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Abstract—Accurate beam alignment in the millimeter-wave
(mmWave) band introduces considerable overheads involving
brute-force exploration of multiple beam-pair combinations and
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still under development for 5G and beyond. Besides, blockage
prediction is a key capability in order to establish mmWave
reliable links. In this paper, we propose a data fusion approach
that takes inputs from visual edge devices and localization sensors
to (i) reduce the beam selection overhead by narrowing down
the search to a small set containing the best possible beam-
pairs and (ii) detect blockage conditions between transmitters
and receivers. We evaluate our approach through joint simulation
of multi-modal data from vision and localization sensors and RF
data. Additionally, we show how deep learning based fusion of
images and Global Positioning System (GPS) data can play a
key role in configuring vehicle-to-infrastructure (V2I) mmWave
links. We show a 90% top-10 beam selection accuracy and a
92.86% blockage prediction accuracy. Furthermore, the proposed
approach achieves a 99.7% reduction on the beam selection time
while keeping a 94.86% of the maximum achievable throughput.

Index Terms—mmWave, beam selection, machine learning,
deep learning, fusion, multi-modal data, 5G.

I. INTRODUCTION

Connected and autonomous vehicles are quickly being in-
tegrated into multiple industrial and civil applications given
the implicit advantages of energy consumption, comfort and
safety. However, these new systems require to manage enor-
mous amounts of data to enable real-time planning, video
processing and sensing, among others. In addition, many of
these applications are time-sensitive and require real-time data
processing and highly reliable links. For instance, camera
sensors may generate data up to 700MB/s and most automotive
applications have latency requirements of <100ms.

A. Motivation and Challenges in use of V2I mmWave links

Millimeter-wave (mmWave) is considered as the main
candidate to satisfy the needs for high data rates in V2I
scenarios and has already been adopted by 5G and WLAN
(802.11ad/ay) standardization groups. Furthermore, mmWave
and TeraHertz systems, both requiring directional antenna
arrays, are envisioned to play a major role in the future com-
munication systems of 5G and beyond. However, transmission
at these bands suffers from high attenuation associated with
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Fig. 1: Visual and location data are combined using data fusion
techniques. Different neural networks are used to process each
data modality, and are ultimately combined with the fusion
neural network to (i) aid the beam selection and (ii) detect the
blockage.

increasing carrier frequency and channel losses arising from
natural phenomena such as atmospheric absorption. Highly
directional antennas or arrays with multiple elements acting
as beamformers are found to be the best solution to extend
the range in these high frequencies. While these systems
are proven to be efficient in static scenarios, no unifying
solution for coordinated directional communications under
mobility constraints has been widely accepted. Exhaustive
search approaches where both transmitter and receiver explore
all possible beam directions are time-consuming and not
feasible under mobility scenarios where such process should
be repeated constantly. Hence, techniques that avoid time-
consuming beam selection procedures and predict blockage
are required for mmWave V2I networks.

In addition to high attenuation, mmWave links are found to
be susceptible to blockage due to their high penetration loss.
Hence, Line-of-Sight (LoS) connections are strongly preferred
over non-LoS (NLoS), specially for cellular systems where
the distances between a base station and a user can be of a
few hundreds of meters. Thus, blockage prediction is a key
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capability required to establish reliable mmWave links and
propose counteractive measures to NLoS conditions.

Interestingly, commercial devices are becoming more com-
plex, integrating multiple sensors that provide data in a variety
of sensing modalities, creating intelligent Internet of Things
(IoT) systems. In particular, recent advances in image pro-
cessing and computer vision open up a world of opportunities
for new visual IoT (V-IoT) applications, including wireless
communications.

