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Abstract—Index modulation represents the transmitted infor-
mation in two parts: by selecting a subset of available trans-
mission dimensions (antennas, sub-carriers, or time-slots) whose
selection index carries information, and by modulation symbols
transmitted in the selected dimensions. Index modulation is
motivated by reducing the transmitter hardware complexity and
has attracted significant research attention in the past decade. In
practice, knowing the spectral efficiency or capacity is essential
for setting the parameters of modulation and coding for index
modulation, but approximations and bounds thus far have not
been accurate enough for that purpose. We calculate close lower
and upper bounds for the spectral efficiency of index modulation.
Our lower and upper bounds meet at high-SNR when the number
of receive antennas is greater than or equal to the number
of transmit antennas, thus the high-SNR capacity of index
modulation in these cases has been fully characterized. A catalog
of results is provided for spatial modulation, generalized spatial
modulation, time and frequency index modulation. Extensive
simulations illustrate the usefulness and accuracy of our results.
For example, for spatial modulation with 4 × 2 antennas at 8
bits/s/Hz, our results are 2dB tighter than the best available
bounds in the literature.

I. INTRODUCTION

Index modulation selects a subset of available transmission
dimensions (antennas, sub-carriers, or time slots); the selection
index carries part of the information to be communicated to the
receiver. The remainder of information is conveyed by mod-
ulation symbols emitted in the selected dimensions [1], [2].
Spatial modulation is the most popular index modulation tech-
nique in which one out of nt available antennas is activated per
channel use, and a modulation symbol is transmitted from the
active antenna [3], [4]. Both the index of the active antenna and
the transmitted symbol carry information. Spatial modulation
is driven by the idea of utilizing the available multi-antenna
channel while limiting complexity. Spatial modulation has
low transmitter hardware complexity by requiring only one
transmit RF chain. Also, spatial modulation receivers are
fairly simple since multi-antenna interference is absent. Spatial
modulation has been studied extensively in the literature. For
a recent survey, see [5] and the references therein.

The low hardware complexity of spatial modulation comes
at the cost of rate loss, since the available spatial degrees
of freedom are under-utilized. Complete utilization of spatial
degrees of freedom, as in conventional MIMO, requires using
nt RF chains, leading to high hardware complexity. Gener-
alized spatial modulation strikes a balance between spatial
modulation and MIMO by using K (1 < K < nt) RF
chains and activating K antennas per channel use [6], [7].
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Indices of the K active antennas as well as the symbols
transmitted on them carry information. Several variants of
spatial and generalized spatial modulation have been studied
in the literature [8], [9]. The idea of index modulation has
also been extended to other domains, such as indexing of sub-
carriers and time-slots [10], [11], [2], [12]. Advanced OFDM
index modulation schemes that improve performance over
conventional sub-carrier index modulation are also studied in
[13], [14], [15].

Knowledge of spectral efficiency is necessary for the de-
sign of modulation and coding. The work in [16] shows
via simulations that spatial modulation with a single receive
antenna can achieve higher capacity compared with SISO. The
results of [16] are limited to single receive antenna systems,
and the capacity computation involves evaluating a numerical
integral for the rate conveyed by the index in addition to
the expectation over fading. The work in [17] provides an
approximation for the capacity of single receive antenna spatial
modulation. The technique is highly specialized and there
is no indication that it can be generalized either to spatial
modulation with higher number of receive antennas or to
generalized spatial modulation. The works in [18], [19], [20],
[21], [22] derive approximations or bounds on capacity of
spatial and generalized spatial modulation, but the results
are not sufficiently tight for determining the parameters of
modulation and coding. The works in [23], [24] state that the
capacity of spatial modulation is equal to the number of receive
antennas times the capacity of AWGN channel [23, Eq. (30)],
[24, Eq. (15)], which on the face of it violates the MIMO
bound on the degrees of freedom of the 2× nr channels, for
large nr.

Calculating the spectral efficiency of index modulation is
challenging in part because the vector-valued transmit signal
is the product of two information-carrying variables, one
choosing the index and the other representing the modulation
symbol. A random channel coefficient matrix multiplies this
product signal, which adds another layer of detail. The optimal
distribution of the index and modulating signal is unknown;
further, it is unknown if the optimal distribution is a product
distribution (independent).

Our outer bounds for spatial modulation are a combination
of the MIMO bound and a genie-aided SIMO bound. Our
lower bound utilizes a chain rule decomposition, also used
in [18], but with the important distinction that our calculation
does not employ any further conditioning or approximation of
the chain rule terms. The only departure of our lower bound
from optimality is due to choosing a codebook distribution
which has not been proved to be optimal. In contrast, [18]
further approximates the antenna index term which can signifi-
cantly weaken the inner bound, as demonstrated via numerical
results. The work in [20] employs a Gaussian mixture model
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for the multi-antenna transmit signal and bounds its entropy.
This approach performed well at high SNR, but lacks the
facility to reliably bound the index modulation rate between
MIMO and SIMO capacities, as one would hope and expect.
In fact, numerical results show that it under-performs SIMO
capacity at low-SNR. At high SNR, the lower bound of [20]
has been the best in the literature, but nevertheless it is
significantly improved by the present work. For example, for
a 4 × 2 spatial modulation, at 8 bits/s/Hz, our bound is 2
dB tighter than [20]. Our contributions in this paper can be
summarized as follows:

1) We derive bounds on the capacity of spatial modulation
and show analytically that our lower and upper bounds
meet at high-SNR when the number of receive antennas
is greater than or equal to the number of transmit anten-
nas, i.e., high-SNR capacity in these cases is completely
characterized.

2) We extend our analysis to provide a comprehensive
catalog of tight bounds for various index modulation
schemes, namely, generalized spatial modulation (in
frequency-flat and frequency-selective channels), time-
index modulation, and frequency index modulation.

3) We provide performance upper limits for the practi-
cal class of techniques that encode the index and the
modulation independently. When compared with our
capacity lower bound, our upper bound for independent
encoding circumscribes the suboptimality of uniform
index codebooks and Gaussian modulation codebooks
under the assumption of independent encoding.

4) Finally, we provide exhaustive simulation results illus-
trating our bounds under a variety of channel conditions.
The results reveal that our bounds are significantly
tighter than the previous bounds and approximations
in the literature. Based on the simulations, we also
make some important observations about when index
modulation should be used in practice and when it
should not be.

An early version of some results of this paper appeared in [25].

