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Abstract—Beam selection for millimeter-wave links in a vehic-
ular scenario is a challenging problem, as an exhaustive search
among all candidate beam pairs cannot be assuredly completed
within short contact times. We solve this problem via a novel
expediting beam selection by leveraging multimodal data collected
from sensors like LiDAR, camera images, and GPS. We propose
individual modality and distributed fusion-based deep learning
(F-DL) architectures that can execute locally as well as at a mobile
edge computing center (MEC),with a study on associated tradeoffs.
Wealso formulate and solve anoptimizationproblemthat considers
practical beam-searching, MEC processing and sensor-to-MEC
data delivery latency overheads for determining the output dimen-
sions of the above F-DL architectures. Results from extensive eval-
uations conducted on publicly available synthetic and home-grown
real-world datasets reveal 95% and 96% improvement in beam
selection speed over classical RF-only beam sweeping, respectively.
F-DL also outperforms the state-of-the-art techniques by 20-22%
in predicting top-10 best beam pairs.

Index Terms—Beam selection, distributed inference, 5G, fusion,
mmWave, multimodal data.

I. INTRODUCTION

EMERGING vehicular systems are equipped with a variety
of sensors that generate vast amounts of data and require

multi-Gbps transmission rates [1]. These sensor inputs may be
needed for safety-critical vehicle operation aswell as for gaining
situational awareness while in motion, which needs to be timely
processed at a mobile edge computing (MEC) center to generate
driving directives. Such a large data transfer volume at short
contact times can quickly saturate the sub-6 GHz band. Thus,
the millimeter-wave (mmWave) band is widely considered as
the ideal candidate for vehicle-to-everything (V2X) commu-
nications [2], given the promise of 2 GHz wide channels and
vast under-utilized spectrum resources in the 57–72 GHz band.
However, transmission in the mmWave band has associated
challenges related to severe attenuation and penetration loss.
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Fig. 1. Our fusion pipeline exploits GPS, camera and LiDAR sensor data to
restrict the beam selection to top-K beam pairs.

Phased arrays with directional beamforming can compensate
these issues by focusing RF energy at the receiver [3]. Hence,
in the so called beam selection process, the nodes on either
end of the link attempt to converge to the optimal beam pairs,
where each beam pair is a tuple of transmitter and receiver beam
indices, by mutually exploring the available space uniformly
partitioned into discrete sectors [4]. However, exploring all
possible beam directions in the existing IEEE 802.11ad [5] and
5GNewRadio (5G-NR) [6] standards can consume up to tens of
milliseconds and must be repeated constantly during vehicular
mobility [7]. To address this problem, we propose to exploit
the side out-of-band information to restrict the searching to a
subset of most likely beam pair candidates. As shown in Table I,
reducing the number of beam pairs from 60 to 30 significantly
decreases the beam selection overhead by 50% and 80% for
IEEE 802.11ad and 5G-NR standards, respectively.

A. Use of Sensors to Aid the Beam Selection

Due to the directional transmissions at mmWave band, the
beam selection process can be interpreted as locating the paired
user or detecting the strongest reflection in the case of line of
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TABLE I
THE REDUCTION IN BEAM SELECTION TIME WHILE REDUCING THE BEAM

SEARCH SPACE FROM 60 TO 30 BEAM PAIRS

sight (LOS) and non-line of sight (NLOS) path, respectively.
Hence, the location of the transmitter, receiver, and potential
obstacles are the key factors in beam initialization. Interestingly,
this information is also embedded in the situational state of the
environment that can be acquired through monitoring sensor
devices. Fig. 1 shows our scenario of interest with a moving
vehicle and a road-side base station (BS) attempting to find the
best beam pair with multiple reflectors and blocking objects.
We assume the state of the environment is captured by a combi-
nation of GPS (Global Positioning System) and LiDAR (Light
Detection and Ranging), which provides a 3-D representation of
the surroundings, sensors in the moving vehicle, and a camera
at the BS. We use a sub-6 GHz data channel for exchanging this
sensor data between the vehicle and MEC. We then propose to
use these non-RF sensor data to suggest a subset of “top-K”
beam pairs and speed up the beam selection, consequently. The
candidate set of selected beam pairs is communicated to both the
BS and the vehicle over the sub-6 GHz control channel. After
this, both the vehicle and the BS execute the standards-defined
beam-searching algorithms, but only on the subset of top-K
suggested beam pairs.

The Yole Dévelopment report anticipates that the global mar-
ket for GPS, radar, cameras, and LiDARs will increase from
$67.14 in 2020 to $159.6 in 2025 [8]. With the widespread
of IoT devices, multiple sensors are now available as standard
installations for the majority of electronic devices as well as
fixed roadside infrastructures [9], [10]. LiDAR sensors are an
indispensable part of modern vehicles that are used for either
automated driving or collision avoidance [11]. The GPS data
are regularly collected and transmitted as part of basic safety
messages frame in V2X applications [12], and surveillance
cameras have been in use for decades with the growth of smart
cities [13].

B. Deep Learning on Multimodal Sensor Data

While using sensor data for out-of-band beam selection is
an exciting new approach there some challenges that need to
be addressed. First, since the physical environment influences
signal propagation in ways that are hard to computationally
model in real time, hand engineering features extracted from
such sensor data that could be discriminative is infeasible, as
there could be a vast multitude of reasons impacting the signal
propagation. Second, a systematic approach is required to prop-
erly join the information from sensor modalities with different
properties to predict the optimality of each beam pair. Note that
while the beam pair can be inferred through basic geometry
under ideal LOS conditions, such an approach fares poorly in
scenarios with multiple reflections, such as in NLOS situations.

Third, since the sensors are not all available at one site, both
on the vehicle and BS, the secondary channels are required to
maintain the connectivity between the vehicle and MEC. The
communication constraints in these secondary channels need
to be fully accounted for: the relaying cost of data exchange,
especially massive LiDAR point cloud, might undermine the
performance with respect to end-to-end latency. Finally, the
beam search dimension K is a control parameter that needs
to set prior to starting the beam-searching process. Hence,
an algorithm is required to select the appropriate K to fully
determine the system design.

Our approach directly addresses these challenges. First, we
design a fusion-based deep learning (F-DL) framework oper-
ating on all these different modalities to predict a subset of
top-K beam pairs that includes the globally optimal solution
with high probability. Additionally, we adopt a distributed infer-
ence scheme to compress the raw data into high level extracted
features at the vehicle to reduce the overhead on the wireless
backchannel, accounting for end-to-end latency in the selection
of the optimal beam. Finally, we take into account the predic-
tion from our proposed F-DL framework along with mmWave
channel efficiency to properly adjust the beam search space K,
on a case-by-case basis.

C. Summary of Contributions

Our main contributions are as follows:
1) We design deep learning architectures that predict the set

of top-K beam pairs using non-RF sensor data such as
GPS, camera, and LiDAR, wherein the processing steps
are split between the source sensor and the MEC. We
validate the improvement achieved by fusing available
modalities versus unimodal data on a simulation as well as
a home-grown real-world datatset. Our results show that
fusion improves the prediction accuracy by 3.32–43.9%.
The proposed fusion network exhibits 20–22% improve-
ment in top-10 accuracywith respect to the state-of-the-art
techniques.

2) We formulate an optimization problem to appropriately
select the set of K candidate beam pairs, which takes
into account mmWave channel efficiency while trying to
maximizing the alignment probability, i.e. the case where
the optimum beam pair is included within the suggested
subset. Thus, the control variable K is not arbitrarily
chosen, but tightly coupled to scenario constraints.

3) We rigorously analyze the end-to-end latency of our pro-
posed non-RF beam selection method and compare it with
the state-of-the-art standard formmWave communication,
namely 5G-NR and demonstrate that the beam selection
time decreases by 95–96% on average while maintaining
97.95% of the throughput, considering all the overhead of
control/data signaling for both approaches.

II. RELATED WORK

Leveragingout-of-banddata, both inRFandnon-RFdomains,
can speed up the beam selection. RF-based out-of-band beam

Authorized licensed use limited to: Northeastern University. Downloaded on September 18,2022 at 18:25:47 UTC from IEEE Xplore.  Restrictions apply. 



