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1 INTRODUCTION

We study network of caches, represented by an arbitrary topology, in which requests for contents
arrive in an adversarial fashion. Requests follow paths along the network towards designated servers,
that permanently store the requested items, and can be served by caches of finite capacity residing
at intermediate nodes. Responses are carried back over the same path towards the source of each
request, incurring a cost. Our objective is to propose a distributed, online algorithm determining
cache contents in a way that minimizes regret, when both items requested as well as paths they
follow are selected adversarially.

The offline version of this problem is NP-hard, but admits a (1 — 1/e) polytime approximation
algorithm [73]. Ioannidis and Yeh [41] proposed a distributed Robbins Monro type algorithm that
attains the same approximation guarantee assuming stochastic, stationary request arrivals. This
model has motivated several variants [35, 43, 54-57, 79], the majority of which focus on offline
and/or stationary stochastic versions of the problem. Another thread of recent research in caching,
spurred by the seminal work of Paschos et al. [66], explores caching algorithms that come with
adversarial guarantees. The majority of these works focus either on a single cache [62, 71, 74] or
on simple, bipartite network topologies [10, 65, 66].
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The main objective of this paper is to bring adversarial guarantees to the general network model
proposed by Ioannidis and Yeh. From a technical standpoint, this requires a significant technical
departure from the no-regret caching settings studied by prior art [10, 62, 65, 66, 71, 74], both due
to its distributed nature and the generality of the network topology. For example, our objective
cannot be optimized directly via techniques from online convex optimization [39, 72, 81] to attain
sublinear regret.

We make the following contributions:

e We revisit the general cache network setting of Ioannidis and Yeh [41] from an adversarial
point of view.

e We propose DisTRIBUTEDTGONLINE, a distributed, online algorithm that attains O(VT)
regret with respect to an offline solution that is within a (1 — 1/e)-approximation from the
optimal, when cache update costs are not taken into account.

e We also extend our algorithm to account for update costs. We show that an O(VT) regret
is still attainable in this setting, replacing however independent caching decisions across
rounds with coupled ones; we determine the latter by solving an optimal transport problem.

e Finally, we extensively evaluate the performance of our proposed algorithm against several
competitors, using (both synthetic and trace-driven) experiments involving non-stationary
demands.

The remainder of this paper is organized as follows. In Section 2, we review related work. Our
model and distributed online algorithm are presented in Sections 3 and 4, respectively. We present
our analysis of the regret under update costs in Section 5 and extend our results in Section 6. Our
experiments in Section 7. We conclude in Section 8.

2 RELATED WORK

Content allocation in networks of caches has been explored in the offline setting, presuming demand
is known [12, 68, 73]. In particular, Shanmugam et al. [73] were the first to observe that caching
can be formulated as a submodular maximization problem under matroid constraints and prove its
NP-hardness. Dynamic caching policies have been mostly investigated under a stochastic request
process. One line of work relies on the characteristic time approximation [18, 27, 32, 46, 47] (often
referred to as Che’s approximation) to study existing caching policies [3, 7, 22, 31] and to design
new policies that optimize the performance metric of interest (e.g., the hit ration or the average
delay) [25, 53, 63]. Another line proposes caching policies inspired by Robbins-Monro/stochastic
approximation algorithms [40, 41].

In particular, Ioannidis and Yeh [42] present (a) a projected gradient ascent (PGA) policy that
attains (1 — 1/e)-approximation guarantee in expectation when requests are stationary and (b)
a practical greedy path replication heuristic (GRD) that performs well in many cases, but comes
without guarantee. Our work inherits all modeling assumptions on network operation and costs
from [42], but differs from it (and all papers mentioned above) by considering requests that arrive
adversarially. In our experiments, we compare our caching policy with PGA and GRD, that have no
guarantees in the adversarial setting. We also prove that GRD in particular has linear regret (see
Lemma 4.3).

Sleator and Tarjan [75] were the first to study caching under adversarial requests. In order to
evaluate the quality of a caching policy, they introduced the competitive ratio, that is the ratio
between the performance of the caching policy (usually expressed in terms of the miss ratio) and
that of the optimal clairvoyant policy that knows the whole sequence of requests. This problem was
generalized under the name of k-server problem [59] and metrical task system [11] and originated
a vast literature (see, e.g., the survey [51]). In this paper, we focus on regret rather than competitive

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 3, Article 35. Publication date: December 2021.



Online Caching Networks with Adversarial Guarantees 35:3

ratio to quantify the main performance metric. Roughly speaking, the regret corresponds to the
difference between the performance of the caching policy and the optimal clairvoyant policy (see [4]
for a thorough comparison of regret and competitive ratio). The regret metric is more popular in
the online learning literature. The goal is to design algorithms whose regret grows sublinearly with
the time horizon T and thus have asymptotically optimal time-average performance.

To the best of our knowledge, Paschos et al. [66] were the first to apply online learning techniques
to caching. In particular, building on the online convex optimization framework [39, 72, 81], they
propose an online gradient descent caching algorithm with sublinear regret guarantees, both for a
single cache and for a bipartite network where users have access to a set of parallel caches (the
“femtocaching” scenario in [73]) and items are random linearly encoded. Si Salem et al. [74] extend
this work considering the more general family of online mirror descent algorithms [13], but only
considered a single cache. Bhattacharjee et al. [10] prove tighter lower bounds for the regret in the
femtocaching setting and proposed a caching policy based on the Follow-the-Perturbed-Leader
algorithm that achieves near-optimal regret in the single cache setting. These results have been
extended to the femtocaching setting [65]. Two recent papers [62, 71] pursued this line of work
taking into account update costs for a single cache. We provide similar (O(VT)) regret guarantees
for general cache networks (rather than just bipartite ones), using a different algorithm.

As mentioned above, content placement at caches can be formulated as a submodular optimization
problem [41, 73]. The offline problem is already NP-hard, but the greedy algorithm achieves 1/2
approximation ratio [30]. Calinescu et al. [15] develop a (1 — 1/e)-approximation through the so
called continuous greedy algorithm. The algorithm finds a maximum of the multilinear extension
of the submodular objective using a Frank-Wolfe like gradient method. The solution is fractional
and needs then to be rounded via pipage [2] or swap rounding [19]. Filmus and Ward [29] obtain
the same approximation ratio without the need of a rounding procedure, by performing a non-
oblivious local search starting from the solution of the usual greedy algorithm. These algorithms
are suited for deterministic objective functions. Hassani et al. [38] study the problem of stochastic
continuous submodular maximization and use stochastic gradient methods to reach a solution
within a factor 1/2 from the optimum. Mokhtari et al. [61] propose then the stochastic continuous
greedy algorithm, which reduces the noise of gradient approximation by leveraging averaging
technique. This algorithm closes the gap between stochastic and deterministic submodular problems
achieving a (1 — 1/e)-approximation ratio.

There are two kinds of online submodular optimization problems. In the first one, a.k.a. competi-
tive online setting, the elements in the ground set arrive one after the other, a setting considerably
different from ours. The algorithm needs to decide whether to include revealed elements in the
solution without knowing future arrivals. Gupta et al. [34] consider the case when this decision is
irrevocable. They give a O(log r)-competitive algorithm where r is the rank of matroid. Instead,
Hubert Chan et al. [17] allow the algorithm also to remove elements from the current tentative
solution. They propose a randomized 0.3178-competitive algorithm for partition matroids. In the
second kind of online submodular optimization problems, objective functions are initially unknown
and are progressively revealed over T rounds. This setting indeed corresponds to our problem,
as our caching policy needs to decide the content allocation before seeing the requests. Streeter
et al. [76] present an online greedy algorithm, combining the greedy algorithm with no-regret
selection algorithm such as the hedge selector, operating under cardinality (rather than general
matroid) constraints. Radlinski et al. [69] also propose an online algorithm by simulating the offline
greedy algorithm, using a separate instance of the multi-armed bandit algorithm for each step of the
greedy algorithm, also for cardinality constraints. Chen et al. [21] convert the offline Frank-Wolfe
variant/continuous greedy to a no-regret online algorithm, obtaining a sublinear (1 — 1/e)-regret.
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Chen et al. [20] use Stochastic Continuous Greedy [61] to achieve sublinear (1 — 1/e)-regret bound
without projection and exact gradient. These algorithms however operate in a continuous domain,
producing fractional solutions that require subsequent rounding steps; these rounding steps do not
readily generalize to our distributed setting. Moreover, rounding issues are further exacerbated
when needing to handle update costs in the regret.

Our work is based on the (centralized) TGONLINE algorithm by Streeter et al. [77], which solves
the so-called online assignment problem. In this problem, a fixed number of K slots is used to store
items from distinct sets: that is, slot k = 1,..., K can store items from a set Px. The motivation
comes, from, e.g., placing advertisements in K distinct positions on a website. Submodular reward
functions arrive in an online fashion, and the goal of the online assignment problem is to produce
assignments of items to slots that attain low regret. TGONLINE, the algorithm proposed by Streeter
et al.,, achieves sublinear 1 — 1/e-regret in this setting. We depart from Streeter et al. by considering
both objectives as well as constraints arising from the cache network design problem. We show that
(a) when applied to this problem, TGONLINE admits a distributed implementation, but also (b) we
incorporate update costs, which are not considered by Streeter et al. A direct, naive implementation
of TGONLINE to our setting would require communication between all caches at every request; in
contrast, DISTRIBUTEDTGONLINE restricts communication only among nodes on the request path.
As an additional technical aside, we exploit the fact that an adaptation step within the TGONLINE
algorithm, namely, color shuffling, can in fact happen at a reduced frequency. The latter is imperative
for bounding regret when cost updates are considered: without this adjustment, the TGONLINE
algorithm of Streeter et al. attains a linear regret when incorporating update costs.

3 MODEL

Following the caching network model of Ioannidis and Yeh [41], we consider a network of caches
that store items from a fixed catalog. Nodes in the network generate requests for these items, routed
towards designated servers. However, intermediate nodes can cache items and, thereby, serve such
requests early. We depart from Ioannidis and Yeh in assuming that request arrivals are adversarial,
rather than stochastic.

3.1 Notation

We use notation [n] £ {1,2,..,n} for sets of consecutive integers, and 1(-) for the indicator
function, that equals 1 when its argument is true, and 0 otherwise. Given two sets A, B, we use
A X B = {(a,b)}seapep to indicate their Cartesian product. For any finite set A, we denote by
|A| € N the size of the set. For a set A and an element a, we use A + a to indicate A U {a}. Notation
used across the paper is summarized in Table 1.

3.2 Caching Network

We model a caching network as a directed graph G(V, E) of n nodes. For convenience, we set
V = [n]. Each edge e in the graph is represented by e = (u,0) € E C V X V. We assume G
is symmetric, i.e., if (u,0) € E, then (v,u) € E. A fixed set of nodes, called designated servers,
permanently store items of equal size. Formally, each item i € C, where set C is the item catalog, is
stored in designated servers D; C V.

Beyond designated servers, all other nodes in V are also capable of storing items. For each v € V,
let ¢, € N denote its storage capacity, i.e., the maximum number of items it can store. Let also
S, = {(v,)) };il be v’s set of storage slots; then, s = (v, j) € V X [¢,] is the j-th storage slot on
node v. We denote the set of storage slots in the whole network by S, where S = |,y Sy, and
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Fig. 1. A general cache network, as proposed by loannidis and Yeh [41]. Designated servers store items in
a catalog permanently. Requests arrive at arbitrary nodes in the network and follow predetermined paths
towards these servers; responses incur costs indicated by weights on the edges. Intermediate nodes can serve
as caches; the objective is to determine what items to store in each cache, to minimize the overall routing
cost or, equivalently, maximize the caching gain.

= c,. We assume the slots in S are ordered lexicographically, i.e.,
S| = Soey co. W he slots in S are ordered lexicographically, i
(v,j) < (v',j")ifand only ifv < v’ orv =v" and j < j'. (1)

We can describe content allocation as a set A C S X C, where a = (s,i) € A indicates that item
i € C is stored in slot s € S. The set of feasible allocations is

D={ACSxC:|An({s} xC)| < 1,Vs € S}. )

This ensures that each slot is occupied by at most one item; note that the cache capacity constraint
at each node v € V is captured by the definition of S,

3.3 Requests and Responses

A request r = (i, p) is determined by (a) the item i € C requested, (b) the path p along which the
request is forwarded. A path p is a sequence {p} ]Lp:|1 of adjacent nodes pi € V. As in Ioannidis and
Yeh [41], we assume that paths are simple, i.e., they do not contain repeated nodes, and well-routed,
i.e., they terminate at a node in D;. A request (i, p) is generated at node p; and follows the path
p; when the request reaches a node storing item i, a response is generated. This response carries
item i to query node p; following the reverse path. We assume that time is slotted, and requests
arrive over a total of T € N rounds. We denote by R the set of all possible requests in the system.
At each round t € [T], a set of requests R? C R arrive in the system. Requests in R’ can arrive in
any order, and at any point in time within a round.! However, we assume that the total number of
requests at each round is bounded by R, i.e., |R!| < R. Note that, when R = 1, at most one request
arrives per round.

3.4 Routing Costs

We assume request routing does not incur any cost, but response routing does. In particular let
wyp € Ry denote the cost of routing the response along the edge (u,v) € E.

