(T') is the cocharacter lattice of T" and hence
such a linear map is in fact the derivative of a group homomorphism ¢, : T, — H, where
T, C T is the subtorus whose cocharacter lattice is generated by o N N.

Let a : G — G’ be a homomorphism of linear algebraic groups. Recall that « induces a
map & : B(G) — B(G') (see Definition [1.13). If & : || — B(G) is a piecewise linear map,
it is clear that ® = G o ® : || — B(G') is a piecewise linear map as well.

Recall that a principal G-bundle over a variety X is a fiber bundle P over X with an
action of G such that G maps each fiber to itself and the action of G on each fiber is free
and transitive, that is, every fiber can be considered as a copy of G. We will write the
action of G on P as a right action. Let G, G’ be algebraic groups. Let P (respectively P’)
be a principal G-bundle (respectively G’-bundle) over X. A morphism of principal bundles
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is a bundle map F : P — P’ with respect to a homomorphism « : G — G’ if the following
equivariance condition holds: For any z € P and g € G,

F(z-9) = F(z) - alg).

With our usual notation, let Xy be the toric variety associated to a fan . Following
[BDP16] we say that a principal G-bundle P over a toric variety X is a toric principal
G-bundle if T acts on P lifting its action on Xy in such a way that the T-action and the G-
action on P commute (we will write the T-action on the left and the G-action on the right).
By a framed toric principal G-bundle we mean a toric principal G-bundle P together with a
choice of a point py € P,,. The choice of pg € P, is equivalent to fixing a G-isomorphism
between P, and G (where G acts on itself via multiplication from right). A morphism
of toric principal bundles is a morphism of principal bundles that is also T-equivariant. A
morphism of framed principal bundles is a morphism F' that sends the distinguished point
po € Py, to the distinguished point pj € P, . In other words, F': P,, — P, coincides with
a: G — G after identifying Py, P, with G, G’ respectively.

If G is a subgroup of GL(E) then one defines the associated vector bundle € of P as the
fiber product £ = P xg E. It is straightforward to verify that it is indeed a toric vector
bundle.

The next theorem is the main result of the paper.

Theorem 2.2. Let X, be a toric variety and G a reductive algebraic group over k. There
is a one-to-one correspondence between the isomorphism classes of framed toric principal
G-bundles P over Xsx, and the integral piecewise linear maps @ : |3 — B(G).

Moreover, let a : G — G’ be a homomorphism of reductive algebraic groups. Let P
(respectively P’) be a framed toric principal G-bundle (respectively G'-bundle) with corre-
sponding piecewise linear map @ : |S| — B(G) (respectively ®' - |S| — B(G")). Then there
s a morphism of framed toric principal bundles F : P — P’, that is equivariant with respect
to a, if and only if ' = o, (D).

When the base field k is C, the theorem holds for any linear algebraic group G.

In fact, we prove a more general version of Theorem that does not require G to be
reductive (Theorem below). Most of the rest of this section is devoted to its proof.
Theorem follows from Theorem We need the following definition.

Definition 2.3 (Locally equivariantly trivial toric principal bundle). Let G be a linear
algebraic group. (1) Let P be a toric principal G-bundle on an affine toric variety X,. We
say that P is equivariantly trivial if there is a T-equivariant principal G-bundle isomorphism
between P and a trivial toric principal bundle X, x G where T acts on X, x G diagonally,
acting on X, in the usual way and on G via a homomorphism 7" — G. That is, for any
teT,x e X, and g € G we have:

(4) t-(z,9) = (- 2,0s(t)9).

(2) Let P be a toric principal G-bundle on a toric variety Xx. We say that P is locally
equivariantly trivial if for each cone o € X, the restricted bundle P|x_ is equivariantly
trivial.

Theorem 2.4. Let G be a linear algebraic group over k. There is a one-to-one correspon-
dence between the isomorphism classes of framed toric principal G-bundles P over Xy that
are locally equivariantly trivial and the integral piecewise linear maps @ : |3 — B(G).
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Moreover, let a : G — G’ be a homomorphism of linear algebraic groups. Let P (re-
spectively P') be a locally equivariantly trivial framed toric principal G-bundle (respec-
tively G'-bundle) with corresponding piecewise linear map ® : |8| — B(G) (respectively
@' : || = B(G")). Then there is a morphism of framed toric principal bundles F : P — P,
that is equivariant with respect to «, if and only if ® = a, (D).