B. Vision-Aided Beam Selection

Self-driving systems are often equipped with camera sys-
tems, providing autonomy and reliability through visual un-
derstanding of the surroundings. While such capabilities are
widely exploited for assisted and autonomous driving, they
have been under-explored in other domains that could also
leverage from context-aware information, such as wireless
communications [1]. For instance, camera images are able
to enhance both beam selection and blockage detection for
mmWave links by providing contextual information that other
RF technologies cannot offer. However, visual data has its
limitations as well (i.e. standalone images are insufficient
for multi-user scenarios). Such limitations can be addressed
through intelligent data fusion with other sensing modalities
deployed into commercial vehicles (GPS modules, radars, LI-
DAREs, etc). Thus, combining different out-of-band data aims
to intelligently fuse each sensing modality by highlighting
the advantages that each one provides, similar to Fig. 1,
where images are combined with GPS data to enhance beam
selection and blockage prediction. Nonetheless, data fusion
faces challenges of its own and robust control channels are
required if data collection and computation are not co-located.

C. Summary of the Contributions

In this paper, we propose a deep learning based fusion
framework for beam selection which leverages the GPS lo-
cation information along with visual data yielding to a low-
overhead fast beamforming process under mobility scenarios.
We list the novel contributions as follows:

o We design a custom image feature extractor for visual
data that identifies information relevant to beam selection
while filtering out background clutter.

We propose a deep learning architecture that uses visual
information top-K best beam-pairs in order to reduce
the beam selection overhead. Additionally, we designed
a data fusion neural network that intelligently combines
the location and image data in order to improve the top-K
beam selection accuracy.

We analyze the impact of the LoS/NLoS conditions in
terms of beam selection accuracy and propose a method
to predict mmWave link blockage.

We provide numerical results of the overhead reduction
as well as the link quality for the proposed approach.

The rest of the paper is organized as follows. We summarize
the related work on out-of-band beam selection in Sec. II.
Sec. IIT and Sec. IV present the system model and contribut-
ing overheads in the proposed framework, respectively. The
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detailed description of the proposed solution is presented in
Sec. V. We present an evaluation of our approach in Sec. VI.
Finally, we discuss potential future research directions and
conclude the paper in Sec. VII and Sec. VIII, respectively.

II. RELATED WORK

We summarize the out-of-band techniques that leverage the
data from different data modalities to achieve low-overhead
beam alignment solutions in Fig. 2. We highlight that no prior
work has explored data fusion of visual data with location
information.

A. Cross Channel Correlation

Exploiting channel knowledge at lower/higher frequency
bands such as sub-6 GHz and radar has shown promising
results on aiding the beam selection.

1) Sub-6 GHz: To the best of our knowledge, exploring
the sub-6 GHz channel properties as a single out-of-band
technology for V2I beam selection was only investigated
in [2]. However, multiple works have explored sub-6GHz in
conjunction with other data modalities, as we summarize in
Sec. II-B4.

2) Radar: In [3] the concept of radar-aided vehicular
communication is introduced, where the radar is exploited as
an additional source of information for V2I mmWave beam-
forming. The authors in [4] leverage the PHY layer 802.11ad
frames to perform both radar operations and conventional
communications using a standard-compliant Tx/Rx chain. The
radar is employed to estimate the location of the vehicles and
consequently assist the beam selection. In [5], a passive radar
receiver is placed at the roadside unit to tap the transmissions
from other automotive radar. The spatial covariance of the
radar signals is explored to establish the communication link.
Finally, [6] uses radars to estimate the azimuth power spectrum
and compare it with the one obtained from a communication
system.

B. Use of non-RF Sensor Data

Different kinds of sensors are being integrated into com-
mercial and industrial systems in various ways. For example,
smartphones are starting to be equipped with LIDARs on top
of multi-camera systems and autonomous cars are assisted
with multiple sensor and vision systems. In this subsection,
we summarize how different data modalities can help reduce
the overhead.