10ur analysis readily extends to a multiset R?, whereby the same request is submitted multiple times within the same
round. We restrict the exposition to sets for notational simplicity.
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Table 1. Notation Summary

Notational Conventions
[n] Set {1,...,n}
A+a Union AU {a}
Cache Networks
G(V,E) Network graph, with nodes V and edges E

C The item catalog

Cy Cache capacity at node c € V

s =(v,j) j-th storage slot on node v

S The set of storage slots

Sy The set of storage slots in node v

S, The set of storage slots in path p

Sip The set of storage slots in path p storing item i
A The set of item allocations

D The set of feasible allocations

R The set of requests arriving at round ¢

R The upper bound of |R;|

1R Average number of requests per round
Wy The routing cost along edge (u,v)

L The upper bound of possible routing cost
1! Caching gain at round ¢

Online Optimization

T The rounds horizon

Rr a-regret

& Hedge selector

w The weight vector maintained by hedge selector
4 The reward vector fed to hedge selector

ms The active color of slot s

M Number of colors

I Information collected by control message

wh The cumulative cost of edges upstream of v on path p
ucC Update costs

Rr The extended a-regret considering update costs

Then, given an allocation A € 8 X C, the cost of serving a request (i, p) € R is:

lpl-1
Clipy (D) = > W d[An] | Spo x (i} =0]. (3)
k=1 k'e[k]

Intuitively, Eq. (3) states that C(; ;) (A) includes wy,, , p,, the cost of edge (px+1, px), only if no cache
preceding pi.q in path p stores item i. We denote by
lpl-1

L= 4

(max ]; Wpko p 4

the maximum possible routing cost; note that this upper-bounds C; ) (A), for all (i,p) € R,
AeSxC.
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The caching gain [41] of a request (i, p) due to caching at intermediate nodes is:

lpl-1
i (A) = Clapy (0) = Clipy (A) = 3 wpeop | ANY [ Spo x iy p#0). )
k=1 k'e[k]

where C(; ) (0) is the routing cost in the network when all caches are empty. The caching gain
captures the cost reduction in the network due to caching allocation A.

3.5 Offline Problem

In the offline version of the cache gain maximization problem [41, 73], the request sequence {R}!_|
is assumed to be known in advance; the goal is then to determine a feasible allocation A € D that
maximizes the total caching gain. Formally, given an allocation A € S X C, let

A=) £, (6)
reRr?
be the caching gain at round t. Then, the offline caching gain maximization problem amounts to:
T T
maximize  f(A) = Z FL(A) = Z Z £(A), (7a)
A t=1 t=1 reR?
subjectto A€ D. (7b)

The following lemma implies this problem is approximable in polynomial time:

LEmMA 3.1 ([41, 73]). Function f : S X C — R, is non-decreasing and submodular. Moreover, the
feasible region D is a partition matroid.

Hence, Problem (7) is a submodular maximization problem under matroid constraints. It is known
to be NP-hard [41, 73], and several approximation algorithms with polynomial time complexity
exist. The classic greedy algorithm [14] produces a solution within %-approximation from the
optimal. The so-called continuous greedy algorithm [15] further improves this ratio to 1 — % A
different algorithm based on a convex relaxation of Problem (7) is presented in [41, 73]. The Tabular
Greedy algorithm [77] also constructsa 1 — % approximate solution in poly-time. We describe it in
details in Appendix A, as both TGONLINE [77] and our D1sTRIBUTEDTGONLINE build on it.

3.6 Online Problem

In the online setting, requests are not known in advance, and we seek algorithms that make caching
decisions in an online fashion. In particular, at the beginning of round ¢, an online algorithm selects
the current allocation A’ € D. Requests R! C R subsequently arrive, and the cache gain f*(A?) is
rewarded, where f! : 8§ X C — R, is given by Eq. (6).

As in standard online learning literature [39, 66], while choosing A?, the network has no knowl-
edge of the upcoming requests R’, but can rely on past history. Formally, we seek an online
algorithm A that maps the history of past requests H’ = {R',.,R""'} to a new allocation, i.e.,
A! = A(H"). In particular, we aim for an algorithm A with sublinear a-regret, given by

T
D fhan

where «a is an approximation factor, and A* is the optimal solution to (the offline) Problem (7). Note
that the expectation is over the (possibly) randomized choices of the algorithm A; we make no
probabilistic assumptions on request arrivals {R’}!_,, and wish to minimize regret in the adversarial
setting, i.e., w.r.t. to the worst-case sequence {R’ }thl. Put differently, our regret bounds will be

: ®)

T T T
Rr=E|a) f{(4) = ) f{(A)|=a) fi(A)-E
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Algorithm 1: Hedge Selector &

Input: Parameter € € R, action set C, horizon T € N.
1 def &.initialize():
2 L Set W; « 1foralli e C
3 def E.arm():

. . . _ W

4 L return i € C with probability p; = S W,
5 def &.feedback(t):
6 L Set W; « Wie€t foralli € C

against an arbitrarily powerful adversary, that can pick any sequence {R’ }thl, as long as the total

number of requests at each round is bounded by R, i.e., |[R!| < Rforallt=1,...,T.

Several remarks are in order regarding Eq. (8). First, the definition of the regret in Eq. (8), which
compares to a static offline solution, is classic. Several bandit settings, e.g., simple multi-armed
bandits [6, 50, 69], contextual bandits [1, 23, 26], submodular bandits [21, 76, 80] and, of course,
their applications to caching problems [10, 62, 66, 71], adopt this definition. In all these cases, the
dynamic, adaptive algorithm is compared to a static policy that has full hindsight of the entire trace
of actions. Nevertheless, as is customary in the context of online problems in which the offline
problem is NP-hard [21], the regret is not w.r.t. the optimal caching gain, but the gain obtained
by an offline approximation algorithm. Second, from the point of view of bandits, we operate in
the full-information feedback setting [39]: upon the arrival of requests R’, the entire function
f!: 8 xC — R, is revealed,” as the latter is fully determined by request set R?. Third, Eq. (8)
captures the cost of serving requests, but not the cost of adaptation: changing an allocation from
A! to A™! changes cache content, which in turn may require the movement of items. Neglecting
adaptation costs may be realistic if, e.g., adaptation happens in off-peak hours (e.g., the end of
a round occurs at the end of a day), and does not come with the same latency requirements as
serving requests in R’. Nevertheless, we revisit this issue, incorporating update costs in the regret,
in Section 5. Finally, we stress that we seek online algorithms (A that have sublinear regret but are
also distributed: each cache v should be able to determine its own contents using past history it has
observed, as well as some limited information it exchanges with other nodes.

4 DISTRIBUTED ONLINE ALGORITHM

We describe our distributed online algorithm, D1sTRIBUTEDTGONLINE, in this section. We first give
an overview of the algorithm and its adversarial guarantees; we then fill out missing implementation
details.

4.1 Hedge Selector

Our construction uses as a building block the classic Hedge algorithm® for the expert advice problem
[5, 39, 77]. This online algorithm selects an action from a finite set at the beginning of a round. At
the conclusion of a round, the rewards of all actions are revealed; the algorithm accrues a reward
based on the action initially selected, and adjusts its decision.

In our case the set of possible actions coincides with the catalog C, i.e., the algorithm selects an
item i € C per round ¢ € N. The hedge selector maintains a weight vector W* = [W/];cc € RIC],
where weight W/ corresponds to action i € C. The hedge selector supports two operations (see

%In contrast to the classic bandit feedback model, where only the reward f*(A?) is revealed in each round ¢.
3This is also known as the multiplicative weight algorithm.
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Algorithm 2: DisTRIBUTEDTGONLINE

foreach s € S do
foreach m € [M] do
| Esm.initialize().
set t; = 1, choose m; uniformly at random from [M]

| is & Esmg.arm() // Sets A «— {(s,is)}ses
fort=1,2,..,T do
/* During round t: */

1 foreach r = (i,p) € R! do
2 Send request upstream over p until a hit occurs.
3 Send response carrying i downstream, and incur routing costs.
4 Send control message upstream over p to construct 7 and W, given by (12).
5 Send control message carrying 7 and ‘W downstream over p, and do the

following:foreach s € S, do
6 Use 7 and ‘W to construct £(s, mg) € RLCl via (15).
Call &, feedback(£(s, ms))

* At the end of round t: */

/
8 foreach s € (;p)er Sp do
9 if t, mod K = 0 then
10 | Select ms wa.r. from [M] ; // Shuffle color my
1 is «— Esm,.arm() ; // Update allocation A at s
12 | ts L+ 1

Alg. 1. The first, &.arm( ), selects an action from action set C. The second, &.feedback(¢?), ingests
the reward vector £ = [£/];ec € RIC! where ¢! is the reward for choosing action i € C at round ¢,
and adjusts action weights as described below. In each iteration ¢, the hedge selector alternates
between (a) calling i’ = &.arm( ), to produce action i’, (b) receiving a reward vector £/, and using it
via &.feedback(£?) to adjust its internal weight vector. In particular, &.arm( ) selects action i € C
with probability:

Wt

pi= =7 9)
ZjeC ijt

i.e., proportionally to weight W/. Moreover, when &.feedback(£?) is called, weights are updated via:
witt = Witedit, foralli e C, (10)

where € > 0 is a constant. In a centralized setting where an adversary selects the vector of weights
¢!, the no-regret hedge selector attains an O(VT) regret for an appropriate choice of € > 0 (see
Lemma B.1 in Appendix B). We use this as a building block in our construction below.

4.2 DisTRIBUTEDTGONLINE Overview

To present the DisTRIBUTEDTGONLINE algorithm, we first need to introduce the notion of “colors”.
The algorithm associates each storage slot s = (v, j) € S with a “color” m; from set [M] of M
distinct values (the “color palette”). The online algorithm makes selections in the extended action
space S X C X [M], choosing not only an item to place in a slot, but also how to color it.
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This coloring is instrumental to attaining a 1 — %-regret. In offline tabular greedy algorithm of
Streeter et al. [77], which we present in Appendix A, when M = 1, i.e,, there is only one color,
the algorithm reduces to simply the locally greedy algorithm (see Section 3.1 in [77]), achieving
only a % approximation ratio. When M — oo, the algorithm can intuitively be viewed as solving a
continuous extension of the problem followed by a rounding (via the selection of the color instance),
in the same spirit as the so-called CONTINUOUSGREEDY algorithm [15]. A finite size “color palette”
represents a midpoint between these two extremes. We give more insight into this relationship
between these two algorithms in Section 4.5.

In more detail, every storage slot s € S maintains (a) the item is € C stored in it, (b) an active
color mg € [M] associated with this slot, and (c) M different no-regret hedge selectors {Ss,m}jr\n/I:p
one for each color. All selectors {&E; , }M_, operate over action set C: that is, each such selector can
have its arm “pulled” to select an item i to place in a slot. Though every slot s maintains M different
selectors, one for each color, it only uses one at a time. The active colors {m;};cs are initially
selected u.a.r. from [M], and remain active continuously for a total K pull/feedback interactions,
where K € N; at that point, m; is refreshed, selected again u.a.r.,, bringing another selector into play.
All in all, the algorithm proceeds as follows during round ¢.

(1) When a request (i, p) € R’ is generated, it is propagated over the path p until a hit occurs; a
response is then backpropagated over the path p, carrying i, and incurring a routing cost.
(2) At the same time, an additional control message is generated and propagated upstream over
the entire path p. Moving upstream, it collects information from slots it traverses.
(3) After reaching designated server at the end of the path, the control message is backpropagated
over the path p in the reverse direction. Every time it traverses a node v € p, storage slot
s € S, fetches information stored in the control message and computes a reward vector
' (s, ms). This is then fed to the active hedge selector via Es . .feedback( £ (s, my)).
(4) At the end of the round, we check if the arm of & ,,, has been pulled for a total of K times
under active color my; if so, a new color m is selected u.a.r. from [M].
(5) Irrespective of whether m; changes or not, at the end of the round, each slot updates its
contents via the current active hedge selector E ,,_, by calling operation &, .arm() to choose
a new item i to place ins.
We define the control messages exchanged, the information they carry, and the reward vectors fed
to hedge selectors in Section 4.3. Only slots in a request’s path need to exchange messages, provide
feedback to their selectors, and (possibly) update their contents at the end of a round. Moreover,
messages exchanged are of size O(|p|). We allow K > T; in this case, colors are selected u.a.r. only
once, at the beginning of the execution of the algorithm, and remain constant across all rounds.*
Finally, note that updating cache contents at the end of a round does not affect the incurred cost;
we remove this assumption in Section 5.
Our first main result is that DISTRIBUTEDTGONLINE has a (1 — 1/e)-regret that grows as O(VT):

TuEOREM 4.1. Consider the sequence of allocations {A*}1_, produced by the DisTriBUTEDTGONLINE

algorithm using hedge selectors determined by Alg. 1, with e = % % Then, for all T > log|C]|
and allK > 1:

T

D fhan
=1

where B(|S|, M) =1— (1- )M - (lfl)M_l'

T
E > p(ISI. M) - max {Z ff(A)} - 2RL|S|M\Tlog Cl, (11)
1

t=

“In such a case, selectors corresponding to inactive colors need not be maintained, and can be discarded.
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The main intuition behind the proof is to view DisTRIBUTEDTGONLINE as a version of the offline
TAaBULARGREEDY that, instead of greedily selecting a single item i, € C per step, it greedily selects
an entire item vector iy, € CT across all rounds, where T is the number of rounds. To cast the proof
in this context, we define new objective functions f and F whose domain is over decisions across T
rounds, as opposed to the original per time-slot functions (whose domain is only over one round).
Due to the properties of the no-regret hedge selector, and the formal guarantees of the offline case
(c.f. Thm. A.1), these new objectives attain 1 — % bound shown in Eq. (26), yielding the bound on the
regret. The detailed proof of this theorem is provided in Appendix C. Note that for M large enough
(at least Q(]|S|?)), quantity B(|S|, M) can be made arbitrarily close to 1 — 1/e. Hence, Theorem 4.1
has the following immediate corollary:

COROLLARY 4.2. Foranyd > 0, there exists an M = O( %) such that the expected (1— % —98)-regret

. 2RLIS|?
of DisTRIBUTEDTGONLINE is R < =—5——+/T log|C].