II. MULTI-ANTENNA INDEX MODULATION

A. 2× 1 Spatial Modulation

Consider a 2 × 1 spatial modulation system shown in
Fig. 1, in which information is conveyed through the index
of the active antenna (captured by the variable v) and the
symbol transmitted from the active antenna (denoted by z).
The received signal is given by

y = g1zv + g2z(1− v) + w (1)

=

{
g1z + w if v = 1

g2z + w if v = 0
(2)

where w obeys CN (0, σ2), and g1, g2, w are independent of
each other and of the inputs. An average transmit power
constraint of σ2

z is assumed on z. We do not assume z and v are
independent. v is a Bernoulli random variable characterized
with P(v = 1) = p, and we define the signal-to-noise
ratio parameter ρ ≜ σ2

z

σ2 . We denote by h(·) the entropy of
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Fig. 1. Schematic diagram of 2× 1 spatial modulation.

a (continuous or discrete) random variable. We denote by
CSISO the capacity of SISO fading channel. We begin with
the following elementary, but useful result.

Proposition 1. The capacity of 2 × 1 spatial modulation
satisfies the following bounds:

CSISO ≤ CSM ≤ CSISO + 1 (3)

Proof. The lower-bound is a simple outcome of SISO being
a special case of 2 × 1 spatial modulation (when spatial
modulation elects to send no information via the index).
Therefore, the capacity of spatial modulation is no less than
SISO capacity.

To prove the upper bound, we have

I(v, z; y|g1, g2) = I(z; y|v, g1, g2) + I(v; y|g1, g2). (4)

The first term is equivalent to the mutual information across
a SISO channel with CSIR.

I(z; y|v, g1, g2) =pI(z; y|v = 1, g1, g2)+

(1− p)I(z; y|v = 0, g1, g2)

=p I(x1; y|g1) + (1− p) I(x2; y|g2)
=I(x1; y|g1) (by symmetry) (5)

Now consider the second term in (4)

I(v; y|g1, g2) = h(v|g1, g2)− h(v|y, g1, g2)
= h(v)− h(v|y, g1, g2), (6)

where the last equality is due to the independence of channel
gains from input values. Combining Eqs. (4), (5), and (6)

I(v, z; y|g1, g2) = I(x1; y|g1) + h(v)− h(v|y, g1, g2) (7)

It then follows that

CSM = max
p(v,z)

I(v, z; y|g1, g2)

= max
p(v,z)

[
I(x1; y|g1) + h(v)− h(v|y, g1, g2)

]
≤ max

p(v,z)

[
I(x1; y|g1) + h(v)

]
≤ max

p(v,z)
I(x1; y|g1) + max

p(v,z)
h(v)

= CSISO + 1

Remark 1. It can be shown that the SISO lower bound is
tight at low SNR, i.e., CSM

CSISO
−→
ρ→0

1, using a simple sandwich

argument: MISO capacity upper bounds the spatial modula-
tion capacity, and MISO capacity tends to SISO capacity at
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low SNR (assuming CSIR but no CSIT) [26].1 Also, since
CSISO = Θ(log ρ), the ratio of lower and upper bounds goes
to one in high-SNR limit.

We now offer a Lemma that provides insight into the
behavior of index modulation decoding at high SNR.

Lemma 1.
h(v|z, y, g1, g2)

ρ→∞−→ 0 (8)

Proof. Let ϵ, ϵ′ > 0 be arbitrary positive constants. Consider
g1 and g2 such that |g1−g2| > ϵ. Then, there exists 0 < δ < 1
such that

P(|g1 − g2| > ϵ) = 1− δ. (9)

Now, consider z =
√
ρ ·z′, where z′ ∼ CN (0, 1). We consider

a receiver strategy where we throw away the symbols with
|z′| < ϵ′. There exists 0 < δ′ < 1 such that

P(|z′| ≥ ϵ′) = 1− δ′. (10)

The 2× 1 spatial modulation system model can be written as

y = (g1 − g2)vz + g2z + w.

It can be seen that, conditioned on y, z, g1, and g2, the
effective SNR for the detection of v is bounded below by:{

ϵ2ϵ′2ρ w.p. (1− δ)(1− δ′)

0 w.p. δ + δ′ − δδ′ ≜ δ′′

We now argue in reverse by assigning arbitrary small values
for δ, δ′ and hence for δ′′. This induces fixed values for ϵ, ϵ′

through Equations (9), (10). For these fixed values, we can
increase ρ sufficiently to make ϵ2ϵ′2ρ as large as desired.
Under these conditions, via symbol-by-symbol detection, the
symbols with a positive SNR lower-bound will be correctly
detected (because their SNR is made arbitrarily high as
ρ → ∞), therefore the overall probability of error is limited
to the symbols that did not have a positive SNR guarantee,
i.e.

P(v̂ ̸= v) ≤ δ′′ (11)

and as mentioned earlier, we can make δ′′ as small as desired.
By data processing inequality:

h(v|y, z, g1, g2) ≤ h(v|v̂(y, z, g1, g2)), (12)

where v̂(y, z, g1, g2) is the estimate of v. By Fano’s inequality

h(v|v̂(y, z, g1, g2)) ≤ H(P(v̂ ̸= v)) + P(v̂ ̸= v) log2(|χ| − 1)

= H(P(v̂ ̸= v)), (13)

where the equality follows since |χ| = 2. Due to the continuity
of H(·), Eq. (11) implies H(P(v̂ ̸= v)) < δ′′′ for a positive
δ′′′ that can be made arbitrarily small. This, together with (12)
and (13) completes the proof.

Remark 2. Lemma 1 implies that in spatial modulation, at
high-SNR, decoding of z implies the decoding of the index
v. This says that in the high-SNR regime, arbitrarily long
sequences of antenna indices can be recovered at the receiver

1The tightness of the SISO lower bound can also be shown from first
principles, but the sandwich argument is more compact and is presented here
for brevity.

with negligible error, as long as the rate of the codebook z
is sufficiently small. This exposes the tension between the
recovery of antenna indices on the one hand, and the rate for
the codebook z on the other hand, in the high-SNR regime.

