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Abstract—Significant advances in edge computing capabilities
enable learning to occur at geographically diverse locations. In
general, the training data needed in those learning tasks are
not only heterogeneous but also not fully generated locally. In
this paper, we propose an experimental design network paradigm,
wherein learner nodes train possibly different Bayesian linear
regression models via consuming data streams generated by
data source nodes over a network. We formulate this problem
as a social welfare optimization problem in which the global
objective is defined as the sum of experimental design objectives
of individual learners, and the decision variables are the data
transmission strategies subject to network constraints. We first
show that, assuming Poisson data streams, the global objective
is a continuous DR-submodular function. We then propose a
Frank-Wolfe type algorithm that outputs a solution within a
1 — 1/e factor from the optimal. Our algorithm contains a
novel gradient estimation component which is carefully designed
based on Poisson tail bounds and sampling. Finally, we com-
plement our theoretical findings through extensive experiments.
Our numerical evaluation shows that the proposed algorithm
outperforms several baseline algorithms both in maximizing the
global objective and in the quality of the trained models.

I. INTRODUCTION

We study a network in which heterogeneous learners dis-
persed at different locations perform local learning tasks by
fetching relevant yet remote data. Concretely, data sources
generate data streams containing both features and la-
bels/responses, which are transmitted over the network (po-
tentially through several intermediate router nodes) towards
learner nodes. Generated data samples are used by learners
to train models locally. We are interested in the design of
rate allocation strategies that maximize the model training
quality of learner nodes, subject to network constraints. This
problem is relevant in practice. For example, in a mobile
edge computing network [1], [2], data are generated by end
devices such as mobile phones (data sources) and sent to
edge servers (learners) for model training, a relatively intensive
computation. In a smart city [3], [4], we can collect various
types of data such as image, temperature, humidity, traffic,
and seismic measurements, from different sensors. These data
could be used to forecast transportation traffic, the spread of
disease, pollution levels, the weather, and so on, while training
for each task could happen at different public service entities.
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We quantify the impact that data samples have on learner
model training accuracy by leveraging objectives motivated by
experimental design [5], a classic problem in statistics and ma-
chine learning. This problem arises in many machine learning
and data mining settings, including recommender systems [6],
active learning [7], and data preparation [8], to name a few.
In standard experimental design, a learner decides on which
experiments to conduct so that, under budget constraints, an
objective modeling prediction accuracy is maximized. Learner
objectives are usually scalarizations of the estimation error
covariance.

In this paper, we propose experimental design networks,
a novel optimization framework that extends classic experi-
mental problems to maximize the sum of experimental design
objectives across networked learners. Assuming Poisson data
streams and Bayesian linear regression as the learning task,
we define the utility of a learner as the expectation of its
so-called D-optimal design objective [5], namely, the log-
determinant of the learner’s estimation error covariance matrix.
Our goal is to determine the data rate allocation of each
network edge that maximizes the aggregate utility across
learners. Extending experimental design to networked learners
is non-trivial. Literature on experimental design for machine
learning considers budgets imposed on the number of data
samples used to train the model [9]-[13]. Instead, we consider
far more complex constraints on the data transmission rates
across the network, as determined by network link capacities,
the network topology, and data generation rates at sources.

To the best of our knowledge, we are the first to study
such a networked learning problem, wherein learning tasks
at heterogeneous learners are coupled via data transmission
constraints over an arbitrary network topology. Our detailed
contributions are as follows:

o We are the first to introduce and formalize the experi-
mental design network problem, which enables the study
of multi-hop data transmission strategies for distributed
learning over arbitrary network topologies.

« We prove that, assuming Poisson data streams, Bayesian
linear regression as the learning task, and D-optimal
design objectives at the learners, our framework leads to
the maximization of continuous DR-submodular objective
subject to a lower-bounded convex constraint set.



o Though the objective is not concave, we propose a
polynomial-time algorithm based on a variant of the
Frank-Wolfe algorithm [14]. To do so, we introduce and
analyze a novel gradient estimation procedure, tailored
to Poisson data streams. We show that the proposed
algorithm, coupled with our novel gradient estimation,
is guaranteed to produce a solution within a 1 — 1/e
approximation factor from the optimal.

« We conduct extensive evaluations over different network
topologies, showing that our proposed algorithm outper-
forms several baselines in both maximizing the objective
function and in the quality of trained target models.

The rest of this paper is organized as follows. In Sections II

and III, we review related work and provide technical prelim-
inaries. Section IV introduces our framework of experimental
design networks. Section V describes our proposed algorithm.
We discuss extensions in Section VI and present numerical
experiments in Section VII. We conclude in Section VIIIL.

II. RELATED WORK

Distributed Computing/Learning in Networks. Distribution
of computation tasks has been studied in hierarchical edge
cloud networks [15], multi-cell mobile networks [16], and joint
with data caching in arbitrary networks [17]. There is a rich
literature on distributing machine learning computations over
networks, including exchanging gradients in federated learn-
ing [18]-[20], states in reinforcement learning [21], and data
vs. model offloading [22] among collaborating neighbor nodes.
We depart from the aforementioned works in (a) considering
multiple learners with distinct learning tasks, (b) introducing
experimental design objectives, quite different from objectives
considered above, (c¢) studying a multi-hop network, and (d)
focusing on the optimization of streaming data movements, as
opposed to gradients or intermediate result computations.

