Catalysis Today xxx (xxxx) xxx

Contents lists available at ScienceDirect

Catalysis Today

journal homepage: www.elsevier.com/locate/cattod

Molecular structure and catalytic promotional effect of Mn on supported Na₂WO₄/SiO₂ catalysts for oxidative coupling of methane (OCM) reaction

Sagar Sourav a,b,1 , Daniyal Kiani a,2 , Yixiao Wang b,*,3 , Jonas Baltrusaitis a,*,4 , Rebecca R. Fushimi b,*,5 , Israel E. Wachs a,*,6

ARTICLE INFO

Keywords: OCM Mn-Na2WO4/SiO2 catalyst Active site In-situ spectroscopy In-situ Raman TAP Kinetics Mn promotional effect

ABSTRACT

The structure and promotional effect of Mn in supported Mn-Na₂WO₄/SiO₂ catalysts for the oxidative coupling of methane (OCM) reaction has been debated for a longtime in the literature. In the current investigation, with the aid of multiple in-situ characterization studies, we show that the freshly calcined supported 1.2Mn-5Na₂WO₄/ SiO₂ catalyst possesses crystalline Na₂WO₄, Mn₂O₃ and SiO₂ (cristobalite phase) along with surface MnO_x and Na-WO_x sites at low temperature and oxidizing environments. Under the OCM reaction environment (T > 800 $^{\circ}$ C), the crystalline Na₂WO₄ phase melts and Mn₂O₃ phase reduces. In contrast, the surface MnO_x and Na- WO_x sites exhibit excellent thermal and chemical stability. Exposure of the 1.2Mn-5Na₂WO₄/SiO₂ catalyst to the OCM reaction environment redisperses the molten Na₂WO₄ phase on the SiO₂ support to form new surface WO_x sites. Interestingly, the stable MnOx species interacts with both molten Na2WO4 phase and surface Na-WOx sites during OCM reaction. Controlled transient kinetic experiments in TAP and detailed steady state OCM fixed-bed reaction studies reveal the role and promotional effect of Mn in the 1.2Mn-5Na₂WO₄/SiO₂ catalyst. The W-oxides (both molten Na₂WO₄ and surface Na-WO_x sites) are the active sites for the catalytic OCM reaction and the MnO_x species only function as promoters. The promotion of MnOx strongly depends on the gas phase O2 partial pressure and the MnOx species act as mediators for oxygen exchange between the gas phase molecular O2 and catalyst lattice oxygen. The temperature dependent MnOx promotion reveals that the MnOx species selectively promote the molten Na₂WO₄ phase at lower reaction temperature and the surface Na-WO_x sites at higher temperature.

1. Introduction

The oxidative coupling of methane (OCM) is a single-step process for the conversion of CH₄, the major component of natural gas, to valueadded C2 products (C2H6 and C2H4). Among the many catalysts tested for this reaction, the Na-promoted SiO₂ supported W-oxide based catalysts have been found very active, selective and stable for extended operation. [1,2] The addition of MnOx to supported Na2WO4/SiO2 catalysts significantly improves the catalytic OCM performance. [3-6] This has led to extensive investigations in the literature to understand the structure and promotion mechanism(s) of MnOx.

The early studies on the structure of supported Mn-Na₂WO₄/SiO₂ catalysts employed only characterization studies under ambient and/or ex-situ conditions that were unable to provide relevant information regarding the nature of the catalytic active sites during the OCM reaction. [5,6] Only recently, have in-situ/operando catalyst characterization studies been reported that are revealing the dynamic nature of the supported Mn-Na₂WO₄/SiO₂ catalysts as a function of environmental conditions. [7-18] Both XRD and Raman showed that the crystalline α-cristobalite phase of the SiO₂ support in freshly calcined catalyst

E-mail addresses: vixiao.wang@inl.gov (Y. Wang), job314@lehigh.edu (J. Baltrusaitis), rebecca.fushimi@inl.gov (R.R. Fushimi), jew0@lehigh.edu (I.E. Wachs).

https://doi.org/10.1016/j.cattod.2022.07.005

Received 3 April 2022; Received in revised form 22 June 2022; Accepted 7 July 2022 Available online 13 July 2022

0920-5861/© 2022 Elsevier B.V. All rights reserved.

Please cite this article as: Sagar Sourav, Catalysis Today, https://doi.org/10.1016/j.cattod.2022.07.005

a Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA

b Catalysis and Transient Kinetics, Energy Environment Science & Technology, Idaho National Laboratory, Idaho Falls, ID 83415, USA

^{*} Corresponding authors.

 $^{^{1}}$ 0000–0001-5892–1329

^{2 0000-0002-9748-3007}

^{3 0000-0002-1446-3634}

⁴ 0000–0001-5634–955X

⁵ 0000–0002-7570–0234

 $^{^{6}}$ 0000–0001-5282–128X

transforms to crystalline the β -cristobalite phase at elevated temperatures (> $\sim\!250~^\circ\text{C}$). [7–13,15–17] The SiO $_2$ -supported Na $_2$ WO $_4$ phase undergoes multiple phase transformations with temperature (crystalline cubic phase (<650 $^\circ\text{C}$) \rightarrow crystalline orthorhombic phase (650–750 $^\circ\text{C}$) \rightarrow molten amorphous phase (>750 $^\circ\text{C}$)) as shown by XRD and Raman. [9,13,15,16] The presence of MnO $_x$ was found to increase the melting point of crystalline Na $_2$ WO $_4$ by $\sim\!30~^\circ\text{C}$. [16] Furthermore, in-situ Raman studies revealed that the molten Na $_2$ WO $_4$ phase is unstable at elevated temperatures (> 700 $^\circ\text{C}$) and transforms to surface Na-coordinated WO $_x$ (Na-WO $_x$) sites by dispersion on the SiO $_2$ support. [15] Additional studies showed that the surface Na-WO $_x$ sites are thermally stable and catalytically active for the OCM reaction [12,14,15].

Although a general consensus has been reached in the literature regarding the stable structures of the SiO2 support and Na-promoted WO_x phases under OCM relevant conditions, there is still ongoing debate regarding the stable structure(s) of the MnO_x phase. Only the crystalline Mn₂O₃ phase was detected by XRD in oxidizing environments. [7,16] Complementary in-situ Raman studies also identified the crystalline α -Mn₂O₃, γ -Mn₂O₃, and Mn²⁺Mn₂³⁺O₄ (hausmanite) phases as present in oxidizing environment (25-800 °C). [16] Subsequent in-situ XRD analysis under the OCM reaction environment observed a significant reduction in the intensity or even the absence of the crystalline Mn₂O₃ phase [8,11] and it was speculated that the Mn-oxide phase is either reduced or present as an amorphous phase during the OCM reaction. [11] A few other studies, however, observed the formation of the crystalline MnWO₄ phase after melting of Na₂WO₄ or under an OCM reaction environment with a high CH₄/O₂ ratio. [9,10] The crystalline Mn₇SiO₁₂ phase has also been reported to be present for supported Mn-Na₂WO₄/SiO₂ catalysts below ~650 °C. [13] At higher temperatures and OCM reaction environment, the crystalline Mn₇SiO₁₂ phase was reported to disappear along with the melting of Na₂WO₄ phase with concomitant appearance of the crystalline MnWO₄ phase. The lack of consensus in the literature regarding the stable structure of the MnOx phase warrants additional molecular level investigation via in-situ /operando spectroscopic characterization.

Different opinions are also seen in the litertaure regarding the role of the MnO_x phase (catalytic active site for OCM vs. promoter) and its promotional effect on the W-oxide phases during the OCM reaction. In a few reports, the (distorted) WO₄ site present in the crystalline Na₂WO₄ lattice was proposed to be the active site for the OCM reaction over supported Mn-Na₂WO₄/SiO₂ catalysts, and Mn-oxide was reported to participate in oxygen spillover to the W-oxide centers. [3,19–23] It was also reported that the bulk MnO4 and MnO6 oxide centers are responsible for both CH₄ and O₂ activation, respectively. [24] The second proposal regarding the role of Mn raises the question as to the role of the W-oxide phase for the OCM reaction. The oxygen in the bridging Na-O-Mn bond was also proposed as the active site because of the similar catalytic performances for Mn-Na₂WO₄/SiO₂, Mn-Na₂WO₄/MgO and NaMnO₄/MgO catalysts. [25] Both oxygen atoms on the bridging Na-O-Mn and Na-O-W were proposed as active sites in another study because of the substantial role of all three active metal oxides in the Mn-Na₂WO₄/SiO₂ catalyst system. [26] For the same reason, the interface between crystalline Mn₂O₃ and Na₂WO₄ phases was also speculated to be the active site. [27] The crystalline Mn₂O₃ phase was also proposed to be an active site because of its excellent redox behavior. [7] Furthermore, a recent DFT study emphasized that surface Mn oxo sites present on the Mn₂O₃ crystal as the active site for the CH₄ activation due to the higher energy barrier associated with the W oxo sites. [28] In contrast, oligomeric MnOx, Mn-WO3 and MnWO4 phases of Mn-oxides present in the supported Mn-Na-WO_x/SiO₂ catalysts (with low Na loadings to avoid formation of crystalline Na₂WO₄ phase) were not found to contribute towards the OCM reaction chemistry. [14] Additionally, the Mn-oxide has also been proposed to function as a promoter for the low temperature OCM reaction. [29] In summary, there is no consensus regarding the role and promotional effect of Mn-oxide towards the OCM reaction over supported Mn-Na₂WO₄/SiO₂.

The involvement of lattice oxygen species in the supported Mn-Na₂WO₄/SiO₂ catalysts for CH₄ activation and oxidation is also considered paramount in the OCM literature. [13,17,30-34] These studies, however, did not undertake detailed investigation into the nature and origin of active lattice oxygen species and/or their roles in the OCM reaction network. [35] Recent in-situ spectroscopic and transient kinetic investigations showed that the supported Na₂WO₄/SiO₂ catalysts possess two different types of oxygen species: (i) atomic O species associated with the surface Na-WOx sites primarily responsible for formation of C2 products, and (ii) dioxygen O2 species originating from the molten Na₂WO₄ phase involved in the production of CO₂ and oxidative dehydrogenation of C₂H₆. [15,35] The addition of MnO_x to the supported Na₂WO₄/SiO₂ catalysts was shown to improve the total amount and release rate of O₂ species associated with the molten Na₂WO₄ phase. Furthermore, the addition of MnO_x was found to improve the C₂ product selectivity. [35] Despite these significant findings, several important points still need further clarification: (i) is the MnOx phase by itself active towards OCM? if so, then how selective is that activation step? (ii) does MnOx act as the active center or just play the role of promoter in supported Mn-Na₂WO₄/SiO₂ catalysts? (iii) how does the promotion effect of MnO_x vary with reaction conditions (temperature, gas-space velocities, long-term catalyst stability, etc.)? (iv) how does MnO_v change the reaction chemistry of the Na₂WO₄/SiO₂ catalyst?

