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RF Fingerprinting Unmanned Aerial Vehicles with
Non-standard Transmitter Waveforms
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Abstract—The universal availability of unmanned aerial vehi-
cles (UAVs) has resulted in many applications where the same
make/model can be deployed by multiple parties. Thus, identify-
ing a specific UAV in a given swarm, in a manner that cannot be
spoofed by software methods, becomes important. We propose
RF fingerprinting for this purpose, where a neural network
learns subtle imperfections present in the transmitted waveform.
For UAVs, the constant hovering motion raises a key challenge,
which remains a fundamental problem in previous works on
RF fingerprinting: Since the wireless channel changes constantly,
the network trained with a previously collected dataset performs
poorly on the test data. The main contribution of this paper
is to address this problem by: (i) proposing a multi-classifier
scheme with a two-step score-based aggregation method, (ii) using
RF data augmentation to increase neural network robustness
to hovering-induced variations, and (iii) extending the multi-
classifier scheme for detecting a new UAY, not seen earlier during
training. Importantly, our approach permits RF fingerprinting on
manufacturer-proprietary waveforms that cannot be decoded or
altered by the end-user. Results reveal a near two-fold accuracy
in UAV classification through our multi-classifier method over the
single-classifier case, with an overall accuracy of 95% when tested
with data under unseen channel. Our multi-classifier scheme also
improves new UAV detection accuracy to a near perfect 99%, up
from 68% for a single neural network approach.

Index Terms—UAV RF fingerprinting, deep neural networks,
multi-classifier

I. INTRODUCTION

Agriculture, construction, insurance, and telecommunica-
tions are being transformed by the explosive growth of small
unmanned aerial vehicles (UAVs). Several industry estimations
predict that this segment will grow to $17 Billion by 2024 [1].
Companies servicing these market segments, casual users, and
hobbyists have benefited from widespread UAV availability
at affordable price points. However, this has also raised the
possibility of new attack vectors. For example, when UAVs
serve as mobile wireless access points (APs) for ground nodes,
malicious users may masquerade legitimate APs by falsely
advertising recorded SSIDs [2]. Classical differentiation meth-
ods like angle of arrival and time of flight of the signal
may no longer be possible, as even the legitimate APs move
around the region of interest. To address this important issue
of trust, we propose deep learning based RF fingerprinting for
UAVs that can complement other secure detection methods [3],
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Figure 1: UAV classification using multi-classifier scheme with
two levels of aggregation.

[4]. Specifically, our approach is composed of increasing
robustness in the training pipeline and combining test outputs
of multiple trained deep neural networks, each being trained
on a different portion of a large training set.

e Problem. RF fingerprinting relies on identifying discrim-
inating transmitter-generated features at the receiver. These
features include artifacts such as nonlinearities in the power
amplifier gain, I/Q phase imbalance, clock and frequency off-
sets, etc., mainly arising from slight variations in the operating
points of the electronic components. While RF fingerprinting
using deep learning has shown to be very successful for static
devices [5]-[10], to the best of our knowledge, there are
no works on applying this technique for classifying identical
hovering UAVs. We note that this is different from the well-
investigated problem of UAV type detection [11], where the
objective is to distinguish between different make/models.
Since the wireless transmitters, typically WiFi interface cards,
are from different providers, fingerprinting these cards (and
hence identifying the UAV) reduces to a simpler problem than
classifying UAVs of the same make/model.

Furthermore, the constant UAV hovering introduces com-
plex channel variations between the transmitter UAV and the
ground-based receiver, which needs to be carefully studied.
Our previous experimental studies show that the standard
deviation in position around the target location can be as
high as 0.85 m for DJI M100 UAV using on-board GPS
modules [12]. While we focus only on RF fingerprinting in
this paper, our technique can be combined with multimodal
sensors detecting acoustic or infrared patterns for enhanced
classification accuracy. A recent work jointly uses WiFi and
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Bluetooth emissions [13], although this increases complexity
for both the sensing hardware and the training/classification
process.