SALEHI et al.: DEEP LEARNING ON MULTIMODAL SENSOR DATA AT THE WIRELESS EDGE FOR VEHICULAR NETWORK 7641

Fig. 2. Deterministic and ML-aided beam selection strategies.

selection is possible via simultaneous multi-band channel mea-
surements, when there exists a mapping between mmWave and
the channel state information (CSI) from the another band [14].
However, this method does not support simultaneous beam-
forming at both the transmitter and receiver ends. As opposed
to the RF-only approach, non-RF out-of-band beam selection
leverages data from different sensors and generates a mutual
decision for both transmitter and receiver. Fig. 2 summarises the
emphasis of this paper and different beam selection strategies.

A. Traditional

1) In-Band RF: Yang et al. [15] adopt a hierarchical search
strategy where the mmWave channel is first tested with com-
paratively wider beams by using a reduced number of antenna
elements. The beam width is then narrows until the best beam
is obtained. Wang et al. [16] show that mmWave links preserve
sparsity even across locations in mobile V2X scenarios. Hence,
theyutilize the angle of departure (AoD) to search for beamsonly
within this range, thereby reducing beam selection overhead.

2) Out-of-Band RF: Steering with eyes closed [17] exploits
omni-directional transmissionswithin the legacy2.4/5GHzband
to infer the LOS direction between the communicating devices
to speed up the mmWave beam selection. GonzÃlez-Prelcic
et al. [18] exploit the side information derived from RAdio
Detection And Ranging (RADAR) data to adapt the beams
in a vehicle to infrastructure network, where a compressive
covariance estimation approach is used to establish a mapping
between RADAR and mmWave bands.

B. Ml-Based

1) Rf-Only: He et al. [19] design a deep learning based
channel estimation approach using iterative signal recovery,
wherein the channel matrix is regarded as a noisy 2D natural
image. Learnt denoising-based approximate message passing
(LDAMP) neural networks are applied on the input for channel
estimation. Hashemi et al. [20] model the mmWave beam selec-
tion as a MAB (Multi-armed bandit) and use the reinforcement
learning to maximize the directivity gain (i.e., received energy)
of the beam alignment policy.

2) MLUsing Single non-RFModality: Va et al. [21] consider
a setting where the location of all vehicles on the road, includ-
ing the target receiver, is used as input to a machine learning
algorithm to infer the best beam configuration. Vision-aided
mmWave beam tracking in [22] models a dynamic outdoor

TABLE II
NOTATION SUMMARY

mmWave communication setting where the sequence of pre-
vious beams and visual images are used to predict future best
beam pairs.

3) MLWith Sensor Fusion: The proposed setting by Klautau
et al. [23] andDias et al. [24] comes closest to ourswithGPS and
LiDARbeing used as the side information for LOS detection and
also reducing the overhead in a vehicular setting. On the other
hand, Muns et al. [25] use GPS and camera images to speed up
the beam selection with a focus on designing preprocessing step
for images and fusion scheme.

The state-of-the-art does not consider the deep learning based
fusion for more than two non-RF modalities to fully exploit
the latent features within the data. The GPS coordinates are
only used in the preprocessing pipeline to identify the target
receiver. There also has not been any effort to decouple the
expert knowledge for dynamically reducing the beam search
space depending on specific user constraints. Our proposed
method exploits a customized deep learning fusion approach
that is carefully designed to maximize the beam selection accu-
racy. Moreover, completed by an algorithm that automatically
chooses a dynamic subset of beam pairs, our method can run
end-to-end without any hand engineering.

III. SYSTEM MODEL AND OVERVIEW

In this section, we first review classical beam selection and
discuss it’s limitations.We then propose to use non-RF data from
multiple sensors to facilitate– and accelerate–beam selection.
Table II summarizes our notation.
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A. Beam Selection Problem Formulation

We consider an analog beamforming scheme with fixed size
codebooks at transmitter and receiver radios as:

CTx = {t1, . . . , tM}, CRx = {r1, . . . , rN}, (1)

where M,N are the number of transmitter and receiver code-
book elements, respectively. Each element of the codebook
represents a particular beam orientation that can be utilized by
the radio. Thus, the set of all possible beam pairs B is:

B = {(tm, rn)|tm ∈ CTx, rn ∈ CRx}, (2)

with |B| = M ×N . For a specific beam pair (tm, rn), the
normalized signal power is obtained as:

y(tm,rn) = |wH
tmHwrn |2, (3)

whereH ∈ RM×N is the channel matrix andH is the conjugate
transpose operator. The weights wtm and wrn indicate the cor-
responding beam weight vectors associated with the codebook
element tm and rn, respectively (|wtm | = M, |wrn | = N ). The
goal of the beam selection process is to identify the best beam
configuration, (t∗, r∗), that maximizes the normalized signal
power, given by:

(t∗, r∗) = argmax
1≤m≤M,1≤n≤N

y(tm,rn). (4)

In classical beam selection, such as the approach defined in the
IEEE 802.11ad [26] and 5G-NR [27] standards, the transmitter
and receiver sweep all beam pairs (tm, rn) ∈ B sequentially in
order to select the best beam pair.

B. Subset Selection

While exhaustive searching through all candidate options
ensures the beam alignment, the typical time to complete the
entire procedure is in the order of∼10ms for IEEE 802.11ad [5]
and∼5 ms for 5G-NR [6] with only 30 beam pairs, respectively.
Toaddress this,wepropose abeamselection framework that uses
out-of-band multimodal data to identify a subset of candidate
beams, which are subsequently swept to select the one that
maximizes the normalized signal power [28]. More specifi-
cally, the key algorithmic component of our system amounts to
proposing a means for identifying a subset BK ⊆ B ofK beam
pairs such that (t∗, r∗) ∈ BK with high probability. Formally,
assuming that we have a probability distribution for the optimal
pair (t∗, r∗), we wish to find:

BK = argmax
A⊆B,|A|=K

P((t∗, r∗) ∈ A). (5)

Having obtained BK , we then restrict the search for the optimal
pair to this set. Our solution uses a neural network to leverage
out-of-band data to determine the probability distribution P.
Parameter K establishes a trade-off between throughput per-
formance, obtained by the best beam in BK , and latency, as a
larger K results in more processing time to search through the
candidate options. Thus, our end-to-end design includes ameans
for appropriately determiningK, where the boundary condition
of K = 1 represents selecting the optimal beam pair. Overall,
this auxiliary parameterK enables the users to adjust the system

according to their specific constraints on establishing a low-
latency or ultra-reliable communication. Moreover, it gives the
flexibility to analyze the adjacent beam patterns with relatively
closer performance or irregular radiation patterns under NLOS
conditions.

C. System Overview

Overall our framework consists of three main components.
1) Data Preprocessing: For the collected data to be effective,

it is crucial to mark the transmitter, target receiver, and
blocking objects. Thus, we exploit the prepossessing step
described in Sec. IV for image and LiDAR.

2) Beam Prediction using Fusion-based Deep Learning:
Given the multimodal sensor data, we design a F-DL
architecture that predicts the optimality of each beam
pair. Our approach consists of custom-designed feature
extractors for each sensor modality, followed by a fusion
network that joins the information for the final prediction.
Our proposed fusion approach is presented in Sec. V.

3) Top-K Beam Pair Construction: We select, the beam
search space dimension, K by defining an optimization
problem (see Sec. VI) that takes into account themmWave
channel efficiency and probability of including the glob-
ally optimum beam pair.

In summary, our proposed beam selection approach runs in
four steps end-to-end. First, the sensors at the vehicle collect
GPS and LiDAR data, and the camera at the BS captures an
image. The collected raw data is then preprocessed on site.
Second, having the feature extractors of GPS and LiDAR being
deployed at the vehicle, the high level features are generated and
shared with the MEC over the sub-6 GHz data channel. This
approach avoids sharing unnecessary amounts of data and helps
mitigating potential privacy concerns. The high-level features of
the image are generated in parallel. Third, given the extracted
features of all three modalities atMEC, our method suggest a set
of top-K candidates for sweeping. The subset of K beam pair
is shared with the vehicle over the sub-6 GHz control channel.
Finally, the beam sweeping runs at mmWave band (60 GHz) in a
reduced search space of selected top-K candidates to select the
best beam pair and establish the link.

D. Sensor Modalities

The details of the three sensor modalities are given below:
1) GPS: This sensor generates readings in the decimal de-

grees (DD), where the separation between each line of
latitude or longitude is expressed as a float number with
5 digit precision and pinpoints the location on the earth’s
surface. We do not assume any satellite link outages due
to terrain or man-made structures.