The current investigation, with the aid of multiple *in-situ* characterization techniques (Raman spectroscopy, XRD, NAP-XPS (near ambient pressure X-ray photelectron spectroscopy)), aims at revealing the stable structure of the MnO_x phase in supported $Mn-Na_2WO_4/SiO_2$ catalysts during the OCM reaction. Addionally, with the aid of H_2 -TPR (temperature programmed reduction), controlled transient reaction studies in TAP (temporal analysis of products) and detailed steady state fixed-bed reactor kinetic studies, we aim at resolving the roles and promotional effect of MnO_x in supported $Mn-Na_2WO_4/SiO_2$ catalysts towards the OCM reaction network.

2. Experimental

2.1. Catalyst Synthesis

The catalysts were synthesized using the incipient wetness impregnation (IWI) method. At first, the SiO₂ support (Cabot CAB-O-SIL® EH5) was treated with water and crushed into a fine powder (100-150 μm particle size), as described previously. [15] The required amount of aqueous solution of Na2WO4•2H2O was impregnated into the water-treated SiO2 support, followed by overnight drying at room temperature. Subsequently, an aqueous Mn(NO₃)₂•xH₂O solution of the required amount was impregnated into the above sample and was again dried overnight at room temperature. The above sample was further dried at 120 °C for 2 h, and finally calcined at 800 °C for 8 h, under flowing air. For the preparation of Na₂WO₄/SiO₂ and Mn/SiO₂ catalysts only the desired metal oxide precursor was incorporated into the SiO2 support, and the drying and calcination steps followed were similar to as described above. The catalysts were named according to the weight loadings of the active metal/metal-oxide components. For example, the supported 1.2Mn-5Na₂WO₄/SiO₂ catalyst contains 1.2 % of Mn and 5 % of Na₂WO₄ on weight basis.

The powder sample (100–150 μm particle size), as received after the calcination step is used for *in-situ* Raman and H₂-TPR experiments. For *in-situ* XRD and NAP-XPS studies the powder sample was pressed to form a thin disk. For TAP and steady-state kinetic studies, the powder samples were pressed to form pellets and then crushed to obtain 250–300 μm size particles.

2.2. In-situ XRD

The powder X-Ray diffraction (XRD) was recorded by a Bruker-AXS D5005 (Bruker, Billerica, MA, USA) with a Co K_{α} source. For the

experiment, the sample was first pressed to form a disk, which was then mounted on a gold foil before placing it on the heater plate. Then the sample temperature was increased to 400 °C (at 10 °C/min), under constant flow (\sim 50 cc/min) of dry air. After the dehydration of the sample at 400 °C for 1 h, the XRD spectrum was collected. Following that, the sample was heated to 900 °C (at 10 °C/min), in the same gas environment, and another spectrum was collected. Before the analysis of the XRD data, the signal from the gold foil was subtracted.

2.3. In-situ Raman spectroscopy

For the collection of *in-situ* Raman spectra of the sample in different environmental conditions, the Horiba-Jobin Yvon LabRam HR instrument was utilized. The details of the instrument is described elsewhere. [12] In the current investigation, approximately 25–30 mg of the sample (in powder form) was loaded in the sample cup of the Linkam CCR 1000 environmental cell with a quartz window and O-ring seal. For all spectra collection, the 532 nm laser was utilized.

At first, the sample was dehydrated at 400 $^{\circ}\text{C}$ under flowing 10 % $O_2/$ Ar ($\sim\!30$ cc/min) for 1 h. Subsequently, a dehydrated spectrum was collected at 400 $^{\circ}\text{C}$. The sample was then heated to 900 $^{\circ}\text{C}$ (at 10 $^{\circ}\text{C}/$ min), followed by another spectrum collection. Then the gas environment was switched to the OCM conditions (CH₄:O₂:N₂ 3.3:1:4, total flow $\sim\!65$ cc/min). After treatment of the sample at 900 $^{\circ}\text{C}$ for 2 h, in the OCM gas mixture, another spectrum was collected. The sample was cooled down in the same OCM gas flow to enhance the spectral resolution and avoid thermal broadening, and two more spectra were collected at 400 $^{\circ}\text{C}$ and 120 $^{\circ}\text{C}$.

2.4. H₂-TPR

The H_2 -TPR experiments were conducted in a Micromeritics® AutoChem II instrument equipped with a TCD detector. For each experiment, about 100 mg of the catalyst sample was used. For H_2 -TPR of freshly calcined catalysts, the catalyst samples were first dehydrated in 10 % O_2 /Ar (\sim 30 cc/min) at 400 °C for 1 h, then cooled down to 100 °C, followed by flushing with pure Ar (\sim 30 cc/min) for 30 mins. To conduct H_2 -TPR on the OCM reaction mixture treated catalyst, the sample was first dehydrated at 400 °C under flowing 10 % O_2 /Ar (\sim 30 cc/min) for 1 h, followed by heating to 900 °C. At 900 °C, the gas environment was switched to $CH_4 + O_2 + N_2$ (3.3:1:4, total flow \sim 65 cc/min), and the sample was conditioned for 2 h. Subsequently, the sample was cooled down to 100 °C, followed by flushing with Ar (\sim 30 cc/min) for 30 mins. After the pre-treatment steps, the H_2 -TPR experiments were then performed by ramping the temperature of the catalyst bed in 10 % H_2 /Ar (30 cc/min) at a rate of 10 °C/min from 100° to 1000 °C.

For the cyclic H₂-TPR experiment, the reduced samples were reoxidized *in-situ* at 900 °C, in the flow of OCM gas mixture (CH₄ +O₂ +N₂ 3.3:1:4, total flow \sim 65 cc/min) for 2 h. Subsequently, the sample was cooled down to 100 °C, followed by flushing with Ar (\sim 30 cc/min) for 30 mins. Finally, the H₂-TPR experiment was performed on the reoxidized catalysts as described above.

The number of lattice O-atoms removed for each TPR experiment was calculated by finding the area under the respective TPR profiles and calibrating against the reduction profile of known amounts of CuO standard [36] (see Fig. S2 and associated details).

2.5. TAP experiments

The transient kinetic experiments were conducted in a TAP 3 instrument, Mithra Technologies. Three different types of TAP pump-probe experiments were conducted in this study. For these experiments, 50 % O_2/He , 50 % $^{13}\text{CH}_4/\text{Ar}$, 50 % C_2H_6/Ar and 50 % C_2H_4/Ar gases were utilized. The details of the reaction gas mixture procurement and blending procedures are described elsewhere. [15].

Approximately 25 mg of the catalyst sample was loaded into a quartz

micro-reactor (I.D. 4 mm, Length 38 mm) between inert quartz particles of size 250–300 μm . Next, the catalyst bed was evacuated to $\sim 4 \times 10^{-6}$ Pa, followed by heating to 800 °C (10 °C/min), with continuous pulsing of O2/He and held at 800 °C for 30 mins. After pretreatment of the catalyst samples, pump-probe experiments were conducted according to the details below. In each case, the pump-probe spacing between the O₂/ He and 13 CH₄/Ar (or C₂H₆/Ar or C₂H₄/Ar) gas was maintained at 2 s. This ensures complete removal of gas-phase O₂ before the introduction of reactant gas into the catalyst bed. Thus, the products obtained in these experiments are not influenced by any gas phase oxygen pulse associated with the pump pulse. The detection of different gases was conducted using a mass-spectrometer (SRS RGA 200), situated at the exit of the micro-reactor. Also, in each case, calibration gas mixtures were utilized to determine the mass fragmentation pattern of each reactant and product gas for deconvolution of the overlapping masses. All pumpprobe experiments were conducted outside the Knudsen diffusion regime. For each experiment, data were presented by taking average of 15-25 pulse responses. The product yields of different catalysts were normalized by the respective BET surface area for fair comparison.

• O₂-¹³CH₄ pump-probe experiments

 13 CH₄ isotope gas was utilized to better distinguish CO and C₂ products. For these experiments, the O₂/He and 13 CH₄/Ar pulse sizes were approximately maintained \sim (2.15 \pm 0.05) x 10^{-8} moles/pulse and (8.75 \pm 0.05) x 10^{-8} moles/pulse, respectively. For species identification, m/z of 40 (Ar); 17 (13 CH₄); 29 (13 CO); 30 (13 C₂H₆); 32 (O₂) and 45 (13 CO₂) were utilized.

• O₂-C₂H₆ and O₂-C₂H₄ pump-probe experiments

For O_2 - C_2H_6 pump-probe experiments, O_2 /He and C_2H_6 /Ar pulse sizes were approximately maintained $\sim (3.25\pm0.05)$ x 10^{-9} moles/pulse and (3.25 ± 0.05) x 10^{-8} moles/pulse, respectively, and m/z values of 40 (Ar); 26 (C_2H_4); 28 (CO); 30 (C_2H_6); 32 (O_2) and 44 (CO_2) were utilized for species identification. For the O_2 - C_2H_4 pump-probe experiment, O_2 /He and 13 CH₄/Ar pulse sizes were approximately maintained $\sim (4.2\pm0.1)$ x 10^{-9} moles/pulse and (4.1 ± 0.1) x 10^{-8} moles/pulse, respectively and m/z values of 40 (Ar); 26 (C_2H_4); 28 (CO); 32 (O_2) and 44 (CO_2) were utilized for species identification.

2.6. Steady state experiments

Steady-state OCM reaction studies were conducted in a tubular fixed-bed quartz reactor (I.D. 6 mm and half-length 180 mm). A quartz frit was located at the middle of the tube. For each experiment, approximately 100 mg of catalyst sample was loaded onto the quartz frit. Then the remaining empty space inside the tube was filled with quartz beads (500–700 μm) to minimize the contribution from gas-phase reactions. The loaded tube was then placed in a programmable electric furnace. The temperature of the catalyst bed was monitored by a thermocouple (secured inside a quartz thermowell) placed directly above the catalyst bed.

