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Abstract—Accurate beam alignment in the millimeter-wave
(mmWave) band introduces considerable overheads involving
brute-force exploration of multiple beam-pair combinations and
beam retraining due to mobility. This cost becomes often in-
tractable under high mobility scenarios, where fast beamforming
algorithms that can quickly adapt the beam configurations are
still under development for 5G and beyond. Besides, blockage
prediction is a key capability in order to establish mmWave
reliable links. In this paper, we propose a data fusion approach
that takes inputs from visual edge devices and localization sensors
to (i) reduce the beam selection overhead by narrowing down
the search to a small set containing the best possible beam-
pairs and (ii) detect blockage conditions between transmitters
and receivers. We evaluate our approach through joint simulation
of multi-modal data from vision and localization sensors and RF
data. Additionally, we show how deep learning based fusion of
images and Global Positioning System (GPS) data can play a
key role in configuring vehicle-to-infrastructure (V2I) mmWave
links. We show a 90% top-10 beam selection accuracy and a
92.86% blockage prediction accuracy. Furthermore, the proposed
approach achieves a 99.7% reduction on the beam selection time
while keeping a 94.86% of the maximum achievable throughput.

Index Terms—mmWave, beam selection, machine learning,
deep learning, fusion, multi-modal data, 5G.

I. INTRODUCTION

Connected and autonomous vehicles are quickly being in-

tegrated into multiple industrial and civil applications given

the implicit advantages of energy consumption, comfort and

safety. However, these new systems require to manage enor-

mous amounts of data to enable real-time planning, video

processing and sensing, among others. In addition, many of

these applications are time-sensitive and require real-time data

processing and highly reliable links. For instance, camera

sensors may generate data up to 700MB/s and most automotive

applications have latency requirements of <100ms.

A. Motivation and Challenges in use of V2I mmWave links

Millimeter-wave (mmWave) is considered as the main

candidate to satisfy the needs for high data rates in V2I

scenarios and has already been adopted by 5G and WLAN

(802.11ad/ay) standardization groups. Furthermore, mmWave

and TeraHertz systems, both requiring directional antenna

arrays, are envisioned to play a major role in the future com-

munication systems of 5G and beyond. However, transmission

at these bands suffers from high attenuation associated with

Fig. 1: Visual and location data are combined using data fusion

techniques. Different neural networks are used to process each

data modality, and are ultimately combined with the fusion

neural network to (i) aid the beam selection and (ii) detect the

blockage.

increasing carrier frequency and channel losses arising from

natural phenomena such as atmospheric absorption. Highly

directional antennas or arrays with multiple elements acting

as beamformers are found to be the best solution to extend

the range in these high frequencies. While these systems

are proven to be efficient in static scenarios, no unifying

solution for coordinated directional communications under

mobility constraints has been widely accepted. Exhaustive

search approaches where both transmitter and receiver explore

all possible beam directions are time-consuming and not

feasible under mobility scenarios where such process should

be repeated constantly. Hence, techniques that avoid time-

consuming beam selection procedures and predict blockage

are required for mmWave V2I networks.

In addition to high attenuation, mmWave links are found to

be susceptible to blockage due to their high penetration loss.

Hence, Line-of-Sight (LoS) connections are strongly preferred

over non-LoS (NLoS), specially for cellular systems where

the distances between a base station and a user can be of a

few hundreds of meters. Thus, blockage prediction is a key
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capability required to establish reliable mmWave links and

propose counteractive measures to NLoS conditions.

Interestingly, commercial devices are becoming more com-

plex, integrating multiple sensors that provide data in a variety

of sensing modalities, creating intelligent Internet of Things
(IoT) systems. In particular, recent advances in image pro-

cessing and computer vision open up a world of opportunities

for new visual IoT (V-IoT) applications, including wireless

communications.