2) Image: This sensor captures still RBG images of the
environment. Although images allow comprehensive en-
vironmental assessment, they are impacted by low-light
conditions and obstructions (such as a different vehicle in
the LOS path)

3) LiDAR: This sensor generates a 3-D representation of the
environment by emitting pulsed laser beams. The distance
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Fig. 3. The LiDAR preprocessing pipeline.

of each object from the origin (i.e., the sensor location) is
calculated based on reflection times. The rawLiDARpoint
clouds are data intensive (∼1.5 Mb for sparse settings),
necessitating processing at the vehicle.

IV. DATA PREPROCESSING

In this section, we describe our preprocessing pipeline for
image and LiDAR.

A. Processing Images

The raw images collected at the BS provide a snapshot of
the present objects in the scene. In this case, it is crucial to
detect the region of the target receiver among other vehicles
that correspond to the blocking objects. Hence, we design a
preprocessing step as follows. First, we employ a multi-object
detection approach that enables us to flexibly distinguish the
spatial boundaries of different vehicle types in the same frame.
Second, given the type of target vehicle, we separate the region
of the target receiver and blocking vehicles. On the other hand,
the background with static walls and buildings is invariant over
different scenes and consequently does not affect the decision
and can be further removed. In summary, our approach (i) detects
multiple vehicle types present in the same scene, (ii) separates
the receiver and obstacle regions, and (i) removes the static
background. Since the focus of this paper is not directly on image
processing, we include details of our custom designed approach
in Appendix A. The output of this image preprocessing step is
the bit map of the raw input camera image, and it serves as the
input to our fusion pipeline.

B. Processing LiDAR Point Clouds

The raw LiDAR point cloud is a collection of (x, y, z) points
that correspond to the location of detected objects in the envi-
ronment. Directly exploiting the raw point cloud (with varying
number of points depending on traffic density) not only comes
with huge computational cost but also raises ML architecture
design challenges as the input to a neural network must be
preferably fixed in size. Hence, we use a preprocessing step
as shown in Fig. 3 first proposed in [23] that considers a limited
spatial zone for each axis. This space corresponds to coverage
range of BS and is denoted as (Xmin, Xmax), (Ymin, Ymax),
and (Zmin, Zmax). Then, we construct a 3-D histogram that
corresponds to a quantized 3-D representation of the space. The
histogram bin size along the three spatial dimensions (bx, by, bz)
can be set based on desired resolution. The LiDAR point clouds
lie in the corresponding bins of the histogram based on their
location. Since the BS is fixed in our setting, it always occu-
pies the same cell of the histogram with indicator (−2). The

Fig. 4. Proposed fusion framework. In the trainingphase, the pipeline is trained
offline, and during the distributed inference, the trained model is disseminated
over the system.

corresponding cell of the target receiver is also acquired with
GPS data and indicated with (−1). The remaining elements
are mapped to the corresponding histogram elements with (1),
which implies the presence of obstacles. This leads to a compact
3-D representation of the environment that we use as input for
our pipeline.

V. BEAM PREDICTION USING FUSION-BASED DEEP LEARNING

In the second step of our proposed framework, we design
a multimodal data fusion pipeline to combine the available
sensing modalities together and predict the optimality of each
beam pair. First, we describe the methodology for training the
fusion pipeline, followed by the proposed distributed inference
approach as shown in Fig. 4.

A. Training Phase

We define the data matrices for GPS, LiDAR and images
as: XC ∈ RNt×2, XL ∈ RNt×dL

0 ×dL
1 ×dL

2 , XI ∈ RNt×dI
0 ×dI

1 , re-
spectively, whereNt is the number of training samples. Further-
more, (dL0 × dL1 × dL2 ) and (d

I
0 × dI1) give the dimensionality of

preprocessed LiDAR and image data, while the GPS coordinate
has 2 elements. We consider the label matrix Y ∈ {0, 1}Nt×|B|

to represent the one-hot encoding of B beam pairs, where the
optimum beam pair is set to 1, and rest are 0 as per Eq. (4).
As mentioned in Sec. III-A, we have one optimal beam pair
per sample, so we opted for one-hot encoding which enables
having just one class per sample. Overall, we design a fusion
framework to combine different data modalities that contains
two main components: (i) base unimodal networks and (ii) the
fusion network.

1)BaseUnimodal Neural Network:Weuse the base unimodal
neural network to (i) benchmark the performance of our fusion-
based approach with respect to what can be achieved using only
a single sensor type, and (ii) extract latent features from the
penultimate (second last) layer of each that we use as input to
our fusion network.

A deep neural network (DNN) can be considered as a com-
bination of a non-linear feature extractor followed by a softmax
classifier, i.e., the first layer until the penultimate layer of the
DNN constitute the feature extractor [29]. The feature extractor
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maps an input to a point in a multi-dimensional space called as
the latent embedding space. The dimension of this high-level
data representation is equal to the number of neurons in the
penultimate layer. Then, in the final layer, the softmax activation
function maps the high level representation of input data to a
probability distribution over classes. As a result, the penultimate
layer captures the unique properties of input data through a latent
embedding space that is the key to making the final decision.

In this work, we propose to use the output of unimodal feature
extractors as the high level data representation of each sensor
modality. We assume that the penultimate layer of all three
unimodal networks has d neurons. As a result, each sensor
modality sample input maps to a vector with dimension d after
passing through the feature extractors. We denote the feature
extractor of each modality as fC

θC , fL
θL and f I

θI for coordinate,
LiDAR, and image data, respectively, each parametrized by
weight vectors θm, form ∈ {C,L, I}. We refer to the output of
these feature extractors as the latent embeddingof eachmodality.
Formally,

zC = fC
θC (XC), fC

θC : R2 (→ Rd (6a)

zL = fL
θL(XL), fL

θL : RdL
0 ×dL

1 ×dL
2 (→ Rd (6b)

zI = f I
θI (XI), f I

θI : RdI
0 ×dI

1 (→ Rd (6c)

where zC , zL and zI show the extracted latent embeddings for
input data XC , XL and XI , respectively. We then apply a tanh
activation on extracted latent features to regularize them in a
range [-1, 1]. Note that the input to the base unimodal networks
may contain negative values, which motivates the choice of tanh
as the regularization function.

2) Fusion Neural Network: Each of the modalities capture
different aspects of the environment. For instance, the GPS
coordinates provide the precise location of the target receiver
but it is blind to the shifts in the other objects in the environment
and fails to provide any information about the dimensions of
the vehicles. The LiDAR accuracy degrades in bright sunshine
with many reflections [30]. Hence, fusing different modalities
can compensate for the partial or inaccurate information and
increase the robustness of the prediction.

Given the latent feature embedding of all modalities, we
propose a fusion approach as follows: We explore that feature
concatenation is an effective strategy for feature-level fusion in
machine learning [31]. Hence, our fusion method is comprised
of concatenation of latent feature embedding from each uni-
modal network to account for all sensor modalities, altogether.
Thus, given zC , zL and zI ∈ Rd, we first concatenate them and
generate the combined latent feature matrix z as:

z = [zC ; zL : zI ] ∈ R3×d. (7)

Moreover, using multiple layers after concatenation of extracted
features allows our fusion architecture to learn about the rele-
vance of modalities, and therefore, it intelligently assigns higher
weights to the features of the more relevant modalities. We pass
the combined latent feature matrix z to another convolutional
neural network (CNN) thatwe refer as fusionnetwork to properly

learn the relation of extracted latent embedding and the corre-
sponding optimum beam pair. We denote the fusion network as
fF
θF (.). Finally, we use a softmax activation function to predict
the optimality of each beam pair as:

s = σ(fF
θF (z)), fF

θF : R3×d (→ R|B| (8)

where σ denotes the softmax activation function defined as
σ(x)i =

exi
∑|B|

j=1 e
xj
, i ∈ B, and s = [si]i∈B ∈ R|B| indicates the

predicted score of each beam pair. Note that s forms a prob-
ability distribution, with si = P((t∗, r∗) = i), i ∈ B. We train
this network offline using a cross-entropy penalty, over data in
which the optimal (t∗, r∗) pair is one-hot encoded.