Prior to any reaction, the catalyst sample was first heated to the desired reaction temperature (750, 775 or 800 °C) at a rate of 10 °C/ min, under a flowing O_2 (\sim 10 cc/min) and N_2 (\sim 40 cc/min) gas mixture and held at the reaction temperature for \sim 30 min. Then the reactant gas mixture, CH_4 , O_2 , diluted in N_2 , was introduced (at different ratios and space velocities) into the reactor. The reaction was maintained at each condition for \sim 3 h to ensure that steady-state conditions were achieved. The water vapor produced during the reaction was removed by cooling the exit gas mixture in a condenser at 0 °C. Gases were analyzed using online gas chromatography (GC System 2010, Shimadzu Technology), equipped with a flame ionization detector (GC-FID) and two thermal conductivity detectors (GC-TCD1 and GC-TCD2). The GC-TCD1 detector was equipped with Carboxen® 1010 PLOT

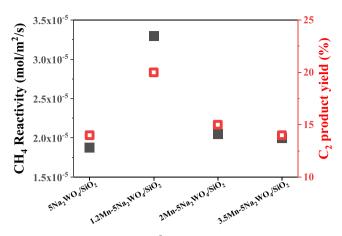


Fig. 1. The CH_4 reactivity (mol/m² cat/s) obtained from steady-state OCM experiments over supported Mn-Na₂WO₄/SiO₂ catalysts. Reaction temperature 800 °C, gas space velocity 48 L/g cat/h and $CH_4:O_2:N_2$ 50:15:35. The corresponding CH_4 conversion and product selectivity values are shown in Table S2.

(SUPLECO Analytical, Catalogue number 25467) fused silica capillary column to separate CO₂, C_2H_2 , C_2H_4 and C_2H_6 . The GC-TCD2 detector is equipped with HP-PLOT Molesieve column (Agilent J&W GC Columns, Part number 19095 P-MSO) to separate O₂, N₂, CH₄ and CO. Both GC-TCD1 and GC-TCD2 detectors use He as carrier gas. The GC calibration was done using calibration gas mixtures in a 5-point calibration method. For data analysis, an average of 5–6 data points were utilized in each case.

 CH_4 , O_2 conversion and CO, CO_2 , C_2H_6 and C_2H_4 selectivity and yield values were obtained by the following formulae (Eqs. 1–3):

% Conversion =
$$\frac{(F_i - F_o)}{F_i} \times 100$$
 (1)

where, F_i and F_o are the inlet and outlet molar flow rates (mol/s), respectively, of CH₄ or O₂.

% Selectivity_j =
$$\frac{n_{C_j}}{\sum n_{C_i}} \times 100$$
 (2)

where, n_{C_i} is the number of moles of carbon atoms in product j.

%
$$Yield_j = \frac{\% CH_4 Conversion \times \% Selectivity_j}{100}$$
 (3)

3. Results

3.1. Mn loading for optimum OCM catalytic performance

The general consensus in the OCM literature is that 2 wt % Mn loading is optimum for giving the highest catalytic OCM performance of supported Mn-5Na₂WO₄/SiO₂ catalysts, although the Mn loading between 0.5 and 3 wt % (on metal basis) can be considered the best. [5] The very first publication that systematically studied the effect of active metal oxide phases found 1 wt % Mn loading gave the best OCM performance. [26] Subsequently, another study reported the 2 wt % Mn loading to have the highest OCM activity. [37] The large variation in the optimum Mn loading can be attributed to the catalyst synthesis approach and/or parameters utilized for conducting the reaction studies. This observation compelled us to explore different Mn loadings for our supported Mn-5Na₂WO₄/SiO₂ catalysts.

Supported Mn-5Na₂WO₄/SiO₂ catalysts with three different Mn loadings (1.2, 2 and 3.5 wt %) were prepared. The corresponding BET surface area and catalytic performance are presented in Table S1, Table S2 and Fig. 1. All catalysts possess similar surface areas (\sim 3–4 m²/g). The addition of a small amount of Mn (1.2 wt %) increases the CH₄ activity and C₂ product selectivity of supported 5Na₂WO₄/SiO₂ catalyst

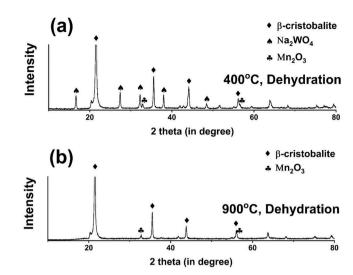


Fig. 2. In-situ XRD spectra of $1.2Mn-5Na_2WO_4/SiO_2$ catalyst under dehydrated conditions at (a) 400 °C and (b) 900 °C.

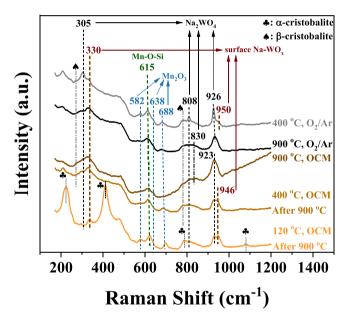


Fig. 3. In-situ Raman spectra of supported $1.2 Mn-5 Na_2 WO_4/SiO_2$ catalyst in different environmental conditions.

by 35–40 %. The addition of higher amounts of Mn (2 and 3.5 wt %), however, does not significantly improve the catalytic OCM performance. Thus, for the current investigation the $1.2 \text{Mn-}5 \text{Na}_2 \text{WO}_4/\text{SiO}_2$ catalyst was chosen as the representative catalyst to study the role and promotional effect of Mn. The performance of $5 \text{Na}_2 \text{WO}_4/\text{SiO}_2$ and $1.2 \text{Mn/}\text{SiO}_2$ catalysts will be discussed as needed for better understanding of the Mn promotional effect.

3.2. In-situ XRD

The *in-situ* XRD spectra of the supported 1.2Mn-5Na₂WO₄/SiO₂ catalyst are presented in Fig. 2. The spectrum of the dehydrated catalyst at 400 °C shows the presence of the crystalline Na₂WO₄, Mn₂O₃ and β -cristobalite (SiO₂) phases. Upon increasing the temperature to 900 °C, only the crystalline Mn₂O₃ and the β -cristobalite (SiO₂) phases are observed, and the Na₂WO₄ crystalline phase is no longer detected.

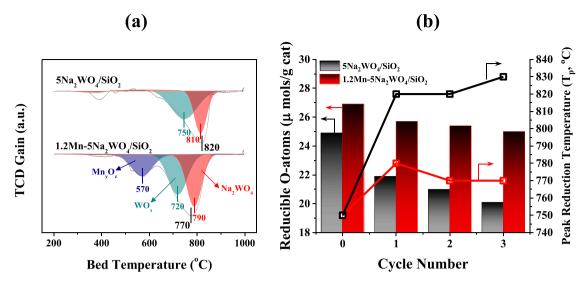


Fig. 4. (a) H_2 -TPR profiles of supported $5Na_2WO_4/SiO_2$ and the $1.2Mn-5Na_2WO_4/SiO_2$ catalysts after treatment in OCM reaction conditions. (b) Quantified lattice O-atoms removed and peak reduction temperatures (associated with only the reduction of W-oxide phases: surface $Na-WO_x$ and Na_2WO_4) for freshly calcined (Cycle Number 0), OCM reaction mixture treated (Cycle Number 1) and reoxidized (Cycle Number 2 and 3) supported $5Na_2WO_4/SiO_2$ and the supported $1.2Mn-5Na_2WO_4/SiO_2$ catalysts.

3.3. In-situ Raman spectroscopy

<code>In-situ</code> Raman experiments were conducted to complement the <code>in-situ</code> XRD findings (i.e., to identify oxide phases lacking long range order and small NPs (<3 nm in size)) to fully understand the structural dynamics of the supported 1.2Mn-5Na $_2$ WO $_4$ /SiO $_2$ catalyst in oxidizing and OCM reaction environments (see Fig. 3).

3.3.1. In-situ Raman spectra in oxidizing environments

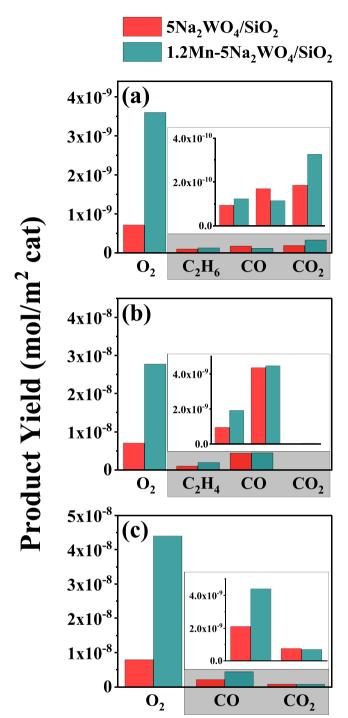
The Raman spectrum of the dehydrated 1.2Mn-5Na₂WO₄/SiO₂ catalyst at 400 $^{\circ}$ C (in O₂/Ar environment) exhibits three bands at 926, 808 and $305\,\mathrm{cm}^{-1}$ associated with the vibrations of the crystalline Na₂WO₄ phase. [13,15,16,38] The Raman bands at 582, 638 and 688 cm⁻¹ arise from the vibrations of the Mn₂O₃ crystalline phase. [39, 40] Apart from the crystalline phases, two more Raman vibrations at 950 and 330 cm $^{-1}$ are present from surface Na-WO_x sites. [12,14,15,41] Another strong band is observed ~615 cm⁻¹ that is absent for the Mn-free supported 5Na₂WO₄/SiO₂ catalyst, [12,15] which indicates it originates from the presence of Mn-oxide. This vibration does not match with any of the crystalline Mn-oxide phases or the crystalline MnWO₄ phase. [39,42] The band at \sim 615 cm⁻¹ is also quite different and far more intense than the vibration from the SiO₂ defect mode. [43] Based on these comparisons, the Raman band at \sim 615 cm⁻¹ is assigned to the vibration of the Mn-O-Si bond from surface MnO_x species on the SiO₂ support. A similar vibrational band has been observed from Raman spectroscopy of supported MnO_x/SiO₂ catalysts. [14,44].