B. Vision-Aided Beam Selection

Self-driving systems are often equipped with camera sys-

tems, providing autonomy and reliability through visual un-

derstanding of the surroundings. While such capabilities are

widely exploited for assisted and autonomous driving, they

have been under-explored in other domains that could also

leverage from context-aware information, such as wireless

communications [1]. For instance, camera images are able

to enhance both beam selection and blockage detection for

mmWave links by providing contextual information that other

RF technologies cannot offer. However, visual data has its

limitations as well (i.e. standalone images are insufficient

for multi-user scenarios). Such limitations can be addressed

through intelligent data fusion with other sensing modalities

deployed into commercial vehicles (GPS modules, radars, LI-

DARs, etc). Thus, combining different out-of-band data aims

to intelligently fuse each sensing modality by highlighting

the advantages that each one provides, similar to Fig. 1,

where images are combined with GPS data to enhance beam

selection and blockage prediction. Nonetheless, data fusion

faces challenges of its own and robust control channels are

required if data collection and computation are not co-located.

C. Summary of the Contributions

In this paper, we propose a deep learning based fusion

framework for beam selection which leverages the GPS lo-

cation information along with visual data yielding to a low-

overhead fast beamforming process under mobility scenarios.

We list the novel contributions as follows:

• We design a custom image feature extractor for visual

data that identifies information relevant to beam selection

while filtering out background clutter.

• We propose a deep learning architecture that uses visual

information top-K best beam-pairs in order to reduce

the beam selection overhead. Additionally, we designed

a data fusion neural network that intelligently combines

the location and image data in order to improve the top-K

beam selection accuracy.

• We analyze the impact of the LoS/NLoS conditions in

terms of beam selection accuracy and propose a method

to predict mmWave link blockage.

• We provide numerical results of the overhead reduction

as well as the link quality for the proposed approach.

The rest of the paper is organized as follows. We summarize

the related work on out-of-band beam selection in Sec. II.

Sec. III and Sec. IV present the system model and contribut-

ing overheads in the proposed framework, respectively. The

detailed description of the proposed solution is presented in

Sec. V. We present an evaluation of our approach in Sec. VI.

Finally, we discuss potential future research directions and

conclude the paper in Sec. VII and Sec. VIII, respectively.

II. RELATED WORK

We summarize the out-of-band techniques that leverage the

data from different data modalities to achieve low-overhead

beam alignment solutions in Fig. 2. We highlight that no prior

work has explored data fusion of visual data with location

information.

A. Cross Channel Correlation

Exploiting channel knowledge at lower/higher frequency

bands such as sub-6 GHz and radar has shown promising

results on aiding the beam selection.

1) Sub-6 GHz: To the best of our knowledge, exploring

the sub-6 GHz channel properties as a single out-of-band

technology for V2I beam selection was only investigated

in [2]. However, multiple works have explored sub-6GHz in

conjunction with other data modalities, as we summarize in

Sec. II-B4.

2) Radar: In [3] the concept of radar-aided vehicular

communication is introduced, where the radar is exploited as

an additional source of information for V2I mmWave beam-

forming. The authors in [4] leverage the PHY layer 802.11ad

frames to perform both radar operations and conventional

communications using a standard-compliant Tx/Rx chain. The

radar is employed to estimate the location of the vehicles and

consequently assist the beam selection. In [5], a passive radar

receiver is placed at the roadside unit to tap the transmissions

from other automotive radar. The spatial covariance of the

radar signals is explored to establish the communication link.

Finally, [6] uses radars to estimate the azimuth power spectrum

and compare it with the one obtained from a communication

system.

B. Use of non-RF Sensor Data

Different kinds of sensors are being integrated into com-

mercial and industrial systems in various ways. For example,

smartphones are starting to be equipped with LIDARs on top

of multi-camera systems and autonomous cars are assisted

with multiple sensor and vision systems. In this subsection,

we summarize how different data modalities can help reduce

the overhead.

1) Localization: The authors in [7] propose a localization-

based beam selection algorithm that explores geometrical

patterns through the location of not only the vehicle involved

in the communication but all the neighboring vehicles. In [8],

the multipath channel fingerprints are characterized and stored

in a database. Then, every newly obtained fingerprint is used

to query such database to provide a set of potential beam

directions for reliable and fast-changing beam alignment.
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Fig. 2: Sensing-aided beam selection modalities. Multiple RF, non-RF and fusion of out-of-band sensing modalities has been

explored. We highlight that no prior work combines vision and location information.