Theorem follows from Theorem provided that we show the equivariant triviality
of toric principal G-bundles over affine toric varieties holds for reductive G. This is proved
in [BDP20), Theorem 4.1] which itself relies on [BR85l Prop. 8.5]. We state this result below
and give a sketch of its proof following [BDP20, Theorem 4.1].

Theorem 2.5. Let G be a reductive group. Let P be a toric principal G-bundle over an
affine toric variety X,. Then P is equivariantly trivial.

Sketch of proof. Without loss of generality one can assume that X, contains a (unique)
torus fixed point z,. Then the (T x G)-variety P contains a unique closed (7' x G)-orbit,
namely the fiber P,_ . Take p, € P, . One verifies that the first projection 7' x G — T
maps the stabilizer subgroup (T' x G),,, isomorphically to T', and hence there is a unique
homomorphism ¢ : T — G such that (T x G),, = {(t,¢(t)) | t € T}. In particular, the
stabilizer (T' x G)p, is reductive. We can now apply the slice theorem in [BR85, Prop. 8.5]
to conclude that P is a fiber product F xr (T X G), for some affine T-variety F'. Here T acts
on T x G by multiplication from left via t — (¢, $(¢)). One then sees that FF = P/G = X,
and P = X, x GG as required. O

Proof of Theorem[2.f} For a cone o € ¥ let T, be the stabilizer of the T-orbit O,. The
subgroup T, is generated by one-parameter subgroups corresponding to points in o N N.
Note that when o is full dimensional T, = T. We also let z, € O, be the point in the
closure of T, - zg.

Let @ : |X| — B(G) be an integral piecewise linear map. By assumption, for each cone
o € X, the restriction ®|, : AY(T,) = AY(H,) is a Z-linear map. Let

¢s: Ty - H, CG

be the homomorphism whose derivative at identity is ®|,.

We prove the theorem in several steps.

Step 1: Given an integral piecewise linear map @ : |X| — %(G) we would like to
construct a toric principal G-bundle Py over Xx. We construct Pg by gluing equivariantly
trivial G-bundles over affine toric charts.

Take a cone o € ¥ with X, its associated affine toric variety. Consider an arbitrary
extension of the homomorphism ¢, to the whole T', that is, ¢, : T'— H,. Let

P, =X, xG

be the trivial G-bundle on X, where G acts on the second component by multiplication from
the right. Define an action of 7" on X, X G by letting T" act on X, x G diagonally where it
acts on G by multiplication from left via the homomorphism ¢, (see ) We have defined
toric principal bundles P, on the affine charts X, , now we define gluing maps. Let o,0’ be
two cones with 7 = 0 No’. We would like to define a transition map ¢ = ¢, : X; — G so
that the morphism ¢ = 7723070/ : Poix, = Por|x, given by

¢(I’g) = (:c,z/;(:c)g),
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intertwines the T-actions on P, and P,s. This is equivalent to the following:
(5) Yt 1)pe ()Y(2) ™' = ¢or (1), VEET, Vo € Xy = Xy N Xy
Recall that we fixed a point xg in the open orbit Xy. Then is equivalent to:
(6) Wt~ 20)do (t)1h(0) ™" = dor(t), VE €T

To construct such a transition map 1 : X; — G we define ¥ on the open torus orbit X by:
(7) Y(t-x0) = ¢por () o ()71, VE ET.

Note that, in particular, we set ¥ (zg) = 1. Letting 1(xg) = 1 amounts to choosing a
framing, that is, identifying the fiber at zo of Pp with G. It is clear that the equality
@ holds. Moreover, from the definition (Equation @) one sees that the 1, s satisfy the
cocycle condition.

We only need to show that ¢ extends to a regular map on the whole X,.. This follows
from the next lemma.

Lemma 2.6. With notation as above, let ¢,¢' : T — GL(E) be linear representations of
T on a finite dimensional vector space E. The function ¥(t - m9) = ¢'(t)¢~1(t) extends
to a regular function X, — GL(E), if and only if for every one-parameter subgroup A,
a € TN N, the one-parameter subgroups ¢ o Aq and ¢' o A\ are equivalent, i.e. the function
(¢ 0o Xa)(Ppo X)L : Gy, — GL(E) eatends to a reqular function A — GL(E).