B. Distributed Inference Phase

Unlike the training phase that occurs offline, the inference
needs to occur real-time. To that end, the MEC must receive in-
stantaneous data from three sensormodalities, which is passed to
the trained fusion pipeline for predicting the top-K beam pairs.
Since the sensors are not co-located, to accelerate inference, we
distribute the ML architecture taking account the limitations of
the control channel delivering the sensor data to the MEC. Our
distributed inference scheme is illustrated in Fig. 1. The trained
base unimodal networks for GPS coordinates and LiDAR are
deployed at the vehicle to locally generate the high level latent
embeddings zC and zL. The extracted features are then concate-
nated as zCL = [zC ; zL] ∈ R2×d and sent over the sub-6 GHz
data channel. Similarly, the base unimodal network of the image
generates the features for this modality at the BS, which is then
combined with zCL at the MEC as z = [zCL; zI ] ∈ R3×d. Note
that thismethodology results in the same combined latent feature
matrix z as (7), we analyze the improvement in end-to-end
latency with this distributed inference approach in Sec. VIII.
Finally, given the latent feature embedding of all modalities
available at the MEC, we use the fusion network, fF

θF (·), fol-
lowed by a softmax activation to predict the score of each beam
pair according to Eq. (8). Fig. 4 depicts the dissemination of the
fusion pipeline over the system.

VI. TOP-K BEAM PAIR CONSTRUCTION

The proposed fusion pipeline outputs a softmax score for each
of the possible beam pairs given the different sensor modalities.
Recall that our goal is to identify a subset of beam pairs BK

such that (t∗, r∗) ∈ BK with high probability. We describe in
this section how the neural network outputs are used for that
purpose, as well as how we select parameterK.

A. K Selection Problem Formulation

Consider the softmax score vector s = [si]i∈B ∈ R|B| out-
puted by the neural network via Eq. (8). Recalling that s provides
a probability distribution for (t∗, r∗) over B, the top-K beam
configurations Eq. (5) becomes:

BK(s) = argmax
A⊂B,|A|=K

∑

i∈A
si. (9)
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Hence, given scores s and parameter K, BK can be easily
constructed by sorting s and identifying the top-K elements.

B. Selecting K

Parameter K establishes a tradeoff between the probability
that the optimal beam pair is in BK and the time it takes to
determine the best (but possibly sub-optimal) beam within BK .
This suggests selecting K by optimizing an objective of the
form:

max
K

P ((t∗, r∗) ∈ BK) + µ(K)

where µ : N → R+ is a penalty increasing with the latency
incurred by the choice ofK. We discuss how to set these terms,
and additional constraints we introduce, in this section.

Modeling Probability of Inclusion: A simple way to model
the probability of the event (t∗, r∗) ∈ BK is via the softmax
scores s, as in Eq. (9). We observed however that this tends to
overestimate the probability of this event in practice: even if
softmax scores are good for selecting the set BK quickly and
efficiently, a more careful approach is warranted when selecting
K.

To that end, we leverage the empirical distribution of scores in
our training set. In particular, given a score vector s = [si]i∈B ∈
R|B| and K ∈ N let

cK(s) = max
A⊂B,|A|=K

∑

i∈A
si (10)

be the sum of theK largest scores in s. Let I ∈ {1, . . . , Nt} be a
sample index selected uniformly at random fromour training set.
Let also sI be the corresponding softmax output layer associated
with I , and (t∗I , r

∗
I) ∈ B the optimal pair associated with this

sample. Then, given a score vector s generated at runtime and
the corresponding BK , we estimate the probability of the event
(t∗, r∗) ∈ BK via:

p(K) = P ((t∗I , r
∗
I) ∈ BK(sI)) (11)

p(K; s) = P ((t∗I , r
∗
I) ∈ BK(sI) | cK(sI) ≤ cK(s)) , (12)

where the probability is w.r.t the random sample I in the dataset.
Intuitively, this captures the empirical probability that (t∗, r∗) is
in a random set BK constructed in the training set, conditioned
on the fact that our choice ofK restricts these sets by bounding
the quantity cK to be at most cK(s). In some sense, this allows
us to link softmax scores to the variability of confidence in the
construction of BK , itself depending upon different LOS/NLOS
conditions, vehicular traffic patterns, etc. The training set is used
to statistically quantify this variability.

We note that Eq. (12) can be computed efficiently via Bayes
rule, without the need to access the training set at runtime. In
particular, for c = cK(s) ∈ R+, p(K; s) is equal to:

P (cK(sI) ≤ c | (t∗I , r∗I) ∈ BK(sI))P ((t∗I , r
∗
I) ∈ BK(sI))

P (cK(sI) ≤ c)
.

(13)

The constituent cumulative density functions can be computed
directly from the dataset for each K ≤ |B|, and then used at
runtime.

Algorithm 1: Top-K Beam Pair Selection.
Inputs: softmax score s generated by F-DL framework
in Sec. V, Ttotal;
Output: BK

1: Compute probability of inclusion (13)
2: Compute channel efficiency (14)
3: K ← max

K
p(K; s) + αµ(K);

4: Construct BK according to Eq. (9)

Incorporating Latency: Since the transmitter and receiver
sweep all suggested beam pairs in BK , we include a second
term mmWave channel efficiency in the objective defined as:

µ(K) =
Ttotal − T df

bs (K)

Ttotal
, (14)

with Ttotal and T
df
bs (K) being the total time for which a certain

beam pair is valid and the end-to-end latency imposed by our
proposed fusion based beam selection approach, respectively.
We precisely analyze the end-to-end latency of our proposed
beam selection approach in Sec. VIII. Note that the T df

bs is an in-
creasing function ofK. Hence, the mmWave channel efficiency
is a decreasing function with respect toK.

Optimization:Combining the above terms, the final optimiza-
tion problem we solve to determine K given a run-time score
vector s is (see Algorithm 1):

max
K

p(K; s) + αµ(K), (15a)

s.t. T df
bs (K) < Ttotal, (15b)

α > 0. (15c)

In Eq. (15), the first term in objective enforces the algorithm to
select higher values of K and ensure the alignment, when the
optimumbeampair is included in theK suggested beams.On the
contrary, the second item avoids selecting unnecessarily highK
values. The control parameter α in (15) weights the importance
between the two terms in the objective function.

VII. DATASET DESCRIPTION AND DNN ARCHITECTURES

In this section, we introduce two datasets which we use to
evaluate the F-DL framework. The Raymobtime dataset [32] is
one of thewidely used comprehensivemultimodal dataset which
has been basis of many state-of-the-art techniques. However, to
give more perspective on applicability of the proposed F-DL
architecture, we collect our own “real-world” multimodal data,
which includes real sensors, urban environment, and RF ground-
truth. Further, we detail the preprocessing and implementation
steps used in the proposed framework.

A. Datasets

1) Simulation Dataset: The Raymobtime multimodal
dataset captures virtually with high fidelity V2X deployment
in the urban canyon region of Rosslyn, Virginia for different
types of traffic. A static roadside BS is placed at a height of 4
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TABLE III
STATISTICS OF S008 AND S009 DATASETS

Fig. 5. Distribution of S008 and S009 datasets. (a) S008 (b) S009

meters, alongside moving buses, cars, and trucks. The traffic
is generated using the Simulator for Urban MObility (SUMO)
software [33], which allows flexibility in changing the vehicular
movement patterns. The image and LiDAR sensor data are
collected by Blender [34], a 3D computer graphics software
toolkit, and Blender Sensor Simulation (BlenSor) [35] software,
respectively. For a so called scene, the framework designates
one active receiver out of three possible vehicle types i.e. car,
bus and truck. For each scene, (i) the receiver vehicle collects
the LiDAR point clouds and the GPS coordinates, (ii) a camera
at the BS takes a picture, and (iii) the combined channel quality
of different beam pairs are generated using Remcom’ Wireless
Insite ray-tracing software [36]. The BS and receiver vehicle
have uniform linear arrays (ULAs) with element spacing of
λ/2, where λ denotes the signal wavelength. The number
of codebook elements for BS and the receiver is 32 and 8,
respectively, leading to 256 beam pairs. The gap between two
consecutive scenes is 30 secondswhich corresponds to sampling
rate of 2 samples/minute. A python orchestrator is responsible
for data flow across the system to ensure the different software
operations are synchronized.

The simulation is repeated for the same scenario with two dif-
ferent traffic rates. We refer to these datasets as S008 and S009,
which correspond to regular and rush-hour traffic, respectively.
Since there are more vehicles in S009, the number of NLOS
cases is higher. Table III denotes the number of LOS and NLOS
cases for both datasets. We use the S008 dataset for training
and validation and S009 as the testing set. Fig. 5 illustrates the
distribution of the classes over S008 and S009. We observe that
the dataset is highly imbalanced, i.e., there is a huge variation in
the number of different classes, a property that is expected due
to the sparsity of mmWave links.