2) LIDAR: LIDARs are used in autonomous vehicles for

obtaining accurate mappings of the environment and high-

resolution positioning. The authors in [9] leverage LIDAR in

different forms for LoS detection and beam selection overhead

reduction. Similarly, Woodford et al. [10] generate a 3D

map of the environment by multiple LIDAR measurements

and feed it to ray-tracing software to predict the reflection

patterns. However, practical considerations such as the costly

pre-processing of high-dimensional point clouds raise the

concern on whether the accurate LIDAR mapping is a feasible

candidate for achieving low-overhead beamforming.

3) Vision: Image processing and computer vision have

enormously improved their capabilities in recent years due

to the latest advances in deep learning. Such algorithms are

employed in multiple domains, providing multiple forms of

automated understanding of visual data. Similarly, context-

aware information obtained from images can also be exploited

to assist wireless communications systems. In particular, visual

data can help to address some of the challenges associated with

establishing reliable mmWave links, such as beam selection or

blockage prediction, as we propose in this paper. Vision-based

beam prediction was first proposed in [11], where a simulation-

based beam tracking solution is presented. The authors train a

neural network to predict the next beam direction for different

numbers of time-steps in the future. We also highlight the

work in [12], while the authors do not face the challenges of

V2I, mmWave radios and cameras are used to showcase the

first implementation of a vision-based beam selection system.

4) Fusion: To overcome the potential weaknesses and com-

bine the advantages of single sensing modalities, a variety of

methods leveraging different sensory data are proposed in the

literature. The authors in [13] explore the gains of employing

images to overcome blockage and enhance the beam selection

process, in combination with sub-6 GHz channel information.

Cameras are mounted at the mmWave base station to provide

visual information, which is fused with other out-of-band

channels. In [14] the authors propose a distributed approach

where the best beam-pair inference is computed at the LIDAR-

equipped vehicle. The mmWave BS broadcasts its location to

the vehicles, which is combined with LIDAR data to predict

the best beam.

While multiple data fusion approaches have been explored,

we believe that the combination of multiple sensing modalities

has only scratched the surface of its possibilities. In this paper,

we showcase the fusion of GPS and images to aid the V2I

mmWave beam selection process, which remains unexplored

up until now.

III. SYSTEM MODEL

We consider a V2I cellular communication system mainly

operating in the mmWave band with an available sub-6

GHz control channel. Thus, both transmitter and receiver are

equipped with two RF chains each. We assume a discrete

number of mmWave antenna array configurations that sector-

izes the space into a set of possible directions. Predefined and

fixed beam codebooks are assumed on both ends, expressed as

Btx = {1, ..., t, ..., Ntx} and Brx = {1, ..., r, ..., Nrx}, where

t and r represent the transmitter and receiver beam indices,

respectively. The total number of beam-pairs depends on the

transmitter and receiver codebooks sizes, defined as Ntx and

Nrx, respectively. Then, every beam-pair can be expressed as

(t, r), where t ∈ Btx and r ∈ Brx represent the beam indices.

Additionally, we define (tb, rb) as the beam-pair providing the

best performance (highest received signal strength) out of all

the Ntx ×Nrx possible configurations.

We develop an ML-based method to reduce the beam-

selection overhead for a V2I cellular system. We assume that

the vehicle is equipped with a GPS module and broadcasts

its absolute location and vehicle type periodically to the BS

using the control channel in the sub-6 GHz band. Notice that

this functionality will most likely be included in the most self-

driving cars as part of collision avoidance mechanisms.

The vehicle location is then combined with the visual

information obtained from the cameras located at the BS to

assist the beam-selection. We run the inference model at the

BS locally in order to avoid additional latency derived from

communication with the cloud. This assumption is backed

up by the recently proposed 5G functional splits between

the Baseband Units (BBU) and the Remote Radio Heads

(RRH) [15].

A. Dataset

We evaluate our approach using the publicly avail-

able mmWave Raymobtime multimodal datasets (s008 and
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s009) [16]. The simulation consists of an urban scenario with

a single BS and multiple vehicle types (bus, car, or truck).