Experimental Design. The experimental design problem is
classic and well-studied [5], [23]. Several works study the
D-optimality objective [9]-[12], [24] for a single learner
subject to budget constraints on the cost for conducting
the experiments. Departing from previous work, we study a
problem involving multiple learners subject to more complex
constraints, induced by the network. Our problem also falls
in the continuous DR-submodular setting, departing from the
discrete setting in prior work. In fact, our work is the first
to show that such an optimization, with Poisson data streams,
can be solved via continuous DR-submodularity techniques.
DR-submodular Optimization. Submodularity is tradition-
ally studied in the context of set functions [25], [26], but was
recently extended to functions over the integer lattice [27] and
the continuous domain [14]. Despite the non-convexity and the
general NP-hardness of the problem, when the constraint set
is down-closed and convex, maximizing monotone continuous
DR-submodular functions can be done in polynomial time via
a variant of the Frank-Wolfe algorithm. This yields a solution
within 1 — 1/e from the optimal [14], [26], outperforming the
projected gradient ascent method, which provides 1/2 approx-
imation guarantee over arbitrary convex constraints [28].

The continuous greedy algorithm [26] maximizes a submod-
ular set function subject to matroid constraints: this first ap-
plies the aforementioned Frank-Wolfe variant to the so-called
multilinear relaxation of the discrete submodular function, and
subsequently uses rounding [29], [30]. The multilinear relax-
ation of a submodular function is in fact a canonical example
of a continuous DR-submodular function, whose optimization
comes with the aforementioned guarantees. Our objective
function results from a new continuous relaxation, which we
introduce in this paper for the first time. In particular, we
show that assuming a Poisson distribution on inputs on the
(integer lattice) DR-submodular function of D-optimal design
yields a continuous DR-submodular function. This “Poisson”
relaxation is directly motivated by our networking problem,
is distinct from the multilinear relaxation [26], [28], [31], and
requires a novel gradient estimation procedure. Our constraint
set also requires special treatment as it is not down-closed, as
required by the aforementioned Frank-Wolfe variant [14], [26];
nevertheless, we attain a 1 — 1/e approximation, improving
upon the 1/2 factor given by projected gradient ascent [28].

Submodularity in Networking and Learning. Submodular
functions are widely encountered in studies of both networking
and machine learning. Submodular objectives appear in studies
of network caching [32], [33], routing [34], rate allocation
[35], sensor network design [36], as well as placement of
virtual network functions [37]. Submodular utilities are used
for data collection in sensor networks [38] and also the
design of incentive mechanisms for mobile phone sensing [39].
Many machine learning problems are submodular, including
structure learning, clustering, feature selection, and active
learning (see e.g., [40]). Our proposed experimental design
network paradigm expands this list in a novel way.

III. TECHNICAL PRELIMINARY

We begin with a technical preliminary on linear regression,
experimental design, and DR-submodularity. The contents of
this section are classic; for additional details, we refer the
interested reader to, e.g., [41], [42] for linear regression, [5]
for experimental design, and [14] for submodularity.

A. Bayesian Linear Regression

In the standard linear regression setting, a learner observes
n samples (x;,v;), i = 1,...,n, where z; € R and y; € R
are the feature vector and the label of sample ¢, respectively.
Labels are assumed to be linearly related to the features;
particularly, there exists a model parameter vector 3 € R?
such that

yi=x; B+e, foralic{l,... n} (1)

and ¢; are 1.1.d. zero mean normal noise variables with variance
o? (ie., ¢ ~ N(0,02)).

The learner’s goal is to estimate the model parameter 3
from samples {(xz;,v;)}7 ;. In Bayesian linear regression,
it is additionaly assumed that 3 is sampled from a prior
normal distribution with mean 3, € R? and covariance
3y € R¥™4 (ie., B ~ N(By,20)). Under this prior, given



dataset {(x;, y;) }1,, maximum a posteriori (MAP) estimation
of 3 amounts to [42]:
; T 2511\ —1 % T
Bup = (X X +0°5,)" X 'y
+(XTX + 0225 10?21 By,
where X = [z |, € R"*?is the matrix of features, y € R"
is the vector of labels, o2 is the noise variance, and By, Xo
are the mean and covariance of the prior, respectively. We note
that, in practice, the inherent noise variance o2 is often not
known, and is typically treated as a regularization parameter
and determined via cross-validation.
The quality of this estimator can be characterized by the

covariance of the estimation error difference BMAP — B (see,
e.g., Eq. (10.55) in [42]):

2

cov(Byp — B) = (%XTX + 251)‘1 e R4 (3)

The covariance summarizes estimator quality in all directions
in R given an unseen sample (z,y) € R? x R, also
obeying (1), the expected prediction error (EPE) is given by

E|(y— wTBMAP)Q} =02+ a"cov(Byp —Blz. (%)

Hence, the eigenvalues of Eq. (3) capture the overall variability
of the expected prediction error in different directions.