1) Localization: The authors in [7] propose a localization-
based beam selection algorithm that explores geometrical
patterns through the location of not only the vehicle involved
in the communication but all the neighboring vehicles. In [8],
the multipath channel fingerprints are characterized and stored
in a database. Then, every newly obtained fingerprint is used
to query such database to provide a set of potential beam
directions for reliable and fast-changing beam alignment.
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Fig. 2: Sensing-aided beam selection modalities. Multiple RF, non-RF and fusion of out-of-band sensing modalities has been
explored. We highlight that no prior work combines vision and location information.

2) LIDAR: LIDARs are used in autonomous vehicles for
obtaining accurate mappings of the environment and high-
resolution positioning. The authors in [9] leverage LIDAR in
different forms for LoS detection and beam selection overhead
reduction. Similarly, Woodford er al. [10] generate a 3D
map of the environment by multiple LIDAR measurements
and feed it to ray-tracing software to predict the reflection
patterns. However, practical considerations such as the costly
pre-processing of high-dimensional point clouds raise the
concern on whether the accurate LIDAR mapping is a feasible
candidate for achieving low-overhead beamforming.

3) Vision: Image processing and computer vision have
enormously improved their capabilities in recent years due
to the latest advances in deep learning. Such algorithms are
employed in multiple domains, providing multiple forms of
automated understanding of visual data. Similarly, context-
aware information obtained from images can also be exploited
to assist wireless communications systems. In particular, visual
data can help to address some of the challenges associated with
establishing reliable mmWave links, such as beam selection or
blockage prediction, as we propose in this paper. Vision-based
beam prediction was first proposed in [11], where a simulation-
based beam tracking solution is presented. The authors train a
neural network to predict the next beam direction for different
numbers of time-steps in the future. We also highlight the
work in [12], while the authors do not face the challenges of
V2I, mmWave radios and cameras are used to showcase the
first implementation of a vision-based beam selection system.

4) Fusion: To overcome the potential weaknesses and com-
bine the advantages of single sensing modalities, a variety of
methods leveraging different sensory data are proposed in the
literature. The authors in [13] explore the gains of employing
images to overcome blockage and enhance the beam selection
process, in combination with sub-6 GHz channel information.
Cameras are mounted at the mmWave base station to provide
visual information, which is fused with other out-of-band
channels. In [14] the authors propose a distributed approach
where the best beam-pair inference is computed at the LIDAR-
equipped vehicle. The mmWave BS broadcasts its location to
the vehicles, which is combined with LIDAR data to predict
the best beam.

While multiple data fusion approaches have been explored,
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we believe that the combination of multiple sensing modalities
has only scratched the surface of its possibilities. In this paper,
we showcase the fusion of GPS and images to aid the V2I
mmWave beam selection process, which remains unexplored
up until now.

III. SYSTEM MODEL

We consider a V2I cellular communication system mainly
operating in the mmWave band with an available sub-6
GHz control channel. Thus, both transmitter and receiver are
equipped with two RF chains each. We assume a discrete
number of mmWave antenna array configurations that sector-
izes the space into a set of possible directions. Predefined and
fixed beam codebooks are assumed on both ends, expressed as
B, ={1,...,t,...; Nip.} and By, = {1,...,7, ..., N, }, where
t and r represent the transmitter and receiver beam indices,
respectively. The total number of beam-pairs depends on the
transmitter and receiver codebooks sizes, defined as Ny, and
N,.., respectively. Then, every beam-pair can be expressed as
(t, r), where t € By, and r € B,, represent the beam indices.
Additionally, we define (¢, 73) as the beam-pair providing the
best performance (highest received signal strength) out of all
the Ny X N,, possible configurations.

We develop an ML-based method to reduce the beam-
selection overhead for a V2I cellular system. We assume that
the vehicle is equipped with a GPS module and broadcasts
its absolute location and vehicle type periodically to the BS
using the control channel in the sub-6 GHz band. Notice that
this functionality will most likely be included in the most self-
driving cars as part of collision avoidance mechanisms.