B. nt × nr Spatial Modulation

Consider a multi-antenna system with nt transmit and nr

receive antennas. The nt × nr spatial modulation activates
a single transmit antenna in a channel use and transmits a
symbol from the activated antenna. The system model for nt×
nr spatial modulation can be written as

y =

(
nt∑
i=1

givi

)
z +w, (14)

where gi is the channel gain vector from transmit antenna i to
nr receive antennas, vi is the antenna activation variable for
antenna i such that only one of the vi is one and the remaining
are zero, and w is the nr×1 noise vector with its entries being
i.i.d CN (0, σ2). The system model in (14) can be written as

y = Gvz +w, (15)

where G = [g1 g2 · · · gnt
] and v = [v1 v2 · · · vnt

]T

such that v ∈ {ei, i = 1, . . . , nt} with ei standard nt × 1
basis vectors. We define pi ≜ P(v = ei) as the probability
of activating antenna i. Let x = vz = [x1x2 . . . xnt

]T denote
the nt×1 transmit vector. We denote by CSIMO the capacity
of SIMO fading channel. With this, we have the following
proposition on the capacity of nt × nr spatial modulation.

Proposition 2. The capacity of nt × nr spatial modulation
satisfies the following bounds:

CSIMO ≤ CSM ≤ CSIMO + log2 nt. (16)

Proof. The lower bound follows from the fact that SIMO is a
special case of spatial modulation when it emits no information
through the index. Therefore, the capacity of nt × nr spatial
modulation is no less than the capacity of SIMO fading
channel with same number of receive antennas.

For the upper bound, we have

I(v, z;y|G) = I(z;y|v,G) + I(v;y|G). (17)

The first term is equivalent to the mutual information of a
SIMO channel with CSIR.

I(z;y|v,G) =

nt∑
i=1

piI(z;y|v = ei,G)

=

nt∑
i=1

piI(xi;y|G)

= I(x1;y|G) (by symmetry) (18)

Now consider the second term in (17)

I(v;y|G) = h(v|G)− h(v|y,G).

= h(v)− h(v|y,G), (19)

where the last equality follows from the independence of
channel and inputs. Combining Eqs. (17), (18), (19)

I(v, z;y|G) = I(x1;y|G) + h(v)− h(v|y,G) (20)
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It then follows that

CSM = max
p(v,z)

I(v, z;y|G)

= max
p(v,z)

[
I(x1;y|G) + h(v)− h(v|y,G)

]
≤ max

p(v,z)

[
I(x1;y|G) + h(v)

]
≤ max

p(v,z)
I(x1;y|G) + max

p(v,z)
h(v)

= CSIMO + log2 nt.

We refer to the above upper bound as the genie-aided
upper bound since the bound can be achieved when the genie
provides error-free version of index at the receiver.
Remark 3. Using similar arguments as in the previous section,
it can be shown that the lower bound in Proposition 2 is tight
at low-SNR. Also, the ratio of lower and upper bounds goes
to one at high-SNR.

We now present a tighter lower bound on the capacity of
spatial modulation.

Proposition 3. (Spatial modulation - Capacity lower bound)
The capacity of nt × nr spatial modulation is lower bounded
as follows:

CSM ≥ CSIMO + log2 nt−

Ey,G

[
nt∑
i=1

log2
nt∑
j=1

√
|Σi|
|Σj | exp

(
1
2y

H(Σ−1
i − Σ−1

j )y

)
nt∑
j=1

√
|Σi|
|Σj | exp

(
1
2y

H(Σ−1
i − Σ−1

j )y

) ]
,

(21)

where Σi = gig
H
i σ2

z + σ2Inr
.

Proof. We have

I(v, z;y|G) = I(z;y|v,G) + I(v;y|G)

Therefore,

CSM = max
p(v,z)

I(v, z;y|G) ≥ I(z;y|v,G) + I(v;y|G).

To evaluate the right-hand side,2 consider the signalling where
v and z are independent, z ∼ CN (0, σ2

z), and v is selected
uniformly. As seen before, when z ∼ CN (0, σ2

z), the mutual
information I(z;y|v,G) = CSIMO and the above inequality
becomes

CSM ≥ CSIMO + I(v;y|G)

= CSIMO + h(v|G)− h(v|y,G)

= CSIMO + log2 nt − h(v|y,G). (22)

Now, we have

h(v|y,G) = Ey,G

[
−

nt∑
i=1

p(v = ei|y,G) log2 p(v = ei|y,G)

]
,

(23)

2So that any maximization of individual terms on the right hand side does
not compromise the inequality, all mutual information terms on the right are
calculated according to one and the same distribution.

where

p(v = ei|y,G) =
p(y|v = ei,G)p(v = ei|G)

nt∑
j=1

p(y|v = ej ,G)p(v = ej |G)

.

From the system model of nt×nr spatial modulation, we have

E(y|v = ei,G) = giE(z) + E(w) = 0

and

Cov(y|v = ei,G) = gig
H
i E(|z|2) + σ2Inr

= gig
H
i σ2

z + σ2Inr
≜ Σi.

Therefore,

p(y|v = ei,G) =
1√

(2π)nr |Σi|
exp

(
− 1

2
yHΣ−1

i y

)
,

and hence

p(v = ei|y,G) =

1√
|Σi|

exp

(
− 1

2y
HΣ−1

i y

)
nt∑
j=1

1√
|Σj |

exp

(
− 1

2y
HΣ−1

j y

)
=

1
nt∑
j=1

√
|Σi|
|Σj | exp

(
1
2y

H(Σ−1
i − Σ−1

j )y

) .

Using this expression in (23) and substituting the resulting
expression in (22) proves the proposition.

We now show that for nr ≥ nt, our capacity lower bound
and genie-aided upper bound meet at high SNR, and therefore
a full description of capacity has been achieved.

Lemma 2. At high-SNR, h(v|y,G) → 0 with probability one,
when nr ≥ nt.

Proof. We have

h(v|y,G) = h(v|Gvz +w,G).

Let nr ≥ nt. Then, G has full column rank with proba-
bility one since its entries are drawn independently from a
continuous distribution [27]. Also, for G with full column
rank G†G = Int , where G† denotes the pseudoinverse of G.
Therefore, by data processing inequality

h(v|Gvz +w,G) ≤ h(v|G†Gvz +G†w)

= h(v|vz +G†w) with prob. 1

Now, vz +G†w
σ2→0−→ vz with probability one. Therefore,

h(v|vz +G†w)
σ2→0−→ h(v|vz).

But h(v|vz) = 0 since v is fully specified by the position
of non-zero and hence knowledge of vz fully reveals v. This
proves the lemma.