Proof. The “only if” direction is obvious, we prove the other direction. Let B = {by,...,b.}
(respectively B’ = {b},...,b.}) be a basis of T-weight vectors for ¢ (respectively ¢’). For
every i, let u; (respectively wu}) be the weight of b; (respectively b}). Let us write b; =
> cizb}. Then, for a € 7NN, we have:

& (a()d(Na(3)) 7 (b)) = D ey 0.

This function extends to a regular function A — End(E) implies that whenever ¢;; # 0 we
have (u/; — u;,a) > 0. On the other hand, we have:

J
F DB (bi) = D eiyxs T
J

But a character X";_“i extends to a regular function on X if and only if (u; —u;,a) > 0, for
all @ € 7N N. This shows that ¢'¢ ! extends to X, — End(FE). Since the same applies to
(¢'¢~1)~! = ¢p¢'~!, we conclude that the image of extension of ¢'¢p~1 to X, lies in GL(E).
This proves the lemma. O

Fix a faithful representation G — GL(F). Lemma shows that ¢ = ¢, . @ Xo —
G — GL(E) extends to a regular function ¢ : X, — GL(E). But G is closed in GL(E) and
thus the image of the extension ¢ lands in G. This finishes the construction of Pg.

Note that the above construction of Py depends on the choice of extensions ¢, : T — H,.
It remains to be checked that different such choices give T-equivariantly isomorphic principal
bundles. For each o € ¥ let ¢/, : T — H, be another choice of an extension of ¢, to the
whole T. Let P, and P denote the resulting toric principal G-bundles on X, and Xy
respectively. As above one verifies that the map:

(t ! I07g) = (t * X0, ¢;(t)¢0(t)7lg)
extends to a T-equivariant isomorphism P, — P, and these glue together to give a T-

equivariant isomorphism Pg — Pj.
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Step 2: In the other direction, we would like to associate an integral piecewise linear map
®p : %] = B(G) to a framed toric principal G-bundle P on Xy that is locally equivariantly
trivial. The bundle P is determined by its restrictions Pjx_ , o € ¥, and its transition
functions ¢, o : Xo NXo — G, 0,0’ € X. The transition functions satisfy the usual cocycle
condition as well as the equivariance condition .

For each o € ¥, the local equivariant triviality states that the bundle P, := P|x, is T-
equivariantly isomorphic to the trivial bundle X, x G where T acts on G via a homomorphism
¢s : T — G. The homomorphisms ¢, in turn yield Z-linear maps ®, : N — Bz(G). We
wish to show that the local equivariant trivializations can be chosen so that the resulting
®, glue together to produce a piecewise linear map @p : |X| — B(G).

Under the local equivariant trivialization P, = X, X G, let the distinguished point (the
frame) pg € P, map to (7g,g,). After replacing ¢, with g5 1¢,g, we can assume that pg
maps to (g, 1), where 1 denotes the identity element in G. After doing this for all o € X,
we see that ¥, o (zg) = 1, for all o,0’ € X. The equivariance condition then implies
that 1, .- on the open orbit Xy is given by . We also know that 1), , is defined on the
whole X, = X, N X,/, where 7 = 0 N¢’. Since the stabilizer subgroup T’ is generated by
the one-parameter subgroups A\, a € 7 N N, we see that for any a € 7N IV, the limit

i 00 (Aa(5) - 70) = 1 61 (Aa(5)) 0 (Na(s)) ™

exists. This means that ¢, o A, and ¢,/ o A\, are equivalent one-parameter subgroups which
then implies that the linear maps ®, and ®,- coincide on the cone 7 = o No’. In conclusion,
the ®,, 0 € ¥, glue together to produce a piecewise linear map ®p : |X| — s3((?)