DisTrIBUTEDTGONLINE is a distributed implementation of the (centralized) online tabular greedy
algorithm of Streeter et al. [77], which is itself an online implementation of the so-called tabular
greedy algorithm [77], which we present in Appendix A. We depart however from [77] in several
ways. First, the analysis by Streeter et al. requires that feedback is provided at every slots € S .
We amend this assumption, as only nodes along a path need to update their selectors/allocations
in our setting. Second, we show that feedback provided to arms can be computed in a distributed
fashion, using only messages along the path p, as described below in Section 4.3. These two facts
together ensure that DisTRIBUTEDTGONLINE is indeed distributed. Finally, the analysis of Streeter
et al. assumes that colors are shuffled at every round, i.e., applies only to K = 1. We extend this to
arbitrary K > 1. As we discuss in Section 5, this is instrumental to bounding regret when accounting
for update costs; the later becomes ©(T) when K = 1.

4.3 Control Messages, Information Exchanged, and Rewards

The algorithm is summarized in Alg. 2. We describe here the control messages, information ex-
changed, and reward vectors fed to hedge selectors during the generation of a request r = (i, p) € R*.
Let Sp = Uyep So be the set of all slots in nodes in p. Let also Sip = {s € Sp : (s,1) € A'} € Spbe
the slots in path p that store the requested item i € C. The control message propagated upstream
towards the designated server collects both the (a) color of every slot in S; , and (b) the upstream
cost at each node v € p. Formally, the information collected by the upstream control message is

I = {(83 mS)}SESi’p: and (W = {Wg}UEPS (12)
where w/ is the cumulative cost of edges upstream of v on path p, i.e.,

P _ ylpl-1
Wy = Zk:kp(u) Wpisipro (13)

where k,(v) = {1,2, ..., |p|} is position of v in p, i.e,, k,(v) = k if pi = 0. Note that both |7| and
W] are O(|p)).

Upon reaching the end of the path, a message carrying this collected information (Z,"W) is sent
downstream to every node in the path. For each slot s € S,, let:

S« ={s" €8, : my <mgormy =ms,s" <s} (14)

be the slots in the path p that store i and either (a) are colored with a color smaller than mg, or (b)
are colored with my, and precede s in the ordering given by Eq. (1). Note that S<; can be computed

having access to 7. Then, the reward vector £" (s, m;) € RLC‘ fed to hedge selector &; p,, at slot
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s € S, comprises the following coordinates:

P s
MAX(y j)eSegts Wyy»  If 1 =

£ (s, mg) = foralli’ € C, (15)

maX(y,j’) eS<; Wg,, o.w.
which captures the marginal gain of adding an element to the allocation at time ¢, assuming that
the latter is constructed adding one slot, item, and color selection at a time (following an ordering
w.r.t. colors first and slots second). This is stated formally in Lemma C.1 in Appendix C. Note again
that all these quantities can be computed at every s € S, having access to 7 and W.°

4.4 A Negative Result

We conclude this section with a negative result, further highlighting the importance of Theorem 4.1.
DisTRIBUTEDTGONLINE comes with adversarial guarantees; our experiments in Section 7 indicate
that also works well in practice. Nevertheless, for several topologies we explore, we observe that
a heuristic proposed by Ioannidis and Yeh [41], termed GREEDYPATHREPLICATION, performs as
well or slightly better than Di1sSTRIBUTEDTGONLINE in terms of time-average caching gain. As we
observed this in both stationary as well as non-stationary/transient request arrivals, this motivated
us to investigate further whether this algorithm also comes with any adversarial guarantees.

Our conclusion is that, despite the good empirical performance in certain settings, GREEDY-
PATHREPLICATION does not enjoy such guarantees. In fact, the following negative result holds:

LEmMMA 4.3. Consider the online policy GREEDYPATHREPLICATION due to Ioannidis and Yeh [41],
which is parametererized by f > 0. Then, for all & € (0,1] and all f > 0, GREEDYPATHREPLICATION
has Q(T) a-regret.

We prove this lemma in Appendix E. The adversarial counterexample we construct in the
proof informed our design of experiments for which GREEDYPATHREPLICATION (denoted by GRD in
Section 7) performs poorly, attaining a zero caching gain throughout the entire algorithm’s execution
(see Fig. 3-5). The same examples proved hard for several other greedy/myopic policies, even though
DisTRIBUTEDTGONLINE performed close to the offline solution in these settings. Both Lemma 4.3,
as well as the experimental results we present in Section 7, indicate the importance of Theorem 4.1
and, in particular, obtaining a universal bound on the regret against any adversarially selected
sequence of requests.

4.5 Color Palette

To provide further intuition behind the “color palette” induced by M and the role it plays in our
algorithm, we describe here in more detail how it relates to the CONTINUOUSGREEDY algorithm,
the standard algorithm for maximizing submodular functions subject to a matroid constraint [15].
Intuitively, given a submodular function f : Q@ — R, and a matroid constraint set D, the
CoNTINUOUSGREEDY algorithm maximizes the multilinear relaxation of objective, given by

f) =Eelf)l = > fA [ =] Ja-x (16)

ACQ icA  igA
That is, the multilinear extension f : [0, 1]/l — R, is the expected value of the objective assuming
that each element in A is sampled independently, with probability given by x; € [0,1],i € Q.
CoNTINUOUSGREEDY first obtains a fractional solution in the matroid polytope of . This is
constructed by incrementally growing the probability distribution parameters x, starting from
°In practice, trading communication for space, the full ‘W can also be just computed once, at the first time request (i, p)

is generated, Each o can store their own wl for paths that traverse them, and only weights of nodes storing i need to be
included in ‘W in subsequent requests.
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x = 0, with a variant of the so-called Frank-Wolfe algorithm. Then, CONTINUOUSGREEDY rounds
the resulting fractional solution via, e.g., pipage rounding [2] or swap rounding [19], mapping it
to set solutions. We refer the reader to Calinescu et al. [15] for a more detailed description of the
algorithm.

In comparison, the color palette also creates a distribution across item selections, as implied
by the M colors. When the number of colors M approaches infinity, the selection process of
DisTRIBUTEDTGONLINE also “grows” this probability distribution (starting, again, from an empty
support) infinitesimally, by an increment inversely proportional to M (see also the offline version
TABULARGREEDY in Appendix A). As M goes to infinity, this recovers the 1 — 1/e approximation
guarantee of continuous greedy [64, 77]. For any finite M, the guarantee provided by Theorem 4.1
lies in between this guarantee and % approximation of the locally greedy algorithm (M = 1).

5 UPDATE COSTS

We now turn our attention to incorporating update costs in our analysis. We denote by w_ ; the cost
of fetching item i at storage slot s at the end of a round. Then, the total update cost of changing an
allocation A? to A**! at the end of round ¢ is given by:

UC(A!, A™Y) = Z W 17)
(s,i) EAT+I\ At

When such update costs exist, we need to account for them when adapting cache allocations. We
thus incorporate them in the a-regret as follows:

T T T-1 T-1
Rp = afo(A*) -E fo(Af) - ZUC(AQA”I) =Rr+E ZUC(At,A”l) . (18)
t=1 t=1 t=1 t=1

Note that, in this formulation, the optimal offline policy A* has no update cost, as it is static.
We refer to Ry as the extended a-regret of an algorithm. This extension corresponds to adding the
expected update cost incurred by a policy A to its a-regret.

Unfortunately, the update costs of DisSTRIBUTEDTGONLINE (and, hence, its extended regret) grow
as O(T) in expectation. In particular, the following lemma, proved in Appendix D, holds:

LEMMA 5.1. When DisTRIBUTEDTGONLINE is parametrized with the hedge selector in Alg. 1, it
incurs an expected update cost of Q(T) for any choice of € € R,.

Nevertheless, the extended regret can be reduced to O(VT) by appropriately modifying Alg. 1,
the no-regret-hedge selector used in slots &; . In particular, the linear growth in the regret is due
to the independent sampling of cache contents within each round. Coupling this selection with
the presently selected content can significantly reduce the update costs. More specifically, instead
of selecting items independently across rounds, the new item can be selected from a probability
distribution that depends on the current allocation in the cache. This conditional distribution
can be design in a way that the (marginal) probability of the new item is the same as in Alg. 1,
thereby yielding the same expected caching gain. On the other hand, coupling can bias the selection
towards items already existing in the cache. This reduces update costs, especially when marginal
distributions change slowly.

The coupled hedge selector described in Alg. 3 accomplishes exactly this. As seen in line 9 of Alg. 3,
pulling the arm of the hedge selector is dependent on (a) the previously taken action/selected item
and (b) the change in the distribution implied by weights W;, i € C. We give more intuition as to how
this is accomplished in Appendix D. In short, the coupled hedge selector solves a minimum-cost
flow problem via an iterative algorithm. The minimum-cost flow problem models a so-called optimal
transport or earth mover distance problem [67] from p’ to p'*!, the distributions over catalog C
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Algorithm 3: Coupled Hedge Selector

Input: Parameter € € R, action set C, horizon T € N.
1 def &.initialize():
2 L Set W; « 1and p?' « L forallie C

[C]
Pick i°M u.ar. from C

3

4 def &.feedback(t):
5 L Set W; « Wie€li foralli e C
6 def &.correlated_arm():
new Wi :
7 Set p]*" S W, forallie C
8 Pick i"®" « coupled_movement (p°d,pe" jo1d) ; // Marginal is p"®"
9 Pold (_Pnew
10 l-old « jnew
11 return i"*"

12 def coupled_movement(p®d p"e" i°ld ).

13 Compute I = {i € C : p"®" — p4 > 0},

14 | Setm; « |pf® —p°| forallie C

15 Compute a feasible flow [6; j](; j)ec?» where 3 ;¢ 6;j = m; fori € C\ I, and
2iec\1 9ij = mj for i € I, to transport };cc\; m; mass from the components in I to the
components in C \ I.

16 P (_pold'

17 jtemp o iold

18 forie C\Ido

19 for j e I do

20 L L p.i*®™ «— elementary_Smovement(p, i**™, §; ;, i, j)

21 return it

22 def elementary_Smovement(p,i**™, 6, i, j):
23 if it*™ = j then

. i—0
i p+S(e; —e;) w.p 22
24 itemp’p — p ( J l) p 5Pi
],p+5(ej —e,—) pr—l
25 else
2% L l-temp ~temp Sle: —e;
p— i p+ie;—e)
27 return p, i**"™

at rounds t and ¢ + 1, respectively, The resulting solution comprises conditional distributions for
“jumps” among elements in C, which are used to determine the next item selection using the current
choice: by being solutions of the minimum-cost flow problem, they incur small update cost, while
ensuring that the posterior distribution after the “jump” is indeed p**'.

Our second main result establishes that using this hedge selector instead of Alg. 1 in DISTRIBUT-

EDTGONLINE ensures that the extended regret grows as O(VT).
THEOREM 5.2. Consider DISTRIBUTEDTGONLINE with hedge selectors E; n, implemented via Alg. 3

parameterized with € = =4/ %. Assume also that colors are updated every K = Q(NT) rounds.

1
L
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Table 2. Graph Topologies and Experiment Parameters. We indicate the number of nodes in each graph (|V]),
the number of edges (|E|), the number of query nodes (|Q]), and the ranges of cache capacities ¢, and edge
weights w. In the last four columns we also report fsiarionarys fsiiding: fsN> and fepn: which are the caching
gain attained by OFL with Stationary Request, Sliding Popularity, Shot Noise, and CDN trace, respectively.

topologies V| |E| Q| ¢ w f;tationary fsliding fsn feon

ER 100 1042 1-5 1-100 156993  1123.76 72.03  976.65
BT 341 680 1-5 1-100  5547.89  3211.63 220.58 3504.58
HC 128 896 1-5 1-100  2453.66  2045.69 152.38 1895.41

dtelekom 68 546
GEANT 22 66

abilene 9 26
path 4 6

1-5 1-100 969.55 772.53  49.55 1005.24
1-5 1-100  1564.02 981.60  66.50 1185.56
0-5 100 81.21 81.21 41.39 -
0-5 100 20.00 20.00 10.00 -

i\ B S, S, RS,

Then, the standard regret Ry is again bounded as in Corollary 4.2. Moreover, the update cost of
DisTrRIBUTEDTGONLINE is such that

T-1
E ZUC(At,At“) = 0(VT), (19)
t=1

and, as a consequence, the extended regret is Rr = O(NT).

The proof can be found in Appendix F. We note that the theorem requires that K = Q(VT),
i.e, that colors are shuffled infrequently. Whenever a color changes, DISTRIBUTEDTGONLINE, the
corresponding change in the active hedge selector can lead to sampling vastly different allocations
than the current ones. Consequently, such changes can give rise to large update costs whenever a
color is changed. The requirement that K = Q(VT) allows for some frequency in changes, but not,
e.g., at a constant number of rounds (as, e.g., in Streeter et al. [76], where K = 1). Put differently,
Theorem 5.2 allows for experiencing momentarily large update costs, as long as we do not surpass
a budget of O(VT) color updates overall. We note that the couple hedge selector in Alg. 3 has the
same time complexity as the hedge selector given in Alg. 1, which is O(|C|) per iteration.