2) Real-World NEU Dataset: This dataset contains multi-
modal sensor observations collected in the greater metropolitan
area of Boston. The experiment setting is an outdoor urban road
with two-way traffic surrounded by high-rising buildings on both
sides. An autonomous vehicle equipped with GPS (sampling
rate 1 Hz) and Velodyne LiDAR (sampling rate 10 Hz) sensors
establishes connection with a mmWave base station located at
a road-side cart. The RF grand-truth is acquired using Talon
AD7200 60 GHz mmWave routers with a codebook of 64
beam configurations [37]. Each dataset sample includes the
synchronized recordings of GPS and LiDAR sensors along with

TABLE V
SUMMARY OF DIFFERENT CATEGORIES OF NEU DATASET

Fig. 6. NEU dataset collection environment includes for categories as: LOS
passing, NLOS by pedestrian, NLOS by static car and NLOS by moving car.

TABLE IV
WEATHER FORECAST ON THREE DAYS OF DATA COLLECTION

the grand-truth RF measurements. The data collection vehicle
maintains speeds between 10-20 mph following the speed-limit
of inner-city roads. The dataset setting spans a variety of four
categories, including the LOS passing, blockage by pedestrian,
static, and moving car with 10853 samples (116.7 GB) overall
(see Table V). Fig. 6 denotes a diagram of the experiment setting
top view. The dataset is collected during three dayswith different
levels of humidity and weather conditions. The weather forecast
information during data collection days is presented in Table V.
In particular, the humidity and maximum wind speed change
between 53–75% and 8–17 mph, respectively, resulting in a rich
representation of weather in the dataset.

TheNEUdataset is collected to expand the feasibility study of
the F-DL architecture. However, to resemble the futuristic V2X
architecture, the considered framework requires tower-mounted
base stations equipped with a camera. As we did not have
access to such infrastructure, we collect the NEU dataset with
LiDAR and GPS sensors deployed in a car. This fact does
not diminish the applicability of the collected dataset, as the
processed fused features from LiDAR and GPS are transmitted
from car to mmWave base station following the same archi-
tecture as mentioned in Fig. 1. Hence, we argue that the NEU
dataset can be considered as a solid reference dataset for the
beam selection task, considering the scarcity of real datasets for
mmWave experiments. The real-world NEU dataset is released
online in our public dataset repository [38].
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Fig. 7. An example of input and output of image preprocessing. (a) Raw image
(b) Generated bit map

B. Preprocessing

1) Image: To construct the dataset for the image preprocess-
ing classifier, we manually identify and close in bounding boxes
samples of bus, car, truck and background and quantize them by
following the steps mentioned in Appendix A. We label these
as background (0), bus (1), car (2), truck (3). The constructed
dataset contains 22482 samples per class on average. We then
train a classifier as follows. The input crops are first passed
to a convolutional layer with 20 filters of kernel size (15, 15)
followed by a max-pooling layer with the pool size of (3, 3) and
stride size of (2, 2). The output is fed to two consecutive dense
layers with 128 and 4 neurons (number of classes). Our trained
classifier achieves 84% accuracy in separating the samples of
each class. In the Raymobtime dataset, the camera generates
(540, 960, 3) RGB images. We empirically choose the window
size of 40 and stride size 3 for our task that results in the output
bit map of size (101, 185). Fig. 7 shows a sample from the
dataset and the generated bit map. Note that the multi-object
detection algorithm can be easily extended to any type of vehicle
by including the samples from new vehicles in the training
set [39]. We evaluate the delay cost of image preprocessing in
Sec. VIII-A.

2) LiDAR: The maximum distance for LiDAR is 100 meters
in the Raymobtime dataset, and the zone of space is limited
in each axis as, (Xmin, Xmax) = (744, 767), (Ymin, Ymax) =
(429, 679), (Zmin, Zmax) = (0, 10), where the static BS is lo-
cated at [746, 560, 4] within this Cartesian coordinate system.
Moreover, the histogram bin size along the three spatial dimen-
sions is set as (1.15, 1.25, 1), respectively. Following the steps
mentioned in Sec. IV-B, we generate a compact (20, 200, 10)
representation of the environment where the BS, target vehicle,
and obstacles are marked with different indicators. For NEU
dataset, we use the maximum LiDAR distance of 80 meters
and map the LiDAR point clouds to a compact (20,20,20)
representation in each axis.

C. Implementation Details

Our proposed fusion pipeline consists of three unimodal net-
works per modality followed by a fusion network as presented
in Fig. 4. We first design each unimodal network tuned to each
dataset which takes either raw (for coordinate) or preprocessed
(LiDAR and image) data as input and generate the latent em-
beddings to be fed to the fusion network. For GPS unimodal
network, we design a model that uses 1-D convolutional layers
(see Fig. 8(a)). This enables capturing the correlation between

Fig. 8. Proposed architectures for unimodal and fusion networks. (a) GPS
(b) Image (c) LiDAR (d) Fusion (e) Identity

the latitude and longitude, simultaneously. Our custom designed
model for the preprocessed images (see Sec. IV-A) is inspired by
ResNet [40] that uses identity connections to avoid the gradient
vanishing problem commonly seen in deep architectures, by
creating a direct path for the gradient during backpropagation.
Each such identity block contains 2 convolutional layers and
an identity shortcut that skips these 2 layers, followed by a
max-pooling layer, as shown in Fig. 8(e). For LiDAR input, we
also design a model structure similar to ResNet (see Fig. 8(c)).
Note that while the input to image and LiDAR models are 2D
and 3D, the majority of elements are zero due to filtering the
irrelevant data during preprocessing. We also use max-pooling
layers after convolutional layers for feature down-sampling and
dropout of 0.25 after fully-connected layers to avoid overfitting.

The representation capacity of each network including latent
embedding generators scales with the number of classes |B| in
each dataset, 256 and 64 forRaymobtime andNEU, respectively.
Though increasing the number of neurons generally improves
the representation capacity of base unimodal architectures, we
find having neurons equal to the number of classes to be suf-
ficient for our task. We design a fusion network as depicted in
Fig. 8(d) that takes as input the concatenated latent embedding of
each modality. Ultimately, the last dense layer with the number
of classes outputs the predicted score of each beam pair. For
all models, we exploit categorical cross-entropy loss with batch
size of 32 and training epochs of 100 and 400 for Raymobtime
and NEU dataset with an earlier stopping point of patience 10.
Moreover, we apply $1 and $2 kernel regularizers on dense layers
with parameters 10−5 and 10−4, respectively. We use Adam [41]
as optimizer with β = (0.9, 0.999) and initialize the learning
rate to 0.0001.

VIII. END-TO-END LATENCY ANALYSIS WITH DISTRIBUTED

INFERENCE

In this section, we explore the design details and performance
trade-offs related to centralized/distributed inference.Moreover,
we answer the following question: What is the end-to-end la-
tency of beam selection with our proposed method?

A. Data Collection and Preprocessing

Current LiDAR sensors support pulse rate, i.e., the number
of discrete laser “shots”per second that the LiDAR is firing, of
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TABLE VI
THE REQUIRED TIME FOR SHARING THE DATA WITH MEC (TDATA) FOR THREE DATA SHARING STRATEGIES FOR RAYMOBTIME AND NEU DATASETS

50,000 to 150,000 pulses per second, while 35 cm precision can
be achievedwith 8 pulses/m2 [42]. TheGPS sensor data does not
require any preprocessing and the LiDAR preprocessing has a
negligible latency that can be further reduced by exploiting par-
allel processing. For image sensor data, we measure the delay of
our proposed object detection algorithm described in Appendix.
A by passing a single sample 100 times and calculating the
average required time for generating bit maps. Accordingly, our
proposed image preprocessing pipeline generates the bit maps
in 1.30ms on average. As a result, our preprocessing pipeline
runs in 1.30ms on average (Tprocess = 1.30ms). Note that image
preprocessing is applied on Raymobtime dataset only.