Further heating the catalyst to 900 °C in an O_2/Ar environment results in disappearance of the 808 and 305 cm⁻¹ bands of crystalline Na_2WO_4 , whereas the intensity of the 926 cm⁻¹ band from crystalline Na_2WO_4 is observed to decrease with noticeable broadening. A new band at ~830 cm⁻¹ also appears, which is from asymmetric W=O vibration of the molten Na_2WO_4 phase. [45] In contrast, Raman vibrations from the surface Na_2WO_4 phase. [45] In contrast, Raman vibrations from the surface Na_2WO_4 sites (330 cm⁻¹ and ~946 cm⁻¹, shoulder of 926 cm⁻¹ band), crystalline Mn_2O_3 (582, 638 and 688 cm⁻¹), and Mn_2O_3 (615 cm⁻¹) are present at 900 °C in the oxidizing environment, although with noticeable thermal broadening.

3.3.2. In-situ Raman spectra in an OCM environment

Switching the gas flow to an OCM reaction mixture at 900 $^{\circ}$ C results in complete disappearance of the Raman vibrations from the crystalline Mn_2O_3 phase (582, 638 and 688 cm $^{-1}$), but the Raman vibrations from

the surface Na-WO_x sites (330 cm $^{-1}$ and \sim 946 cm $^{-1}$) and surface Mn-O-Si sites (615 cm $^{-1}$) remain at 900 °C under the OCM environment.


Upon cooling to lower temperatures (400 °C and then to 120 °C in the OCM gas mixture), the Raman bands from the crystalline Na₂WO₄ and Mn₂O₃ phases reappear with the Raman bands shifting from 926 to 923 cm $^{-1}$ and 950–946 cm $^{-1}$. Additionally, the relative intensity of Raman bands from the crystalline Na₂WO₄ phase (923 and 305 cm $^{-1}$) significantly decreases in comparison to the Raman vibrations from the surface Na-WO_x sites (946 and 330 cm $^{-1}$, respectively) after treatment under the OCM reaction conditions. No change in the Mn-O-Si vibration at 615 cm $^{-1}$ is noticed. The crystalline β - to α -cristobalite phase transformation of the SiO₂ support is also observed for the 400 and 120 °C spectra, respectively.

3.4. H₂-TPR

The $\rm H_2$ -TPR spectra of freshly dehydrated and OCM reaction treated supported 1.2Mn-5Na₂WO₄/SiO₂ catalysts are shown in Fig. S3 and Fig. 4. To understand the effect of MnO_x promotion, the corresponding H₂-TPR data obtained for the 5Na₂WO₄/SiO₂ catalysts are also included for comparison.

Supported 5Na₂WO₄/SiO₂ catalyst: The H₂-TPR of the freshly calcined supported 5Na₂WO₄/SiO₂ catalyst exhibits a peak ~750 °C (see Fig. S3). After treatment in OCM reaction conditions, the reduction peak shifts to a higher temperature (~ 820 °C). A better analysis of reduction from different oxide phases is presented in Fig. 4(a). Two distinct reduction regimes can be observed for the supported 5Na₂WO₄/SiO₂ catalyst. The surface Na-WOx sites (green highlighted area) reduce at a lower temperature than the corresponding Na₂WO₄ NPs (red highlighted area). [12,15] The lattice O-atoms removed, along with the corresponding reduction peak temperatures for freshly calcined, OCM reaction mixture treated and in-situ reoxidized supported 5Na₂WO₄/-SiO₂ catalysts are shown in Fig. 4(b). The peak reduction temperature increases and the amount of lattice O-atoms modestly decreases: freshly calcined (750 $^{\circ}\text{C},\,\sim\,25\,\mu\text{mol/g}$ cat) $\rightarrow\,$ OCM reaction mixture treated (820 °C, < 22 μ mol/g cat) \rightarrow in-situ reoxidized (830 °C, < 20 μ mol/g cat) 5Na₂WO₄/SiO₂ catalysts.

Supported 1.2Mn-5Na₂WO₄/SiO₂ catalyst: The reduction peak for the freshly calcined 1.2Mn-5Na₂WO₄/SiO₂ catalyst is \sim 750 °C, which demonstrated a minor increase towards higher temperature (\sim 770 °C) after treatment in the OCM reaction mixture (see Fig. S3). Similar to the

Fig. 5. Product formation associated with the secondary (probe) pulse of TAP. a) O_2 - 13 CH₄, b) O_2 - O_2 -

supported $5Na_2WO_4/SiO_2$ catalyst, two separate reduction regimes, from surface Na- WO_x sites and Na_2WO_4 NPs, are present for the supported 1.2Mn- $5Na_2WO_4/SiO_2$ catalysts at higher temperatures (see Fig. 4(a)). An additional reduction peak is present at ~ 570 °C that is assigned to the reduction of surface MnO_x species. [46,47] The peak reduction temperature (from 750° to 770 °C) and removable lattice O-atoms (from 27 to 25 μ mol/g cat, ~ 7 % change) change (slightly

Table 1 Steady state OCM performance of multiple supported catalysts and quartz bed at $800\,^{\circ}\text{C}$, $\text{CH}_4\text{:}O_2\text{:}N_2$ 50:15:35. The gas-space velocities are mentioned in the table

Gas-space Velocity (L/g cat/h)	CH ₄ conversion (%)	C ₂ selectivity (%)	C ₂ H ₄ /C ₂ H ₆ yield ratio
1.2 Mn/SiO ₂			
120	12.1	50	0.7
72	14.1	48	1
48	16.2	45	1.4
5Na ₂ WO ₄ /SiO ₂			
120	14.6	69	0.85
72	21.6	59	1.5
48	24.8	57	2.4
$1.2Mn\text{-}5Na_2WO_4/SiO_2$			
120	14.8	72	1
72	28.5	61	3.1
48	34.9	58	5.4
Quartz bed			
120	2.6	78	0.28
72	3.3	71	0.48
48	6.8	62	1.1

increase and decrease, respectively) in going from freshly calcined \rightarrow OCM reaction mixture treated \rightarrow *in-situ* reoxidized supported 1.2Mn-5Na₂WO₄/SiO₂ catalysts (see Fig. 4(b)).

3.5. TAP studies

TAP pump-probe experiments were conducted over the $5\mathrm{Na}_2\mathrm{WO}_4/\mathrm{SiO}_2$ and $1.2\mathrm{Mn}\text{-}5\mathrm{Na}_2\mathrm{WO}_4/\mathrm{SiO}_2$ catalysts to understand the promotional effect of MnO_x on the OCM surface reaction network. It has been previously shown that the molten $\mathrm{Na}_2\mathrm{WO}_4$ phase in $\mathrm{Na}_2\mathrm{WO}_4/\mathrm{SiO}_2$ catalyst possesses dissolved molecular oxygen species at OCM relevant temperature which desorbs with the introduction of a secondary probe pulse. [15,35] Furthermore, the amount of molecular dioxygen released from the $\mathrm{Na}_2\mathrm{WO}_4/\mathrm{SiO}_2$ catalyst increases in the presence of MnO_x species. [35] In agreement with this finding, a higher amount of dioxygen release, during the probe pulse, was found for the supported $1.2\mathrm{Mn}\text{-}5\mathrm{Na}_2\mathrm{WO}_4/\mathrm{SiO}_2$ catalyst for all pump-probe experiments (see Fig. 5).

For the O_2 - 13 CH₄ pump-probe experiment, the addition of MnO_x only results in a slight change in formation of C_2 H₆ (slightly increased) and CO (slightly decreased). In contrast, a significant increase (~40 %) in the yield of CO₂ is noticed after MnO_x addition (see Fig. 5(a)). For the O_2 - C_2 H₆ pump-probe experiment, MnO_x addition does not change the yield of CO and CO₂. In contrast, the C_2 H₄ yield almost doubles due to MnO_x promotion. Finally, for O_2 - C_2 H₄ pump-probe experiment, MnO_x addition increases the CO formation and does not affect the CO₂ yield.

3.6. Steady state reaction studies

Steady state OCM reaction studies were carried out to complement the transient TAP experimental findings in order to gain additional insights into the role and promotion of MnO_x species for the OCM reaction. (see Table 1, Fig. 6 and Fig. 7).

The supported 1.2MnO_x/SiO₂ catalyst is active for the OCM reaction, but yields low C₂ selectivity (Table 1). The supported $5\text{Na}_2\text{WO}_4/\text{SiO}_2$ catalyst exhibits higher activity and C₂ product selectivity than the supported 1.2Mn/SiO₂ catalyst, especially for low gas-space velocities. The addition of Mn to the supported $5\text{Na}_2\text{WO}_4/\text{SiO}_2$ catalyst (1.2Mn- $5\text{Na}_2\text{WO}_4/\text{SiO}_2$ catalyst) significantly improves the CH₄ activity without compromising the C₂ selectivity and also increases the ratio of C₂H₄/C₂H₆ (1.2Mn/SiO₂ < $5\text{Na}_2\text{WO}_4/\text{SiO}_2$ < $1.2\text{Mn}_5\text{Na}_2\text{WO}_4/\text{SiO}_2$).

The effect of MnO_x on the supported $5Na_2WO_4/SiO_2$ catalyst for CH₄ activity and product selectivity is a strong function of the reaction conditions (see Table 1). Steady state OCM reactions over the supported $5Na_2WO_4/SiO_2$ and $1.2Mn-5Na_2WO_4/SiO_2$ catalysts were conducted

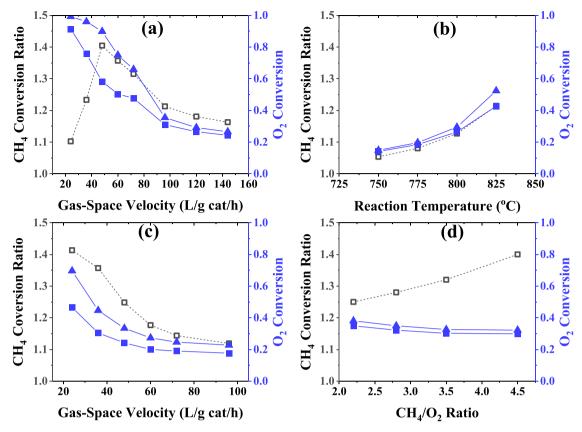


Fig. 6. The CH₄ Conversion Ratio of $1.2Mn-5NaWO_4/SiO_2$ to $5NaWO_4/SiO_2$ catalyst (empty black square) is shown for different reaction conditions, (a) 800 °C, varying gas-space velocity, $CH_4:O_2:N_2$ 50:15:35, (b) varying reaction temperature at a fixed gas-space velocity of 72 L/g cat/h, $CH_4:O_2:N_2$ 50:15:35, (c) 750 °C, varying gas-space velocity, $CH_4:O_2:N_2$ 50:15:35, and (d) 800 °C, gas-space velocity 60 L/g cat/h, varying CH_4/O_2 ratio at a fixed CH_4 partial pressure of 0.3. The corresponding O_2 Conversion for $1.2Mn-5NaWO_4/SiO_2$ (solid blue triangle) and $5NaWO_4/SiO_2$ (solid blue square) catalysts are also shown in the figure.