6 EXTENSIONS

Jointly Optimizing Caching and Routing. Our model can be extended to consider joint op-
timization of both cache and routing decisions, following an extended model by Ioannidis and
Yeh [43]. Under appropriate variable transformations, the new objective is still submodular over the
extended decision space. Moreover, the constraints over the routing decisions can similarly be cast
as assignments to slots. Together, these allow us to directly apply DisTRIBUTEDTGONLINE and attain
the same 1 — 1/e approximation guarantee. We describe this extension in detail in Appendix H.
Anytime Regret Guarantee. Our algorithm assumes prior knowledge of the time horizon T; this
is necessary to set parameter € in Theorem 4.1. Nevertheless, we can use the well-known doubling
trick [16] to obtain anytime regret guarantees. In short, the algorithm starts from a short horizon;
at the conclusion of the horizon, the algorithm restarts, this time doubling the horizon. We show in
Appendix I that, by using this doubling trick, DIsTRIBUTEDTGONLINE indeed attains an O(VT)
regret, without requiring prior knowledge of T. This remains true when update costs are also
considered in the regret.
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Fig. 2. Request traces for different scenarios. Each dot indicates an access to an item in the catalog; items are
ordered in an overall increasing popularity from top to bottom. In Sliding Popularity, popularity changes at
fixed time intervals, through a cyclic shift (most popular items become least popular). In Shot Noise, each
item remains active for a limited lifetime.

7 EXPERIMENTS
7.1 Experimental Setting

Networks. We use four synthetic graphs, namely, Erd6s-Rényi (ER), balanced tree (BT), hypercube
(HC), and a path (path), and three backbone network topologies: [70] Deutsche Telekom (dtelekom),
GEANT, Abilene. The parameters of different topologies are shown in Tab. 2. For the first five
topologies (ER-GEANT), weights w for each edge is uniformly distributed between 1-100. Each item
i € C is permanently stored in a designated servers D; which is designated uniformly at random
(u.a.r.) from V. All nodes in V are also has c, storage space, which is u.a.r. sampled between 1 to
5. Requests are generated from nodes Q u.a.r. selected from V. Given the source p; € Q and the
destination p,| € D; of the request r, path p is the shortest path between them. For the remaining
two topologies (abiline and path), we select parameters in a way that is described in Appendix G.
Demand. We consider three different types of synthetic request generation processes, and one
trace-driven. In the Stationary Requests scenario (see Fig. 2(a), each r = (i, p) € R is associated with
an exogenous Poisson process with rate 1.0, and i is chosen from C via a power law distribution
with exponent 1.2. In the Sliding Popularity scenario, requests are again Poisson with a different
exponent 0.6, and popularities of items are periodically reshuffled (see Fig. 2(b)). In the Shot Noise
scenario, each item is assigned a lifetime, during which it is requested according to a Poisson
process; upon expiration, the item is retired (see Fig. 2(c)). In the CDN scenario (see Fig. 2(d)), we
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Fig. 3. TACG of different algorithms over different topologies with Stationary Requests. The total simulation
time is 1000 time units. TBGRD, GRD, and PGA perform well in comparison to path replication policies. However,
GRD and other myopic strategies attain zero TACG over abilene and path, the round-robin scenarios. In
comparison, TBGRD and PGA still perform well.

generate requests using a real-life trace from a CDN provider. The trace spans 1 week, and we
extract from it about 10 X 10° requests for the N = 10°> most popular files.

For abiline and path, we replace the Poisson arrivals on the three synthetic traces (Stationary
Requests, Sliding Popularity, Shot Noise) with requests generated in a round-robin manner, as
described in Appendix G.2. This is designed in an adversarial fashion, that leads to poor performance
for greedy/myopic algorithms.

Algorithms. We implement the following online algorithms °:

e Path replication with least recently used (LRU), least frequently used (LFU), first-in-first-
out (FIF0), and random-replacement (RR) eviction policies: In all these algorithms, when
responses are back-propagated over the reverse path, all nodes they encounter store requested
item, evicting items according to one of the aforementioned policies.

e Projected gradient ascent (PGA): This is the distributed, adaptive algorithm oringinally pro-
posed by Ioannidis and Yeh [41]. This is attains an (1 — 1/e)-approximation guarantee in
expectation when requests are stationary, but comes with no guarantee against adversarial
requests. Similar to our setting, it also operated in rounds, at the end of which contents are
shuffled.

o Greedy path replication (GRD): This is a heuristic, also proposed by Ioannidis and Yeh [41].
Though it performs well in many cases, we prove in Appendix D that its (1 — 1/e)-regret is
Q(T) in the worst case.

e Di1sTRIBUTEDTGONLINE (TBGRD): this is our proposed algorithm. We implement it with both
independent hedge selector shown in Algorithm 1 and coupled hedge selector in Algorithm 3.

Unless indicated otherwise, we set € = 0.005, number of colors M = 100, R = 1, and K = T for
TBGRD. For PGA and GRD, we explore parameters y and f range from 0.005-5 and 0.005-1 individually,
and pick the optimal values. In experiments where we do not measure update costs, we implement
TBGRD with the independent hedge selector (Alg. 1), as it yields the same performance as the coupled
hedge selector (Alg. 3) in expectation (see also Fig. 9(a) and 9(b)).

Finally, we also implement the offline algorithm (OFL) by Ioannidis and Yeh [41], and use the
resulting (1 — 1/e)-approximate solution as baseline (see metrics below).

Performance Metrics. We use normalized time-average cache gain (TACG) as the metric to
measure the performance of different algorithms. More specifically, leveraging PASTA [78], we
measure f's (A%) at epochs t; generated by a Poisson process with rate 1.0 for 5000 time slots, and
average these measurements. To compare performance across different topologies, we normalize

Qur code is publicly available at https://github.com/neu-spiral/OnlineCache.
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Fig. 4. TACG of different algorithms over different topologies with Sliding Popularity. The total simulation
time is 1000 time units. TBGRD, GRD, and PGA again outperform path replication algorithms; GRD sometimes
even outperforms the (static) OFL solution, attaining a normalized TACG larger than one. However, GRD and
several path replication algorithms again fail catastrophically over the abilene and path scenarios, while
TBGRD and PGA again attain a normalized TACG close to one.

|- TBGRD E GRD H PGA H LFU l LRU H FIFO @ RR

I

balanced tree dtelekom erdos renyi geant, hypercube abilene path
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Fig. 5. TACG of different algorithms over different topologies with Shot Noise. We again observe TBGRD, GRD,
and PGA perform well in this non-stationary request arrival setting. Moreover, several algorithms outperform
the (static) offline solution OFL in this setting. Again, GRD and other myopic path replication policies fail over
abilene and path, while TBGRD and PGA still attain a non-zero TACG.
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Fig. 6. TACG of different algorithms over different topologies with CDN trace. The total simulation time is
2000 time units. We again observe that TBGRD, GRD, and PGA outperform path replication policies.

the average by forL, the caching gain attained by OFL, yielding:

TACG = ﬁ thzl fls (A). (20)

The corresponding for. values are reported in Table 2. We also measure the cumulative update cost
(CUC) of TBGRD over time under the hedge and coupled hedge selectors, i.e.,

cuc = yI-luc(al, A, (21)

where we measure the instantaneous update cost UC using (17) with weights set to 1.
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Fig. 7. TACG vs. different parameters under Stationary Request. As the average number of requests increases,
TACG decreases. Number of colors does not affect a lot. As € increases, TACG decreases. As color update
period increases, TACG increases.

7.2 Results

TACG Comparison. Figures 3-5 show the performance of different algorithms w.r.t. TACG across
multiple topologies, for different synthetic traces (Stationary, Sliding Popularity, and Shot Noise,
respectively). For GRD here, we explore parameters € range from 0.0001-1, and pick the optimal
values. We observe that TBGRD, GRD, and PGA have similar performance across topologies on all
three traces for the first five topologies, with GRD being slightly higher performing than the other
two; nevertheless, on the last two topologies, that have been designed to lead to poor performance
for myopic/greedy strategies, both GRD and other myopic strategies (e.g., LFU, LRU, and FIFO) are
stymied, attaining a zero caching gain throughout. This also verifies the suboptimality of GRD
stated in Lemma 4.3. In contrast, TBGRD and PGA still attain a TACG close to the offline value; not
surprisingly RR also has a suboptimal, but non-zero gain in these scenarios as well.

The more a trace departs from stationarity, the more the performance of OFL degrades: As seen
in Tab. 2, the caching gain obtained by OFL consistently across the different topologies has the
highest value in the Stationary trace, then decreases as we change to CDN, Sliding Popularity SN
traces, in that order.

We also note that in the Shot Noise case several algorithms attain a normalized TACG that is
higher than 1. This indicates that the dynamic algorithms beat the static offline policy in this setting.
The above observations largely carry over to the CDN trace, shown in Figure 6, for which however
we do not consider the two round-robin demand scenarios (abilene and path), as the demand is
driven by the trace.
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Fig. 8. TACG v.s. different parameter with Sliding Popularity scenario. The average number of requests and
number of colors do not affect performance significantly. The optimal € is at about 0.01 for multiple topologies;
this selection corresponds to a decay rate of the item selection probability that is most appropriate for the
popularity refreshing period of these traces. As the color update period increases, TACG increases.

Impact of Different Parameters. We explore the effect of different parameters in TBGRD with
both stationary and sliding popularity requests in Figures 7 and 8, respectively, for five different
topologies. We plot the normalized TACG with different values of colors M, parameter €, color
update period K, and average number of requests per round |R:|. For the latter, we select a round
duration of B time units, and group all requests within a duration together in to a single request
set R;; note that, due to stochasticity, the number of requests varies at each round ¢. In general,
the normalized TACG for stationary requests is slightly higher than for sliding popularity. This
is expected, as stationary requests are easier to learn. The number of colors does not affect the
performance of algorithm a lot, shown in Fig. 7(b) and 8(b). From both Fig. 7(a), we see that smaller
request set size leads to better TACG, which again makes sense: that more frequent cache updates
are, the faster they adapt to current requests. Besides this, we see that W has bigger impact under
stationary requests, while the sliding window scenario is less affected by varying this parameter.
We also observe in Fig. 7(c) that greater € values lead to worse performance in the stationary setting;
however in the sliding popularity setting, shown in 8(c), the optimal € is at about 0.01 for multiple
topologies; this selection corresponds to a decay rate of the item selection probability that is most
appropriate for the popularity refreshing period of these traces. Finally, even though higher K
is better on both Fig. 7(d) and 8(d), we see more variability/bigger impact of this selection in the
sliding popularity trace.

Update Costs. Recall from Theorem 5.2 both the (independent) hedge selector and the coupled
hedge selector lead to same caching gain in expectation. This also verified experimentally by results
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Fig. 9. TACG and CUC of DisTrRIBUTEDTGONLINE over Sliding Popularity trace/dtelekom. The learning rate is
€ = 5% 10%. Values reported are averaged over 30 experiments with different random seeds.

of Fig. 9 (a) and (b): we observe that both hedge selectors lead to almost identical TACG on the
sliding popularity trace. We also observe that the cumulative update cost (CUC), shown 9(c) and
Fig. 9(d), is vastly different across the two selectors: within the duration of the simulation, the CUC
of the hedge selector is more than 15X the CUC of the coupled hedge selector.

8 CONCLUSION

We propose a distributed, online algorithm that achieves sublinear (1—1/e)-regret for the adversarial
caching gain maximization problem, even when accounting for update costs. An interesting future
research direction is to provide regret guarantees for the class of path replication algorithms. These
algorithms are appealing precisely because they do not involve updates that happen separately from
the normal response traffic: whenever a response packet carrying an item traverses a cache, the
latter makes a decision of whether to cache this content or not on the spot. This restricts the type
of allocations that an online algorithm can construct at any point in time, but does not incur any
additional cost beyond the one generated by response traffic. This property makes path replication
algorithms quite popular in practice [24, 44, 52]. Our proof that GREEDYPATHREPLICATION has
linear regret (see Lemma 4.3) is a negative result in this direction. Nevertheless, determining
whether a path replication algorithm that has sublinear a-regret exists remains an interesting open
problem, from both a theoretical and practical point of view. Another important future research
direction is to consider dynamic regret [81], whereby the performance of a policy is compared
to a dynamic optimum. Dynamic regret was studied under different settings of online convex
optimization (8, 36, 37, 81], multi-armed bandits [9, 48, 49, 58], and non-stationary reinforcement
learning [28, 45, 60], and would be interesting to apply to our setting.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 3, Article 35. Publication date: December 2021.



35:22 Yuanyuan Li et al.

9 ACKNOWLEDGMENTS

The authors gratefully acknowledge support from the National Science Foundation (grants 1718355,
2107062, and 2112471), as well as from Inria under the exploratory action MAMMALS.

REFERENCES

[1] Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire. 2014. Taming the monster: A
fast and simple algorithm for contextual bandits. In International Conference on Machine Learning. PMLR, 1638-1646.

[2] Alexander A Ageev and Maxim I Sviridenko. 2004. Pipage rounding: A new method of constructing algorithms with
proven performance guarantee. Journal of Combinatorial Optimization 8, 3 (2004), 307-328. https://doi.org/10.1023/b:
j0c0.0000038913.96607.c2

[3] Sara Alouf, Nicaise Choungmo Fofack, and Nedko Nedkov. 2016. Performance models for hierarchy of caches:
Application to modern DNS caches. Performance Evaluation 97 (2016), 57-82.

[4] Lachlan Andrew, Siddharth Barman, Katrina Ligett, Minghong Lin, Adam Meyerson, Alan Roytman, and Adam
Wierman. 2013. A Tale of Two Metrics: Simultaneous Bounds on Competitiveness and Regret. SIGMETRICS Perform.
Eval. Rev. 41, 1 (June 2013), 329-330. https://doi.org/10.1145/2494232.2465533

[5] Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The multiplicative weights update method: a meta-algorithm and
applications. Theory of Computing 8, 1 (2012), 121-164.

[6] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvari. 2009. Exploration—exploitation tradeoff using variance
estimates in multi-armed bandits. Theoretical Computer Science 410, 19 (2009), 1876-1902.