B. Experimental Design

In experimental design, a learner determines which exper-
iments to conduct to learn the most accurate linear model.
Formally, given p possible experiment settings, each described
by feature vectors «; € R%, i = 1,...,p, the learner selects a
total of n experiments to conduct with these feature vectors,
possibly with repetitions,' collects associated labels, and then
performs linear regression on these sample pairs. In classic
experimental design (see, e.g., [5]), the selection is formulated
as an optimization problem minimizing a scalarization of the
covariance (3). For example, in D-optimal design, the vector
n = [n;]7_, € NP of the number of times each experiment is
to be performed is determined by minimizing

p .
log det[cov(Byp — B)] & log det [( Z %azlw: + 251)71]
i1

or, equivalently, by solving the maximization problem:

P
Max.: G(n;0,%g) = logdet ( g n—;mlw: + Eal), (5a)
o

i=1
D
S.t.: E n; =n.
i=1

In other words, n € NP is selected in such a way so that
the log det[cov(By,p — B)] is as small as possible. Intuitively,
this amounts to selecting the experiments that minimize the
product of the eigenvalues of the covariance;® alternatively,

(5b)

'Note that, due to the presence of noise in labels, repeating the same
experiment makes intuitive sense; formally, repetition of an experiment with
features x; reduces the EPE (4) in this direction.

2Qther commonly encountered scalarizations [5] behave similarly. E.g., E-
optimality minimizes the maximum eigenvalue, while A-optimality minimizes
the sum of the eigenvalues.

Prob. (5) also maximizes the mutual information between the
labels y (to be collected) and BMAP; in both interpretations, the
selection aims to pick experiments in a way that minimizes the
variability of the resulting estimator BMAP.

C. DR-Submodularity
We introduce here diminishing-returns submodularity:

Definition 1 (DR-Submodularity [14], [27]). A function f :
NP — R is called diminishing-returns (DR) submodular iff for
all x,y € N? such that * <y and all k € N,

f(xtke;)—f(x) > f(ytke;)~f(y), forall j =1,...,p, (6)

where e; is the j-th standard basis vector.

Moreover; if (6) holds for a real valued function f : RY —
R for all x,y € RP such that * < y and all k € Ry, the
function is called continuous DR-submodular.

The above definition generalizes the submodularity of set
functions (whose domain is {0, 1}?) to functions over integer
lattice (in the case of DR-submodularity), and continuous
functions (in the case of continuous DR-submodularity). In
particular, for continuous functions, if f is differentiable, con-
tinuous DR-submodularity is equivalent to V f being antitone.
Moreover, if f is twice-differentialble, f is continuous DR-
submodular if all entries of its Hessian V2 f are non-positive.
DR-submodularity is directly pertinent to D-optimal design:

Lemma 1 (Horel et al. [9]). Function G : NP — R, in (5a)
is (a) monotone-increasing and (b) DR-submodular.

Proof Sketch. We extend the proof in Appendix A of [9] for
the submodularity of D-optimal design over sets to the integer
lattice. Specifically, we prove that V n,m € NP and n < m,
keN, G(n+ke;)—G(n) > G(m+ke;) —G(m), which is
the definition of a DR-submodular function. A full proof can
be found in the extended version of our paper [43]. U

Problem (5) is a classic NP-hard problem [9]. An immediate
consequence of Lemma 1 is that polynomial-time approxima-
tion algorithms exist to solve Problem (5) with a 1 — 1/e
guarantee (see, e.g., [9], [31]).

IV. PROBLEM FORMULATION

We consider a network that aims to facilitate distributed
learning tasks. The network comprises (a) data source nodes
(e.g., sensors, test sites, experimental facilities, etc.) that
generate streams of data, (b) learner nodes, that consume data
with the purpose of training models, and (c) intermediate
nodes (e.g., routers), that facilitate the communication of
data from sources to learners. The data that learners wish
to consume is determined by experimental design objectives,
akin to the ones described in Sec. III-B. Our goal is to
design network communications in an optimal fashion, that
maximizes learner social welfare. We describe each of the
above system components in more detail below.



A. Network Model.

We model the above system as general multi-hop network

with a topology represented by a directed acyclic graph (DAG)
G(V, &), where V is the set of nodes and £ C V x V is the
set of links. Each link e = (u,v) € £ can transmit data at a
maximum rate (i.e., link capacity) u® > 0. Sources S C V of
the DAG (i.e., nodes with no incoming edges) generate data
streams, while learners £ C V reside at DAG sinks (nodes
with no outgoing edges). We assume this for simplicity; we
discuss how to remove this assumption, and how to generalize
our analysis beyond DAGs, in Sec. VL.
Data Sources. Each data source s € S generates a stream of
labeled data. In particular, we assume that there exists a finite?
set X C R? of experiments every source can conduct. Once
experiment with features € X is conducted, the source can
label it with a label y € R of type ¢ out of a set of possible
types 7. Intuitively, features x correspond to parameters set in
an experiment (e.g., pixel values in an image, etc.), label types
t € T correspond to possible measurements (e.g., temperature,
radiation level, etc.), and labels y correspond to the actual
measurement value collected (e.g., 23°C).