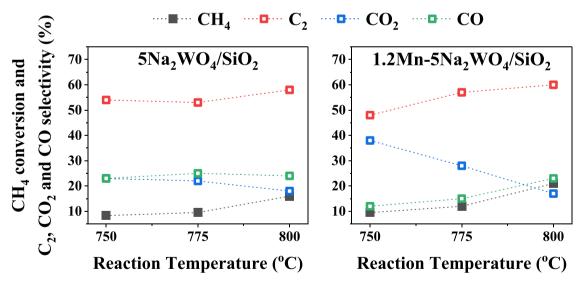


Fig. 7. The CH₄ conversion, and C₂, CO₂ and CO selectivity of 5Na₂WO₄/SiO₂ and 1.2Mn-5Na₂WO₄/SiO₂ catalysts at varying reaction temperature at a fixed gasspace velocity of 72 L/g cat/h, CH₄:O₂:N₂ 50:15:35.

over a wide range of experimental conditions (gas-space velocity, temperature, and CH_4/O_2 ratio) in order to gain deeper insight and the results are presented in Fig. 6. For better quantitative understanding, the effect of MnO_x is presented as the CH_4 conversion ratio of the 1.2Mn- $5Na_2WO_4/SiO_2$ to $5Na_2WO_4/SiO_2$ catalysts. The respective O_2 conversion of these catalysts are also included in the Fig. 6.

Initially, the space velocity was varied at a fixed reaction

temperature (800 $^{\circ}$ C, see Fig. 6(a)). The effect of Mn becomes more pronounced (the CH₄ conversion ratio increases) up to a certain point and then decreases with decreasing space velocity. To understand this influence of Mn promotion behavior, the corresponding O_2 conversion values were compared, and the observations can be summarized as follows:

- (i) At low O_2 conversion values (high gas space velocities), sufficient gas-phase O_2 is available for CH_4 conversion and, consequently, MnO_x promotion does not significantly affect the CH_4 conversion (conversion ratio is smaller).
- (ii) As the gas space velocity is progressively lowered, the conversion values of the reactants increase and the availability of gas phase ${\rm O}_2$ diminishes. Under these conditions, the promotion by ${\rm MnO}_x$ becomes more pronounced.
- (iii) As the gas space velocity is further lowered (the lowest two values in Fig. 6(a)), the CH $_4$ conversion ratio decreases because the ${\rm O}_2$ conversion for the promoted supported 1.2Mn-5Na $_2$ WO $_4$ /SiO $_2$ catalyst approaches almost 100 %, and results in a lower CH $_4$ conversion and a lower CH $_4$ conversion ratio.

To further verify that the degree of MnO_x promotion is indeed dependent on the availability of the gas phase O_2 , the same experiment was performed at a fixed space velocity and at varying temperatures (see Fig. 6(b)). As the gas-phase O_2 conversion increases with temperature, the promotional effect of MnO_x also increases.

The effect of MnO_x promotion on CH_4 activity was also investigated as a function of reaction temperature (see Fig. 6(a) and (c)). A simple comparison reveals that the effect of MnO_x promotion is even higher at a lower reaction temperature. For example, at similar O_2 conversions (e.g., ~30 %) for the supported Na_2WO_4/SiO_2 catalyst, the conversion ratio at 800 °C (~1.21) is lower than that at 750 °C (~1.36).

The effect of the CH_4/O_2 ratio on MnO_x promotion was next examined (see Fig. 6(d)). The gas phase O_2 conversion only slightly decreases for the range of CH_4/O_2 ratios. The availability of gas phase oxygen, however, decreases significantly with increasing CH_4/O_2 ratio due to the inherent nature of the experimental conditions imposed. Thus, the MnO_x promotion effect increases with increasing CH_4/O_2 ratio.

The effect of MnO_x on OCM reaction product selectivity was also investigated as a function of reaction temperature and presented in Fig. 7. For the supported $5Na_2WO_4/SiO_2$ catalyst, only small variations in the C_2 , CO_2 and CO selectivity values were observed with changing reaction temperature while the CH_4 conversions increased. For the supported $1.2Mn-5Na_2WO_4/SiO_2$ catalyst, however, the C_2 and CO selectivity values show a noticeable increase and CO_2 selectivity drastically diminishes with increasing reaction temperature.

4. Discussion

4.1. Dynamics of supported Mn-Na₂WO₄/SiO₂ catalyst structure

Structure of supported Mn-Na₂WO₄/SiO₂ catalyst in oxidizing environments: The freshly calcined, dehydrated 1.2Mn-5Na₂WO₄/SiO₂ catalyst possesses crystalline Mn₂O₃, Na₂WO₄ and β -cristobalite (SiO₂) phases at 400 °C in an oxidizing environment (see Fig. 2 and Fig. 3). Surface Na-WO_x and MnO_x sites are also present on the SiO₂ support (see Fig. 3). The supported crystalline Na₂WO₄ phase is not present at 900 °C (see Fig. 2 and Fig. 3) due to melting above 700 °C. [7–13,15–17] In contrast, the crystalline Mn₂O₃ phase, and surface Na-WO_x and MnO_x sites are stable at 900 °C in an oxidizing environment.

Structure of supported Mn-Na₂WO₄/SiO₂ catalyst in OCM reaction environments: Under OCM reaction conditions (900 °C), only the molten Na₂WO₄ phase and surface Na-WO_x and MnO_x sites are present on the β -cristobalite (SiO₂) support (see Fig. 3). The crystalline Mn₂O₃ phase, however, is absent under OCM (see Fig. 3). A previous *in-situ* Raman investigation on the bulk Mn₂O₃ phase showed that at high temperature (> 500 °C) and under inert (only He flow) or reducing (CH₄:O₂ 1:6) environment, the Mn₂O₃ phase transforms to the Mn₃O₄ phase upon reduction. [40] In the present study under OCM reaction at 900 °C, however, the Raman band for the crystalline Mn₃O₄ phase (~650 cm⁻¹) was not detected (see Fig. 3). [44] The absence of the crystalline Mn₃O₄ phase could be due to thermal broadening at high OCM reaction temperature or simply because the crystalline Mn₃O₄

phase does not exist owing to a net reducing gas environment (CH₄:O₂: N_2 3.3:1:4). The absence of crystalline Mn-oxide phase during OCM reaction is also in agreement with previous *in-situ* XRD studies. [11] (The NAP-XPS data (see Fig. S1) show that Mn is present as both Mn³⁺ and Mn²⁺ oxidation states in the OCM environment. However, the 600 °C temperature for the NAP-XPS measurement is below that required for the OCM reaction.) Upon cooling to lower temperatures (400 °C and 120 °C), the crystalline Mn_2O_3 and Na_2WO_4 phases reappear. The crystalline Mn_2O_3 phase reappears because CH₄ is not able to reduce the Mn_2O_3 phase at these lower temperatures, but Mn_3O_4 , if present, can be oxidized by gas-phase molecular O_2 . The crystalline Na_2WO_4 phase reappears because these temperatures are below its melting point (~700 °C).

Differing conclusions can be found in the literature regarding the nature of manganese oxide phases in different gas environments and temperatures. In agreement with our findings, a few studies report the presence of the Mn₂O₃ phase under oxidizing environments and OCM relevant temperatures. [7,16] In contrast, other studies observed the Mn_2O_3 phase in oxidizing environments and only low temperatures. [9, 10] At high temperatures and oxidizing environments, the Mn₂O₃ phase was seen to transform to the crystalline MnWO₄ phase during melting of Na₂WO₄. [9] Alternatively, the presence of large amounts of Mn₂SiO₁₂ (with trace amount of MnWO₄) is also reported to be present under oxidizing environments and OCM relevant temperature. [11,13] The current studies, however, did not detect the presence of crystalline Mn₇SiO₁₂ or formation of the crystalline MnWO₄ phase in the oxidized supported 1.2Mn-5Na₂WO₄/SiO₂ catalyst (see Fig. 2 and Fig. 3). Under the OCM reaction environment, a few in-situ/operando XRD studies reported the disappearance of the crystalline Mn₂O₃ phase, which is in agreement with the current findings (see Fig. 3). The formation of crystalline Mn₂O₃ or Mn₇SiO₁₂ phases were also detected during an inert or OCM reaction gas environment. [11,13] A possible reason for the formation of the crystalline Mn₇SiO₁₂ phase may be related to the type of starting SiO₂ support used by different researchers. [48].

In summary, the current findings reveal that the oxide phases present for the supported $1.2Mn-5Na_2WO_4/SiO_2$ catalyst under OCM reaction conditions are the molten Na_2WO_4 phase and the surface $Na-WO_x$ and MnO_x sites on the crystalline β -cristobalite (SiO₂) support.

4.2. Formation of new surface Na-WO_x sites on SiO₂ during OCM

Heating supported 1.2Mn-5Na₂WO₄/SiO₂ catalysts above the melting point of crystalline Na₂WO₄ (~700 °C) also results in the formation of isolated surface Na-WO_x sites (Raman bands at 950 and 330 cm⁻¹, see Fig. 3). Consequently, both isolated surface Na-WO_x sites and the molten Na₂WO₄ phase (broad bands at 926, 808 and 305 cm⁻¹) co-exist under OCM reaction conditions. Interestingly, the intensity of Raman vibrations from surface Na-WO_x sites (946 and 330 cm⁻¹) has increased considerably after treatment under OCM reaction conditions (see Fig. 3). Such relative increase in the intensity of surface Na-WO_x species was also observed for the 5Na₂WO₄/SiO₂ catalyst. [15] Additionally, the O1s lines from the NAP-XPS experiments show that the relative intensity of the oxygen peak from active metal oxide phases considerably increases in comparison to the oxygen associated with the SiO₂ support (see Fig. S1 and associated discussion) after catalyst treatment under OCM reaction conditions. All the above observations and discussion suggest that new surface WO_x sites are formed during OCM reaction.