[7] Daniel S Berger, Philipp Gland, Sahil Singla, and Florin Ciucu. 2014. Exact analysis of TTL cache networks. Performance
Evaluation 79 (2014), 2-23. https://doi.org/10.1016/j.peva.2014.07.001

[8] Omar Besbes, Yonatan Gur, and Assaf Zeevi. 2015. Non-stationary stochastic optimization. Operations research 63, 5
(2015), 1227-1244.

[9] Lilian Besson and Emilie Kaufmann. 2019. The generalized likelihood ratio test meets klucb: an improved algorithm
for piece-wise non-stationary bandits. Proceedings of Machine Learning Research vol XX 1 (2019), 35.

[10] Rajarshi Bhattacharjee, Subhankar Banerjee, and Abhishek Sinha. 2020. Fundamental Limits on the Regret of Online
Network-Caching. Proc. ACM Meas. Anal. Comput. Syst. 4, 2, Article 25 (June 2020), 31 pages. https://doi.org/10.1145/
3392143

[11] Allan Borodin, Nathan Linial, and Michael E. Saks. 1992. An Optimal On-line Algorithm for Metrical Task System. J.
ACM 39, 4 (Oct. 1992), 745-763. https://doi.org/10.1145/146585.146588

[12] Sem Borst, Varun Gupta, and Anwar Walid. 2010. Distributed caching algorithms for content distribution networks. In
IEEE Conference on Computer Communications (INFOCOM 2010). 1-9. https://doi.org/10.1109/INFCOM.2010.5461964

[13] Sébastien Bubeck. 2015. Convex Optimization: Algorithms and Complexity. Foundations and Trends in Machine
Learning 8, 3-4 (2015), 231-357.

[14] Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrak. 2007. Maximizing a submodular set function subject
to a matroid constraint. In International Conference on Integer Programming and Combinatorial Optimization. Springer,
182-196.

[15] Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrak. 2011. Maximizing a monotone submodular function

subject to a matroid constraint. SIAM J. Comput. 40, 6 (2011), 1740-1766.

Nicolo Cesa-Bianchi and Gabor Lugosi. 2006. Prediction, Learning, and Games. Cambridge University Press. https:

//doi.org/10.1017/CB0O9780511546921

[17] TH Hubert Chan, Zhiyi Huang, Shaofeng H-C Jiang, Ning Kang, and Zhihao Gavin Tang. 2017. Online submodular

maximization with free disposal: Randomization beats for partition matroids. In Proceedings of the Twenty-Eighth

Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 1204-1223.

Hao Che, Ye Tung, and Zhijun Wang. 2002. Hierarchical web caching systems: Modeling, design and experimental results.

IEEE Journal on Selected Areas in Communications 20, 7 (2002), 1305-1314. https://doi.org/10.1109/JSAC.2002.801752

Chandra Chekuri, Jan Vondrak, and Rico Zenklusen. 2010. Dependent randomized rounding via exchange properties

of combinatorial structures. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science. IEEE, 575-584.

Lin Chen, Christopher Harshaw, Hamed Hassani, and Amin Karbasi. 2018. Projection-Free Online Optimization with

Stochastic Gradient: From Convexity to Submodularity. In International Conference on Machine Learning. 814-823.

Lin Chen, Hamed Hassani, and Amin Karbasi. 2018. Online Continuous Submodular Maximization. In International

Conference on Artificial Intelligence and Statistics. 1896-1905.

Weibo Chu, Mostafa Dehghan, John CS Lui, Don Towsley, and ZhiLi Zhang. 2018. Joint cache resource allocation

and request routing for in-network caching services. Computer Networks 131 (2018), 1-14. https://doi.org/10.1016/].

comnet.2017.11.009

[16

—

[18

—

[19

—

[20

—

[21

—

[22

—

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 3, Article 35. Publication date: December 2021.


https://doi.org/10.1023/b:joco.0000038913.96607.c2
https://doi.org/10.1023/b:joco.0000038913.96607.c2
https://doi.org/10.1145/2494232.2465533
https://doi.org/10.1016/j.peva.2014.07.001
https://doi.org/10.1145/3392143
https://doi.org/10.1145/3392143
https://doi.org/10.1145/146585.146588
https://doi.org/10.1109/INFCOM.2010.5461964
https://doi.org/10.1017/CBO9780511546921
https://doi.org/10.1017/CBO9780511546921
https://doi.org/10.1109/JSAC.2002.801752
https://doi.org/10.1016/j.comnet.2017.11.009
https://doi.org/10.1016/j.comnet.2017.11.009

Online Caching Networks with Adversarial Guarantees 35:23

[23] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. 2011. Contextual bandits with linear payoff functions. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop and
Conference Proceedings, 208-214.

[24] Edith Cohen and Scott Shenker. 2002. Replication strategies in unstructured peer-to-peer networks. In ACM SIGCOMM
Computer Communication Review, Vol. 32. ACM, 177-190.

[25] Mostafa Dehghan, Laurent Massoulie, Don Towsley, Daniel Menasche, and YC Tay. 2016. A utility optimization
approach to network cache design. In IEEE Conference on Computer Communications (INFOCOM 2016).

[26] Miroslav Dudik, Daniel Hsu, Satyen Kale, Nikos Karampatziakis, John Langford, Lev Reyzin, and Tong Zhang. 2011.
Efficient optimal learning for contextual bandits. In Proceedings of the Twenty-Seventh Conference on Uncertainty in
Artificial Intelligence. 169-178.

[27] Ronald Fagin. 1977. Asymptotic miss ratios over independent references. J. Comput. System Sci. 14, 2 (1977), 222 - 250.

[28] Yingjie Fei, Zhuoran Yang, Zhaoran Wang, and Qiaomin Xie. 2020. Dynamic Regret of Policy Optimization in
Non-Stationary Environments. In Advances in Neural Information Processing Systems (NeurIPS).

[29] Yuval Filmus and Justin Ward. 2014. Monotone submodular maximization over a matroid via non-oblivious local
search. SIAM J. Comput. 43, 2 (2014), 514-542.

[30] Marshall L Fisher, George L Nemhauser, and Laurence A Wolsey. 1978. An analysis of approximations for maximizing
submodular set functions—IIL. In Polyhedral combinatorics. Springer, 73-87.

[31] Nicaise Choungmo Fofack, Philippe Nain, Giovanni Neglia, and Don Towsley. 2014. Performance evaluation of
hierarchical TTL-based cache networks. Computer Networks 65 (2014), 212 — 231. https://doi.org/10.1016/j.comnet.
2014.03.006

[32] Christine Fricker, Philippe Robert, and James Roberts. 2012. A versatile and accurate approximation for LRU cache
performance. In 2012 24th International Teletraffic Congress (ITC 24). IEEE, 1-8.

[33] Daniel Golovin, Andreas Krause, and Matthew Streeter. 2014. Online submodular maximization under a matroid
constraint with application to learning assignments. arXiv preprint arXiv:1407.1082 (2014).

[34] Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. 2010. Constrained non-monotone submodular
maximization: Offline and secretary algorithms. In International Workshop on Internet and Network Economics. Springer,
246-257.

[35] Salah Eddine Hajri and Mohamad Assaad. 2017. Energy efficiency in cache-enabled small cell networks with adaptive
user clustering. IEEE Transactions on Wireless Communications 17, 2 (2017), 955-968.

[36] Eric Hall and Rebecca Willett. 2013. Dynamical models and tracking regret in online convex programming. In
International Conference on Machine Learning. PMLR, 579-587.

[37] Eric C Hall and Rebecca M Willett. 2015. Online convex optimization in dynamic environments. IEEE Journal of
Selected Topics in Signal Processing 9, 4 (2015), 647-662.

[38] Hamed Hassani, Mahdi Soltanolkotabi, and Amin Karbasi. 2017. Gradient methods for submodular maximization. In
Advances in Neural Information Processing Systems. 5841-5851.

[39] Elad Hazan et al. 2016. Introduction to online convex optimization. Foundations and Trends® in Optimization 2, 3-4
(2016), 157-325.

[40] Stratis Ioannidis, Laurent Massoulié, and Augustin Chaintreau. 2010. Distributed caching over heterogeneous mobile
networks. In Proceedings of the ACM SIGMETRICS international conference on Measurement and modeling of computer
systems. 311-322.

[41] Stratis Ioannidis and Edmund Yeh. 2016. Adaptive caching networks with optimality guarantees. ACM SIGMETRICS
Performance Evaluation Review 44, 1 (2016), 113-124.

[42] Stratis Ioannidis and Edmund Yeh. 2018. Adaptive caching networks with optimality guarantees. [EEE/ACM Transactions
on Networking 26, 2 (2018), 737-750. https://doi.org/10.1109/TNET.2018.2793581

[43] Stratis Ioannidis and Edmund Yeh. 2018. Jointly Optimal Routing and Caching for Arbitrary Network Topologies. IEEE
Journal on Selected Areas in Communications 36, 6 (2018), 1258-1275. https://doi.org/10.1109/JSAC.2018.2844981

[44] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass, Nicholas H Briggs, and Rebecca L Braynard. 2009.
Networking named content. In Proceedings of the 5th International Conference on Emerging Networking Experiments
and Technologies. ACM, 1-12. https://doi.org/10.1145/1658939.1658941

[45] Thomas Jaksch, Ronald Ortner, and Peter Auer. 2010. Near-optimal Regret Bounds for Reinforcement Learning. Journal
of Machine Learning Research 11, 4 (2010).

[46] Predrag R. Jelenkovic. 1999. Asymptotic Approximation of the Move-to-Front Search Cost Distribution and Least-
Recently Used Caching Fault Probabilities. The Annals of Applied Probability 9, 2 (1999), 430-464.

[47] Bo Jiang, Philippe Nain, and Don Towsley. 2018. On the Convergence of the TTL Approximation for an LRU Cache
Under independent Stationary Request Processes. ACM Transactions on Modeling and Performance Evaluation of
Computing Systems (TOMPECS) 3, 4 (2018), 1-31. https://doi.org/10.1145/3239164

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 3, Article 35. Publication date: December 2021.


https://doi.org/10.1016/j.comnet.2014.03.006
https://doi.org/10.1016/j.comnet.2014.03.006
https://doi.org/10.1109/TNET.2018.2793581
https://doi.org/10.1109/JSAC.2018.2844981
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/3239164

35:24 Yuanyuan Li et al.

[48] Zohar S Karnin and Oren Anava. 2016. Multi-armed bandits: Competing with optimal sequences. Advances in Neural
Information Processing Systems 29 (2016), 199-207.

[49] N Bora Keskin and Assaf Zeevi. 2017. Chasing demand: Learning and earning in a changing environment. Mathematics
of Operations Research 42, 2 (2017), 277-307.

[50] Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. 2008. Multi-armed bandits in metric spaces. In Proceedings of the
fortieth annual ACM symposium on Theory of computing. 681-690.

[51] Elias Koutsoupias. 2009. The k-server Problem. Computer Science Review 3, 2 (May 2009), 105-118. https://doi.org/10.
1016/j.cosrev.2009.04.002

[52] Nikolaos Laoutaris, Sofia Syntila, and Ioannis Stavrakakis. 2004. Meta algorithms for hierarchical Web caches. In IEEE
International Conference on Performance, Computing, and Communications, 2004. 445-452. https://doi.org/10.1109/
PCCC.2004.1395054

[53] Emilio Leonardi and Giovanni Neglia. 2018. Implicit Coordination of Caches in Small Cell Networks Under Unknown
Popularity Profiles. IEEE Journal on Selected Areas in Communications 36, 6 (June 2018), 1276-1285. https://doi.org/10.
1109/JSAC.2018.2844982

[54] Jian Li, Truong Khoa Phan, Wei Koong Chai, Daphne Tuncer, George Pavlou, David Griffin, and Miguel Rio. 2018.
Dr-cache: Distributed resilient caching with latency guarantees. In IEEE Conference on Computer Communications
(INFOCOM 2018). 441-449. https://doi.org/10.1109/INFOCOM.2018.8486316

[55] Yuanyuan Li and Stratis Ioannidis. 2020. Universally Stable Cache Networks. In IEEE INFOCOM 2020-IEEE Conference
on Computer Communications. IEEE.

[56] Boxi Liu, Konstantinos Poularakis, Leandros Tassiulas, and Tao Jiang. 2019. Joint Caching and Routing in Congestible

Networks of Arbitrary Topology. IEEE Internet of Things Journal 6, 6 (2019), 10105-10118. https://doi.org/10.1109/

JIOT.2019.2935742

Yuezhou Liu, Yuanyuan Li, Qian Ma, Stratis Ioannidis, and Edmund Yeh. 2020. Fair caching networks. Performance

Evaluation (2020). https://doi.org/10.1016/j.peva.2020.102138.

[58] Haipeng Luo, Chen-Yu Wei, Alekh Agarwal, and John Langford. 2018. Efficient contextual bandits in non-stationary
worlds. In Conference On Learning Theory. PMLR, 1739-1776.

[59] Mark Manasse, Lyle McGeoch, and Daniel Sleator. 1988. Competitive Algorithms for On-Line Problems. In Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing (Chicago, Illinois, USA) (STOC ’88). Association for
Computing Machinery, New York, NY, USA, 322-333. https://doi.org/10.1145/62212.62243

[60] Weichao Mao, Kaiqing Zhang, Ruihao Zhu, David Simchi-Levi, and Tamer Basar. 2021. Near-Optimal Model-Free
Reinforcement Learning in Non-Stationary Episodic MDPs. In International Conference on Machine Learning. PMLR,
7447-7458.

[61] Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. 2018. Conditional Gradient Method for Stochastic Submodular
Maximization: Closing the Gap. In International Conference on Artificial Intelligence and Statistics. 1886—1895.