We assume that every source generates labeled pairs
(xz,y) € R? x R of type t according to a Poisson process
of rate A}, > 0. Moreover, we assume that generated data
follows a linear model (1); that is, for every type t € T,
there exists a 3, € R? s.t. y = ' 3, + ¢; where ¢; € R are
1.i.d. zero mean normal noise variables with variance crt2 >0,
independent across experiments and sources s € S.
Learners. Each learner £ € £ wishes to learn a model 3, for
some type t' € 7. We assume that each learner has a prior
N(By,X¢) on B,. The learner wishes to use the network to
receive data pairs (x,y) of type t¢, and subsequently estimate
B¢ through the MAP estimator (2). Note that two learners /,
¢’ may be interested to learn the same model (if t¢ = t*').
Network Constraints. The different data pairs (x,y) €
R? x R generated by sources are transmitted over edges in
the network along with their types ¢ € 7T and eventually
delivered to learners. Our network design aims to allocate
network capacity to different flows to meet learner needs.*
For each edge e € &£, we denote the rate with which data
pairs of type ¢t € T with features € X are transmitted as
A5 > 0. We also denote by

v
)\v,in: )‘m,t7
x,t —

Z(u,v)ef z,t >

ifves,

ALY o W ™

the corresponding incoming traffic rate to node v € V, and
= D0 A ®)
(v,u)e€
the corresponding outgoing traffic rate from v € V. Specifi-
cally for learners, we denote by

Mo =20, and A = Nlaex € R¥I forall € £, (9)
3We extend this to a setting where experiments are infinite in Sec. VL

4We assume hop-by-hop routing; see Sec. VI for an extension to source
routing.

the incoming traffic rate with different features x € X" of type
tf at £ € L. To satisfy capacity constraints, we must have

Z At S pf, foralleed, (10)
xcX,teT
while flow bounds imply that
A< AR, forallze X teT,veV\L, (A1)
as data pairs can be dropped. We denote by
A = M tecx teT cees [/\i]wex,éeﬁ] (12)

the vector comprising edge and learner rates. Let
D = {x e RFITIEL RIFIE that satisfy (9-(11)}, (13)

be the feasible set of edge rates and learner rates. We make
following assumption on the network substrate:

Assumption 1. For X € D, the system is stable and, in steady
state, pairs (x,y) € R xR of type t arrive at learner { € L
according to |X| independent Poisson processes with rate \.,.

This is satisfied, if, e.g., the network is a Kelly network [44]
of M/M/1 queues, M /M /c queues, etc., under FIFO, Last-In
First-Out (LIFO), and processor sharing service disciplines, or
other queues for which Burke’s theorem holds [42].

B. Networked Learning Problem

We consider a data acquisition time period 7', at the end
of which each learner ¢ € L estimates 3,. based on the data
it has received during this period via MAP estimation. Under
Assumption 1, the arrivals of pertinent data pairs at learner
¢ form a Poisson process with rate \5. Let n’, € N be the

cumulative number of times that a pair (,y) of type ¢ was
collected by learner ¢ during this period, and ¢ = [n%]zcx

the vector of arrivals across all experiments. Then,

II

xeX

(ALT)ree T

Ng!

; (14)

for all n = [ng]zex € NI¥l and ¢ € £. Motivated by standard
experimental design (see Sec. III-B), we define the utility at
learner ¢ € L as the following expectation:

U'(XY) = Ey [G(nY)]
= Z G*(n) -Pr[n’ = n],

neNIX|

5)

where G*(n’) = G(n*;0..,%;) and G is given by (5a). We
wish to solve the following problem:

Maximize: U(X) =Y (U*(A") — U*(0)), (16a)
lel

st. AeD. (16b)

Indexing flows by both type ¢ and features a implies that, to
implement a solution A € D, routing decisions at intermediate



nodes should be based on both quantities. Problem (16) is non-
convex in general.’ Nevertheless, we construct a polynomial
time approximation algorithm in the next section.

V. MAIN RESULTS

Our main contribution is to show that there exists a
polynomial-time randomized algorithm that solves Prob. (16)
within a 1 —1/e approximation ratio. We do so by establishing
that the objective function in Eq. (16a) is continuous DR-
submodular (see Definition 1).

A. Continuous DR-submodularity

Our first main result establishes the continuous DR-
submodularity of the objective (16a):

Theorem 1. The objective function U () given by (16a) is
monotone increasing and continuous DR-submodular in X\ €
RIZHITIXIEL poreover,

+ . g

ou
=T AZ
g =T
where n’ is distributed as in Eq. (14) and AL ()\[

E [Gz(nz
The proof can be found in Section V-C; we establish the
positivity of the gradient and non-positivity of the Hessian of
U. We note that Theorem 1 identifies a new type of continuous
relaxation to DR-submodular functions, via Poisson sampling;
this is in contrast to the multilinear relaxation [26], [28], [31],
which is ubiquitous in the literature and relies on Bernoulli
sampling. Though our objective is monotone and continuous
DR-submodular, the constraint set D is not down-closed.
Hence, the analysis by Bian et al. [14] does not directly apply,
while using projected gradient ascent [28] would only yield a
1/2 approximation guarantee.

,n)Pr[n’ = nl, (17)

,n) is:

Ynk =n+ 1]-E [Gé(ne)\ni =n] > 0.