Lemma 2 combined with (22) shows that our capacity lower
bound meets the genie-aided upper bound at high-SNR for
nr ≥ nt. Lemma 2 also shows that the independent encoding
of index and symbol is optimal at high SNR for nr ≥ nt.
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Remark 4. (Spatial modulation - Upper bound for independent
encoding)
Independent encoding of v and z is an important and practi-
cally useful special case. For this case, the spectral efficiency
satisfies the following bound:

I(v, z;y|G) ≤ CSIMO + log2 nt−

Ey,z,G

[
nt∑
i=1

log2
nt∑
j=1

exp

(
∥y−giz∥2−∥y−gjz∥2

2σ2

)
nt∑
j=1

exp

(
∥y−giz∥2−∥y−gjz∥2

2σ2

) ]
(24)

This can be shown as follows:

I(v, z;y|G) = I(z;y|v,G) + I(v;y|G)

= I(z;y|v,G) + h(v|G)− h(v|y,G)

≤ CSIMO + log2 nt − h(v|y, z,G). (25)

Now,

h(v|y, z,G) = Ey,z,G

[
−

nt∑
i=1

p(v = ei|y, z,G)×

log2 p(v = ei|y, z,G)

]
,

(26)

where

p(v = ei|y, z,G) =
p(y|v = ei, z,G)p(v = ei|z,G)

p(y|z,G)

=
p(y|v = ei, z,G)p(v = ei|z,G)

nt∑
j=1

p(y|v = ej , z,G)p(v = ej |z,G)

(27)

From the system model of nt×nr spatial modulation in (15),
we have

E(y|v = ei, z,G) = giz

and
Cov(y|v = ei, z,G) = σ2Inr

.

Therefore,

p(y|v = ei, z,G) =
1√

(2πσ2)nr

exp

(
− ∥y − giz∥2

2σ2

)
.

(28)
Assuming uniform distribution on index independent of trans-
mitted signal

p(v = ei|z,G) = p(v = ei) =
1

nt
.

Using the above equations in (27), we get

p(v = ei|y, z,G) =

exp

(
− ∥y−giz∥2

2σ2

)
nt∑
j=1

exp

(
− ∥y−gjz∥2

2σ2

)
=

1
nt∑
j=1

exp

(
∥y−giz∥2−∥y−gjz∥2

2σ2

) .

Using this equation in (26) and substituting the resulting
expression in (25) proves the result.

C. Generalized Spatial Modulation

Consider an nt×nr multi-antenna system. Generalized spa-
tial modulation uses K (1 ≤ K ≤ nt) transmit RF chains and
activates K transmit antennas out of the nt available transmit
antennas in a channel use. From the activated antennas, K
symbols z1, . . . , zK are transmitted. The system model for
generalized spatial modulation can be written as

y = GVz+w, (29)

where G = [g1 g2 · · · gnt
] is the nr×nt channel matrix with

gi being the channel gain vector from transmit antenna i to nr

receive antennas and z = [z1, z2, . . . , zK ]T is the K×1 vector
of symbols transmitted from K active antennas. As before,
we assume an average transmit power constraint of σ2

z . The
matrix V is the nt×K antenna activation matrix which, when
multiplied by G, extracts the K columns of G corresponding
to the K active antennas. If transmit antenna i corresponds
to the activated antenna j ∈ {1, . . . ,K}, then Vij = 1,
otherwise Vij = 0. There are

(
nt

K

)
distinct activation patterns,

which we denote by {V1,V2, . . . ,V(nt
K )}. We denote by

qi ≜ P(V = Vi) the probability of each distinct activation
pattern. We denote by CMIMO the capacity of nt×nr MIMO
fading channel and by CK×nr

MIMO the capacity of K×nr MIMO
fading channel. Then, we have the following proposition on
the capacity of generalized spatial modulation.

Proposition 4. The capacity of nt × nr generalized spatial
modulation with K active antennas satisfies the following
bounds:

CK×nr

MIMO ≤ CGSM ≤ CK×nr

MIMO + log2

(
nt

K

)
. (30)

Proof. The lower bound follows from the fact that K × nr

MIMO is a special case of generalized spatial modulation
when the transmitter chooses not to switch the active antennas.
Therefore, the capacity of generalized spatial modulation is no
less than the capacity of K × nr MIMO fading channel.

For the upper bound, we have

I(V, z;y|G) = I(z;y|V,G) + I(V;y|G). (31)

The first term is equivalent to the mutual information of a
K × nr MIMO channel with CSIR.

I(z;y|V,G) =

(nt
K )∑
i=1

qiI(z;y|V = Vi,G)

= I(z;y|V = V1,G) (by symmetry) (32)

Now consider the second term in (31)

I(V;y|G) = h(V|G)− h(V|y,G).

= h(V)− h(V|y,G), (33)

where the last equality follows from the independence of
channel and inputs. Combining Eqs. (31), (32), (33)

I(V, z;y|G) = I(z;y|V = V1,G) + h(V)− h(V|y,G)
(34)
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It then follows that

CGSM = max
p(V,z)

I(V, z;y|G)

= max
p(V,z)

[
I(z;y|V = V1,G) + h(V)− h(v|y,G)

]
≤ max

p(V,z)

[
I(z;y|V = V1,G) + h(V)

]
≤ max

p(V,z)
I(z;y|V = V1,G) + max

p(V,z)
h(V)

= CK×nr

MIMO + log2

(
nt

K

)
.

We now present a tighter lower bound on the capacity of
generalized spatial modulation.

Proposition 5. (Generalized spatial modulation - Capacity
lower bound)
The capacity of nt × nr generalized spatial modulation with
K active antennas is lower bounded as follows:

CGSM ≥ CK×nr

MIMO + log2

(
nt

K

)
−

Ey,G

[ (nt
K )∑
i=1

log2

(nt
K )∑

j=1

√
|Γi|
|Γj | exp

(
1
2y

H(Γ−1
i − Γ−1

j )y

)
(nt
K )∑

j=1

√
|Γi|
|Γj | exp

(
1
2y

H(Γ−1
i − Γ−1

j )y

)
]
,

(35)

where Γi = GViV
H
i GH σ2

z

K + σ2Inr
.

Proof. The proof is similar to the proof of Proposition 3.
The main idea is that, for the evaluation of I(z;y|V,G) +
I(V;y|G), we consider the signalling where V and z are
independent, z ∼ CN (0,

σ2
z

K Inr ), and V is selected uniformly

from {Vi}
(nt
K )

i=1 .