[62] Samrat Mukhopadhyay and Abhishek Sinha. 2021. Online Caching with Optimal Switching Regret. In 2021 IEEE

International Symposium on Information Theory (ISIT). 1546-1551. https://doi.org/10.1109/ISIT45174.2021.9517925

Giovanni Neglia, Emilio Leonardi, Guilherme Iecker Ricardo, and Thrasyvoulos Spyropoulos. 2021. A Swiss Army

Knife for Online Caching in Small Cell Networks. IEEE/ACM Transactions on Networking (2021).

[64] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. 1978. An analysis of approximations for maximizing
submodular set functions. Mathematical Programming 14, 1 (1978), 265-294.

[65] Debjit Paria, Krishnakumar, and Abhishek Sinha. 2020. Caching in Networks without Regret. arXiv:2009.08228 [cs.IT]

[66] G.S.Paschos, A. Destounis, L. Vigneri, and G. Iosifidis. 2019. Learning to Cache With No Regrets. In IEEE INFOCOM

2019 - IEEE Conference on Computer Communications. 235-243.

Gabriel Peyré, Marco Cuturi, et al. 2019. Computational Optimal Transport: With Applications to Data Science.

Foundations and Trends® in Machine Learning 11, 5-6 (2019), 355-607.

Konstantinos Poularakis, George Iosifidis, Vasilis Sourlas, and Leandros Tassiulas. 2016. Exploiting caching and

multicast for 5G wireless networks. IEEE Transactions on Wireless Communications 15, 4 (2016), 2995-3007.

Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. 2008. Learning diverse rankings with multi-armed bandits.

In Proceedings of the 25th international conference on Machine learning. 784-791.

[70] Dario Rossi and Giuseppe Rossini. 2011. Caching performance of content centric networks under multi-path routing
(and more). Relatorio técnico, Telecom ParisTech (2011), 1-6.

[71] Tareq Si Salem, Giovanni Neglia, and Stratis Ioannidis. 2021. No-Regret Caching via Online Mirror Descent.

arXiv:2101.12588 [cs.LG]

Shai Shalev-Shwartz. 2012. Online Learning and Online Convex Optimization. Found. Trends Mach. Learn. 4, 2 (Feb.

2012), 107-194. https://doi.org/10.1561/2200000018

[73] Karthikeyan Shanmugam, Negin Golrezaei, Alexandros G Dimakis, Andreas F Molisch, and Giuseppe Caire. 2013.
Femtocaching: Wireless content delivery through distributed caching helpers. IEEE Transactions on Information Theory

[57

—

(63

[t

[67

—

[68

—

[69

—

[72

—

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 3, Article 35. Publication date: December 2021.


https://doi.org/10.1016/j.cosrev.2009.04.002
https://doi.org/10.1016/j.cosrev.2009.04.002
https://doi.org/10.1109/PCCC.2004.1395054
https://doi.org/10.1109/PCCC.2004.1395054
https://doi.org/10.1109/JSAC.2018.2844982
https://doi.org/10.1109/JSAC.2018.2844982
https://doi.org/10.1109/INFOCOM.2018.8486316
https://doi.org/10.1109/JIOT.2019.2935742
https://doi.org/10.1109/JIOT.2019.2935742
https://doi.org/10.1016/j.peva.2020.102138
https://doi.org/10.1145/62212.62243
https://doi.org/10.1109/ISIT45174.2021.9517925
https://arxiv.org/abs/2009.08228
https://arxiv.org/abs/2101.12588
https://doi.org/10.1561/2200000018

Online Caching Networks with Adversarial Guarantees 35:25

Algorithm 4: TABULARGREEDY

Input: Integer M, set C, function f.
1 set A — 0.
2 form « 1to M do
3 foreachs € S do
4 L Find i, s.t. F(A + (5, igm, m)) = max;cc F(A+ (s,i,m)) — €m

5 A—A+ (8, is,m> m)

6 foreachs € S do
7 L independently choose m; uniformly at random from M

8 return sample,,(A)

59, 12 (2013), 8402-8413.

[74] Tareq Si Salem, Giovanni Neglia, and Stratis Ioannidis. 2021. No-Regret Caching via Online Mirror Descent. In IEEE
International Conference on Communications (ICC).

[75] Daniel D. Sleator and Robert E. Tarjan. 1985. Amortized Efficiency of List Update and Paging Rules. Commun. ACM 28,
2 (Feb. 1985), 202-208. https://doi.org/10.1145/2786.2793

[76] Matthew Streeter and Daniel Golovin. 2008. An online algorithm for maximizing submodular functions. Advances in
Neural Information Processing Systems 21 (2008), 1577-1584.

[77] Matthew Streeter, Daniel Golovin, and Andreas Krause. 2009. Online learning of assignments. Advances in neural
information processing systems 22 (2009), 1794-1802.

[78] Ronald W Wolff. 1982. Poisson arrivals see time averages. Operations Research 30, 2 (1982), 223-231.

[79] Zhengyu Yang, Danlin Jia, Stratis Ioannidis, Ningfang Mi, and Bo Sheng. 2018. Intermediate data caching optimization
for multi-stage and parallel big data frameworks. In 2018 IEEE 11th International Conference on Cloud Computing.
277-284. https://doi.org/10.1109/CLOUD.2018.00042

[80] Mingrui Zhang, Lin Chen, Hamed Hassani, and Amin Karbasi. 2019. Online Continuous Submodular Maximization:
From Full-Information to Bandit Feedback.. In NeurIPS.

[81] Martin Zinkevich. 2003. Online Convex Programming and Generalized Infinitesimal Gradient Ascent. In Proceedings
of the Twentieth International Conference on International Conference on Machine Learning (Washington, DC, USA)
(ICML’03). AAAI Press, 928-935.

A TABULAR GREEDY ALGORITHM

We present here TABULARGREEDY [77], a polynomial time algorithm for solving Problem (7) within
a (1 - 1/e)-approximation. This differs from the (more common) continuous greedy algorithm [15]
in that it operates in the discrete rather than continuous domain, even though both algorithms
involve randomization. It serves as the basis for the online algorithm by Streeter et al. [77]. A key
departure from continuous greedy is the use of randomization via colors assigned to each slot,
which also manifest in the online version of the algorithm.

For any set A C S x C x [M] and vector m = [m]ses € [M]!S, let:

sampley,(A) = {(s,i) € S X C : (s,i,m,) € A} . (22)

Intuitively, the colored allocation ACSxCx [M] is an allocation of items to slots, additionally
parameterized by colors. Given the color vector m, assigning colors to slots, sample,, acts as
a selector, producing an (uncolored) allocation A € & X C. Let F (A) be the expected value of
f(sample,, (A)) when each color my is selected independently and u.a.r. from [M]; formally,

S f(samplen (A). (23)

F(A) = E|[f(sample,(A))] = il
m’ e[M]S!
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The procedure is summarized in Algorithm 4. TABULARGREEDY constructs a set of triplets
A C 8 x C x [M] greedily; that is, starting from an empty set, it iterates over all colors and storage
slots in an arbitrary order, and places items to (colored) slots by greedily maximizing the extended
function F. Formally, in the iteration over color m € [M] and slot s € S, the algorithm extends A
via:

ism = arg max{F(A + (s,i,m))} (24a)
ieC
Ac— A+ (s, is,m» M), (24b)

where, for legibility, we use A + o to indicate A U {0}. Finally, the algorithm returns allocation
S = sample,, (A), where colors in vector m are selected u.a.r. from [M].

Note that the same node would not cache the same content multiple times. Indeed, as shown in
Eq. (24), the algorithm extends the set of triplets A, in the iteration over color m and slot s, by the
maximizer (s, i, m) of F(A + (s, i, m)). To be more specific, in the same node, if it is possible that an
item i is repeatedly cached, then one of the triplets (s, i, m) could not be the maximizer in some
iteration, since a different item i’ could achieve greater or equal cache gain than i. This internally
avoids duplicate cache in one nodes.

The following theorem characterizes the approximation guarantee of the solution produced by
TABULARGREEDY; the theorem allows for the case where the greedy item selection is ,, by (24a) is
inexact, and the selected item is suboptimal by an offest € ,,. Let A;m equal A just before (s, is.m, M)
is added at iteration m, s, i.e., As_m ={(s" igm,m’) : s € S;m’ <m}U{(s,igmm):s’ <s}

THEOREM A.1. (Theorem 13 in [33]) Suppose f is monotone submodular. Consider an arbitrary order-
ing of colorsm € [M] and slotss € S, and consider the sequence of sets constructed by TABULARGREEDY
when i, € C in Eq. (24a) is such that:

F(A + (S, iS,ma m)) 2 maé(F(A;m + (S, i’ m)) - Es,m> (25)
1€
for some €5, > 0. Then, the final set in the sequence A C S x C x [M] satisfies:
M
F(A) 2 B(IS|. M) - max f(4) - ZS Z s (26)
sed m=

where B(IS|, M) =1— (1 - 7)™ - (|~ZS|)M71'

The importance of accounting for inexact greedy selection lies in the fact that expectation F is hard
to compute exactly, and is typically approximated by sampling, i.e., via F(A) = 1 ZIL:1 f(sample,y, (S)),
were m; are sampled u.a.r. The theorem implies that by selecting a large enough M (in particular,
larger than ©(|S|?), and L, the approximation guarantee can get arbitrarily close to 1 — 1/e.

B FORMAL GUARANTEES OF HEDGE SELECTOR ALG. 1

Recall that, at each time t, the hedge selector & defined by Alg. 1 picks an action i’ from finite set C
and subsequently observes an adversarially selected vector of rewards £/ = [¢/];cc € R!C! where
{’it is the reward for choosing action i € C at round t. The selector then accrues reward t’l.t,, i.e., the
reward associated with the action i’ it selected previously. We note that the hedge selector operates
in the full-information (rather than the classic bandit) setting: all action rewards in C are observed.
The regret Rr of hedge selector & is:
T T
Rp =)t —B[) €], (27)
1 =1

=
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where i* is the best selection in hindsight, i.e., i* = argmax;ec 27—,
The following lemma is classic; we note that it follows immediately from Theorem 1.5 in Hazan
[39]. We reprove it here for completeness
Lemma B.1 ([5, 39]). Assume that every action’s reward is bounded by L € R,. Let € = L\/ log €1
(28)

Then, for all T > log |C|, the regret of hedge selector & defined by (9) and (10) is s.t
Rr <2L Tlog|C|.

Proor. Observe that for T > log |C|, we have that
1 [log|C]
= = 0, =1. 29
S e o] 29)

Let @' = 3icc W/, p" = [p}licc € RIC!

o+l = Z Wit+1 (2) Z M/iteelit’

ieC ieC
29 t L, 2,02 x 2
SZM(1+6{’I.+€{’,~)), e <1+x+x“Vxe[0,1]
ieC ( )
Wt W.t 30
=d' Y pl(1+et! +€4(8)%), pl=-=~— =1L
; i i i 1 ZjEC M/jt (I)t
=0 (1+e(p', ') +X(p", (£)7)), (€)% = [(£)’licc
Dl s P ) P (E)7) 1+x <e’.
So, at round T,
eezle o _ VVI*T <oT <° eIt e+ ST (ph(8") >’
(31)

T T T
Z ?L. <In|C|+e€ Z(pt,t’t> +él Z(pt, (£")?%), take logarithm
=1 =1

divided by € and rearrange.

t=1
L L h|C| w
L= L) s = e 0 (),
=1 t=1

Thus,
T T T T
DILIEDIVEDILRY
- = = (32)

Rp =)t —B[) ¢
=
(31) 1
n|C| Z(p (£H?) < l |+ €L®T, p' is probability, and ¢/ € [0,L].
[m]

In|C]|
T

The latter inequality yields Ry < 2L/Tlog|C| as € = %

C PROOF OF THEOREM 4.1
We first introduce some auxiliary lemmas to describe the properties of reward vectors. For any set
[ms]ses at round ¢, let F' (A, m) = f*(sample,,(A)). Let m

A C 8 X C X [M] and given color m
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be the vector of colors at the beginning of round t. Let also

b = (33)

; the item returned by &; ,;.arm() the last time it was called (including ¢), or
an arbitrary item if the selector has never been called.