Each scene is labeled with the best possible beam-pair out of

the 256 available combinations (Ntx and Nrx are 32 and 8,

respectively). We use the coordinate and image modalities to

evaluate our proposed approach. The target receiver location

is expressed as a 2-point coordinate. The images are captured

from three co-located cameras with slightly different angles.

Additionally, we notice that not all beam-pair combinations are

equally represented in the dataset, for which we will explore

corrective measures in future work.

IV. BEAM SELECTION OVERHEAD

For comparison purposes, we describe the beam selection

time required to find the (tb, rb) following the 5G-NR stan-

dard compliant operation as well as our sensing-aided beam

selection approach.

A. Beam Selection Overhead in 5G-NR

The beam selection process happens during the initial ac-

cess, where the gNodeB and user exchange a number of mes-

sages to find the best beam-pair combination. In particular, the

gNodeB sequentially transmits synchronization signals (SS) in

each codebook element t ∈ Btx. In the meanwhile, the user

switches through all its codebook configurations r ∈ Brx, until

all possible configurations are explored.

The standard defines an SS block as the set of SS transmitted

under the same beam configuration, with multiple SS blocks

further grouped into SS burst. Hence, in order to explore all

beam-pair combinations, a total of |B| = Ntx×Nrx SS blocks

need to be transmitted. 5G-NR defines the maximum SS burst

duration (Tssb) to 5ms, which is transmitted with a periodicity

(Tp) of 20ms [17].

The mmWave band allows a maximum of 32 SS blocks

within a SS burst, which enables exploring up to 32 different

beams within one SS burst. Thus, given the limit on SS

blocks per SS burst, the total time to explore all beam-pair

combinations (Tnr
bs ) can be formulated as:

Tnr
bs (|B|) = Tp ×

⌊ |B| − 1

32

⌋
+ Tssb, (1)

Note that if a certain number of beam-pairs are not explored

within the first SS burst (|B| > 32), there is an increasing delay

given the separation Tp between SS bursts. On the other hand,

exploring a number of pairs smaller than 32 will introduce the

same overhead as if a total of 32 options were searched, given

that Tssb has a fixed duration of 5ms. Similarly, this can be

extended to any number |B| that is not a multiple of 32.

B. Beam Selection Overhead of the Proposed Approach

Our proposed approach provides a reduction on the beam

search by intelligently combining the image and location data.

Thus, the beam search space is reduced from |B| to a subset of

K � |B| likely beam candidates, which are the K candidates

with the highest predicted probabilities. We recall that the NR

standard assumes that up to 32 sectors can be swept within

Prediction

Create Crops of Input Image

Input Image

Trained Classifier 

Crop = 3Crop = 2Crop = 1Crop = 0

Background CarBus Truck

Arrange Predictions Together 
and Generate Bit Map 

Refined Bit Map

Vehicle Type

Generate Samples of
Background, Bus, Car, Truck

Train a Classifier

Fig. 3: Image feature extractor front end, the input images are

fed to a model that segments the image into 4 possible labels:

Background (0), Bus (1), Car (2), Truck (3).

5ms. Thus, we define the time to explore one single beam as

Tb = 5ms/32 = 156ns. Then, the required time for sweeping

the selected top-K beam-pairs can be expressed as:

Tsweep(K) = Tp×
⌊
K − 1

32

⌋
+Tb×(1+(K−1) mod 32). (2)

Notice that the image processing time and the vehicle posi-

tioning feedback are neglected, and only the beam sweeping

time is considered in this analysis.

V. DATA FUSION FOR BEAM SELECTION

In this section, we describe our beam selection vision-based

approach. Next, we propose a fusion network that intelligently

combines GPS and visual data to further enhance the beam

selection accuracy.

A. Visual Data Pre-processing

Visual images capture information from the overall scene.

However, multiple vehicles are present in one snapshot and

multiple regions of an image contain irrelevant background

information. Thus, similar to [12], we explore design a feature

extractor to provide simple contextual information, such as

vehicle detection and background removal. To do so, we

construct a dataset out of windowed images from the full

dataset images. Each window is accurately selected so that

it only contains a certain vehicle type (car, bus and truck)

or background. We manually label a small set and extend the

dataset by cropping each labeled image with W×W windows.