Remark 5. (Generalized spatial modulation - Upper bound for
independent encoding)
It can be shown that the following bound holds on the spectral
efficiency of generalized spatial modulation under independent
encoding of V and z:

I(V, z;y|G) ≤ CK×nr

MIMO + log2

(
nt

K

)
−

Ey,z,G

[ (nt
K )∑
i=1

log2

(nt
K )∑

j=1

exp

(
∥y−GViz∥2−∥y−GVjz∥2

2σ2

)
(nt
K )∑

j=1

exp

(
∥y−GViz∥2−∥y−GVjz∥2

2σ2

)
]
.

(36)

III. MULTI-ANTENNA INDEX MODULATION IN
FREQUENCY SELECTIVE CHANNELS

In this section, we extend the capacity results to frequency
selective channels using MIMO-OFDM framework. Let N
denote the number of sub-carriers. The system model for

nt × nr MIMO-OFDM in the frequency domain, after the
removal of cyclic prefix, is given by [28]

y(0)
y(1)

...
y(N − 1)

=

G(0)

G(1)
. . .

G(N − 1)




x(0)
x(1)

...
x(N − 1)



+


w(0)
w(1)

...
w(N − 1)

 , (37)

where y(k) is the nr × 1 received signal on the sub-carrier k,
x(k) is the nt×1 transmit vector on the sub-carrier k, G(k) is
the nr ×nt flat fading channel response matrix corresponding
to the sub-carrier k, and w(k) ∼ CN (0, σ2Inr

) is the nr × 1
noise vector across the receive antennas on the sub-carrier k.
The capacity of MIMO-OFDM when CSI is available at the
receiver but not at the transmitter is given by [28]

CMIMO−OFDM = max
{p(x(k))}N−1

k=0

1

N

N−1∑
k=0

I(x(k);y(k)|G(k))

= E
(
1

N

N−1∑
k=0

log2

[
det(Inr+ ρG(k)G(k)H)

])
,

(38)

where ρ = P
σ2Nnt

, with P being the average transmit power
per MIMO-OFDM symbol.

A. OFDM-based Spatial Modulation

In OFDM-based spatial modulation, one of the nt transmit
antennas is activated and an OFDM symbol is transmitted from
the active antenna. Therefore,

x(k) = vz(k), k = 0, . . . , N − 1

where z(k) is the symbol transmitted from the active antenna
on the sub-carrier k and v ∈ {ei}nt

i=1 such that the selected v
is the same for all k = 0, . . . , N − 1. Therefore, the system
model for OFDM-based spatial modulation can be written as
in Eq. (39). This can be compactly written as

y = GWz+w, (40)

where W ∈ {Wi}nt
i=1 with Wi = diag{ei, ei, . . . , ei} and

z = [z(0), z(1), . . . , z(N−1)]T . The capacity of OFDM-based
spatial modulation is then given by

CSM = max
p(W,z)

1

N
I(W, z;y|G).

Note that, the mutual information is normalized by N since N
symbols are transmitted in one OFDM frame. With this, we
have the following results on the capacity of OFDM-based
spatial modulation.

Proposition 6. The capacity of OFDM-based spatial modu-
lation satisfies the following bounds:

CSIMO−OFDM ≤ CSM ≤ CSIMO−OFDM +
1

N
log2 nt

(41)
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Proof. The proof is similar to Proposition 2 and is omitted for
brevity.

Proposition 7. (OFDM-based spatial modulation - Capacity
lower bound)
The capacity of nt × nr OFDM-based spatial modulation
satisfies the lower bound in Eq. (42), where Σi(k) =
σ2
z

N gi(k)gi(k)
H + σ2Inr

.

Proof. The proof is similar to Proposition 3 and is omitted for
brevity.

Remark 6. (OFDM-based spatial modulation - Upper bound
for independent encoding)
The bound in Eq. (43) on the next page holds for independent
encoding of W and z.

B. OFDM-based Generalized Spatial Modulation

To carryout generalized spatial modulation in frequency
selective channels, K out of the nt transmit antennas are
activated and K OFDM symbols are transmitted from the
active antennas. Therefore,

x(k) = Vz(k), k = 0, . . . , N − 1

where z(k) = [z1(k), z2(k), . . . , zK(k)]T is the symbol vector
transmitted from the K active antennas on the sub-carrier k

and V ∈ {Vi}
(nt
K )

i=1 (Vi is the antenna activation matrix as
discussed in previous section) such that the selected V is the
same for all k = 0, . . . , N−1. Therefore, the system model for
OFDM-based generalized spatial modulation can be written as
in Eq. (44) (next page). This can be compactly written as

y = GUz+w, (45)

where U ∈ {Ui}
(nt
K )

i=1 with Ui = diag{Vi,Vi, . . . ,Vi} and
z = [z(0), z(1), . . . , z(N − 1)]T . With this system model, the
capacity of OFDM-based generalized spatial modulation is

CGSM = max
p(U,z)

1

N
I(U, z;y|G).

We have the following propositions on the spectral efficiency
of OFDM-based generalized spatial modulation.

Proposition 8. The capacity of nt × nr OFDM-based gener-
alized spatial modulation with K active antennas satisfies the
following bounds:

CK×nr

MIMO−OFDM ≤ CGSM ≤ CK×nr

MIMO−OFDM+
1

N
log2

(
nt

K

)
(46)

Proposition 9. (OFDM-based generalized spatial modulation
- Capacity lower bound)
The capacity of nt×nr OFDM-based generalized spatial mod-
ulation with K active antennas satisfies the lower bound in
Eq. (47) on page 9, where Γi(k) =

σ2
z

KNG(k)ViV
H
i G(k)H +

σ2Inr .

The proofs are similar to developments in Section II-C and
are omitted for brevity.
Remark 7. (OFDM-based generalized spatial modulation -
Upper bound for independent encoding) It can be shown that
the spectral efficiency of OFDM-based generalized spatial
modulation with independent encoding of U and z satisfies
the bound in Eq. (48) on page 9.

IV. SPECTRAL EFFICIENCY OF TIME AND FREQUENCY
INDEX MODULATION

In addition to multi-antenna index modulation, several time
and frequency index modulation techniques are proposed in
the literature (see [10], [11], [2], [12], [29] and references
therein). We consider the basic versions of time and frequency
index modulations and present the spectral efficiency bounds
on them. The aim of this section is to illustrate that time
and frequency index modulations share same mathematical
structure as multi-antenna index modulations and therefore the
analysis in the previous sections extend to time and frequency
index modulations as well.