The vehicle location is then combined with the visual
information obtained from the cameras located at the BS to
assist the beam-selection. We run the inference model at the
BS locally in order to avoid additional latency derived from
communication with the cloud. This assumption is backed
up by the recently proposed 5G functional splits between
the Baseband Units (BBU) and the Remote Radio Heads
(RRH) [15].

A. Dataset

We evaluate our approach using the publicly avail-
able mmWave Raymobtime multimodal datasets (s008 and
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s009) [16]. The simulation consists of an urban scenario with
a single BS and multiple vehicle types (bus, car, or truck).
Each scene is labeled with the best possible beam-pair out of
the 256 available combinations (/N;, and N, are 32 and 8,
respectively). We use the coordinate and image modalities to
evaluate our proposed approach. The target receiver location
is expressed as a 2-point coordinate. The images are captured
from three co-located cameras with slightly different angles.
Additionally, we notice that not all beam-pair combinations are
equally represented in the dataset, for which we will explore
corrective measures in future work.

IV. BEAM SELECTION OVERHEAD

For comparison purposes, we describe the beam selection
time required to find the (¢;,7,) following the 5G-NR stan-
dard compliant operation as well as our sensing-aided beam
selection approach.

A. Beam Selection Overhead in 5G-NR

The beam selection process happens during the initial ac-
cess, where the gNodeB and user exchange a number of mes-
sages to find the best beam-pair combination. In particular, the
gNodeB sequentially transmits synchronization signals (SS) in
each codebook element ¢t € B;,. In the meanwhile, the user
switches through all its codebook configurations r € B,.,, until
all possible configurations are explored.

The standard defines an SS block as the set of SS transmitted
under the same beam configuration, with multiple SS blocks
further grouped into SS burst. Hence, in order to explore all
beam-pair combinations, a total of |B| = Ny, X N, SS blocks
need to be transmitted. SG-NR defines the maximum SS burst
duration (7’ssp) to Sms, which is transmitted with a periodicity
(Tp) of 20ms [17].

The mmWave band allows a maximum of 32 SS blocks
within a SS burst, which enables exploring up to 32 different
beams within one SS burst. Thus, given the limit on SS
blocks per SS burst, the total time to explore all beam-pair
combinations (77.") can be formulated as:

Bl -1
32

Note that if a certain number of beam-pairs are not explored
within the first SS burst (]3| > 32), there is an increasing delay
given the separation T}, between SS bursts. On the other hand,
exploring a number of pairs smaller than 32 will introduce the
same overhead as if a total of 32 options were searched, given
that T, has a fixed duration of 5ms. Similarly, this can be
extended to any number |5| that is not a multiple of 32.

mwm=nx{ J+%m I

B. Beam Selection Overhead of the Proposed Approach

Our proposed approach provides a reduction on the beam
search by intelligently combining the image and location data.
Thus, the beam search space is reduced from |B| to a subset of
K <« |B| likely beam candidates, which are the K candidates
with the highest predicted probabilities. We recall that the NR
standard assumes that up to 32 sectors can be swept within
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Fig. 3: Image feature extractor front end, the input images are
fed to a model that segments the image into 4 possible labels:
Background (0), Bus (1), Car (2), Truck (3).

5ms. Thus, we define the time to explore one single beam as
T, = 5ms/32 = 156 ns. Then, the required time for sweeping
the selected top-K beam-pairs can be expressed as:

K-1

Tsweep(]) = T % {TJ +Tpx (14 (K —1) mod 32). (2)
Notice that the image processing time and the vehicle posi-
tioning feedback are neglected, and only the beam sweeping

time is considered in this analysis.

V. DATA FUSION FOR BEAM SELECTION

In this section, we describe our beam selection vision-based
approach. Next, we propose a fusion network that intelligently
combines GPS and visual data to further enhance the beam
selection accuracy.