Next, we train a neural network to classify these four different

classes. We use a simple architecture with one convolutional

layer with rectified linear units (ReLU) activation, a maxpool

layer, dropout and two fully connected layers with ReLU and

softmax activations, respectively. Next, we use the trained

classifier to separate different vehicles from the background
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Input 2D
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Input to Block

Output of Block
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Id. Block, 32
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GPS Location

Coord Single-modal Training

(X, Y) Multiply

Conv2D(64, (3,3) )

Conv2D(32, (3,3) )

FC 1024

FC 256(classes)

Conv2DTranspose(48, 7 )

Conv2DTranspose(32, 5 )

Conv2DTranspose(16, 3 )

2 Conv2D (M, (x,x))

Input to Block

Output of Block

relu

Fusion Block (M, x)

MaxPooling2D(2,2)

Fusion Block, (16, 5)

Fusion Block, (32, 3)

Fusion Block, (64, 2)

Extracted Image Feature

Top-K Beam Prediction

Image Single-modal TrainingMultimodal Training

(101, 185)

Fig. 4: Neural Network architectures for single-modal and multimodal implementations.

in the images collected by the camera on the BS. First, we

quantize the input images into multiple W × W crops in

steps of S, referred to as stride size. Then, using the above-

described model, each crop is classified into Background (0),

Bus (1), Car (2), Truck (3). Finally, we leverage the vehicle

type knowledge of the receiver to set the different vehicle types

as -1 (i.e., If a certain user is a car, each cropped area where

a Bus (1) or a Truck(3) are detected, would be set to -1). At

the output, we obtain a dimensionally reduced version of the

original image, in form of a bitmap that separates the target

vehicle type from the background and other vehicle classes.

In our evaluation, we only use the images from a single

camera since the different angles are comparable and adding

information from the remaining cameras does not result in

increased performance. We set W and S to 40 and 5, re-

spectively. We obtain an accuracy of 84% on background and

vehicle type detection. The raw visual information is expressed

in form of 960× 540 RGB images. The output of our custom

image feature extractor is a bitmap of size (101, 185).

B. Beam Selection using Visual Data

In this subsection, we present our designed model archi-

tecture for predicting the best beam-pair based on the images

extracted features. We show the model architecture in Fig. 4.

In the first layer, we use an inception module. Specifically, we

apply 3×3, 7×7, and 11×11 convolutional layers to the input

features altogether. Different sized convolutions are employed

to extract spatial features on different levels and all three

feature maps are concatenated at the output of each layer. The

next two layers are a max polling and a convolutional layer

with (3, 3) kernels. The next modules are inspired by ResNet

against overfitting. Each module contains two convolutional

layers with 32 kernels of size 3× 3, and an identity shortcut

connection that skips these two layers, followed by a 2 × 2
max pooling layer. The last two fully-connected layers act

as a classification layer. We use dropout of 0.25 and ReLU

activation function in each convolutional and fully-connected

layers.

C. Proposed Fusion of Location Sensor with Visual Data

While location data provides a tremendous advantage for

beam-selection, it does not provide any environmental in-

formation and becomes incomplete as a standalone sensor.

In contrast, vision-aided beam-selection becomes challenging

when multiple users are captured in the camera images and no

other information is provided. Hence, in this paper, we pair

a camera system with GPS sensors information into a fusion

framework that intelligently combines each sensing modality.

Prior to the data fusion stage, the location information

is processed by a dedicated neural network. We show the

architecture used for location information in Fig. 4. Next, the

extracted features from the image and GPS data are combined

into the data fusion network. In order to maintain the spatial in-

formation, the proposed fusion network takes the features from

the last convolutional layers of each single modality network.

The different single-modal features are fused using an element-

wise product operation. Next, transposed convolutional layers

are used to expand the dimensionality of the original input. The

rest of the architecture is presented in Fig. 4. In the following

section, we evaluate the beam selection performance by using

each single data modality independently as well as following

the data fusion approach described above.