B. Algorithm and Theoretical Guarantee

Our algorithm is summarized in Algorithm 1. We follow the

Frank-Wolfe variant for monotone DR-submodular function
maximization by Bian et al. [14], deviating both in the nature
of the constraint set D and, most importantly, in the way we
estimate the gradients of objective U.
Frank-Wolfe Variant. In the proposed Frank-Wolfe variant,
variables A" and v* denote the solution and update direction
at the k-th iteration, respectively. Starting from A° = 0 € D,
the algorithm iterates as follows:

o —

vF = arg max(v, VU (X)), (18a)
veD
AP = AR 0k, (18b)

where v* € (0,1] is the stepsize with which we move along
direction v*, and VU (") is an estimator of the gradient VU

St is easy to construct instances of objective (16) that are non-concave.
For example, when |£| =1, d = 1, X = {0.1618,0.3116}, o = 0.0422,
and X, = 0.2962, the Hessian matrix is not negative semi-definite.

Algorithm 1: Frank-Wolfe Variant

Input: U :D — R, D, step-size 6 € (0, 1].
1 A=0,7=0,k=0
2 while 7 < 1 do

3 | find v* s.t. vF = argmax, . p (v, VU(AF))
4 Y = min{d,1 — 7}
AN =X bt =Ty =k + 1

6 return \K

w.rt. [Ay]wex cerc. The step size is set to § > 0 for all but
the last step, where it is selected so that the total sum of step
sizes equals 1.

We note that we face two challenges preventing us from

computing the gradient of VU directly via. Eq. (17): (a)
the gradient computation involves an infinite summation over
n € N, and (b) conditional expectations in A% (A’, n) require
further computing |X'| — 1 infinite sums. Using (17) directly in
Algorithm 1 would thus not yield a polynomial-time algorithm.
To that end, we replace the gradient VU (A*) used in the
standard Frank-Wolfe method by an estimator, which we
describe next.
Gradient Estimator. Our estimator addresses challenge (a)
above by truncating the infinite sum, and (b) via sampling. In
particular, for n’ > )\fCT, we estimate partial derivatives via
the partial summation:

M _TZN (A% n =n). 19)

where estimate Afc()\é,n) is constructed via sampling as
follows. At each iteration, we generate N samples m%7,
j = 1,...,N of the random vector n’ according to the
Poisson distribution in Eq. (14), parameterized by the current
solution vector A*. We then compute the empirical average:

N
P 1
— L3, b L,
A » N Z ( ni’”:nJrl) G (’I’L ni’”:n)) ’
Jj=1
(20)
where n®J| «;_ is equal to vector n*J with n§7 set to n.

Theoretical Guarantee. Extending the analysis of [14], and
using Theorem 1, we show that the Frank-Wolfe variant com-
bined with gradients estimated “well enough” yields a solution
within a constant approximation factor from the optimal:

Theorem 2. Let

AMAX Er/{la%ZH)\ZHl, and (21)
€ lel
Guax = max (G'(ea) — G'(0)), (22)

where e, is the canonical basis. Then, for any 0 < €p, €1 <
1 and es > 0, there exists a & > 0 such that Algorithm 1
terminates in at most

/3

K= O(( ‘X||£|T)\MAX+2>\MAX)GMAX/€2)



iterations, and uses n' = O(ApaxT + In —) terms and N =
O(T?n'K?1n M) samples in estimator (19), so that with
probability 1 —

U ) >

€0, the output solution Afep satisfies:

_ a1 _
e )r}r‘lea%(U()\) €. (23)

The proof can be found in Section V-D. Theorem 2 implies
that, through an appropriate (but polynomial) selection of
the total number of iterations K, the number of terms n'
and samples N, we can obtain a solution A that is within
1—e~! = 0.63 from the optimal. The proof crucially relies on
(and exploits) the continuous DR-submodularity of objective
U, in combination with an analysis of the quality of our
gradient estimator, given by Eq. (19).

C. Proof of Theorem 1

By the law of total expectation, we have:

9] )‘iT t —)\iT
= 3 B[E g =]

Notably, -2 3 /\Z == /\(Z , for which the following is true:
Ut & ‘ n (ALT)re=XeT
TN, ZEG =l D
= Z AL (X -T-Pr[n, =n] >0,

where the last inequality is true because (G is monotone-
increasing (Lemma 1).

Next, we compute the second partial derivatives %.

It is easy to see that for £ # ¢/, we have ;

02U _
ONLONE,

For £ = ¢’ and « = ', it holds that d?/\eU)z = QZI(J;K(;‘;), where
O*U*(A") ¢ Y ¢
Sony = Aa(XL0) TR > AL

x n=1
((/\i)T“lT"+1 (/\i)"T"“) T
(n—1)! - n! e
—Z AL n+1) — AL(NY n)) - Pr[nf, = n)T% <0,

n=0

and the last equality follows from the DR-submodularity of G
(Lemma 1).