A. Visual Data Pre-processing

Visual images capture information from the overall scene.
However, multiple vehicles are present in one snapshot and
multiple regions of an image contain irrelevant background
information. Thus, similar to [12], we explore design a feature
extractor to provide simple contextual information, such as
vehicle detection and background removal. To do so, we
construct a dataset out of windowed images from the full
dataset images. Each window is accurately selected so that
it only contains a certain vehicle type (car, bus and truck)
or background. We manually label a small set and extend the
dataset by cropping each labeled image with W x W windows.
Next, we train a neural network to classify these four different
classes. We use a simple architecture with one convolutional
layer with rectified linear units (ReLU) activation, a maxpool
layer, dropout and two fully connected layers with ReLU and
softmax activations, respectively. Next, we use the trained
classifier to separate different vehicles from the background
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Fig. 4: Neural Network architectures for single-modal and multimodal implementations.

in the images collected by the camera on the BS. First, we
quantize the input images into multiple W x W crops in
steps of S, referred to as stride size. Then, using the above-
described model, each crop is classified into Background (0),
Bus (1), Car (2), Truck (3). Finally, we leverage the vehicle
type knowledge of the receiver to set the different vehicle types
as -1 (i.e., If a certain user is a car, each cropped area where
a Bus (1) or a Truck(3) are detected, would be set to -1). At
the output, we obtain a dimensionally reduced version of the
original image, in form of a bitmap that separates the target
vehicle type from the background and other vehicle classes.

In our evaluation, we only use the images from a single
camera since the different angles are comparable and adding
information from the remaining cameras does not result in
increased performance. We set W and S to 40 and 5, re-
spectively. We obtain an accuracy of 84% on background and
vehicle type detection. The raw visual information is expressed
in form of 960 x 540 RGB images. The output of our custom
image feature extractor is a bitmap of size (101, 185).

B. Beam Selection using Visual Data

In this subsection, we present our designed model archi-
tecture for predicting the best beam-pair based on the images
extracted features. We show the model architecture in Fig. 4.
In the first layer, we use an inception module. Specifically, we
apply 3x3, 7x7, and 11 x 11 convolutional layers to the input
features altogether. Different sized convolutions are employed
to extract spatial features on different levels and all three
feature maps are concatenated at the output of each layer. The
next two layers are a max polling and a convolutional layer
with (3, 3) kernels. The next modules are inspired by ResNet
against overfitting. Each module contains two convolutional
layers with 32 kernels of size 3 x 3, and an identity shortcut
connection that skips these two layers, followed by a 2 x 2
max pooling layer. The last two fully-connected layers act
as a classification layer. We use dropout of 0.25 and ReLU
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activation function in each convolutional and fully-connected
layers.

C. Proposed Fusion of Location Sensor with Visual Data

While location data provides a tremendous advantage for
beam-selection, it does not provide any environmental in-
formation and becomes incomplete as a standalone sensor.
In contrast, vision-aided beam-selection becomes challenging
when multiple users are captured in the camera images and no
other information is provided. Hence, in this paper, we pair
a camera system with GPS sensors information into a fusion
framework that intelligently combines each sensing modality.

Prior to the data fusion stage, the location information
is processed by a dedicated neural network. We show the
architecture used for location information in Fig. 4. Next, the
extracted features from the image and GPS data are combined
into the data fusion network. In order to maintain the spatial in-
formation, the proposed fusion network takes the features from
the last convolutional layers of each single modality network.
The different single-modal features are fused using an element-
wise product operation. Next, transposed convolutional layers
are used to expand the dimensionality of the original input. The
rest of the architecture is presented in Fig. 4. In the following
section, we evaluate the beam selection performance by using
each single data modality independently as well as following
the data fusion approach described above.

V1. EXPERIMENTS AND RESULTS

In this section, we describe the training process and pro-
vide results for top-K beam selection accuracy, as well as
throughput ratio and beam selection time in comparison to
the 5G-NR standard approach. Finally, we provide insights on
the importance of blockage detection and provide prediction
results that justify the feasibility of the approach.
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TABLE I: Performance of single-modal and multi-modal approaches.