Finally, we show that the above construction of ®p is well-defined, that is, it does not
depend on the choice of local equivariant trivializations. We note that the piecewise linearity
implies that ®p is uniquely determined by its values on the rays in 3. Thus it suffices to
show that these values are determined by the bundle P. For a ray p € o(1), let A, :
G, — T be the one-parameter subgroup corresponding to the primitive vector v, € p.
We would like to show that for any cone ¢ and any ray p € o(1), the one-parameter
subgroup ¢, o A, : G, — G is uniquely determined, up to equivalence of one-parameter
subgroups, by the bundle P. Fix a faithful representation G < GL(E) where E is a finite
dimensional vector space. Let £ = P xg E be the associated toric vector bundle. Notice
that P, xg F =2 X, Xx G Xg E = X, X E with the action of T' on F induced by ¢,. As
in Klyachko’s classification ([Klyachko89) §2]) it follows that the Z-filtration, and hence the
flag and weights, of the one-parameter subgroup ¢,0\, acting on E are uniquely determined
by the toric bundle P (cf. Remark ). This shows that the equivalence class of ¢, o A,
is determined by P as required.

Step 3: Next we verify that ® — Pg and P — ®p are inverses of each other. Let &
be an integral piecewise linear map with corresponding toric principal bundle P = Pg. As
above, for each cone o let ¢, : T — G be an extension of the homomorphism 7, — G
corresponding to the linear map ®, = ®|,. By construction in Step 1, P|x, = X, x G and
the T-action on this trivializing chart is given by ¢,. From construction in Step 2, it is
immediate that the piecewise linear map associated to P is ®.

Conversely, let P be a toric principal bundle with the corresponding piecewise linear map
® = Dp. Let 0,0’ € ¥ with 7 = 0 No’ and let ¢ = 1y : X; — G be the corresponding
transition function. As in Step 2, for all o,0’, we can arrange for ¥ (zg) to be equal to 1
and thus ¥(t - ©o) = ¢o (t)Po(t) " by (6). The construction in Step 1 then shows that P
coincides with Pg.
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To finish the proof of Theorem it remains to prove the claim about the equivalence
of categories.

Step 4: Let G, G’ be linear algebraic groups and let ®, &’ be piecewise linear maps to
B(G), B(G') respectively. Let a : G — G’ be a homomorphism and let ® = a.,(®). We
construct a T-equivariant morphism of principal bundles F' : P — P’ as follows. For each

o € Y define F, : X, x G — X, x G’ by:

(8) Fo(z,9) = (z,a(g)).
One verifies that the F, glue together to give a well-defined morphism F : P — P’ and F
is T-equivariant.

Step 5: Conversely, let o : G — G’ be a homomorphism of linear algebraic groups. Let
P and P’ be toric principal G and G’ bundles over Xy respectively. Let F' : P — P’ be a
morphism of principal bundles that is equivariant with respect to . If ® is the piecewise
linear map corresponding to P, we wish to show that P’ corresponds to the piecewise linear
map &o ®. Let p € 3(1) be a ray. On the open affine chart X,, the bundle P (respectively
P’) can be identified with X, x G (respectively X, x G’) and the action of T' is given
by a homomorphism ¢ = ¢, : T — G (respectively ¢' = ¢, : T — G’). Moreover, the
distinguished point py € Py, (respectively py € Py, ) is identified with (2o, 1g) (respectively
(z0,1¢’)). Here 1¢ and 1gs denote the identity elements of G and G’ respectively. Since F
is a bundle map, there is f: X, x G — G’ such that I': P|x, — 73|’Xp is given by (z, g) —
(z, f(x,g)). The assumption that F' sends the distinguished point py to the distinguished
point py means that f(zo,1lg) = lgv. The equivariance condition of F : Px, — P\/X,, then
implies that, for any t € T and g € G we have:

(9) ft-z0,9(t)g) = ¢'(t) f (20, 1c)alg) = ¢'(t)a(g).
Letting g = ¢(t)~! we conclude:
(10) ft-z0,16) = ¢/ (H)a(s(t)

Since f is regular on the whole X, x G we see that the limit of ¢/(t)a(¢(t)) ™! exists in G’ as
t-xog — z,. This means that ao¢o ), and ¢’ o A, are equivalent one-parameter subgroups
of G', where \, is the one-parameter subgroup of T" associated to the primitive vector v,,.
It follows that ®’ = & o ®. This finishes the proof.