B. Sharing Features Between Vehicle and MEC

Data collected at vehicular locations can incur different re-
laying costs to the MEC, depending upon the sensor modality.
For GPS coordinates, both latitude and longitude, can be ex-
pressed in 6 Bytes, while the raw LiDAR point cloud requires
∼1-1.5 MBytes for complete transfer. One possible approach
is to relay the GPS measurements as is while subjecting the
LiDAR data to additional preprocessing step as discussed in
Sec. IV-B. This step maps the raw LiDAR point clouds to a
ridge representation with size (20, 200, 10) that can be shown
with∼320 KBytes (78% less than raw LiDAR point clouds) for
Raymobtime dataset. Using the aforementioned prepossessing
reduces the data from 0.9 MByte to 64 KByte for NEU dataset
as well. We can further improve the data transmission speed
from vehicle to the MEC by sending the fused high level latent
embeddings of LiDAR and GPS. Recall that we extract this
information at an intermediate layer of the neural network (see
Sec. V-A). With our proposed distributed inference design, the
raw coordinates and LiDAR data is translated to an array with
2× |B| elements that is expressed with only ∼4 KBytes and
∼1 KBytes for Raymobtime and NEU datasets, respectively
(∼ 99% reduction in size than raw data), which is even more
compressed and requires less bandwidth within the sub-6 GHz
control channel.

Table VI illustrates the number of bytes and the mini-
mum/maximum experienced delay while transmitting the com-
pressed extracted features of coordinate and LiDAR over the
sub-6 GHz data channel. The achievable throughput is assumed
to be 3-27Mbs and 4.4-75Mbs for 802.11p [43] and single input
single output (SISO) LTE [44], respectively.

Additionally, the fused features are difficult to interpret by
third parties and provide a level of abstraction to the raw data.
From Table VI, we observe that the data channel delay reduces
drastically with the distributed inference. Without loss of gener-
ality, we use the maximum imposed delay of control signaling

from vehicle toMEC being (Tdata = 1.332ms) for Raymobtime
and (Tdata = 0.33ms) for NEU datasets to calculate the overall
end-to-end latency.

C. Inference and Sharing Selected Beams With Vehicle

In order to evaluate the inference delay,wepass input data, i.e.,
the latent embedding of all modalities, through our pipeline and
measure the prediction timeby setting a timer and subtracting the
timestamp before and after prediction. We note that the average
inference time of our proposed fusion approach is 0.37ms. On
the other hand, sending the selected K beams from MEC to
vehicle over the sub-6 GHz control channel requires at most
2 KB (256 elements) and 0.5 KB (64 elements) for Raymobtime
and NEU datasets, respectively. That takes 0.66ms and 0.16ms
as maximum required time, and results in a cumulative delay
(Tcontrol) of 1.03ms and 0.53ms for each dataset, respectively.
Similar to the previous section, we consider the highest imposed
delay related to using IEEE 802.11p standard as our reference.

D. Impact on Beam-Sweeping Latency: Case Study in 5G-NR

We first discuss the time requirement of exhaustive beam
search in 5G-NR standard. Next, we calculate the required time
for sweeping only the selected K beam pairs by following the
same norms as 5G-NR standard.

1) Beam Selection Latency in 5G-NR: For evaluating a 5G-
NR standard compliant beam selection process in the mmWave
band, we consider a transmitter-receiver pair with the code-
book sizes M and N , respectively. With analog beamforming,
we have a total of |B| = M ×N combinations (see Sec. III).
During the initial access, the gNodeB and user exchange a
number of messages to find the best beam pair. In particular,
the gNodeB sequentially transmits synchronization signals (SS)
in each codebook element tm ∈ CTx. Meanwhile, the receiver
also tunes its array to receive in different codebook elements
rn ∈ CRx until all possible beam configurations are swept. The
SS transmitted in a certain beam configuration is referred as the
SS block, with multiple SS blocks from different beam configu-
rations grouped into one SS burst. The NR standard defines that
the SS burst duration (Tssb) is fixed to 5ms, which is transmitted
with a periodicity (Tp) of 20ms [45]. In the mmWave band, a
maximum of 32 SS blocks fit within a SS burst, which allows
for 32 different beam pairs to be explored within one SS burst.
Hence, in order to explore all beam pair combinations, a total of
|B| SS blocks are required to be transmitted. Given the limit on
SS blocks within a SS burst, the total time to explore all beam
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pairs (Tnr
bs ) can be expressed as:

Tnr
bs (|B|) = Tp ×

⌊
|B|− 1
32

⌋
+ Tssb, (16)

where Tp = 20ms and Tssb = 5ms correspond to periodicity
and SS burst duration, respectively. Note that if a certain number
of beam pairs are not explored within the first SS burst (|B| >
32), there is an increasing delay given the separation Tp between
SS bursts. On the other hand, exploring a number of pairs smaller
than 32 will introduce the same overhead as if a total of 32
options were searched, given that Tssb has a fixed duration of
5ms. Similarly, this can be extended to any number |B| that is
not a multiple of 32.

2) Improvement in Latency Through Proposed Approach:
Our proposed approach reduces the beam search space from |B|
to a subset of K , |B| most likely beam candidates, derived
from Algorithm 1. We recall that the NR standard assumes that
up to 32 can be swept within 5ms. Thus, we define the time to
explore one single beam as Tb = 5ms/32 = 156ns. Then, the
required time for sweeping the selected top-K beam pairs can
be expressed as:

Tsweep(K) = Tp

⌊
K − 1
32

⌋
+ Tb(1+ (K − 1) mod 32).

(17)

E. End-to-End Latency Calculation

Considering the aforementioned four steps, the overall beam
selection overhead following our proposed data fusion approach
(T df

bs ) with distributed inference is expressed as:

T df
bs (K) = Tprocess + Tdata + Tcontrol + Tsweep(K), (18)

where the first three terms can be approximated by 3.662ms
and 0.86ms for Raymobtime and NEU datasets, respectively.
Note that the distributed inference play a pivotal role in reducing
the overhead associated with sharing the situational state of the
vehicle with the MEC (Tdata). We validate the improvement in
overall beam selection time using the proposed distributed in-
ference (Eq. 18) approach rather than the traditional brute-force
approachofferedby the state-of-the-art 5G-NR(Eq. 16) standard
in Sec. IX-E.

IX. RESULTS AND DISCUSSIONS

In this section, we provide the results of our proposed method
using the datasets described in Sec. VII-A. We use Keras 2.1.6
with Tensorflow backend (version 1.9.0) for implementation.
To judge the efficiency of proposed beam selection approach on
multi-class, highly-imbalanced, multimodal Raymobtime [32]
and NEU datasets, we use four evaluation metrics that cap-
ture the performance from different aspects, including top-K
accuracy, weighted F-1 score, KL divergence and throughput
ratio. We provide the detailed definitions of these metrics in
Appendix B. We first analyze the performance of proposed
fusion deep learning method on Raymobtime dataset, and then
further justify the performance on real-world NEU dataset in
Sec. IX-F.

Fig. 9. Comparing top-1 validation accuracies of LiDAR-only and fusion with
all three modalities on the Raymobtime dataset.

A. Performance of Base Unimodal Architectures

We assess the performance of beam selection by only relying
on unimodal data. The experimental results of predicting top-K
beam pairs are presented in Table VII, for each proposed uni-
modal architectures. In the table, we report the top-K (K=1, 2,
5, 10, 25, 50) accuracy along with weighted recall, precision and
F1 score and the KL divergence of the predicted labels and true
labels on Raymobtime dataset. We observe that the LiDAR out-
performs coordinate and image in all metrics with 46.23% top-1
accuracy, which makes it the best single modality. Moreover,
to justify the improvement achieved by using the image prepro-
cessing step described in Appendix A, we compare the weighted
recall on raw and preprocessed image data. Interestingly, we
observed that by using the raw images, themodel always predicts
the class with the highest occurrence in the training set that
results in the weighted recall of 0.01%. Intuitively, in the case of
using raw images, the model cannot find a relation between the
input image and the labels since from a raw image perspective
any vehicle captured in the image can be the target receiver. On
the other hand, using the image preprocessing step increases the
weighted recall to 7% as presented in Table VII.

B. Performance of Fusion Framework

The results of fusion on different combinations of unimodal
data are presented in Table VII for Raymobtime dataset. We
observe that the fusion increases the beam prediction accuracy
in all combinations. Moreover, the best result is achieved when
all modalities are fused together with 9.99% improvement in
top-1 accuracy in comparison with the best unimodal data i.e.,
LiDAR. The improvement with fusion can be also justified by
the validation accuracy during training. Fig. 9 compares the
top-1 validation accuracy of fusion of all three modalities with
LiDAR-only (best single modality). We observe that although
the top-1 validation accuracy of fusion is lower in early epochs,
it outperforms the LiDAR after five epochs.