Modality Top-1 Top-2 Top-5 Top-10 | Top-30 | Top-50
Acc [ Precision [ Recall [ F; Score Acc Acc Acc Acc Acc
Visual data | 16.70% 0.0% 0.0% 0.0% 31.8% 582% | 78.46% | 91.88% | 95.68%
Coordinate | 54.72% | 74.04% | 27.39% 32.8% 71.4% 83% 87.71% | 96.99% | 98.91%
Fusion 5753% | 69.59% | 42.94% | 45.82% | 75.61% | 87.96% | 93.4 % | 98.11% | 99.07%
A. Training Parameters and Evaluation Metrics 100
We use the softmax function as an activation in the classifier 90
layer, and categorical cross-entropy as the loss function. We s — Throughput Ratio
train the model with a batch size of 64, we use Adam optimizer 80 ,' = = Top-K accuracy
with 8 = (0.9,0.999) and initialize the learning rate to 0.0001. !
To analyze the performance of the proposed approach, we use 70 1y
top-K accuracy, as well as F; score, as performance metrics. "
Notice that the F; score is relevant in this work given the 60
imbalanced nature of the used dataset. Additionally, we also
. . . 50
evaluate the overhead as beam selection time, and the link 10 20 30
K

quality as throughput ratio.

B. Performance of Proposed Fusion Technique

The training is done similarly for both single and multi-
modal models. The first row in Table I represents different test
accuracies for top-K beam selection using only visual data.
We observe how a standalone vision-based beam selection
requires a considerably high K to achieve acceptable accuracy.
One the other hand, the results (Table I) reveal that the
fusion of coordinate modality with visual data significantly
improves the accuracy for the top-K beam selection as well
as the F; score. We observe that the coordinate gives better
performance compared to visual data; however, the fusion
of both modalities improves the performance over single-
modal implementation. In particular, a 93% top-10 accuracy
is achieved using the fusion model, which further reduces tje
beam alignment time. The improvement in F; score is also
very important for the considered imbalanced dataset. The
source codes for our implementation are available in [18].

C. Throughput Ratio

While the proposed out-of-band method outperforms the
state-of-the-art mmWave standard in time, we also need to
compare them with respect to the received power strength.
We define a metric throughput ratio to account for the the
degradation in the performance of the system caused by
not capturing the optimum beam direction in a single shot.
Considering the set of all possible beam directions within the
transmitter and receiver codebooks (¢, ), the optimum beam
direction is defined as (3, 73) according to Sec. III. The 5G-
NR standard detects the optimum direction by sending beacons
over each sector as described in Sec. IV-A. On the other
hand, the proposed method exploits the side information from
optical cameras and GPS positioning to provide an optimality
probability estimation of each beam configuration. We denote
the top model prediction by (¢,,r,) and define the throughput
ratio as follows:
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Fig. 5: Throughput ratio and top-K accuracy for different K
values.

1

N;

loga[l + Y(t,.r,) (1)

R+ =
T 10g2[1 + Yz, rp) ()

]}, 3
n=1

where N, is the total number of test samples and y4, ) and
Y(t,,rp) denote the received power associated with the ground-
truth and predicted beam-pairs, respectively. Fig. 5 shows top-
K accuracy and throughput ratio with respect to increasing
K. From this figure, we observe that top-K accuracy and
throughput ratio starts with 57.5% and 75.8% for K = 1
and achieves ~ 99% throughput ratio when K = 30, which
corresponds to a much smaller search space than the 5G-NR
standard, i.e. 256 beam-pairs.

D. Beam Selection Overhead

As described in Sec. IV, the beam selection process intro-
duces an overhead that is dependent on the number of available
beam combinations (K). Here, we numerically analyze how
the proposed reduction in the beam space translates into a
faster initial access. In Fig. 6, it can be observed that the 5G-
NR process requires a total 145ms to find the best beam-pair
out of the 256 available options. In contrast, our approach
achieves a throughput ratio of 94.8% and 97.8% with a
total overhead of 1.6ms and 3.28ms, respectively. Thus, as
mentioned previously, our beam selection approach provides
a reduction in beam search space, which considerably reduces
the mmWave initial access overhead.