A. Frequency Index Modulation

Frequency index modulation is built on OFDM in which
a subset of sub-carriers is selected from the total available
sub-carriers and modulation symbols are transmitted on the
selected (active) sub-carriers. The choice of the active sub-
carriers also carries a part of information in addition to the


y(0)
y(1)

...
y(N − 1)

 =


G(0)

G(1)
. . .

G(N − 1)



v

v
. . .

v




z(0)
z(1)

...
z(N − 1)

+


w(0)
w(1)

...
w(N − 1)

 (39)

CSM ≥ CSIMO−OFDM +
1

N
log2 nt −

1

N
Ey,G

[
nt∑
i=1

log2
nt∑
j=1

N−1∏
k=0

√
|Σi(k)|
|Σj(k)| exp

(
1
2y(k)

H(Σ−1
i (k)− Σ−1

j (k))y(k)

)
nt∑
j=1

N−1∏
k=0

√
|Σi(k)|
|Σj(k)| exp

(
1
2y(k)

H(Σ−1
i (k)− Σ−1

j (k))y(k)

) ]

(42)
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information carried by the transmitted symbols. Specifically,
out of the N available sub-carriers in the OFDM, Na sub-
carriers are activated and Na symbols are emitted on the
active sub-carriers. This is sometimes also referred to as sub-
carrier index modulation. The spectral efficiency of frequency
index modulation with M -ary symbol constellation is studied
in [30]. In this section, we study the spectral efficiency
of frequency index modulation without restricting to finite
symbol constellation.

We now provide the system model of frequency index
modulation and present the spectral efficiency bounds. The
frequency domain OFDM system model in matrix form is
given by

y(0)
y(1)

...
y(N − 1)

=

G(0)

G(1)
. . .

G(N − 1)




x(0)
x(1)

...
x(N − 1)



+


w(0)
w(1)

...
w(N − 1)

 , (49)

where x(k) and y(k) are the transmitted and received signals
on sub-carrier k, respectively, G(k) is the channel response
corresponding to sub-carrier k, and w(k) ∼ CN (0, σ2) is the
noise on sub-carrier k. This can be written compactly as

y = Gx+w.

Note that the system model above has the same form as
the multi-antenna model except that the channel matrix is
diagonal. The frequency index modulation activates Na out
of the N sub-carriers, and therefore the transmit vector has
the form

x = Vz,

where z = [z(1), z(2), . . . , z(Na)]
T is the vector of transmit-

ted symbols on Na active sub-carriers and V is the sub-carrier
activation matrix which is constructed in exactly the same
way as the antenna activation matrix in generalized spatial
modulation, with the role of antennas taken by the sub-carriers

in the frequency index modulation. The system model for
frequency index modulation can therefore be written as

y = GVz+w.

There are
(
N
Na

)
possible sub-carrier activation matrices de-

noted by {Vi}
( N
Na
)

i=1 . Since the transmission of OFDM symbol
is carried out in N channel uses, the capacity of frequency
index modulation is given by

CFIM = max
p(V,z)

1

N
I(V, z;y|G).

It can be seen that the system model of frequency index
modulation is similar to that of generalized spatial modulation,
and therefore, using the similar arguments as before, bounds
on spectral efficiency can be derived for frequency index mod-
ulation. Hence, for brevity we now present without proofs the
bounds on spectral efficiency of frequency index modulation.
In the following propositions, CNa

OFDM denotes the capacity of
the OFDM system which activates first Na sub-carriers out of
the N sub-carriers, leaving the remaining N−Na sub-carriers
unused. That is,

CNa

OFDM = E
[ 1
N

Na−1∑
k=0

log2
(
1 +

σ2
z

σ2Na
|G(k)|2

)]
,

where σ2
z is the average transmit power per OFDM frame.

Proposition 10. The capacity of frequency index modulation
with Na active sub-carriers out of N sub-carriers satisfies the
following bounds:

CNa

OFDM ≤ CFIM ≤ CNa

OFDM +
1

N
log2

(
N

Na

)
. (50)

Proposition 11. (Frequency index modulation - Capacity
lower bound)
The capacity of frequency index modulation with Na active

1

N
I(W, z;y|G) ≤ CSIMO−OFDM +

1

N
log2 nt −

1

N
Ey,z,G

[
nt∑
i=1

log2
nt∑
j=1

N−1∏
k=0

exp

(
∥y(k)−gi(k)z(k)∥2−∥y(k)−gj(k)z(k)∥2

2σ2

)
nt∑
j=1

N−1∏
k=0

exp

(
∥y(k)−gi(k)z(k)∥2−∥y(k)−gj(k)z(k)∥2

2σ2

) ]

(43)


y(0)
y(1)

...
y(N − 1)

 =


G(0)

G(1)
. . .

G(N − 1)



V

V
. . .

V




z(0)
z(1)

...
z(N − 1)

+


w(0)
w(1)

...
w(N − 1)

 (44)
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sub-carriers out of N sub-carriers is lower bounded as
follows:

CFIM ≥ CNa

OFDM +
1

N
log2

(
N

Na

)
−

1

N
Ey,G

[ ( N
Na
)∑

i=1

log2

( N
Na
)∑

j=1

√
|Γi|
|Γj | exp

(
1
2y

H(Γ−1
i − Γ−1

j )y

)
( N
Na
)∑

j=1

√
|Γi|
|Γj | exp

(
1
2y

H(Γ−1
i − Γ−1

j )y

)
]
,

(51)

where Γi = GViV
H
i GH σ2

z

Na
+ σ2IN .

Remark 8. (Frequency index modulation - Upper bound for
independent encoding)
The spectral efficiency of frequency index modulation when
V and z are independent satisfies the following bound:

1

N
I(V, z : y|G) ≤ CNa

OFDM +
1

N
log2

(
N

Na

)
−

1

N
Ey,z,G

[ ( N
Na
)∑

i=1

log2

( N
Na
)∑

j=1

exp

(
∥y−GViz∥2−∥y−GVjz∥2

2σ2

)
( N
Na
)∑

j=1

exp

(
∥y−GViz∥2−∥y−GVjz∥2

2σ2

)
]
.