Note that, at time ¢, the selector & ,,,.arm() is indeed called for all slots s on a path of a request
r € R when m = ml. Let A* € S X C x [M] be the triplet set constructed by Alg. 2 at round ¢, i.e.,
the set comprising triplets

(s,it, _,m) foralls € S and m € [M].

s,m>

Note that such triplets are updated at all slots in paths of requests in timeslot ¢; all other triplets
remain unaltered. We impose an ordering over all such triplets, defined by an ordering over colors
first and slots second (the latter given by Eq. (1)). Under this ordering, similar to As_m defined before
Thm. A.1, let A, equal A? just “before” (s, it ,,, m) is added at round ¢; this addition is conceptual,
presuming these triplets are “added” one-by-one under the aforementioned ordering to construct
A!. Under this convention,

Aﬁ‘m ={(s, 1§m m):s’ €8S,m <m}U{(s, ifs,’m),m) s’ < s}

Lemma C.1. At round t, for all storage slot s € \J; p)ert Sp, the reward vector computed by Eq. (15),

i.e., the vector £" (s, m%) € RLC‘ with coordinates:

=/

P .
';(S mt) — maX(y,j’) e S<s+s WU/: =1
pams MaX(y j/)eSe, Wiy 0.W

U/!
wherer = (i,p) € R' and S<; = {s’ € S, : my < ms ormy = ms, s’ < s}, satisfies the following
property:

D1 a(sml) =F (A, +(s.i',ml),m"), foralli’ € C. (34)

r=(i,p)eR?:
seSp

Proor. From the definition Eq. (5) of f;, we have that for r = (i, p) € R":

lpl-1
FA) = wopdans | Spe x {i}| #0
k=1 k'e[k]
Ipl-1 (35)
p
= w = max w
k—min{l;ﬂngPk, Pr1Pk vep:3j s.t. ((v,j),i) €A
st ((pgrd)i)eA}
where w? is the cumulative upstream cost defined in Eq. (13). Then,
F'(Am) = fi(samplen(A) 2 Y f({(s.) € SXC: (s.ms) € A})
reR?
lpl-1 (36)
= Z Z Wpiripr = Z . max. ~W5'
(ip)eR!  k=min(k: 3jeSp,, (ip)eRt vep:3j st ((v,)),i,m(yj)) €A

s.t. ((pk/,j),i,ms)eA}
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Then, for A’ = A", + (s,i’,m!), we have
s,mk s

—t o~ . (36)
F (A", +(s,i",ml),m") = max wt,
S, My S PR T
(i,p)eRt: ((U 5] ))l’ms’)EA
SESP
P .. 37
2 Gpyert: MAX (5, 1) eSoghs Weps | = 37
S
1z o max wh, ow - Z £ (5,ms).
i t. v, i’ , .
gy (€S e r=(ip)eR?:
seSp

The second equality holds because of the definition of accumulate weights by Eq. (13) and the
fact that o = arg min, k, (v) = arg max, wh. The Third equality holds by the definitions of A’ and
S <s- O

If the requests in R’ do not cross, it behaves same as the one request scenario. If requests do
cross each other, the reward vector calculated by storage slot (v, j) is the summation of separate
reward vectors deriving from each request r’ € R’. Actually, it is equivalent to calculating the
reward vector and calling operation feedback(£’ (s, m;)) separately when each request arrives. We
prove the above statement by the following lemma:

Lemma C.2. Calling feedback() with reward vector Zle £; is equivalent to a sequence of k feedback
calls, with reward vectors £;.

Proor. If we feedback a reward: Y); £;, the weight vector in it is: Vi € C, Wit+1 = Witeezl'f".
If we feedback rewards #; for all i separately, in the end, the weight vector in it is: Vi € C,
W/ = W! [, e“"r. These two feedback scenario lead to same state in hedge selector. O

Lemma C.3. At round t, given selected color m, for s ¢ U p)ere Sp orm # mg, alli’,j' € C,
F (AL, + (s,i,m),m) = F (AL, + (s, j/, m), m).

m

Proor. When s ¢ U(l‘,p)eﬂt S, or m # my, according to Eq. (37), for all i’ € C,

F (Aé_m +(s,i’,m),m) = Z max wg, = Z max WZ. (38)
’ (L) eRt ((0,"),i,mg ) €A (L) e Rt (v,j") €Sx<s

O
Finally, we can prove Theorem 4.1.

Proor. Forall s € S, m € [M], we denote by 75, be the set of rounds where hedge selector &,
receives reward vector in our algorithm in T rounds, i.e., 75, = {t € [T] : v € p', m = m.}. For any
s € S,me [M],and i’ € C, since hedge selectors are no-regret algorithms, let RST’m be the regret of
Es,m during rounds 7 ,. We denote I (s, m) the i-th coordinate of total reward vector for hedge

selector &; , at round ¢, i.e., lit(s, m) = 3 —apert: £] (s, m). According to the definition of regret in
seSp

Eq. (27), we have
Rl = D thsm)= >t (smy> > fhism— > € (sm) (39)

t€7;,m teq;,m te%,m t€7;,m

where i* is the best selection in hindsight, i.e., i* = arg max;cc Zte(];m t’it. Then, by Lemma C.1,

=t~ . —t, o~ .
D F AL+ (il m),m) > [ > F (AL, + (5,1, m),m) | - RL,,. (40)

t€Tsm te€T5m
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Fort € [T]\ Tsm,alls € S,m € [M], i’ € C, by Lemma C.3,
F (AL, + (5,0l m),m) = F (AL, + (5,1, m),m). (41)
Thus, foralls € S,m € [M],i’ € C,

T T
DAL, + (5,8 o m) m) 2 (Z F (A5, + (s,i’,m), m)) -R,. (42)
t=1 t=1

Taking the expectation of both sides over m, and over i ,, and choosing i to maximize the right
hand side, we get

T

ZFt(A?m + (s, i, m)}) = macx
’ ’ i€

=1

T
D FAL, + (5.1, m))) —om (43)
t=1

where we define F'(A) = Em[E;:  [f* (sample,(A))]] and e = E[RL,].

We now define some additional notation. For any set A of vector in S x C T define
T
f(A) = th({(s, i) : (s,0) € A}), (44)
=1

where i = [i]T_,. Next, for any set A € SXCT x[M], and given m = [m;]cs, define sample,, (A) =
{(s.7) € {s} xCT : (s,i,m) € A}. Define F(A) = Em[E; [f(sample,(A))]], where igpm =

[i£,,]I_, € CT. By linearity of expectation,

= r N =
F(A) = Z F'({(s,i',m) : (5,7, m) € A}). (45)

Analogously to At~ define A;m = {(s/, ?s’,m’a m'):s"e8S,m <m}uU{(s, Zs",m, m) : s’ < s}. Thus,

s,m?
for any (s,i,m) € S x CT x [M], we have F(A;m +(s,,m)) = XL F! (Ag—m + (s, iz, m)). Combining
this with (43) , we get:

F(ASy + (5. Tomsm)) = max (F(AZ, + (5. [117.m) ) = e (46)

: i :
Having proved (46), we can now use Thm. A.1 to complete the proof. Define a new partition matroid
over ground set {S x CT} with feasible solution D := {A ¢ SxCT : |An ({s} xCT)| = 1,Vs € S}.

Let A = {(s, 73,,,,, m) :s € S,m € [M]}. It is easy to verify that F’ is monotone submodular, and F
is also monotone submodular by linearity. Thus, by Thm. A.1,

- . M
F(A) 2 p(M,ISD - maxd{ f(A)} - D> em (47)

seSm=1

By definition, F(X) =E[X1_, f'(AD)], and max;_z{f(A)} > maxaen{TL, f1(A)}, we get

T T M
E th(At) > B(IS], M) 'gleag{th(A)}—Zzes,m- (48)
t=1 t=1 seS m=1
According to Lemma B.1, &, = E[RL,,] < 2RL+/|T5m|log|C| < 2RL+/T log|C], then
T T
B[ £(a%)| > p(SLM) -maxi > ()} - 2RLISIMYTTog [CT. (49)
=1 AeD 145
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Fig. 10. A simplified instance of GRD with linear regret. The cache can only store a single file, and at any given
moment the adversary requests the file that is not stored in the cache. GRD updates its state greedily to store
the requested file and oscillates between the two possible states. The optimal static strategy stores one of the
files permanently incurring a total cost of T/2, while GRD incurs a total cost T.

D PROOF OF LEMMA 5.1

Proor. Consider a cache network of two nodes u and v and a catalog of two files represented by
the set {1, 2}. The cache node u has capacity 1 and the node v is a repository node containing the
files 1 and 2. The hedge selector is initialized with a distribution of the possible states p* = (1/2,1/2).
According to Alg. 1, the hedge selector adds € = © (%) fraction to the component corresponding

to the requested file, and reduces the same quantity from the other component. When the requested
files sequence is {1,2,1,2,. ..}, this gives the following distributions:

p'.p%p°p" ...} ={(1/2,1/2),(1/2+ € 1/2—€),(1/2,1/2),(1/2 +€,1/2—€),... }.

The distribution p?, gives two integral states (1,0) w.p. 1/2 and (0, 1) w.p. 1/2, and p? can give two
integral states (1,0) w.p 1/2 + € and (0, 1) w.p. 1/2 — €. The expected update cost experienced in
expectation fromt = 1to t = 2 is:

E [UC(AL A% =1/2(1/2-€)+1/2(1/2+€) = 1/2.
The decomposition of p* is the same as p'. The update cost experienced in expectation from ¢t = 2
tot =3is:

E [UC(A*A%)| =(1/2-€)1/2+(1/2+€) 1/2=1/2.
The sequence repeats and the same costs are obtained. The total update cost is:

E

T
Z UC(At,At+1)
t=1

T
= ZE [uc(a’, A"Y)] = g (50)
t=1

This is an update cost of Q(T) paid in expectation.

E PROOF OF LEMMA 4.3

Proor. Assume a cache network formed of a designated server v and a cache with storage
capacity ¢, € N. The catalog C contains 2¢, items and, without lack of generality we assume that
cache u initially contains the set of items {c, + 1,. .., 2¢, }. Requests arrive only at node u, and we
can identify a request with the requested item because there is only one possible path ({u, v}). The
forwarding cost between u and v is w € R,.

We consider request sequences with one request every A time units and one request per round
(R = 1) and we denote by i; he item requested at time t. Moreover, for simplicity, we assume the
time horizon T to be proportional to 2¢, (T = m X 2¢,). The service cost without caching is wT.
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The policy GRD maintains a vector z, and updates it after every request as follows [41, Eq. (22)]:
zi1 = ze M £ wpe;,, (51)

where e;, = []l{i:i,}] iec and zy = 0. After the request time ¢ GRD stores in the cache the ¢, items in
C that correspond to the largest ¢, components of 2,41 at time ¢. Consider the request sequence

{1,2,...,2c0,1,2, ..., 2C0, ..., 1,2, .., 24} (52)

Under this request sequence, GRD behaves as LRU and simply stores at any time the ¢, most recently
requested items. In fact, item j is requested at time instants AT + j for h € {0,1,...,m — 1}. At time
t = kT + i, item j has been requested for the last time (i — j) mod 2¢, time instants earlier. The
corresponding component of the vector 2z, has the value

~BA((i=j) mod 2¢,) o s

he{0,1,...m-1},
hT+j<kT+i

(zt+1)j =e

The maximum value is achieved for j = i. The component becomes progressively smaller as j
decreases from i to 1, because the first term in the product becomes smaller while the second terms
does not change. It keeps decreasing as j decreases from 2¢, to i + 1, not only because the first term
decreases, but also because the second term decreases as less addends are considered in the sum.
As GRD behaves as LRU, when a new request i; arrives at node u, it is never found in the cache.
GRD incurs then a total service cost wT and null caching gain. At the same time, the caching gain
of any cache allocation A (with ¢, different items stored at u) is % T, because it is able to serve half
of the requests. Then, the a-regret of GRD is at least equal to aWTT. A simplified instance of GRD is
shown in Fig. 10 to provide some intuition of our proof.
O

F PROOF OF THEOREM 5.2
We begin by giving some intuition behind our approach. The hedge selector in Alg. 1 effectively

Z}%’twf » for every round t. The randomized action i, taken at
time ¢t by the selector always satisfies Ié[eiz] = p' by definition, where e; is the i-th basis vector.
Consider for instance, that the rewards given to the hedge selector are always uniform. Since each
action is equally important, then the distribution p’ is fixed and it is the uniform distribution. Thus,
the hedge selector controlling item placements, will evict and fetch a new content with probability
1- ﬁ at each time step. Clearly, since the distribution is fixed for every time step, then these
movements are unnecessary. An optimal strategy in this scenario is to pick an action u.a.r at the
start and stick with it.

We generalize this concept by taking minimal probabilistic jumps to a new state, only when
it is necessary to maintain a change of distribution from p’ to p’*'. This concept is known in
the literature as optimal transport or the earth mover distance [67]. The objective is to transport
probability mass from a distribution to another, while minimizing the associated metric. In this
scenario, it corresponds to a minimum-cost flow problem. We propose an iterative algorithm that
builds the optimal flow (joint distribution). By building a feasible flow at time ¢ from p’ to p**'.
Then, the algorithm takes elementary steps that generates a sequence of random variables whose
marginal distribution is progressively closer to p’*!

The proof is split in multiple parts. We first introduce Lemma F.1 that links the hedge selector
update rule to online mirror descent [13]. This allows us to use convex optimization techniques to
provide the proof of Lemma F.2, that gives a family of coupling schemes with sublinear update cost.

maintains a distribution p* = [
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In section F.3, we dissect the hedge selector and bound the update cost of its two components,
the coupled_movement and elementary_dmovement subroutines.

In some parts of the proof we switch to vector notation rather than the set notation for al-
locations. For any allocation A € S X C the corresponding allocation vector is denoted by
x = [Lysieat]siesxc, and xg = [L(sear] s.i):iec. The weighted [; norm is defined as:

sl 3= Y Wl (53)
ieC
With slight abuse of notation, we consider that for any s € S:
UC(xt, x!*) = Z w] max(0, x/*! = x!) (54)
ieC
=UC(A' N {(s,i):i e CLA™ n{(s,i) : i € C}). (55)

Also, note that UC(x%, xI*1) < [|xf*! — xI|] 1 .
F.1 Auxiliary Lemma
We start by introducing an auxiliary lemma.

LemmA F.1. &.feedback(t) for the hedge selector in Alg. 1 updates its internal weights W; to Wyyq
equivalently as VO(W') = VO(W?!) + e’ where ®(W) = Y;cc W; log(W;) and € € R, is the step
size.

Proor. We know that

D(W)
= =1 +log(W; 56
W, +log(W) (56)
From VO(W*) = VO(W?) + ef! we have:
1+log(W/*) = 1 +log(W)) +ef], (57)
then,
M/it+1 - M/itedit, (58)
which is exactly &.feedback(#) O

F.2 Family of Coupling Schemes with Sublinear Update Cost

The following Lemma provides a sufficient condition on the joint distribution of (x£, x!*1) (the
family of coupling schemes), that leads to sublinear update cost for DISTRIBUTEDTGONLINE.

Lemma F.2. Consider a hedge selector, shown in Alg. 1, and a joint distribution of (x!,x'*!) that
satisfies forallt € [T —1]:

(1) E[x!] =p" and E[x!*'] = p™*'.