4.3. Interaction between active metal oxide phases during OCM

Additional data processing was undertaken to examine the Raman shifts of the $\rm Na_2WO_4$ phase (from 926 to 923 cm $^{-1}$) and surface $\rm Na\text{-}WO_x$ sites (from 950 cm to 946 cm $^{-1}$) of the supported 1.2Mn-5Na₂WO₄/SiO₂ catalyst after exposure to the OCM reaction environment (see Fig. 3, Fig. S4 and associated discussion). The comparative analysis between

the supported 5Na₂WO₄/SiO₂ and 1.2Mn-5Na₂WO₄/SiO₂ catalysts suggest the interaction of Mn with both the molten Na₂WO₄ phase and surface Na-WO_x sites during OCM. The interaction of Mn with molten Na₂WO₄ phase has previously been reported with in-situ Raman spectroscopy, in agreement with the current findings. [16] Furthermore, an in-situ Raman spectroscopic comparison of the supported 5WOx/SiO2 and 0.7Mn-3WO_x/SiO₂ catalysts was undertaken to examine the possible interaction of MnO_x with surface WO_x sites (see Fig. S5 and associated discussion). The Raman spectra of the dehydrated catalysts showed the presence of surface Mn-WO_x sites (~924 and 944 cm⁻¹, perturbed from 984 and 1014 cm⁻¹ bands for the supported WO_x/SiO₂ catalyst with additional presence of crystalline MnWO4 phase). This confirms that MnOx can interact with surface WOx sites on SiO2 and is reflected in perturbation of the W=O vibration of the surface WO₄ sites. To the best of our knowledge, the interaction between surface MnO_x species and W-oxides (molten Na₂WO₄ phase and surface Na-WO_x sites) on SiO2 for supported Mn-Na2WO4/SiO2 catalysts during the OCM reaction has been shown, for the first time, via direct spectroscopic experiments.

The interaction of Mn with both the surface Na-WO $_{\rm X}$ sites and molten Na $_{\rm 2}$ WO $_{\rm 4}$ phase is also apparent from the H $_{\rm 2}$ -TPR experiments (see Fig. S3 and Fig. 4). The freshly calcined supported $5{\rm Na}_{\rm 2}$ WO $_{\rm 4}$ /SiO $_{\rm 2}$ and 1.2Mn-5Na $_{\rm 2}$ WO $_{\rm 4}$ /SiO $_{\rm 2}$ catalysts exhibit similar TPR profiles. However, only the supported 1.2Mn-5Na $_{\rm 2}$ WO $_{\rm 4}$ /SiO $_{\rm 2}$ catalyst was able to maintain a constant peak reduction temperature and total number of reducible O-atoms after several cycles of oxidation reductions. Moreover, even for the fresh catalysts, the number of removable O-atoms (associated with both surface Na-WO $_{\rm X}$ species and Na $_{\rm 2}$ WO $_{\rm 4}$ phase) from 1.2Mn-5Na $_{\rm 2}$ WO $_{\rm 4}$ /SiO $_{\rm 2}$ catalyst is more than 10 % higher than the 5Na $_{\rm 2}$ WO $_{\rm 4}$ /SiO $_{\rm 2}$ catalyst. The above observations strongly support an interaction between Mn and W-oxide (surface Na-WO $_{\rm X}$ species as well as Na $_{\rm 2}$ WO $_{\rm 4}$ phase) and is consistent with previous literature findings [16,35].

4.4. Active site(s) in supported Mn-Na₂WO₄/SiO₂ catalyst for catalytic OCM reaction

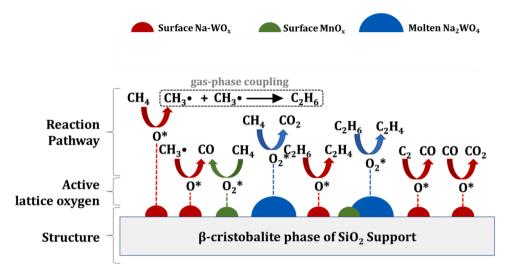
Although the supported $1.2 Mn/SiO_2$ catalyst is capable of activating CH_4 , its C_2 selectivity is significantly lower than that of the supported $5Na_2WO_4/SiO_2$ catalysts (with or without Mn promotion). The addition of MnO_x to the supported $5Na_2WO_4/SiO_2$ catalyst, however, significantly improves the CH_4 reactivity without affecting the C_2 selectivity (see Table 1). This suggests, in contrast to many proposals in the literature [7,24-28], that the Mn-oxide by itself cannot be the selective active center for the OCM reaction to form C_2 product, but serves as a promoter for the supported $5Na_2WO_4/SiO_2$ catalysts to improve catalytic OCM activity without compromising C_2 selectivity. This observation also suggests that the W-oxide (surface $Na-WO_x$ sites and molten Na_2WO_4 phase) phases are the active sites for the catalytic OCM reaction [3,19-23,49].

4.5. Contribution of MnO_x towards catalytic OCM reaction network

Deeper insights into the role of MnO_x in the catalytic OCM reaction network were gained from TAP experiments (see Fig. 5). The O_2 - $^{13}CH_4$ pump-probe experiment revealed that the promotion with MnO_x significantly increases the total number of labile O_2 released from the surface (associated with molten Na_2WO_4 phase) from the $5Na_2WO_4/SiO_2$ catalyst. [35] The production of C_2H_6 , however, was minimally affected suggesting the surface Na_2WO_x sites are mostly responsible for the formation of the C_2H_6 product. In contrast, the CO_2 yield was significantly enhanced, relating its origin to the molten Na_2WO_4 phase. The involvement of W-oxide phases towards CH_4 activation in the OCM reaction is in agreement with many previous findings [3,16,19–23].

Further, the O_2 - C_2H_6 pump-probe experiment showed significant improvement in C_2H_4 production in the presence of Mn (and concomitant higher amount of released O_2 from the molten Na_2WO_4 phase),

suggesting that the molten Na_2WO_4 phase is also responsible for oxidative dehydrogenation of C_2H_6 to C_2H_4 . [15] This result is also confirmed by the steady state OCM reaction studies (see Table 1). [15, 50] The reactivity data and product distribution suggest that (i) Mn-oxide is only modestly effective as a dehydrogenation center for C_2H_6 to C_2H_4 oxidative conversion since its dehydrogenation capability is even lower than the supported $5Na_2WO_4/SiO_2$ catalyst, (ii) the addition of MnO_x to the supported $5Na_2WO_4/SiO_2$ catalyst, however, improves the C_2H_4 product selectivity that is related to a greater number of dioxygen species available from the molten Na_2WO_4 phase.


4.6. Influence of gas-phase molecular O₂ concentration on MnO_x promotion

The catalytic OCM reaction over the supported 1.2Mn-5Na₂WO₄/ SiO_2 catalyst has been proposed to follow a hybrid Mars-van Krevelen redox type mechanism by many studies. [3,13,17,30-34,37] This suggests that the oxygen species from the active oxide phases becomes consumed in the oxidation reaction steps and then gets replenished by the gas phase oxygen. Thus, the OCM activity is expected to depend on both the gas phase O2 concentration and the exchange rate of oxygen between the gas phase and catalyst lattice. From catalytic OCM activity data in Fig. 6, one can clearly see that the MnO_x promotion strongly depends on gas phase O2 concentration. When sufficient gas phase molecular O₂ is present, the MnO_x promotion effect is low. In contrast, the MnO_x promotion gradually becomes significant with a decrease in gas phase molecular O2 concentration (or higher O2 conversion), suggesting that the MnO_x sites play a mediator role for oxygen exchange between the gas phase and catalyst lattice. To further elaborate on this, the oxygen exchange happens in both ways: (i) the gas phase O2 is supplied to the reduced catalytic oxide phase by the MnO_x center. This is evident by the cyclic H2-TPR experiment (see Fig. 4) where the supported 5Na₂WO₄/SiO₂ catalyst regains almost all lattice oxygen species during the reoxidation step only in the presence of MnO_x species. (ii) Catalytic oxygen is supplied to the catalyst surface for consumption. Thus, the presence of MnO_x species increases the total amount of oxygen release that results in significant improvement in catalytic performance (activity as well as selectivity) [15,35].

The current conclusions are in agreement with many literature reports claiming that $\rm MnO_x$ participates in oxygen spillover to the W-oxide centers. [3,17,19–23] Recent *in-situ/operando* XRD and Raman studies reported that the oxygen exchange between gas phase and catalyst oxide lattice takes place *via* the reversible cycle of $\rm Mn_7SiO_{12} \leftrightarrow MnWO_4$. [13] Other *ex-situ* studies speculated the $\rm Mn_2O_3 \leftrightarrow MnWO_4$ redox cycle to be operational for oxygen exchange. [51,52] Such 3D oxide phases, however, were not detected in the current study with the supported 1.2Mn-5Na₂WO₄/SiO₂ catalyst during OCM. It is, thus, proposed that the thermally and chemically stable surface $\rm MnO_x$ sites in the current 1.2Mn-5Na₂WO₄/SiO₂ catalyst are responsible for facilitating oxygen exchange between gas-phase molecular O₂ and the W-oxide phases.

4.7. Influence of temperature on MnO_x promotion

At similar oxygen conversion, the promotional effect of MnO_x on CH_4 activity was found to be higher at lower reaction temperatures (see Fig. 6(a) and (c)). This observation is in agreement with literature reports that observed MnO_x promotion allows the catalyst to conduct the OCM reaction at a much lower reaction temperature than for the unpromoted, supported $5Na_2WO_4/SiO_2$ catalyst. [29] However, the CH_4 can be activated by both the surface $Na-WO_x$ sites and molten Na_2WO_4 phase. [15] For the supported $5Na_2WO_4/SiO_2$ catalyst, the C_2 and CO_2 (primarily formed by surface $Na-WO_x$ species), and CO_2 (mostly coming from the molten Na_2WO_4 phase) [15] selectivity values do not change significantly with increasing reaction temperature (see Fig. 7). This suggests the activity of both of these sites increase proportionately with temperature, in the absence of MnO_x species. In contrast, for the

Scheme 1. OCM reaction mechanism over supported Mn-Na₂WO₄/SiO₂ catalysts.

supported 1.2Mn-5Na $_2$ WO $_4$ /SiO $_2$ catalyst, the C $_2$ and CO selectivity increase, and CO $_2$ selectivity decreases with temperature. Such an interesting change in the selectivity of C $_2$ and CO (increasing with temperature) and CO $_2$ (decreasing with temperature) is also reported in the OCM literature for 1.2Mn-5Na $_2$ WO $_4$ /SiO $_2$ catalyst, both at atmospheric and elevated pressures (0.2–0.4 MPa). [46,53] These observations suggest that MnO $_x$ selectively promotes the molten Na $_2$ WO $_4$ phase at lower temperature and that the MnO $_x$ promotion of surface Na-WO $_x$ sites becomes dominant at higher temperatures.