Step 6: Finally, we need to show the maps (a, ®) — (o, F) and (o, F') — (aw : & — @)
are inverses of each other. This follows from and the fact that ® = G o ®. O

Remark 2.7. We point out that morphisms of vector bundles do not correspond to mor-
phisms of principal bundles for general linear groups. This is because a linear map between
vector spaces E and E’ does not correspond to a group homomorphism between GL(E) and
GL(E"). Thus, our description of morphisms of (framed) toric principal bundles, in case of
general linear groups, is different from Klyachko’s description of morphisms of toric vector
bundles. Morphisms between (framed) toric principal bundles for general linear groups are
much more restricted than morphisms between toric vector bundles. When G = G’ = GL(r)
and a : GL(r) — GL(r) is the identity, the morphisms of toric principal bundles on Xy
correspond to the isomorphisms of rank r toric vector bundles on Xy.

In the recent paper [BDDKP] Section 5], a description of morphisms for the category of
(non-framed) toric principal G-bundles is given. It follows the Kaneyama type description
of toric principal bundles in [BDP16l [BDPI8] and is in terms of certain subsets of the group
G indexed by the cones in the fan and satisfying certain conditions. The morphisms we
consider and those considered in [BDDKP] differ in the following ways: firstly in Theorem
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we consider morphisms between principal bundle for possibly different groups G and G’
and equivariant with respect to a homomorphism « : G — G’. On the other hand, [BDDKP)]
fixes a group G and consider the morphisms between toric G-principal bundles. That is, for
them G = G’ and « is the identity. Secondly, we consider the morphisms of framed toric
principal bundles while [BDDKP] do not fix a frame (at the distinguished point xy). Hence
the set of morphisms they consider is larger than ours. For example, the automorphism
group of a framed toric principal bundle (with respect to the identity homomorphism) is
trivial, while the automorphism group of a non-framed toric principal bundle is in general
an intersection of certain parabolic subgroups (see [BDDKP], Theorem 5.5]).

Example 2.8 (Toric vector bundles). Rank r vector bundles correspond to principal GL(r)-
bundles. Thus, Theorem applied to G = GL(r, k) gives a classification of toric rank r
vector bundles. In fact, this exactly recovers Klyachko’s classification. As in Section [I.1
let £ be a toric vector bundle on a toric variety Xy. Fix a point zy in the open orbit
Xo C Xy and let E = &,,. In Klyachko’s classification, for each ray p € (1) we have
a decreasing filtration (Ef);cz in E. Any such filtration defines a labeled flag in E (or
equivalently an equivalence class of one-parameter subgroups of GL(E)), see Remark
The compatibility condition (in Theorem translates to the condition that the labeled

flags associated to the rays in the fan define a piecewise linear map @ : |2 — B(GL(E)).

Example 2.9 (Toric line bundles). In particular, let £ be a toric line bundle on a toric
variety Xx. Let D =Y peS(1) a,D, be the torus invariant Cartier divisor corresponding to

L. The cone over the Tits building B(GL(E)) = B(G,,) consists of one apartment which
we identify with R. Thus in this case, a piecewise linear map into B(GL(E)) is just a usual
piecewise linear function. The piecewise linear function ® corresponding to L is given by
®(v,) = a,, Vp € 3(1). Recall that v, € N denotes the primitive vector along p. We
point out that several authors, for example [Fulton93l [CLS11] define the piecewise linear
function associated to the divisor D by ®(v,) = —a,. This corresponds to taking increasing
filtrations instead of decreasing filtrations in Klyachko’s construction.

Example 2.10 (Toric symplectic and orthogonal principal bundles). Let ¥ be a fan with
the corresponding toric variety Xx. Let G = O(2r) or Sp(2r). In Example we gave a
description of %(G) in terms of isotropic flags. As an immediate corollary of Theorem
we obtain that the isomorphism classes of toric principal G-bundles on Xy are in one-to-one
correspondence with collections {(F)e,¢pe) | p € (1)} of integral labeled isotropic flags
(or equivalently filtrations by isotropic subspaces) that satisfy the following compatibility
condition: for each cone o € X, there exists a normal frame L, = {Ls1,...,Ls2-} and a
Z-linear map ®, : (¢ N N) — Z" such that for each ray p € o(1) the labeled isotropic flag
associated to (L, ®5(v,)) coincides with (F, e, Cp.e)-
The case of G = O(2r + 1) can be treated in a similar fashion.