(52)

B. Time Index Modulation

In time index modulation, time is divided into frames of T
time-slots. Out of the T time-slots, Ta time-slots are activated
and modulation symbols are transmitted in the active time-
slots. The remaining T − Ta time-slots are inactive and no
data is transmitted. The choice of the active time-slots also
carries information in addition to the information carried by
the modulation symbols. We assume a quasi-static flat-fading
channel that remains constant for any given frame and can

change from frame to frame. The system model for time index
modulation is then given by

y(0)
y(1)

...
y(T − 1)

 =


g

g
. . .

g




x(0)
x(1)

...
x(T − 1)

+


w(0)
w(1)

...
w(T − 1)

 ,

(53)
which can be compactly written as

y = Gx+w.

Here, the input vector x has the form

x = Vz,

where V is the T × Ta time-slot activation matrix and z is
the Ta×1 vector containing the symbols transmitted in the Ta

active slots. The time-slot activation matrix V is constructed
in exactly the same way as the antenna activation matrix in
generalized spatial modulation with the role of antennas taken
by the time-slots. Therefore, the system model of time index
modulation can be written as

y = GVz+w. (54)

There are
(
T
Ta

)
possible time-slot activation matrices denoted

by {Vi}
( T
Ta
)

i=1 . The capacity of time-index modulation is given
by

CTIM = max
p(V,z)

1

T
I(V, z;y|G).

Since the system model for time index modulation is similar to
that of generalized spatial modulation, the spectral efficiency
bounds can be easily obtained using the analysis presented
earlier. For brevity, we now present without proof the bounds
on the spectral efficiency of time index modulation. In the
following results, we denote by CSISO(ρ) the capacity of
SISO fading channel with signal-to-noise ratio ρ. That is,
CSISO(ρ) = Eg(1+ρ|g|2). Also, we denote by σ2

z the average
transmit power per frame.

CGSM ≥ CK×nr

MIMO−OFDM +
1

N
log2

(
nt

K

)
− 1

N
Ey,G

[ (nt
K )∑
i=1

log2

(nt
K )∑

j=1

N−1∏
k=0

√
|Γi(k)|
|Γj(k)| exp

(
1
2y(k)

H(Γ−1
i (k)− Γ−1

j (k))y(k)

)
(nt
K )∑

j=1

N−1∏
k=0

√
|Γi(k)|
|Γj(k)| exp

(
1
2y(k)

H(Γ−1
i (k)− Γ−1

j (k))y(k)

)
]

(47)

1

N
I(U, z;y|G) ≤ CK×nr

MIMO−OFDM+
1

N
log2

(
nt

K

)
−

1

N
Ey,z,G

[ (nt
K )∑
i=1

log2

(nt
K )∑

j=1

N−1∏
k=0

exp

(
∥y(k)−G(k)Viz(k)∥2−∥y(k)−G(k)Vjz(k)∥2

2σ2

)
(nt
K )∑

j=1

N−1∏
k=0

exp

(
∥y(k)−G(k)Viz(k)∥2−∥y(k)−G(k)Vjz(k)∥2

2σ2

)
]

(48)
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Proposition 12. The capacity of time index modulation with
Ta active time-slots out of T time-slots satisfies the following
bounds:

Ta

T
CSISO

(
σ2
z

σ2Ta

)
≤ CTIM ≤

Ta

T
CSISO

(
σ2
z

σ2Ta

)
+

1

T
log2

(
T

Ta

)
. (55)

Proposition 13. (Time index modulation - Capacity lower
bound)
The capacity of time index modulation with Ta active time-
slots out of T time-slots is lower bounded as follows:

CTIM ≥ Ta

T
CSISO

(
σ2
z

σ2Ta

)
+

1

T
log2

(
T

Ta

)
−

1

T
Ey,G

[ ( T
Ta
)∑

i=1

log2

( T
Ta
)∑

j=1

√
|Γi|
|Γj |

exp

(
1
2
yH(Γ−1

i − Γ−1
j )y

)
( T
Ta
)∑

j=1

√
|Γi|
|Γj |

exp

(
1
2
yH(Γ−1

i − Γ−1
j )y

)
]
,

(56)

where Γi = GViV
H
i GH σ2

z

Ta
+ σ2IT .

Remark 9. (Time index modulation - Upper bound for inde-
pendent encoding)
The spectral efficiency of time index modulation when V and
z are independent satisfies the following bound:

1

T
I(V, z : y|G) ≤ Ta

T
CSISO

(
σ2
z

σ2Ta

)
+

1

T
log2

(
T

Ta

)
−

1

T
Ey,z,G

[( T
Ta
)∑

i=1

log2

( T
Ta
)∑

j=1

exp
(

∥y−GViz∥2−∥y−GVjz∥2

2σ2

)
( T
Ta
)∑

j=1

exp
(

∥y−GViz∥2−∥y−GVjz∥2

2σ2

)
]
.

(57)

Remark 10. Time-index modulation can also be carried out
in frequency-selective channels by using the cyclic-prefixed
single-carrier transmission as done in [12]. The analysis for
this case closely follows that of generalized spatial modulation,
and is therefore omitted here for brevity.

V. SIMULATION RESULTS

This section provides extensive simulation results under
various channel conditions demonstrating the tightness and
usefulness of our bounds.

A. Multi-Antenna Index Modulation in Rayleigh, Rician, and
Nakagami Flat-Fading Channels

Figure 2 shows the bounds on the spectral efficiency of
4×4 spatial modulation in Rayleigh flat-fading channel. It can
be seen that our capacity lower bound meets the genie-aided
upper bound at high-SNR which illustrates the tightness of our
bounds. This also suggests that independent encoding of index
and symbol can be optimal at high-SNR. Also, the capacity
lower bound and MIMO upper bound are tight at low-SNR.
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Fig. 2. Spectral efficiency bounds for 4× 4 spatial modulation in Rayleigh
fading channel.
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Fig. 3. Comparing bounds of the present paper with the bounds in [18] and
approximations in [19] for 4× 4 spatial modulation.

The figure also shows that our upper bound on independent
encoding is close to the capacity lower bound, which says that
the uniform index codebook and Gaussian symbol codebook
assumed in the capacity lower bound is not too sub-optimal
under independent encoding. Further, it can be seen that, while
the spectral efficiency of 4 × 4 spatial modulation is slightly
higher than the 1× 4 SIMO capacity, it is significantly lesser
than the 4× 4 MIMO capacity at high-SNR. This observation
suggests that spatial modulation should only be considered
when there is a strict hardware limitation that allows using
only one RF chain. Using spatial modulation when there is no
such hardware constraint is spectrally inefficient.