5. Conclusions

The structural dynamics of the supported $1.2Mn-5Na_2WO_4/SiO_2$ catalyst under OCM reaction conditions were investigated with multiple in-situ characterization techniques and chemical probe measurements. The role and promotional effect of MnO_x phase was investigated via controlled TAP experiments and detailed steady state kinetic studies. The findings are summarized as follows:

- (i) The freshly calcined, dehydrated 1.2Mn-5Na $_2$ WO $_4$ /SiO $_2$ catalyst contains (at 400 °C, oxidizing environment) crystalline Mn $_2$ O $_3$, Na $_2$ WO $_4$ and β -cristobalite (SiO $_2$) phases along with surface MnO $_x$ and Na-WO $_x$ sites. Heating the catalyst to 900 °C (oxidizing environment) results in melting of the crystalline Na $_2$ WO $_4$ phase. Interestingly, the WO $_4$ structure originally present in Na $_2$ WO $_4$ crystal is preserved in its molten phase.
- (ii) In the OCM reaction environment at 900 °C, the Mn_2O_3 crystalline phase disappears, possibly due to the reduction of Mn-oxide. In contrast, the surface MnO_x and $Na\text{-}WO_x$ sites exhibit excellent thermal and chemical stability and Na_2WO_4 remains in molten phase.
- (iii) Deeper analysis of the *in-situ* Raman spectra provided the first ever direct spectroscopic evidence regarding the interaction between Mn and W-oxide (molten Na₂WO₄ phase and surface Na-WO_x sites) centers. Further analysis revealed that the treatment of the supported 1.2Mn-5Na₂WO₄/SiO₂ catalyst in the OCM reaction environment results in formation of new surface Na-WO_x sites from redispersion of molten Na₂WO₄ phase on the SiO₂ support [15].
- (iv) The MnO_x species are active towards CH_4 conversion, but not selective. The addition of MnO_x to the supported $5Na_2WO_4/SiO_2$ catalysts, however, significantly improves the catalyst activity without affecting the C_2 selectivity. This suggests that the Woxide centers are the catalytic active site for OCM and that the

- MnO_x species *only* act as promoters in the supported 1.2Mn- $5Na_2WO_4/SiO_2$ catalyst.
- (v) The promotional effect of MnO_x is strongly dependent on the reaction conditions. At low availability of gas-phase molecular O_2 , the promotional effect becomes significant suggesting MnO_x species act as mediators for oxygen exchange between the gas phase and catalyst lattice.
- (vi) MnO_x promotion of the catalytically active molten Na₂WO₄ phase and surface Na-WO_x sites varies as a function of reaction temperature. At low temperature, the MnO_x species selectively promote the molten Na₂WO₄ phase and at high temperature the MnO_x promotion of the surface Na-WO_x sites becomes dominant.

These new findings add clarity to the debates in the literature regarding stable structures, role, and promotional effect of MnO_x in the supported $Mn\textsubscript{NnO}_x/SiO_2$ catalyst during the OCM reaction. Based on the new findings from this study, along with the findings from the published articles [15,35], we propose the OCM reaction mechanism to take place over supported $Mn\textsubscript{NnO}_x/SiO_2$ catalysts as presented in Scheme 1.

CRediT authorship contribution statement

Sagar Sourav: Conceptualization, Methodology, Validation, Investigation, Writing – original draft. Daniyal Kiani: Conceptualization, Methodology, Writing – review & editing. Yixiao Wang: Conceptualization, Methodology, Validation, Writing – review & editing, Supervision. Jonas Baltrusaitis: Conceptualization, Methodology, Writing – review & editing, Supervision, Funding acquisition. Rebecca R. Fushimi: Conceptualization, Methodology, Writing – review & editing, Supervision, Funding acquisition. Israel E. Wachs: Conceptualization, Methodology, Writing – review & editing, Supervision, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

The data set generated during the current study are available from the corresponding authors upon reasonable request.

Acknowledgements

DK, JB and IEW gratefully acknowledge the National Science Foundation (NSF) Chemical, Bioengineering, Environment and Transport Systems (CBET) award # 1706581. SS, YW and RRF gratefully acknowledge the support from the U.S. Department of Energy (USDOE), Office of Energy Efficiency and Renewable Energy (EERE), Advanced Manufacturing Office Next Generation R&D Projects under contract no. DE-AC07-05ID14517. All the authors acknowledge the assistance from Dr. Henry Luftman of Lehigh University for conducting NAP-XPS experiments and Arnold W. Erickson of Idaho National Laboratory for collecting the in-situ XRD spectra. SS, DK, JB and IEW also sincerely thank Dr. Michael E. Ford of the Operando Molecular Spectroscopy & Catalysis Research Laboratory, Lehigh University, for his insightful input. SS, YW and RRF sincerely thank James P. Pittman of Idaho National Laboratory for his help in the lab in preparing isotope gas mixtures, setting up the steady state fixed-bed reactor and maintaining the TAP reactor.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.cattod.2022.07.005.

References

- J. Lin, J. Gu, D. Yang, C. Zhang, Stability Test of W-Mn/SiO₂ catalyst for oxidative coupling of methane, Petrochem. Technol. 24 (1995), 293-293.
- [2] X. Wang, J. Zhang, D. Yang, C. Zhang, J. Lin, S. Li, Oxiditive coupling of methane over W-Mn/SiO₂ catalyst in a bench-scale stainless steel fluidized-bed, React. Petrochem. Technol. 26 (1997) 361–367.
- [3] S.B. Li, Oxidative coupling of methane over W-Mn/SiO₂ catalyst, Chin. J. Chem. 19 (1) (2001) 16–21.
- [4] S.B. Li, Reaction chemistry of W-Mn/SiO₂ catalyst for the oxidative coupling of methane, J. Nat. Gas. Chem. 12 (1) (2003) 1–9.
- [5] S. Arndt, T. Otremba, U. Simon, M. Yildiz, H. Schubert, R. Schomäcker, Mn–Na₂WO₄/SiO₂ as catalyst for the oxidative coupling of methane. What is really known? Appl. Catal., A 425–426 (2012) 53–61.
- [6] D. Kiani, S. Sourav, J. Baltrusaitis, I.E. Wachs, Oxidative coupling of methane (OCM) by SiO₂-supported tungsten oxide catalysts promoted with Mn and Na, ACS Catal. 9 (7) (2019) 5912–5928.
- [7] S. Hou, Y. Cao, W. Xiong, H. Liu, Y. Kou, Site requirements for the oxidative coupling of methane on SiO₂-supported Mn catalysts, Ind. Eng. Chem. Res. 45 (21) (2006) 7077–7083
- [8] A. Vamvakeros, S. Jacques, V. Middelkoop, M. Di Michiel, C. Egan, I. Ismagilov, G. Vaughan, F. Gallucci, M. van Sint Annaland, P. Shearing, Real time chemical imaging of a working catalytic membrane reactor during oxidative coupling of methane, Chem. Commun. 51 (64) (2015) 12752–12755.
- [9] M. Yildiz, Y. Aksu, U. Simon, T. Otremba, K. Kailasam, C. Göbel, F. Girgsdies, O. Görke, F. Rosowski, A. Thomas, R. Schomäcker, S. Arndt, Silica material variation for the Mn_xO_y-Na₂WO₄/SiO₂, Appl. Catal. A 525 (2016) 168–179.
- [10] D. Matras, A. Vamvakeros, S. Jacques, N. Grosjean, B. Rollins, S. Poulston, G.B. G. Stenning, H. Godini, J. Drnec, R.J. Cernik, A.M. Beale, Effect of thermal treatment on the stability of Na-Mn-W/SiO₂ catalyst for the oxidative coupling of methane, Faraday Discuss. 229 (2021) 176–196.
- [11] A. Vamvakeros, D. Matras, S.D.M. Jacques, M. di Michiel, S.W.T. Price, P. Senecal, M.A. Aran, V. Middelkoop, G.B.G. Stenning, J.F.W. Mosselmans, I.Z. Ismagilov, A. M. Beale, Real-time multi-length scale chemical tomography of fixed bed reactors during the oxidative coupling of methane reaction, J. Catal. 386 (2020) 39–52.
- [12] D. Kiani, S. Sourav, I.E. Wachs, J. Baltrusaitis, Synthesis and molecular structure of model silica-supported tungsten oxide catalysts for oxidative coupling of methane (OCM), Catal. Sci. Technol. 10 (2020) 3334–3345.
- [13] M.J. Werny, Y. Wang, F. Girgsdies, R. Schlögl, A. Trunschke, Fluctuating Storage of the Active Phase in a Mn-Na₂WO₄/SiO₂ Catalyst for the Oxidative Coupling of Methane. Angew. Chem, Int. Ed. 59 (35) (2020) 14921–14926.
- [14] D. Kiani, S. Sourav, J. Baltrusaitis, I.E. Wachs, Elucidating the effects of Mn promotion on SiO₂-supported Na-promoted tungsten oxide catalysts for oxidative coupling of methane (OCM), ACS Catal. 11 (2021) 10131–10137.
- [15] S. Sourav, Y. Wang, D. Kiani, J. Baltrusaitis, R.R. Fushimi, I.E. Wachs, New mechanistic and reaction pathway insights for oxidative coupling of methane (OCM) over supported Na₂WO₄/SiO₂, Catal. Angew. Chem., Int. Ed. 60 (39) (2021) 21502–21511.
- [16] C.A. Ortiz-Bravo, S.J.A. Figueroa, R. Portela, C.A. Chagas, M.A. Bañares, F. S. Toniolo, Elucidating the structure of the W and Mn sites on the Mn-Na₂WO₄/SiO₂ catalyst for the oxidative coupling of methane (OCM) at real reaction temperatures. J. Catal. (2021).
- [17] Z. Aydin, A. Zanina, V.A. Kondratenko, J. Rabeah, J. Li, J. Chen, Y. Li, G. Jiang, H. Lund, S. Bartling, D. Linke, E.V. Kondratenko, Effects of N₂O and water on