VI. EXPERIMENTS AND RESULTS

In this section, we describe the training process and pro-

vide results for top-K beam selection accuracy, as well as

throughput ratio and beam selection time in comparison to

the 5G-NR standard approach. Finally, we provide insights on

the importance of blockage detection and provide prediction

results that justify the feasibility of the approach.
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TABLE I: Performance of single-modal and multi-modal approaches.

Modality Top-1 Top-2 Top-5 Top-10 Top-30 Top-50
Acc Precision Recall F1 Score Acc Acc Acc Acc Acc

Visual data 16.70% 0.0% 0.0% 0.0% 31.8% 58.2% 78.46% 91.88% 95.68%
Coordinate 54.72% 74.04% 27.39% 32.8% 71.4% 83% 87.71% 96.99% 98.91%

Fusion 57.53% 69.59% 42.94% 45.82% 75.61% 87.96% 93.4 % 98.11% 99.07%

A. Training Parameters and Evaluation Metrics

We use the softmax function as an activation in the classifier

layer, and categorical cross-entropy as the loss function. We

train the model with a batch size of 64, we use Adam optimizer

with β = (0.9, 0.999) and initialize the learning rate to 0.0001.

To analyze the performance of the proposed approach, we use

top-K accuracy, as well as F1 score, as performance metrics.

Notice that the F1 score is relevant in this work given the

imbalanced nature of the used dataset. Additionally, we also

evaluate the overhead as beam selection time, and the link

quality as throughput ratio.

B. Performance of Proposed Fusion Technique

The training is done similarly for both single and multi-

modal models. The first row in Table I represents different test

accuracies for top-K beam selection using only visual data.

We observe how a standalone vision-based beam selection

requires a considerably high K to achieve acceptable accuracy.

One the other hand, the results (Table I) reveal that the

fusion of coordinate modality with visual data significantly

improves the accuracy for the top-K beam selection as well

as the F1 score. We observe that the coordinate gives better

performance compared to visual data; however, the fusion

of both modalities improves the performance over single-

modal implementation. In particular, a 93% top-10 accuracy

is achieved using the fusion model, which further reduces tje

beam alignment time. The improvement in F1 score is also

very important for the considered imbalanced dataset. The

source codes for our implementation are available in [18].

C. Throughput Ratio

While the proposed out-of-band method outperforms the

state-of-the-art mmWave standard in time, we also need to

compare them with respect to the received power strength.

We define a metric throughput ratio to account for the the

degradation in the performance of the system caused by

not capturing the optimum beam direction in a single shot.

Considering the set of all possible beam directions within the

transmitter and receiver codebooks (t, r), the optimum beam

direction is defined as (tb, rb) according to Sec. III. The 5G-

NR standard detects the optimum direction by sending beacons

over each sector as described in Sec. IV-A. On the other

hand, the proposed method exploits the side information from

optical cameras and GPS positioning to provide an optimality

probability estimation of each beam configuration. We denote

the top model prediction by (tp, rp) and define the throughput

ratio as follows:

10 20 30
50

60

70

80

90

100

Throughput Ratio
Top-K accuracy

Fig. 5: Throughput ratio and top-K accuracy for different K
values.

RT =
1

Nt

Nt∑
n=1

log2[1 + y(tb,rb)(n)]

log2[1 + y(tp,rp)(n)]
, (3)

where Nt is the total number of test samples and y(tb,rb) and

y(tp,rp) denote the received power associated with the ground-

truth and predicted beam-pairs, respectively. Fig. 5 shows top-

K accuracy and throughput ratio with respect to increasing

K. From this figure, we observe that top-K accuracy and

throughput ratio starts with 57.5% and 75.8% for K = 1
and achieves ∼ 99% throughput ratio when K = 30, which

corresponds to a much smaller search space than the 5G-NR

standard, i.e. 256 beam-pairs.

D. Beam Selection Overhead

As described in Sec. IV, the beam selection process intro-

duces an overhead that is dependent on the number of available

beam combinations (K). Here, we numerically analyze how

the proposed reduction in the beam space translates into a

faster initial access. In Fig. 6, it can be observed that the 5G-

NR process requires a total 145ms to find the best beam-pair

out of the 256 available options. In contrast, our approach

achieves a throughput ratio of 94.8% and 97.8% with a

total overhead of 1.6ms and 3.28ms, respectively. Thus, as

mentioned previously, our beam selection approach provides

a reduction in beam search space, which considerably reduces

the mmWave initial access overhead.