Figure 3 compares the capacity results of the present paper
with those of [18] and [19]. The bounds in [18] are shown as
Rajashekar-Hari-Hanzo lower and upper bounds. The capacity
approximations in [19] using the Taylor series are shown as
Henarejos-Neira order 2 and 4 approximations. It can be seen
from Fig. 3 that, while the upper bound in [18] is identical
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Fig. 4. Comparing bounds of the present paper with the bounds in [20] for
4× 2 spatial modulation.
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Fig. 5. Spectral efficiency bounds for 8 × 8 generalized spatial modulation
in Rayleigh fading channel.

with our genie-aided upper bound, the lower bound is weaker
compared to our independence lower bound at all SNR values.
For example, at 8 bits/s/Hz, our lower bound is 5 dB tighter
than the lower bound in [18]. It can also be observed that the
approximations of [19] are weaker compared to the bounds of
the present paper.

Figure 4 compares the capacity bounds of the present paper
with the bounds in [20] for 4 × 2 spatial modulation. The
bounds in [20] are shown as Ibrahim-Kim-Love upper and
lower bounds. It can be seen that the upper bound of [20]
is identical with our genie-aided upper bound. However, the
lower bound of [20] is weaker than our independence lower
bound. For example, at 8 bits/s/Hz, our lower bound is 2 dB
tighter than the lower bound in [20].

Figure 5 shows the spectral efficiency bounds for 8×8 gen-
eralized spatial modulation with 4 active antennas in Rayleigh
flat-fading channel. It can be seen that our lower and upper
bounds are tight at high-SNR. It can also be observed that at
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Fig. 6. Spectral efficiency bounds for 4 × 4 spatial modulation in Rician
fading channel with Rician factor of 3 dB.
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Fig. 7. Spectral efficiency bounds for 4×4 spatial modulation in Nakagami-
m fading channel with m = 2.

high-SNR the generalized spatial modulation achieves about 6
bits/s/Hz gain compared to the 4× 8 MIMO (which uses the
same number of RF chains as generalized spatial modulation).
However, the spectral efficiency of generalized spatial modu-
lation falls significantly below the 8×8 MIMO capacity. This
again suggests that generalized spatial modulation is spectrally
efficient in situations where there is a constraint on the number
of RF chains. When there is no such hardware constraint
MIMO should be preferred to generalized spatial modulation.

Figures 6 and 7 show the spectral efficiency bounds for
spatial modulation in the Rician and Nakagami fading chan-
nels, respectively. Similarly, Figs. 8 and 9 show the spectral
efficiency bounds for generalized spatial modulation in Rician
and Nakagami fading channels, respectively. Similar observa-
tions as in Rayleigh fading channel can be made from these
figures.
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Fig. 8. Spectral efficiency bounds for 8 × 8 generalized spatial modulation
in Rician fading channel with Rician factor of 3 dB.
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Fig. 9. Spectral efficiency bounds for 8 × 8 generalized spatial modulation
in Nakagami-m fading channel with m = 2.

B. Multi-Antenna Index Modulation in Frequency Selective
Channels

Figure 10 shows the spectral efficiency bounds for 4 × 4
OFDM-based spatial modulation using 16 sub-carriers. Our
lower and upper bounds can be seen to be tight at all SNR.
The figure also shows that the gain in spectral efficiency
compared to SIMO-OFDM is small (fraction of a dB). This
is because the antenna selection is done only once for the
entire OFDM symbol (to retain low hardware complexity),
which limits the amount of information conveyed by the index.
Also, compared to MIMO-OFDM the spectral efficiency of
OFDM-based spatial modulation is significantly lesser at high-
SNR. Similar observations can be made from Fig. 11 which
shows the spectral efficiency bounds for 8 × 8 OFDM-based
generalized spatial modulation with four active antennas using
16 sub-carriers.
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Fig. 10. Spectral efficiency bounds for 4×4 OFDM-based spatial modulation.
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Fig. 11. Spectral efficiency bounds for 8×8 OFDM-based generalized spatial
modulation.
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Fig. 12. Spectral efficiency bounds for frequency index modulation.
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Fig. 13. Spectral efficiency bounds for time index modulation.

C. Time and Frequency Index Modulation

Figure 12 shows spectral efficiency bounds for frequency
index modulation using 16 sub-carriers out of which 8 sub-
carriers are activated. There is a slight gain in spectral effi-
ciency of frequency index modulation compared to an OFDM
system which uses 8 sub-carriers leaving the remaining 8 sub-
carriers unused (shown as OFDM lower bound in the figure).
However, the spectral efficiency of the OFDM system where
all the sub-carriers are used (shown as OFDM upper bound in
the figure) is significantly higher than that of frequency index
modulation at high-SNR. This suggests that the bandwidth
should not be wasted either by leaving sub-channels vacant
or by sub-carrier indexing as this leads to significant loss of
spectral efficiency.

Figure 13 shows the bounds on spectral efficiency of time
index modulation with a frame length of 8 time-slots of which
4 slots are used for transmitting the data. It can be seen that
while there is a gain in spectral efficiency compared to a
scheme that leaves 4 time-slots unused in each frame (shown
as SISO lower bound in the figure), there is a significant
loss in spectral efficiency compared to the conventional SISO
transmission that uses all time-slots of the frame (shown as
SISO upper bound in the figure). This suggests that time-
indexing should be used only if there is a practical need for
leaving certain time-slots vacant. Using time-indexing when
there is no such need leads to a waste of time resource and is
spectrally inefficient.

VI. DISCUSSION AND CONCLUSION

This paper presented accurate bounds on the capacity of
index modulation techniques. We presented a lower bound
by evaluating the terms in a chain rule decomposition of
mutual information under a uniformly distributed index and
a Gaussian modulation variable that are independent of each
other. We provided a genie-aided upper bound, where the genie
provides an error-free version of the index to the receiver.
When the number of receive antennas is bigger than or equal
to the number of transmit antennas, our inner and outer bounds

are proven to be tight at high SNR. We also provided an upper
bound for capacity subject to the constraint of independent en-
coding of the index and the modulation variables. A catalog of
results for spatial modulation, generalized spatial modulation,
and time and frequency index modulation are provided.

Our results showed that independent encoding is optimal at
low SNR and, for nr ≥ nt, also optimal at high SNR. At other
SNR, numerical results suggested that independent encoding is
not far from optimal. However, the optimality (or lack thereof)
of independent signaling/coding for the modulation variable
and index variable remains an open problem.
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