E. The Importance of Line-Of-Sight (LoS): Blockage Predic-
tion

As mentioned in the Sec. I, the presence of blockage
can lead to massive drops in channel quality given the high
attenuation in the mmWave band. Additionally, users might
experience a considerable reduction in their quality of service
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Rt > 0.95 in both cases.
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Fig. 7: LoS and NLoS Top-K accuracy comparison. NLoS face
a drop in beam selection accuracy due to blockage. We observe
how NLoS can be affected by >18% drop in beam selection
accuracy (right y-axis). Thus, blockage prediction techniques
are relevant to establish reliable mmWave links.

(QoS) to tens of Gbps. On top of the adversity nature of NLoS
mmWave links under perfect beam alignment is assumed,
finding the best beam-pair (¢p,75) in the first place is more
challenging if a LoS link is not available. We show this in
Fig. 7, where we compare the Top-K accuracy for NLoS and
LoS links. As expected, predicting the complex reflections
of NLoS links to find the best direction of transmission is
more challenging and results in a drop in the beam selection
accuracy. In particular, we observe a drop of =~ 13% in top-1
accuracy and a worse-case of 18.79% accuracy drop in the top-
3 case. These results were generated using the same model and
data fusion technique described earlier in this section. Thus,
being able to detect blockage conditions is key to develop
algorithms that can work well under those scenarios or predict
the link reliability. Here, we train the same fusion network in
Fig. 4 for blockage detection task. We just modify the final
fully-connected layer to the new number of classes (blockage
and no-blockage). We achieve a blockage prediction accuracy
of 92.86%. While we trained a new neural network from
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scratch, we argue that multi-task learning could be exploited
for joint beam selection and blockage detection predictions.
We envision an architecture where multiple fusion networks
combine features extracted from every single modality with
different objectives, providing fast machine learning to solve
a variety of problems in a joint manner.

VII. OPEN RESEARCH CHALLENGES

There are several research opportunities for future work in
data fusion V2I mmWave links, and we highlight some of
them below. Data for different sensing modalities is likely to
be collected in a distributed manner, whereas inference tends to
happen at a centralized entity. Hence, reliable and low-latency
control channels that enable data sharing among devices are
needed, which might require accurate re-design of existing
control channel technologies. Also, sharing certain sensing
modalities might require bandwidths not available at all times.
Thus, it is interesting to design modular fusion architectures
that can operate under missing data or to include additional
incoming data (multiple camera angles). Additionally, in this
work, we explored two different tasks (blockage prediction
and beam selection) independently. However, multi-task learn-
ing approaches where different fusion networks are trained
for different tasks will increase efficiency of memory and
computation resources, and inference time. Also, techniques
that enable fast inference of deep learning models, such as
pruning [19], are needed to enable real-time response times
in high mobility scenarios. Finally, exploring data fusion
of additional sensing modalities (i.e. LIDAR) will provide
additional features to increase accuracy and reliability for
multiple applications of wireless communications.

VIII. CONCLUSIONS

The widespread availability of camera sensors, in com-
bination with the recent advances in computer vision is a
potential candidate to reduce mmWave beam selection over-
head. Additionally, data fusion of such visual information
with location data, in combination with deep learning, opens
up a new world of opportunities for problem-solving in the
wireless communication [20]-[24] domain. In this paper, we
propose a custom-designed data fusion network that success-
fully identifies the set of beams with highest link quality
probabilities. In particular, the proposed approach provides a
reduction of 97,7% beam selection overhead versus the brute
force approach while maintaining a throughput ratio of 97,8%.
Additionally, we show a 92.86% blockage detection while
leveraging the same fusion network design.
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