(2) B[]l = x{llw] = OUlp™" = p'[l10)-
This algorithm incurs an expected update cost of the same order of the update cost of probabilities.
Selecting € = G(VLT)’ K = Q(T), gives a O(RLNT) expected update cost.

Proor. We know ®(W) = ;.o Wilog(W;) is 1-strong convex w.rt. || - ||; on the simplex
c
nigp = {p € R : Tice pi = 1} [13]. Thus, (x) - (y) < Vo(x) " (x - y) - llx - ylIZ.
Then, we will prove the Lemma F.2. Recall that, as shown in Alg. 2, at every K times, each storage
slot will choose a color m. uniformly at random from [M]. At every rounds, the corresponding

hedge selector &; ,,,+ will be fed a reward vector £ (s, m}), and call & feedback(#) to update its weight

t+1

i1 are chosen.

vector. In the following proof, we assume that at round ¢ and ¢ + 1, color m§ and m
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The weight vector W' is the weight vector maintained by hedge selector &; ,,,. The probability p*
is the normalized W*. With the assumptions in Lemma. F.2, there exist constants a, ,y > 0, such
that:

E[UC(xg, x™)] < E[llxg™ —x¢lhiw] < allp™ = p'lliaw < lip™ —p'll < y[[W™ - W], (59)

where || - || here is /1 norm, the second to last inequality holds because norms can bound each
other, and the last inequality holds because the inexpensive property of projection. For round ¢
without color update:

E[llxs" = xtl1w] < y[[WH - W]
<yV2(D(W?) — D(WH) + VO(WHL) T (WHL — W), 1-strong convexity
<yV2NO(W!) — D(WHL) — VO(WH) T (W! — W) + (VO(W!H) — VO(W!)) T (WH — W),

1
Sy\/i\/—EHWf — W12 + (VO(WH) — VO(W!)) T (Wi — W?),  1-strong convexity

1 _
Sy\/i\/—EIIWt — W2 + eR(£5)T (WL — W), Lemma F.1
1 _
Sy\/i\/—EHW’ — W2 + eR||t! || - [[WET — W], Cauchy-Schwarz inequality
[(€R|[!]]c0)? 2
Sy\/i w, az—bZZS%,a,b>O
=yeR|[€'||co-

For round ¢ with color update, the cache update cost is bounded by the most expensive cache
update, i.e.,:
E[[ls™ = x5l luw] < [1w[[oo- (60)
The total update cost experienced for the hedge selector associated with slot s:
T-1 T-
€R|[€ ]| If lloo se T
E[UC(xf, x5! W[l < yeRLT + —||w']]co, 61
) BIUC( Z * D, Wil < yeRLT+ gl (61)

where L = maX(l-,mqu{Z]l(p:l;l Wpeopr ) = max; <7{|[€*||c}. Assume that K = Q(VT), then 3¢’ > 0,

-1

~

E[UC(x!, x!*1)] < yeRLT+ ”""x/‘ (62)

Il
-

t

In order to keep the hedge selectors regret sublinear O(VT) with e = 8(%). The update cost for
all the slots:

ZZE [UC(xL, x!*)] <|S|yRL\/_+|S| ”°°\/_ (63)
t=1 seS
O

F.3 Dissection of the Coupled Hedge Selector

Assume at round ¢, storage slot s, item allocation x! with E[x.] = p has a particular allocation
x!. We introduce the coupling scheme modification to the hedge selector in Alg.1 given in Alg. 3,
which could produce x‘*! satisfying conditions in Lemma. F.2. We first provide expected update
cost of an elementary_dmovement subroutine call.
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LemMA F.3. The elementary_Smovement subroutine outputs a random integral cache configuration
X" with E[ex'] = p — Je; + Je;. If its input is sampled from a random variable X with E[ex] = p,
then:

E [llex — ext|liw ] = 8(wg; +wl)). (64)
Proor.
First part. Showing that E [ex'] = p — Je; + Je;.
Elex]= > pElex|X =1]+piE [ex|X =] (65)
leC\{i}
= Z per + piE [ex | X = i], Line 26, Algorithm 3 (66)
1eC\{i}
=5 3
= Z pie; + p; (p e+ —ej) , Line 23, Algorithm 3 (67)
l1eC\{i} pi pi
= ) pier — Oe; +5e; = p — Se; + ;. (68)
leC

Second part. The only movement that can be caused by running the subroutine is at line 23, given
that X = i with probability p;, we replace this value by j with probability pé,-' Hence, the expected
update cost is given by:

p5 ’ ’ ’ ’
E[llex —ex'|lyw] = _1; (wgj+wg;) =6(wg; +wg;). (69)
i

]

We now introduce lemma F.4 providing the expected update cost of a coupled_movement
subroutine call.

LemMA F.4. If the input to coupled_movement subroutine in Alg.3 is i with E[e;] = p', then it
outputs an item i1, where Ele;] =p™, and Bt [Ejen e [l — en|l1w]] = P! =" | 1w

Proo¥. The distribution over the catalog changes from a fractional state p; € A|¢| to p™*! € Ai¢).
The set I = {i € C : Xpp1i — Xtj > 0} in line 1 of Algorithm 3 is the set of components that have a
fractional increase, then we get:

pr=p'+ Z mje; — Z mie;, (70)
jel ieC\I
where m;, i € C is the absolute fractional change in component i of the cache. The fractional update
cost is the following:

lip" =Pl = D mywl+ > mwl,. (71)

jeI jeC\I
A flow [8;] (i, j)ec? is constructed to transport ;cc\; m; mass from the components in I to the
components in C \ I in line 15. The expected value of the allocation generated by output variable

i*1 is given by:
(68)
E[ei§+1] = E[el§] + Z Zéi,j(ej —e,-) (72)
ieC\I jel
=pt— Z m,-ei+ijej=pt+l. (73)
ieC\I jeI
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O
{ 2 } 3
€ J\

(a) Abilene topology (b) Path topology

Fig. 11. Topologies used for adversarial requests.

Item ID
Item ID

S B B B
0 10 20 30
Time Time Time

(a) Stationary Adversarial trace (b) Sliding Popularity Adversarial (c) SN Adversarial trace
trace

Fig. 12. Adversarial Request models for abilene and path. Each dot indicates an access to an item/ a request.

The expected movements incurred when Algorithm 3 is executed is the following:

(69)
Ellleis — exolliw] = D D 8i,(wl +wl) = Y mpwl i+ > mowl,

ieC\I jeI jel jeC\I

(71)
= p" ="l

G ADVERSARIAL INSTANCES

In this section, we provide additional details about the topologies path and abilene. These are
motivated by the proof of Lemma 4.3, using round-robin schemes for which greedy/myopic online
algorithms would perform poorly.

G.1 Topology Configuration

The abilene and path topologies are shown in Fig. 11 (a) and (b) respectively.

Adversarial setup of abilene. We set the weight of each edge to be w = 100. The query nodes
are {0,5}. We put a cache at each node with a capacity selected u.a.r from the set {0, 1}, except for
nodes {0, 5} that have capacity 5. For every item in the catalog we select its source node u.a.r to be
7 or 8.

Adversarial setup of path. We set the weight of each edge to be w = 100. The query node is 0.
We put two caches at nodes 0 and 1 with capacity 5. The whole catalog is stored at node 1.
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G.2 Adversarial Traces

The adversarial traces patterns are shown in Fig. 12. The Stationary Adversarial trace is generated
using the sequence

{0,25,1,26,...,24,49,0,25,... }. (74)

The Sliding Popularity Adversarial trace is generated by mixing the two sequences
si={i mod 5+5k:ie[100],k € [5]}, (75)
sy ={i mod5+5k+25:i€[100],k € [5]}. (76)

We generate requests from s; and s, starting at the same time, except that we generate requests
from s; twice as fast as s;. When we finish generating requests from a sequence we alternate the
speed. This is done once, then at the final stage we generate requests with at the same speed. The SN
Adversarial trace is generated using the same cyclic pattern as in the Sliding Popularity Adversarial
trace, with the difference that a group of 5 items arrive according to according to a homogeneous
Poisson process of rate y = 1.

H JOINTLY OPTIMIZING CACHING AND ROUTING

In the extended model by Ioannidis and Yeh [43], a request r = (i, b) € R is determined by (a) the
item i € C requested, (b) the source node b € V of the request. For each request r = (i, b), there
exists a set of paths P(; ), which the request can follow towards a designated server in ;. The
goal is to jointly determine the content allocation as well as the paths that requests follow.

In particular, the path assignment is represented by P = {p, };er € [l,er Pr, Where p, € P,
indicates that request r = (i, b) € R follows path p, to fetch item i. It is easy, and natural, to write
the cost objective in terms of the content allocation A and the routing assignment P. However, to
show that it is a submodular assignment problem, with constrains similar to the ones we encounter
in caching, we deviate from [43] and express the objective in terms of the complementary path
assignment P. Formally, let

P={ )@\ o c | P (77)

reR reR

Intuitively, given a path assignment P, the complementary path assignment P consists of all the
paths not taken. We can see the routing optimization constraints as a slotted assignment problem
akin to the caching problem we have studied so far in the following way. Each request r € R is
associated with exactly |P,| — 1 slots. These slots are to be occupied by paths not taken. That is, each
such slot is to be occupied by a path p in $,; whenever such a path p is stored in a slot, it is added
in the complementary path assignment P. We denote by D’ the set of feasible complementary path
assignments under this setting, that is:’

D’:{FcnﬂzlﬁﬂpAS|Pr|—1}- (78)

reR

Then, given a content allocation A and complementary path assignment P, the cost of serving a
request r = (i, b) is:

lpl-1
CrAP) = > D wppd|Ans [ ] Sy x (i} =0]. (79)
peP,\P k=1 Kelk]

"To better cast this as an assignment problem, we would need to introduce notation for slots per request, but this is
equivalent to Eq. (78).
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Similarly, the caching gain of a request r = (i, b) due to caching at intermediate nodes and path
assignment is:

£(AP) = C,(0,0) - C,(A,P)

Ipl-1
= > D wpnd|pePvany | Sy x{i}| #0]. (80)
pPeEPr k=1 k’e[k]

The caching gain maximization problem amounts to:

T T
maximize f(A,P) = Z fYADP) = Z Z £(AP), (81a)
AP =1 =1 reR!
subjectto A€ D,PeD. (81b)

which is a submodular maximization over an (assignment) partition matroid w.r.t. both A and P
(complementary set of P). The assingment nature of the matroid follows from the representation of
complementary paths as slots “taken”; we prove submodularity below:

Lemma H.1. Function f : S X C X [[,eq Pr — Ry is monotone and submodular w.r.t. both A and
P.

Proor. In this proof, we switch to vector notation rather than the set notation. For any content
allocation A € S x C, the corresponding allocation vector is denoted by x = [1{(sieat](si)eSxc =
[%(s,i)] (s.i)esxc- For any complementary path assignment P € [], g %, the corresponding comple-

mentary path assignment P is represented by vector b = [1((rp)¢p}] (rp)elT, e # = [Prpl (rp)elT,r 2,
The caching gain of a request (i, b) is:

lpl-1 k
fumx) = > > Wy (1= (1 =han) [ [ =200, (82)
pEP(i,b) k=1 k’=1

which has the same form as Eq. (5). By Lemma 3.1, f is also monotone (non-decreasing) and
submodular w.r.t. both x and h. The feasible set for h is:

Z hrp =P - 1,Vr € R, (83)
pepr

which is also a partition matroid. O

The monotonicity of the objective implies that an optimal solution exists in which all routing slots
of the complementary path assignment are taken, so that indeed only one path is truly selected.®

This submodular maximization assignment problem can be tackled by the modified DisTRIBUT-
EDTGONLINE with 1 — 1/e guarantee through Cor. 4.2 as follows. Following [43], for each request
(i, b), source node b maintains an extra slot s = (b, 0) determining its path assignment. Correspond-
ingly, the information needed to compute the reward is from all possible paths due to Eq. (80),
besides its own path. The second step in the online algorithm is, thus, modified as:

e When a request (i, b) is generated, (rather than one additional control message is generated
to collect and transmit information,) |P; 5| additional control messages are generated, one
over one path p € P;} to collect and transmit information.

8Note that if an optimal solution contains fewer occupied slots, one with higher caching gain can be constructucted by
adding more paths.
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Note that the communication cost increases linearly with |P;;|. Nevertheless, it is possible that
randomization approaches akin to the ones used in [43], can lower this dependency with a corre-
sponding increase in regret; exploring this is beyond our scope.

I ANYTIME REGRET GUARANTEE

Under the doubling trick [16], the algorithm proceeds in phases. In the first phase, it sets its (short-
term) horizon to a time-window W, = 1. Whenever a phase ends (i.e., the short-term horizon
expires), the algorithm resets its state, and doubles the time window, so that the short term horizon
at phase n + 1 satisfies:
Wy = 2W,, forallne {0,1,...,k}.

For the sake of notational simplicity, assume that T = 25*! — 1 for some k € N. By Theorem 4.1,
D1sTRIBUTEDTGONLINE has bounded regret cy/W,, at the end of each short-term horizon Wj,, where
c is a constant independent of W;,. Thus,

k k 0.5(k+1) _ 0.5log, (T+1)

2 1 2 2 VT +1 2
E VW, =¢ E 2051 = ¢ =c =c < V2 cVT. (84)
= e V2-1 V2-1 V2-1 " V2-1

In other words, using this doubling trick, we can obtain an anytime regret bound for any algorithm
designed for a fixed time horizon, while worsening the bound by a constant factor (namely, %).

The same argument can be used to show that the update cost is sublinear when taking update
costs in to account. In particular, the modified policy resets its state at most k — 1 times and k is
logarithmic in T, thereby contributing at most an O(log T) term to the overall update cost.
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