Since the dataset is highly imbalanced, we report results using
metrics like weighted precision, recall, and F1 score to confirm
the improvement. Furthermore, we use KL divergence metric
to measure the overall performance of the fusion pipeline. The
lower the divergence, the more is the similarity between true
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TABLE VII
PERFORMANCE OF PROPOSED UNIMODAL AND FUSION WHEN TRAINED ON S008 AND TESTED ON S009 RAYMOBTIME DATASET

Fig. 10. (a) Comparison of throughput ratio and beam selection accuracywith varyingK (b) LOS/NLOS accuracy forK = 0, 1, . . ., 20 (c) Analysis of throughput
ratio, accuracy and average selected K for different α values in (15).

and predicted labels. We also use KL divergence to show the
relative entropy between train (S008) and test (S009) data labels
(Shown in Fig. 5).We get KL divergence of 0.57 signifying high
relative entropy between the train/test label distributions. From
TableVII,weobserve that the fusionwith all unimodal data leads
to the lowest KL scores. Hence, we deduce that fusion among
all three modalities is the most successful scheme to capture the
label distribution in the test set. Hence, we choose the proposed
fusion-based approach comprising of all three modalities as
beam selector for the rest of the performance evaluation.

C. Studying the Impact ofK

To analyze the impact of different K values in the overall
performance, we point out that failure in selecting the optimum
beam pair within the suggested subset ((t∗, r∗) /∈ Bk) results in
the drop in the received signal power. Hence, we choose the
throughput ratio (see Appendix B) as our metric to assess the
QoS of the system. Intuitively, the throughput ratio depicts the
ratio of average throughput when sweeping only K beam pairs
predicted by the model with reference to what could be achieved
with exhaustive search. Fig. 10(a) compares the throughput ratio
and normalized beam selection accuracy withK varying from 1
to 30 for Raymobtime dataset. As expected, both increase with
K since it is more likely to include the optimum beam pair
with higher K. We observe the gap between the accuracy and
throughput ratio starts with 16.90% for K=1, and it decreases
as K increases. We do not observe significant improvement in
throughput ratio afterK = 10; however, the accuracy keeps on
improving untilK = 25. Note that while increasingK improves
the quality of service (QoS), it results in higher beam selection
overhead. Hence, it is crucial to balance the tradeoff between

the two as proposed in dynamic selection of top-K beam pairs
algorithm in Sec. VI.

D. Impact of LOS and NLOS

The presence of obstacles leads to massive drops in channel
quality given the high attenuation in the mmWave band. Addi-
tionally, usersmight experience a considerable reduction in their
QoS to tens of Gbps. In LOS scenario, the corresponding best
beam pair distinctively outperforms the others. However, the
presence of blockage in LOS path causes unexpected beams to
achieve the highest signal strength through multiple reflections.
We show this in Fig. 10(b), which compares the accuracy of
our proposed fusion where the sample of test data are sepa-
rated based LOS/NLOS scenario in Raymobtime dataset. As
expected, prediction in the case of complex reflections of NLOS
links is more challenging, showing a maximum drop of 8.3% in
beam selection accuracy against LOS scenarios.

E. Impact on Beam Selection Speed

As discussed in Sec. VIII-D1, the 5G-NR standard define a
brute-force beam sweeping process that sequentially explores all
possible directions. In addition, according to Eq. (16), only up to
32 directions can be explored within one SS burst, which creates
additional waiting time within one beam selection process. In
order to decrease such overhead, we propose a solution that
selects a reduced set ofK beam pairs and performs a brute-force
search only on those ones. Also, given the different confidence
levels of our prediction model due to potential scenario varia-
tions, we propose an algorithm that selects K flexibly to avoid
unnecessary overhead.
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Fig. 11. Comparison of relative throughput and end-to-end beam selection
time (Eq. (18)) of proposed approaches, Dynamic K (Algorithm 1) and
Fixed K (Eq. (9)), with 5G-NR standard. The actual beam selection time of
145ms for 5G-NR is scaled here, for better visibility and comparison purpose.

In the Raymobtime dataset, the road length is 200 meters and
the BS is located in the middle. On the other hand, the 3-dB
beam width of an uniform linear array antenna withN elements
is approximately equal to 2/N radians [46] that results in span
of 3.58◦ and 14.32◦ for each beam of transmitter and receiver
codebooks, respectively. Hence, the overall BS coverage angle
is equal to φBS = 114.56◦ and the contact time, i.e., the time
that the vehicle remains in the span of one beam, is equal to

Ttotal =
2h tan(

φBS
2 )

vl
with h and vl being the height of the BS

and the velocity of the vehicle [47]. Consequently, the vehicle
remains in the coverage region of each beam pair for∼ 807ms
while moving with the velocity of 32 km/h (average speed in
urban roads). Therefore, the beam selection process needs to
be repeated every 807ms (Ttotal). In Fig. 10(c), we analyze
the impact of α in (15) on the throughput ratio (RT ), the
accuracy and the average selectedK. We observe how the triplet
RT , accuracy and average selected K decreases with α, the
control parameter in Eq. (15). Intuitively, increasing α gives
more weight to the second term in (15) that forces the algorithm
to be faster and choose lower K which results in lower QoS
and beam selection accuracy. Interestingly, we observe that for
α = 0 the maximum average selected K is equal to 87. In this
scenario, the objective in (15) aims to maximize the alignment
probability and increasing the K and yet it does not exceeds
87 out of 256. We conclude that our proposed fusion method
achieves to ∼100% top-87 accuracy.

The control parameter in (15) enables us to slide between dif-
ferent accuracy and overhead conditions. Fig. 11 shows that the
dynamic K selection approach achieves an average throughput
ratio of 95.37% and 97.95%while targeting 90% and 95% accu-
racy, respectively. This implies that the capacity of the proposed
F-DL approach is only 4.63% lower than the 5G-NR standard,
while targeting the accuracy of 90% for instance. Moreover,
the dynamic K selection approach offers the corresponding
beam sweeping overhead of 0.94ms and 2.04ms, Eq. (17)
and the overall beam selection delay of 4.6ms and 5.71ms.
Note that the beam selection delay of our proposed dynamic

TABLE VIII
PERFORMANCE OF PROPOSED UNIMODAL AND FUSION METHOD ON

REAL-WORLD NEU DATASET

K selection method in Fig. 11 corresponds to the end-to-end
latency of the proposed F-DL method presented in Eq. (18). In
contrast, the 5G-NR standard beam selection procedure requires
145ms. Therefore, we notice 96% reduction in overall beam
selection overhead while retaining 97.95% relative throughput
associated with 95% accuracy. Furthermore, we compare the
performance of proposed algorithm for constructing the subset
BK , Algorithm 1, that is generated dynamically per case, with
the fixed K one (Fig. 10(a)). Note, that fixed K selection is
a posterior probability derived after observing all test samples;
however, the dynamicK selection selects theK for each sample
of test set, independently. From this figure, we observe that the
proposed dynamic K selection approach outperforms the fixed
K one, providing faster beam selection with close competing
relative throughput while targeting the same accuracy. We use
the same standard, i.e., 5G-NR for fair comparison (see Fig. 11).
Note that our algorithm can be trivially extended to any other
exhaustive beam search standards, such as IEEE 802.11ad by
modifying Eq. (17), yet it does not negate the improvement
achieved by restricting the beam selection to a lower dimension
space.

F. Real-World Implementation

We validate the performance of the proposed fusion deep
learningmethod on the home-grownNEUdataset.Asmentioned
in Sec. VII-A2, due to the infrastructural limitation, we use only
LiDAR and GPS branch of the proposed F-DL (presented in
Sec.V, Fig. 4) for this set of experiment. TableVIII compares the
beam selection accuracy while using individual sensor inputs in
contrast to the case where the information fromGPS and LiDAR
sensor are fused together. We observe that fusion improves the
Top-1 prediction accuracy from 74.86% for the best modality,
i.e., LiDAR to 78.18% for the fusion ofGPS andLiDAR sensors.
The weighted F1 score also increases by 3.6% denoting better
handling of imbalances in ground-truth, which is common in
mmWave beams.