3. CHARACTERISTIC CLASSES

Finally, we describe the characteristic classes of a toric principal bundle in terms of its cor-
responding piecewise linear map. Extending the notion of Chern classes of a vector bundle,
the characteristic classes of a principal bundle are given by the Chern-Weil homomorphism.
Below we recall the equivariant Chern-Weil homomorphism and see how for a toric princi-
pal bundle it can be immediately recovered from the piecewise linear map associated to the
bundle.
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First we consider the topological setting, namely when the base field is C. Let G be a
complex linear algebraic group with 7" a maximal torus. Let BT, BG denote classifying
spaces of T and G with ET — BT and EG — BG the corresponding universal bundles
respectively. Note that BT and BG are topological spaces and are unique only up to
homotopy. Recall that the bundle EG — BG has the universal property that for any G-
bundle P — X there exists a continuous map f : X — BG such that f*EG is isomorphic
to P.

Let P be a T-equivariant principal G-bundle on a T-variety X (this means the action of T
on P lifts that of X and commutes with the action of G on P). Cousider Pr := P xr ET and
X7 := X Xp ET. Recall that the equivariant cohomology H7(X) is the usual cohomology
of X7 (here cohomology is taken with coefficients in k = C). Then Py is a principal G-
bundle over X and hence gives a map f : X7 — BG. This then induces a homomorphism
f*: H*(BG) - H*(Xr) = H3(X). When G is reductive, the cohomology ring H*(BG) can
be identified with S(g*)¢, the C-algebra of Adg-invariant polynomials on the Lie algebra
g = Lie(G). Alternatively, fix a maximal torus H in G. Let S(h*) denote the C-algebra of
polynomials on the Lie algebra h = Lie(H). The inclusion h C g induces an isomorphism of
S(g*)¢ with the algebra of Weyl group invariants S(h*)" (this is sometimes known as the
Chevalley restriction theorem). Hence H*(BG) can also be identified with S(h*)". The
equivariant Chern-Weil homomorphism is the homomorphism

fr:8(g%)% =501 = Hy(X).

Next we consider the case where the base field is any algebraically closed field. In this
case for the cohomology theory we take the Chow cohomology and consider characteristic
classes in the Chow cohomology groups. Unfortunately there is no universal principal G-
bundle in the category of algebraic varieties or schemes. This can be remedied by taking
algebraic approximations to EG — BG. Let G be a linear algebraic group over k. For
any integer m > 0 let V,,, be a finite dimensional G-module over k such that G acts freely
on a G-invariant open subset U,, C V,, of codimension > m. Moreover, suppose that the
geometric quotient U,, /G exists. Then the groups A*(U,,/G), for degrees less than or equal
to m, are independent (in a canonical way) of the representation V, and the open subset
Un, (see [Totaro97, Theorem 1.1}).

In analogy with universal bundles we denote U, by E,,G and its quotient U,,/G by
B,,G. Clearly, F,,G — B,,G is a principal G-bundle. It is an algebraic approximation of
the universal principal bundle EG — BG. Following [Totaro97, [EG9S], for i < m, the i-th
T-equivariant Chow group of X is defined to be AL(X) = AY(X x¢ E,,G). The definition
is well-defined i.e. independent of the choice the G-module V,,, and open set U,,.

As above fix a maximal torus H C G and let W be the Weyl group of (G, H). Let Sg
denote the R-algebra generated by the character lattice of H. It is an important result that
A% (pt)r is naturally isomorphic to the R-algebra of W-invariants Sy (see [EG97, Theorem
1(<)]).

We have the following universal property (see [Totaro97, Lemma 1.6]):

Lemma 3.1. Let P — X be a principal G-bundle. Then there is an affine space bundle
m: X — X and a map f : X' — B,,G such that the pullbacks 7*P and f*E,,G are
isomorphic.

We can use the above to define T-equivariant Chern-Weil homomorphism for Chow co-
homology rings as follows. Let P — X be a T-equivariant principal G-bundle. As before,
for m > 0 sufficiently large, let X7 := X x¢ E,,T7 and Pr := P xp E,,T. Then Pr — Xp
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is a principal T-bundle and hence we can find f : X’ — B,,G such that f*E,,G = n*P.
Also we note that since m : X’ — X is an affine space bundle, 7* : A*(X)g — A*(X')g is
an isomorphism. The Chern-Weil homomorphism, for ¢ < m, is given by:

SW - A(X')s = A (X)g.