For £ = ¢/ and x # «’, it holds that a/\f {N = %2/\(5;(/\)‘;),
PUN) K

a)\za)\e ZZ ntnl =n+1, nm/—kJrl]
n=0 k=0

—E [Ge(ng)mﬁc =n,nb, =k+ 1]) - (E[Gg(nzﬂ
nh =n+1,n5 =k — E[G(n)nf =n,nk =k]))
-Pr[nt, = n]Pr[n, = K]T? <0, (24)

where the last inequality follows from the DR-submodularity
of G (Lemma 1). L]

D. Proof of Theorem 2

Our proof relies on a series of key lemmas; we state them
below, along with proof sketches. Full proofs of all lemmas can
be found in the extended version of our paper [43]. We begin
by associating the approximation guarantee of Algorithm 1
with the quality of gradient estimation VU (+):

—

Lemma 2. Suppose we can construct an estimator VU ()\k)
of the gradient VU (XF) at each iteration k such that

(W* VUA") > a- max(v, VUA") —b, (25

where v* is the update direction determined by (18a), a €
(0,1] and b are positive constants. Then, the output solution
\K of Algorithm 1 satisfies A5 e D, and

UXNSY> (1 —e

L
YmaxU(A) — §AMAX6 —-b, (26)

AED
where L = \/§p|£|TGMAX is the Lipschitz constant of VU,
and Aiax and Gyax given by (21) and (22).

Proof Sketch. We rely on the non-decreasing continuous DR-
submodularity of U (by Theorem 1), following the proof of
Lemma 1 in [14]; we deviate from their proof to handle the
additional issue that D is not downward closed (an assumption
in [14]), mainly by exploiting the fact that:

algleaz};@, VU(A)) = b =a{AX", VU(N)) —
>a(v*, VU (X)) — b,

where A* € D is the optimal solution, and v* is a carefully
constructed point, where 0 < v* < A\*, O

Next, we turn our attention to characterizing the quality
of our gradient estimator. To that end, use the following
subexponential tail bound:

Lemma 3 (Theorem 1 in [45]). Let n, ~ Poisson(\,T), for
Ao, T > 0. Then, for any z > M\.T, we have

(=212 2 afT

Prfnf >z <e  2br AT, @7)
where h : [—1,00) — R is the function defined by h(u) =
2(1+u) In (21+u) )

The expression for h(u) implies that the Poisson tail decays
slightly faster than a standard exponential random variable (by
a logarithmic factor). This lemma allows us to characterize the
effect of truncating Eq. (17) in estimation quality. In particular,
for n’ > AL T, let:

=T AL, t)Prlnf,

n=0

HEADZ (n/) =n]. (28)
Then, this is guaranteed to be within a constant factor from

the true partial derivative:

Lemma 4. For h(u) = 2% and n' > o T, we
have:

(n' =2ET41)?
22T

71'7>\§:T+1
AT

) 20
AL

HEAD.(n') > (1—¢ (29)



Proof Sketch. The lemma follows directly from the submod-
ularity of G (Lemma 1), along with the Poisson tail bound
(Lemma 3). U

Next, by estimating A% (A, n) via sampling (see (20)), we
construct our final estimator given by (19). Putting together
Lemma 4 and along with a Chernoff bound [46], to attain
a guarantee on sampling, we can bound the quality of our
gradient estimator:

Lemma 5. At each iteration k, with probability greater than
1 _ 2p|£| . 6—62N/2T2(n’+1)’

(W, VUN")) > a- max(o, VUM)) —b,  (30)

where
a=1- k:r{l,{(.i.}.(,K P¥ax, and 31)
b = 2Amax0 - GmAX, (32)

for P¥ \x = maxjer zex P[nkF > n' +1] (n&* is a Poisson
r.v. with parameter )\fn’kT), and with Ayax and Gyax given
by Eq. (21) and (22).

Proof Sketch. We follow the proof of Lemma 3.2 in [26].
Utilizing Chernoff bounds described by Theorem A.1.16 in
[46], and the constructed auxiliary variables, we bound the

distance between HEADZ (n/) and our estimator of the partial

%ﬂ. Then, with Lemma 4, we can further bound
EPVAR
O

derivative

the distance between the true partial derivative % and
which in turn imply (30).

Finally, Theorem 2 follows by combining Lemmas 2 and 5.
In particular, by Lemma 5 and a union bound, we have that
(30) is satisfied for all iterations with probability greater than
1—2|X||L]-e=5"N/2T*("'+1)  This, combined with Lemma 2,
implies that

Ky > (1 — oPmax—1y |
UAXY) >(1-e ) r)l\lggU()\)

- (§|X”£|T)‘§4AX + 2Amax)Gmaxo,

is satisfied with the same probability. This implies that for any
0 < €g,€1 < 1 and €3 > 0, there exists K, n/, and N s.t.:

UXNS) > (1—er™1) . OPT — e,

with probability 1 — ¢p. Next, we derive the values of K, n/,
and N that yield this bound. From Eq. (27), the probability is
bounded by an increasing function w.r.t. )\i, and A\yax IS an

14 ; _ n/=dmaxT
upper bound for \,. Letting v = NoanT > We have

(' —2paxT)? A n —AvaxT )
22 maxT AMAXT

Pyax <e”

_ efAMAXT((H»u) In(14+u)—u) _ Q(E*AMAXTU) = e,
where the last line holds because ulnu — v > u when u is
large enough, e.g., u > e2. Thus, n’ = O(AyaxT + In é)
We determine K and N by setting

V2

(7|X||£\T)\12\/IAX + 2 max)Guax/K = e

and
2 ’ 2
2|X||C‘K~€_N/2T (n"+1)K €o.