E. The Importance of Line-Of-Sight (LoS): Blockage Predic-
tion

As mentioned in the Sec. I, the presence of blockage

can lead to massive drops in channel quality given the high

attenuation in the mmWave band. Additionally, users might

experience a considerable reduction in their quality of service
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Fig. 6: Overhead beam selection analysis for 5G-NR and

the proposed approach. K has been fixed to ensure a top-

K accuracy of 91.5% and 95%. It can be observed how the

brute force approach achieves a throughput ratio of 100%,

as expected. However, the proposed approach provides an

RT > 0.95 in both cases.
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Fig. 7: LoS and NLoS Top-K accuracy comparison. NLoS face

a drop in beam selection accuracy due to blockage. We observe

how NLoS can be affected by >18% drop in beam selection

accuracy (right y-axis). Thus, blockage prediction techniques

are relevant to establish reliable mmWave links.

(QoS) to tens of Gbps. On top of the adversity nature of NLoS

mmWave links under perfect beam alignment is assumed,

finding the best beam-pair (tb, rb) in the first place is more

challenging if a LoS link is not available. We show this in

Fig. 7, where we compare the Top-K accuracy for NLoS and

LoS links. As expected, predicting the complex reflections

of NLoS links to find the best direction of transmission is

more challenging and results in a drop in the beam selection

accuracy. In particular, we observe a drop of ≈ 13% in top-1

accuracy and a worse-case of 18.79% accuracy drop in the top-

3 case. These results were generated using the same model and

data fusion technique described earlier in this section. Thus,

being able to detect blockage conditions is key to develop

algorithms that can work well under those scenarios or predict

the link reliability. Here, we train the same fusion network in

Fig. 4 for blockage detection task. We just modify the final

fully-connected layer to the new number of classes (blockage
and no-blockage). We achieve a blockage prediction accuracy

of 92.86%. While we trained a new neural network from

scratch, we argue that multi-task learning could be exploited

for joint beam selection and blockage detection predictions.

We envision an architecture where multiple fusion networks

combine features extracted from every single modality with

different objectives, providing fast machine learning to solve

a variety of problems in a joint manner.

VII. OPEN RESEARCH CHALLENGES

There are several research opportunities for future work in

data fusion V2I mmWave links, and we highlight some of

them below. Data for different sensing modalities is likely to

be collected in a distributed manner, whereas inference tends to

happen at a centralized entity. Hence, reliable and low-latency

control channels that enable data sharing among devices are

needed, which might require accurate re-design of existing

control channel technologies. Also, sharing certain sensing

modalities might require bandwidths not available at all times.

Thus, it is interesting to design modular fusion architectures

that can operate under missing data or to include additional

incoming data (multiple camera angles). Additionally, in this

work, we explored two different tasks (blockage prediction

and beam selection) independently. However, multi-task learn-

ing approaches where different fusion networks are trained

for different tasks will increase efficiency of memory and

computation resources, and inference time. Also, techniques

that enable fast inference of deep learning models, such as

pruning [19], are needed to enable real-time response times

in high mobility scenarios. Finally, exploring data fusion

of additional sensing modalities (i.e. LIDAR) will provide

additional features to increase accuracy and reliability for

multiple applications of wireless communications.

VIII. CONCLUSIONS

The widespread availability of camera sensors, in com-

bination with the recent advances in computer vision is a

potential candidate to reduce mmWave beam selection over-

head. Additionally, data fusion of such visual information

with location data, in combination with deep learning, opens

up a new world of opportunities for problem-solving in the

wireless communication [20]–[24] domain. In this paper, we

propose a custom-designed data fusion network that success-

fully identifies the set of beams with highest link quality

probabilities. In particular, the proposed approach provides a

reduction of 97,7% beam selection overhead versus the brute

force approach while maintaining a throughput ratio of 97,8%.

Additionally, we show a 92.86% blockage detection while

leveraging the same fusion network design.
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