Remark 3.2. Alternatively, there is an algebraic universal principal G-bundle in the 2-
category of stacks. As EG one takes the stack of a point pt equipped with a G-action and
BG the quotient stack pt/G. One then defines the equivariant Chern-Weil homomorphism
into Chow cohomology as in the topological setting explained above.

We recall that the equivariant Chow cohomology ring A%.(Xs) of a complete toric variety
X5 is naturally isomorphic to the algebra of piecewise polynomial functions on Ng with
respect to the fan ¥ (see [Payne06]). The isomorphism is given by the localization map:

Ar(Xs) = D Az} = @ SO

oeX(n) oceX(n)

Here the map A%(Xyx) — A%({z.}) is induced by the inclusion {z,} — Xx, and S(T)g
denotes the R-algebra generated by the character lattice of T

A W-invariant element p € Sﬂ‘év defines a polynomial function on the cocharacter lattice
of the maximal torus H. We note that every one-parameter subgroup of G is conjugate
to a one-parameter subgroup of the maximal torus H. By requiring that p is conjugation
invariant, we can extend it to a well-defined function on the whole B(G). That is, for
one-parameter subgroup A : G, — G we define p(\) = p(gA\g~!) where g € G is such that
ghg~!' : G,, — H. That this is well-defined is a consequence of the following standard
lemma. We include a proof which is taken from [Mathoverflow].

Lemma 3.3. Let A\, N € AV(H) be two one-parameter subgroups of a mazimal torus H.
Suppose there exists g € G such that gh\g~' = X. Then there is w € W such that whw™! =
M.

Proof. Under the assumptions of the lemma, gHg~' centralizes the image of \. Thus H
and gHg~! are maximal tori in the centralizer of the image of A’ and hence there is h in
this centralizer such that gHg~' = hHh™!. Now take w to be the Weyl group element
represented by h=tg € Ng(H). O

Theorem 3.4 (Characteristic classes). Let P be a toric principal G-bundle on a complete
toric variety Xs, over k with the corresponding piecewise linear map ® : |X| — SB(G) Let
p € SY be a W-invariant polynomial. Then the image of p under the equivariant Chern-
Weil homomorphism is given by the piecewise polynomial function p o ®.

Proof. We need to show that for any maximal cone o € X(n) the restriction of image of p
to the fixed point x, coincides with (p o ®),. The fixed point z, gives a section B, T —
X1 = X x7 E,,T which induces a homomorphism A% (X)g — AY(B,,T)r = S(T)r.;, for
i < m. We thus obtain a homomorphism:

Sgi & A (BpG)r — Ap(X)r = AY(BpnT)r = S(T)r,i-

Recall that the action of T' on P|x_ is given by a homomorphism ¢, : T' = P, = G.

One verifies that this induces the above homomorphism Sﬂ‘g,/i — S(T)r,;- This finishes the

proof. O
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Let us consider the case of G = GL(r) and toric vector bundles. One can naturally
define elementary symmetric functions on B(GL(E)) as we now describe. For 1 <4 <r let
€; : R” — R denote the i-th elementary symmetric polynomial, i.e.

Gi(.’ﬂl,...,l'r): Z le"’xji~

1<j1<--<gi<r

Each ¢; induces a well-defined real-valued function on B(GL(r)) which we again denote by
¢;. Let us regard an element of B(GL(r)) as a labeled flag (F,, c,), where Fy = ({0} = F, G
F g g Fr,=k")and ¢ = (¢1 > -+ > ¢) (see Example . Then the value of ¢; on
this element is equal to the i-th elementary symmetric function on ¢y, ..., c; where each ¢;
is repeated dim(F;/F;_1) times. As a special case of Theorem [3.4] we obtain the following
description of equivariant Chern classes of toric vector bundles. This corollary is not new
and appears, in a slightly different language, in [Payne08| Proposition 3.1].

Corollary 3.5 (Equivariant Chern classes). Let £ be a toric vector bundle over a toric

variety Xy, with ®¢ : |2 — %(GL(E)) its corresponding piecewise linear map. Then for any
1 <i <, the i-th equivariant Chern class ¢! (€) is represented by the piecewise polynomial

function €; o Og.
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