Therefore, K = O((?\XHQT)\%/IAX + 2 max)Gmax/€2),
and N = O(T?n/ K2 In X1, m

VI. EXTENSIONS

Our model extends in many ways (e.g., to multiple types
per learner). We discuss three non-trivial extensions below.
Heterogeneous Noisy Sources. Our model and analysis di-
rectly generalizes to a heterogeneous (or heteroskedastic)
noise setting, in which the noise level varies across sources.
Formally, labels of type ¢t at source s are generated via
y = a:Tﬁt + €5, Where €, , are zero-mean normal noise
variables with variance O'tQ,S. In this case, the estimator in
(2) needs to be replaced by Generalized Least Squares [47],
whereby every pair (z,y) € R? x R of type ¢ generated by s
is replaced by (%, %s) € R% x R prior to applying Eq. (2).
This, in turn, changes the D-optimality criterion objective, so
that o2 is replaced by ais for vectors & € X coming from
source s. In other words, data coming from noisy sources
are valued less by the learner. This rescaling preserves the
monotonicity and continuous DR-submodularity of our overall
objective, and our guarantees hold, mutatis mutandis.
Uncountable X. We assumed in our analysis that data features
are generated from a finite set X, and that transmission rates
per edge are parametrized by both the type ¢ € T and the
features x of the data pair transmitted. This a priori prevents
us from considering an infinite set of experiments X: this
would lead to an infinite set of constraints in Problem (16).
In practice, it would also make routing intractable, as routing
decisions depend on both ¢ and x.

We can however extend our analysis to a setting where
experiments X are infinite, or even uncountable. To do so,
we can consider rates per edge e of the form )\g,t, ie.,
parameterized by type ¢ and source s rather than features x.
In practice, this would mean that packets would be routed
based on the source and type, not inspecting the features of the
internal pairs, while constraints would be finite (depending on
|S|, not | X|). Data generation at source s can then be modelled
via a compound Poisson process with rate A, ;, at the epochs
of which the features « are sampled independently from some
probability distribution v, ; over R?. The objective then would
be written as an expectation over not only arrivals at a learner
from source s (which will again be Poisson) but also the
distribution v ;¢ of features. Sampling from the latter would
need to be used when estimating VU as long as Chernoff-
type bounds can be used to characterize the estimation quality
of such sampling (which would be the case if, e.g., vs;
are Gaussian), our analysis would still hold, taking also the
number of sampled features into account.

Arbitrary (Non-DAG) Topology. For notational convenience,
we assumed that graph G was a DAG, with sources and sinks
corresponding to sets S and L respectively. Our analysis fur-
ther extends to more general (i.e., non-DAG) graphs, provided
that extra care is taken for flow constraints to prevent cycles.



TABLE I
GRAPH TOPOLOGIES AND EXPERIMENT PARAMETERS

Graph VI 1Bl x| 1TL ISI 1€l U
synthetic topologies
Erd6s-Rényi (ER) 100 1042 20 5 10 5 309.95
balanced-tree (BT) 341 680 20 5 10 5 196.68
hypercube (HC) 128 896 20 5 10 5  297.69
star 100 198 20 5 10 5 211.69
grid 100 360 20 5 10 5  260.12
small-world (sw) [48] 100 491 20 5 10 5 27276
real backbone networks [49]

GEANT 22 66 20 3 3 3 214.30
Abilene 9 26 20 3 3 3 216.88
Deutsche Telekom e 546 59 3 3 3 23253

(Dtelekom)

This can be accomplished, e.g., via source routing. Given an
arbitrary graph, and arbitrary locations for data sources and
learners, we can extend our setting as follows: (a) flows from
a source s to a learner ¢ could follow source-path routing,
over one or more directed paths linking the two, and (b) flows
could be indexed by (and remain constant along) a path, in
addition to x and ¢, while also ensuring that (c) aggregate
flow across all paths that pass through an edge does not violate
capacity constraints. Such a formulation still yields a linear set
of constraints, and our analysis still holds. In fact, in this case,
the corresponding set D is downward closed, so the proof of
the corresponding Theorem 2 follows more directly from [14].

VII. NUMERICAL EVALUATION

To evaluate the proposed algorithm, we perform simulations
over a number of network topologies and with several different
network parameter settings, summarized in Table 1.

A. Experiment Setting

We consider a finite feature set X' that includes randomly
generated feature vectors with d = 100, and a set 7 that of
different Bayesian linear regression models with 3,, ¢t € 7.
Labels of each type are generated with Gaussian noise, whose
variance o, is uniformly at random (u.a.r.) chosen from 0.5 to
1. For each network, we u.a.r. select |£| learners and |S| data
sources, and remove incoming edges of sources and outgoing
edges of learners. Each learner has a target model 3,., t‘ € T
with a diagonal prior 3,. generated as follows. First, we
separate features into two classes: well-known and poorly-
known. Then, we set the corresponding prior covariance (i.e.,
the diagonal elements in X) to low (uniformly from O
to 0.01) and high (uniformly from 100 to 200) values, for
well-known and poorly-known features, respectively. The link
capacity u¢ e = (u,v) € £ is selected v.a.r. from 50 to 100,
and source s generates the data (x, y) of type ¢ label with rate

«.¢» uniformly distributed over [2,5].
Algorithms. We compare our proposed Frank-Wolfe based
algorithm (we denote it by FW) with several baseline data
transmission strategies derived in different ways:

m FW N MaxSum

i MaxAlpha
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(b) Average Norm of Estimation Error per Learner

Fig. 1. Normalized aggregate utility and average norm of estimation error
per learner in different networks. Utilities are normalized by the utility of
Algorithm 1 (FW) Uy, reported in Table I. We can observe that FW is the
best in terms of maximizing the utility and minimizing the estimation error
in all networks.

e MaxSum: This maximizes the aggregate total useful
incoming traffic rates of learners, i.e., the objective is:

UMaxSum(A) = Z Z )\t;;

lteLxeX

e MaxAlpha: This maximizes the aggregate a-fair utili-
ties [S0] of the total useful incoming traffic at learners,
i.e., the objective is:

UMaxAlpha(A) = Z(Z )‘i)l_a/(l - a)'

el zeX
We set o = 5.