G. Accuracy and End-to-End Latency Analysis

The Raymobtime and NEU datasets have 256 and 64 possible
beam pairs each; hence, sweeping the entire codebook elements
requires, 145ms and 25ms, respectively, according to 5G-NR
standard (see Sec. VIII-D1). On the other hand, the proposed
beamselectionmethod restricts the beamsearch space to a subset
of K beam pairs. We study the trade-off between the accuracy
and end-to-end beam selection time versusK in Fig. 12 for both
datasets. Note that the 5G-NR standard defines 20ms waiting
window between SS bursts, where each SS burst includes 32 SS
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TABLE IX
COMPARISON OF PROPOSED BEST PERFORMING UNIMODAL AND F-DL ARCHITECTURES WITH TWO BENCHMARK DL BASED APPROACHES ON RAYMOBTIME

DATASET [32] AND RESULTS ON THE REAL-WORLD NEU DATASET

Fig. 12. Beam selection accuracy and end-to-end beam selection time versus
K on the (a) Raymobtime and (b) NEU datasets.

blocks for sweeping 32 beam pairs (see Eq. (17)). This results
in sudden increments in beam selection time at intervals of
every 32 beams, observed in Fig. 12. We also notice that for the
Raymobtime dataset the accuracy is > 99% for K > 87 while
the end-to-end latency is still increasing. On the other hand, for
the NEU dataset, the accuracy and end-to-end beam selection
time starts with 78.18% and 3.818ms forK = 1. The accuracy
saturates at K = 7 and reaches ∼ 100% for K > 12 while the
beam selection time keeps on increasing and becomes 25.86ms
for K = 64. Specifically, Fig. 12 highlights the importance of
the K selection method to choose the appropriate K and avoid
unnecessary overhead imposed on the system.

H. Comparison With the State-of-The-Art

In Table IX, we compare the performance of our proposed
models to the state-of-the-art DL based approaches by Klautau
et al. [23] andDias et al. [24], both evaluated on theRaymobtime
dataset. To the best of our knowledge, these are the onlymethods
that include equivalent scenarios to the ones considered in this
paper. In particular, LiDAR sensor data collected on vehicles is
used for beam prediction under both LOS andNLOS conditions.
Other works that consider different evaluation metrics ([21],
[48]), camera images under LOS-only scenarios ([22], [49]) or
RF data [50] have been kept out of the comparison. As we show
in Table IX, the proposed LiDAR model and the F-DL architec-
ture outperform the state-of-the-art ([23], [24]) by 18.95-20.45%
and 20.11-21.61% respectively in top-10 accuracy.

I. Discussion

We summarize below interesting observations from the ex-
perimental results:! When LiDAR and GPS sensors are deployed over the

vehicle and features are transmitted to the BS through
sub-6 GHz data channel, the wireless control channel may
impact the actual delivery at the MEC. On the other hand,

cameras at the BS may have a reliable fiber connectivity to
the MEC. Hence, in case of unreliable channel conditions
or faulty sensors, our fusion framework is still able tomake
predictions based on any available sensor modality. This
robustness to unreliable channel conditions is essential,
even if there is no immediate gain from fusing a specific
type of modality.! Proposed beam selection technique with dynamically cho-
sen K automatically selects the top-K best beam pairs,
with performance closed to a fixed K when the latter is
identified via expert knowledge. Thus our approach elimi-
nates the need to include expert domain knowledge (know
what K is needed to achieve certain amount of accuracy),
by automating the beam selection process.! We show that it is possible to reduce the beam-selection
overhead in a practical and emerging 5G-NR standard by
95–96%, while maintaining 97.95% relative throughput.

X. CONCLUSION

Increasing softwarization and ability to automatically con-
figure parameters [51] within 5G and beyond networks will
necessitate the use ofML-basedmethods distributed at theMEC.
In this paper, we propose an approach for ML-aided fast beam
selection technique, where multimodal non-RF sensor data is
exploited to reduce the search space for identifying best perform-
ing mmWave beam. Our proposed fusion method exploits the
latent embeddings from each unimodal feature representation
and the overall framework is evaluated in realistic emulated
settings. We observe around 20-22% increase in performance
for top-10 accuracy than the state-of-the-art using the proposed
F-DL architecture. We also achieve 95–96% decrease in beam
selection time compared to the exhaustive search defined by
the 5G-NR standard in the high-mobility urban scenarios. We
propose to extend this framework ahead to multiple-receiver
scenarios [52], incorporate federated learning among the sen-
sors [53], and handle different codebook sizes.

APPENDIX A

OBJECT DETECTION ALGORITHM

Our proposed image preprocessing step is a combination
of a standard multi-object detection approach followed by a
refinement step where each detected object is denoted by a
unique indicator according to their role, i.e., target receiver
or obstacle. It is constituted of a classifier that is capable to
predict the presence of objects in the small bounding boxes.
In the training phase, we separately label the examples from the
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valid items in the environment. We then quantize the samples by
filtering the imageswith amoving square-shapedwindowof size
W ×W pixels. Starting from the top left side of the image, and
after generating the first crop, wemove the window byX pixels.
This process results in a dataset of cropped samples from each
of possible items in the environment. Since the dimensions of
items vary, we end up with different number of samples for each
class. To achieve a balanced dataset, we augment the minority
classes by applying different light conditions, until we reach the
same number of samples per class. We split the final balanced
dataset in (70%,15%,15%) proportion, and train the classifier.

Similarly, in testing phase,wequantize the image by sweeping
it with a window of dimension W ×W and step size X . Next,
we feed each crop to the trained classifier and arrange the
predictions in the sameorder as the crop generation. This process
leads to a quantized representation of the image, where each
element gives the prediction of the classifier for the object in the
correspondingW ×W window. We refer to this representation
as the bit map of the raw input camera images. Given an input
image with dimension H × L, the shape of generated bit map
will be .H−W

X + 1/ × .L−W
X + 1/.

We can refine our bit map further if the specific vehicle type
is also transmitted directly by the receiver, as part of the basic
safety message in IEEE 802.11p standard for instance. There-
fore, given the generated bit map and the reported type of the
target vehicle, we (i) keep the label of legitimate receiver vehicle
type, (ii)mapother vehicles to obstacles. This process designates
the potential location of the target receiver as well as the location
of obstacles with much more information than the raw images.
Finally, to address the concern that the image preprocessingmay
introduce significant delay as it requiresmultiple forward passes,
we convert the trainedmodel to an equivalent fully convolutional
network.We have previously explored such an approach in [54],
which enables us to generate the entire bit map in a single
forward pass.

APPENDIX B

EVALUATION METRICS

Top-K accuracy calculates the percentage of times that the
model includes the correct prediction among the top-K proba-
bilities. Given ground-truth beam pair (t∗, r∗) and the prediction
score S ∈ R|B|, top-K accuracy is defined as:

Acc@K =
1
N ′

t

N ′
t∑

l=1

1((t∗,r∗)∈A′| arg max
A′⊂{1,...,|B|},|A′ |=K

∑
j∈A′ sj). (19)

whereN ′
t denotes the number of test samples and φ is a Boolean

predicate, with 1φ to be 1 if φ is true, and 0 otherwise. For
K = 1 we get the conventional top-1 accuracy that only the
highest probability prediction is taken into account.

The F1 score measures a model’s ability to perform with im-
balanced class distribution and defined as the harmonic mean of
precision and recall given as F1 = 2× precision×recall

precision+recall . Precision
denotes how many of the predicted true labels are actually in
the ground-truth, while recall denotes how many of the actual
labels are predicted. To combine the per-class F1 scores into

a multi-class version, we weight the F1-score, precision and
recall of each class by the number of samples from that class.
The KL divergence measures the divergence of the predicted
probability distribution from the true one. Given the one-hot
encoding y ∈ R|B| of the ground-truth labels and the prediction
ŷ, KL divergence is defined as KL(ŷ||y) =

∑|B|
i=1{ŷi log

ŷi

yi
}.

Finally, we evaluate the performance of our fusion based beam
selector with respect to achieved throughput ratio that is defined

asRT = 1
N ′

t

∑N ′
t

n=1

log2[1+y ̂(t∗,r∗)(n)]

log2[1+y(t∗,r∗)(n)]
, where (t∗, r∗) and (̂t∗, r∗)

show the best beam pair inB andBk (as defined in Sec. III-A and
III-B), respectively, and N ′

t is the total number of test samples.
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