- activity and selectivity in the oxidative coupling of methane over Mn-Na₂WO₄/SiO₂: role of oxygen species, ACS Catal. 12 (2) (2022) 1298-1309.
- [18] K. Takanabe, A.M. Khan, Y. Tang, L. Nguyen, A. Ziani, B.W. Jacobs, A.M. Elbaz, S. M. Sarathy, F. Tao, Integrated in situ characterization of a molten salt catalyst surface: evidence of sodium peroxide and hydroxyl radical formation, Angew. Chem. Int. Ed. 56 (35) (2017) 10403–10407.
- [19] Z.C. Jiang, C.J. Yu, X.P. Fang, S.B. Li, H.L. Wang, Oxide/support interaction and surface reconstruction in the Na₂WO₄/SiO₂ system, J. Phys. Chem. 97 (49) (1993) 12870–12875
- [20] J. Wu, S. Li, The role of distorted WO₄ in the oxidative coupling of methane on supported tungsten oxide catalysts, J. Phys. Chem. 99 (13) (1995) 4566–4568.
- [21] J. Wu, S. Li, J. Niu, X. Fang, Mechanistic study of oxidative coupling of methane over Mn2O3 Na2WO4SiO2 catalyst, Appl. Catal. A: Gen. 124 (1) (1995) 9–18.
- [22] H.S. Chen, J.Z.N. Zhang B., S.B. Li, Acta Phys. Chim. Sin. 17 (2001) 111-115.
- [23] S. Li, Reaction chemistry of W-Mn/SiO~ 2 catalyst for the oxidative coupling of methane, J. Nat. Gas. Chem. 12 (1) (2003) 1–9.
- [24] Y. Kou, B. Zhang, J.Z. Niu, S.B. Li, H.L. Wang, T. Tanaka, S. Yoshida, Amorphous features of working catalysts: XAFS and XPS characterization of Mn/Na₂WO₄/SiO₂ as used for the oxidative coupling of methane, J. Catal. 173 (2) (1998) 399–408.
- [25] D.J. Wang, M.P. Rosynek, J.H. Lunsford, Oxidative coupling of methane over oxide-supported sodium-manganese catalysts, J. Catal. 155 (2) (1995) 390–402.
- [26] S.F. Ji, T.C. Xiao, S.B. Li, C.Z. Xu, R.L. Hou, K.S. Coleman, M.L.H. Green, The relationship between the structure and the performance of Na-W-Mn/SiO₂ catalysts for the oxidative coupling of methane, Appl. Catal., A 225 (1) (2002) 271–284.
- [27] T.W. Elkins, H.E. Hagelin-Weaver, Characterization of Mn-Na₂WO₄/SiO₂ and Mn-Na₂WO₄/MgO catalysts for the oxidative coupling of methane, Appl. Catal., A 497 (2015) 96–106.
- [28] A. Shubin, I. Zilberberg, I. Ismagilov, E. Matus, M. Kerzhentsev, Z. Ismagilov, Hydrogen abstraction from methane on cristobalite supported W and Mn oxo complexes: a DFT study, Mol. Catal. 445 (2018) 307–315.
- [29] A. Malekzadeh, M. Abedini, A.A. Khodadadi, M. Amini, H.K. Mishra, A.K. Dalai, Critical influence of Mn on low-temperature catalytic activity of Mn/Na₂WO₄/SiO₂ catalyst for oxidative coupling of methane, Catal. Lett. 84 (1) (2002) 45–51.
- [30] B. Beck, V. Fleischer, S. Arndt, M.G. Hevia, A. Urakawa, P. Hugo, R. Schomäcker, Oxidative coupling of methane-a complex surface/gas phase mechanism with strong impact on the reaction engineering, Catal. Today 228 (2014) 212–218.
- [31] V. Fleischer, R. Steuer, S. Parishan, R. Schomäcker, Investigation of the surface reaction network of the oxidative coupling of methane over Na₂WO₄/Mn/SiO₂ catalyst by temperature programmed and dynamic experiments, J. Catal. 341 (2016) 91–103.
- [32] Y. Gordienko, T. Usmanov, V. Bychkov, V. Lomonosov, Z. Fattakhova, Y. Tulenin, D. Shashkin, M. Sinev, Oxygen availability and catalytic performance of NaWMn/ SiO₂ mixed oxide and its components in oxidative coupling of methane, Catal. Today 278 (2016) 127–134.
- [33] V.I. Lomonosov, Y.A. Gordienko, M.Y. Sinev, V.A. Rogov, V.A. Sadykov, Thermochemical properties of the lattice oxygen in W, Mn-containing mixed oxide catalysts for the oxidative coupling of methane, Russ. J. Phys. Chem. A 92 (3) (2018) 430–437
- [34] Z. Aydin, V.A. Kondratenko, H. Lund, S. Bartling, C.R. Kreyenschulte, D. Linke, E. V. Kondratenko, Revisiting activity- and selectivity-enhancing effects of water in the oxidative coupling of methane over MnO_x-Na₂WO₄/SiO₂ and proving for other materials, ACS Catal. 10 (15) (2020) 8751–8764.
- [35] S. Sourav, Y. Wang, D. Kiani, J. Baltrusaitis, R.R. Fushimi, I.E. Wachs, Resolving the Types and Origin of Lattice Oxygen Species Present in Supported Mn-Na₂WO₄/ SiO₂ Catalysts for Oxidative Coupling of Methane, ACS Catal. 11 (2021) 10288–10293.
- [36] S. Sourav, I.E. Wachs, Cr-Free, Cu promoted Fe oxide-based catalysts for high-temperature water-gas shift (HT-WGS) reaction, Catalysts 10 (2020) 3.
- [37] V. Fleischer, U. Simon, S. Parishan, M.G. Colmenares, O. Görke, A. Gurlo, W. Riedel, L. Thum, J. Schmidt, T. Risse, K.-P. Dinse, R. Schomäcker, Investigation of the role of the Na₂WO₄/Mn/SiO₂ catalyst composition in the oxidative coupling of methane by chemical looping experiments, J. Catal. 360 (2018) 102–117.
- [38] E.I. Ross-Medgaarden, I.E. Wachs, Structural determination of bulk and surface tungsten oxides with UV-vis diffuse reflectance spectroscopy and raman spectroscopy, J. Phys. Chem. C. 111 (41) (2007) 15089–15099.
- [39] C.M. Julien, M. Massot, C. Poinsignon, Lattice vibrations of manganese oxides: Part I. Periodic structures, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 60 (3) (2004) 689–700.
- [40] Y.F. Han, K. Ramesh, L. Chen, E. Widjaja, S. Chilukoti, F. Chen, Observation of the reversible phase-transformation of α-Mn2O3 nanocrystals during the catalytic combustion of methane by in situ raman spectroscopy, J. Phys. Chem. C. 111 (7) (2007) 2830–2833.
- [41] D. Kiani, S. Sourav, W. Taifan, M. Calatayud, F. Tielens, I.E. Wachs, J. Baltrusaitis, Existence and properties of isolated catalytic sites on the surface of β-cristobalite-supported, doped tungsten oxide catalysts (WO_x/β-SiO₂, Na-WO_x/β-SiO₂, Mn-WO_x/β-SiO₂) for oxidative coupling of methane (OCM): a combined periodic DFT and experimental study, ACS Catal. 10 (2020) 4580–4592.
- [42] M.N. Iliev, M.M. Gospodinov, A.P. Litvinchuk, Raman spectroscopy of MnWO₄, Phys. Rev. B 80 (21) (2009), 212302.
- [43] S. Lwin, Y. Li, A.I. Frenkel, I.E. Wachs, Nature of WO_x Sites on SiO₂ and their molecular structure–reactivity/selectivity relationships for propylene metathesis, ACS Catal. 6 (5) (2016) 3061–3071.
- [44] F. Buciuman, F. Patcas, R. Craciun, R.T. Zahn, D, Vibrational spectroscopy of bulk and supported manganese oxides, Phys. Chem. Chem. Phys. 1 (1) (1999) 185–190.
- [45] J. Wang, J. You, M. Wang, L. Lu, A.A. Sobol, S. Wan, In-situ high-temperature Raman spectroscopic studies of the vibrational characteristics and microstructure

ARTICLE IN PRESS

S. Sourav et al. Catalysis Today xxx (xxxx) xxx

- evolution of sodium tungstate dihydrate crystal during heating and melting, J. Raman Spectrosc. 49 (10) (2018) 1693–1705.
- [46] S.M.K. Shahri, A.N. Pour, Ce-promoted Mn/Na2WO4/SiO2 catalyst for oxidative coupling of methane at atmospheric pressure, J. Nat. Gas. Chem. 19 (1) (2010) 47–53
- [47] S.M.K. Shahri, S.M. Alavi, Kinetic studies of the oxidative coupling of methane over the Mn/Na₂WO₄/SiO₂ catalyst, J. Nat. Gas. Chem. 18 (1) (2009) 25–34.
- [48] J. Si, G. Zhao, W. Sun, J. Liu, C. Guan, Y. Yang, X.-R. Shi, Y. Lu, Oxidative coupling of methane: examining the inactivity of the MnO_x-Na₂WO₄/SiO₂ catalyst at low temperature, Angew. Chem. Int. Ed. (2022), e202117201.
- [49] D. Kiani, S. Sourav, I.E. Wachs, J. Baltrusaitis, A combined computational and experimental study of methane activation during oxidative coupling of methane (OCM) by surface metal oxide catalysts, Chem. Sci. 12 (42) (2021) 14143–14158.
- [50] B. Huang, N.S. Hayek, G. Sun, S. Mottaghi-Tabar, D.S.A. Simakov, O.M. Gazit, Correlating properties of the Mn₂O₃-Na₂WO₄/SiO₂ catalyst with statistically estimated parameters for the oxidative coupling of methane, Energy Fuels 35 (11) (2021) 9589–9598.
- [51] J. Wu, S. Li, J. Niu, X. Fang, Mechanistic study of oxidative coupling of methane over Mn₂O₃-Na₂WO₄/SiO₂ catalyst, Appl. Catal., A 124 (1) (1995) 9–18.
- [52] P. Wang, G. Zhao, Y. Wang, Y. Lu, MnTiO₃-driven low-temperature oxidative coupling of methane over TiO₂-doped Mn₂O₃-Na₂WO₄/SiO₂ catalyst, Sci. Adv. 3 (6) (2017), e1603180.
- [53] J.S. Ahari, M.T. Sadeghi, S. Zarrinpashne, Effects of operating parameters on oxidative coupling of methane over Na-W-Mn/SiO₂ catalyst at elevated pressures, J. Nat. Gas. Chem. 20 (2) (2011) 204–213.