We also compare with another algorithm for the proposed
experimental design networks:

e PGA: This also solves Prob. (16), as does our proposed
algorithm, via the projected gradient ascent [28]. As
PGA also requires gradients, we use our novel gradient
estimation (by Eq. (19)).

Note that projected gradient ascent finds a solution within
1/2 from the optimal if the true gradients are accessible [28];
its theoretical guarantee with estimated gradients is out of the
scope of this work.

Simulation Parameters. We run FW and PGA for K = 100
iterations with step size § = 0.01. In each iteration, we
estimate the gradient according to Eq. (19) with N = 100,
and n' = [2max, 4 A, T, where A, is given by the current
solution. We consider a data acquisition time 7' = 10. Since
our objective function cannot be computed in closed-form,
we rely on sampling with 1000 samples. We also evaluate the
model training quality by the average norm of estimation error,
where the estimation error is the difference between the true
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Fig. 2. Algorithm comparison in abilene topology with different parameter
settings. The achieved aggregate utility and model estimation quality of dif-
ferent algorithms are evaluated with different source data rates and bottleneck
link capacities.

model and the MAP estimator, given by (2). We average over
1000 realizations of the label noise as well as the number of
data arrived at the learner {n},cr.

B. Results

Performance over Different Topologies. We first compare the
proposed algorithm (FW) with baselines in terms of the nor-
malized aggregated utility and model estimation quality over
several networks, shown in Figures 1(a) and 1(b), respectively.
Utilities in Fig. 1(a) are normalized by the aggregate utility of
FW, reported in Tab. I under Ury. Learners in these networks
have distinct target models to train. In all network topologies,
FW outperforms MaxSum and MaxAlpha in both aggregate
utility and average norm of estimation error. PGA, which also
is based on our experimental design framework, performs well
(second best) in most networks, except for balanced tree, in
which it finds a bad stationary point.
Effect of Source Rates and Link Capacities. Next, we
evaluate how algorithm performance is affected by varying
source rates as well as link capacitites. We focus on the
Abilene network, having 3 sources and 3 learners, where
two of the learners have a same target training model. We
set the data acquisition time to 7" = 1, and labels are
generated with Gaussian noise with variance 1. Finally, we
again use diagonal prior covariances, and again split between
high-variance (selected uniformly between 1 and 3) and low-
variance (selected uniformly between O and 0.1) features.
Figures 2(a) and 2(b) plot the aggregate utility and average
total norm of estimation error across learners, with different
data source rates at the sources. The initial source rates are
sampled u.a.r. from 2 to 5, and we scale it by different
scaling factors. As the source rates increases, the aggregate

utility increases and the norm of estimation error decreases
for all algorithms. FW is always the best in both figures.
Moreover, the proposed experimental design framework can
significantly improve the training quality: algorithms based
on our proposed framework (FW and PGA) with source rates
scaled by 2 already outperform the other two algorithms
(MaxSum and MaxAlpha) with source rates scaled by 4. We
see reverse results of MaxSum and MaxAlpha in these two
figures compared with Figure 1, showing that the algorithm
which considers fairness (i.e., a-fair utilities), may perform
better if we have competing learners.

Figures 2(c) and 2(d) show performance in Abilene network
with different link capacities of several bottleneck links. The
capacities are initially sampled u.a.r. from 50 to 100, and we
divide it by different downsize factors. The overall trend is
that as the link capacities decrease, algorithms achieve smaller
aggregate network utility and get a higher average norm of
estimation error. The proposed algorithm is always the best
with different bottleneck link capacities in both figures.

VIII. CONCLUSION

We propose experimental design networks, to determine a
data transmission strategy that maximizes the quality of trained
models in a distributed learning system.® The underlying
optimization problem can be approximated even though its
objective function is non-concave.

Beyond extensions we have already listed, our framework
can be used to explore other experimental design objectives
(e.g., A-optimality and E-optimality) as well as variants that
include data source generation costs. Distributed and adaptive
implementations of the rate allocation schemes we proposed
are also interesting future directions. Incorporating non-linear
learning tasks (e.g., deep neural networks) is also an open
avenue of exploration: though Bayesian posteriors are harder
to compute in closed-form for this case, techniques such as
variational inference [51] can be utilized to approach this
problem. Finally, an interesting extension of our model
involves a multi-stage setting, in which learners receive data in
one stage, update their posteriors, and use these as new priors
in the next stage. Studying the dynamics of such a system, as
well as how network design impacts these dynamics, is a very
interesting open problem.
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