e Approach. As shown in Figure 1, we assume a network of
a number of UAVs that may coexist in the same airspace.
We form a dataset by flying 7 identical DJI M100 UAVs
inside an RF anechoic chamber, at different distances from
a receiver that collects I/Q samples from DJI’s non-standard,
proprietary waveform. Thus, the setup captures real-world
signal variations, as would be seen in practical deployments.
We address a more generalized fingerprinting problem than
previous works for classifying UAVs and stationary devices,
where the waveform was known, modifiable and decodable [5],
[14], [15]. Moreover, our prior solutions of introducing an
artificial fingerprint by (i) intentionally injecting distortions
of type I/Q imbalance in a software-defined-radio-enabled
transmitter [5] or (ii) applying a specially designed FIR filter
to enhance the transmitter fingerprint [15] are not feasible. We
previously used partial equalization for WiFi signals, which
removes the channel-induced distortions before training, so as
to capture the pure fingerprint [14]. Equalization is proven
to be helpful in the case of hovering UAV emitters, where
the dataset is heavily impacted by the channel [16]. However,
as we consider a proprietary waveform, equalization is not
applicable, either. In summary, we seek to design a method
that relies only on raw 1I/Q samples, which further motivates
us to explore approaches such as data augmentation to train
more robust deep learning models.

Finally, in real world scenarios, detecting a new (out-of-
library) device (i.e., the device whose signal does not exist
in the training set) is of paramount importance. Since the
output of the neural network is a probability vector, there
is always going to be a non-zero probability of identifying
the new UAV as one of the previously trained, legitimate
UAVs. Thus, the new UAV will be classified wrongly as one
of the known classes. To address this issue, we design an
approach that uses statistics observed in the known device
set to guide a decision process in the new device test set,
assuming that there are inherent similarities in the information
distribution. We start from the approach in [17] that showed
promising outcomes for standard WiFi frames, and then extend
that approach within the multi-classifier approach in this new
domain of UAV identification.

o Contributions. Our contributions are as follows:

« We empirically show the effect of aerial hovering on the
accuracy of deep learning-based UAV RF fingerprinting.
We quantify the degradation in the test performance of
a neural network classically trained on past sequences of
data, due to these slight hovering motions (Section III).

o We propose a novel architecture composed of multiple
classifiers, each being trained on different portions of
past sequences and learned a different channel-distorted
fingerprint. In the test phase, the predictions from all the
neural networks are aggregated to make a final decision
for each transmission (Section TV-A).

o To combine the probability vectors at the output of the

neural networks, we propose a two-level score-based
aggregation method. In the first level, output vectors of

each individual neural network are combined to make
predictions per neural network. In the second level,
predictions of all the neural networks are combined to
make a joint prediction by all the neural networks for
each transmission (Section IV-B).

o We propose an algorithm for determining the number of
neural networks that should compose the multi-classifier
scheme (Section IV-C).

e We propose a data augmentation scheme for training
robust individual neural networks in our multi-classifier
scheme, which further improves the accuracy (Sec-
tion IV-D).

o For detecting a new UAV, we propose a new device
detection method with our multi-classifier scheme. The
result is a robust framework for detecting new UAVs that
the neural network is not previously trained to classify
(Section IV-E).

In the rest of the paper, Section II discusses more related
works, Section V presents performance evaluation results, and
Section VI concludes the paper.

II. RELATED WORK

A wide variety of techniques for UAV detection and clas-
sification, such as passive/active RF, acoustic, or image-based
sensing have been investigated previously [12], [18]-[20].
However, the primary focus of this work is UAV classifica-
tion using RF fingerprinting, and we survey below RF-based
approaches that are directly relevant to the scope of this paper.

UAV manufacturers may use different RF technologies
for signaling, with variations in transmitter parameters such
as frame interval or frequency of operation, which can be
exploited for the comparatively simpler problem of identifying
the make/model [21], [22]. For example, authors in [11]
propose a UAV detection method using K-Nearest Neighbours,
which has less computational overhead compared to neural
networks, for UAVs with different make/models.

There are methods to extract Hash Fingerprinting features
from the preamble with an SVDD-based classifier to identify
different UAV vendors [23]. Moreover, authors in [24] use two
separate phases of feature extraction and machine-learning-
based UAV identification. Both these works rely on the as-
sumption that the UAVs are transmitting a known protocol
(WiFi). A priori knowledge of specific features that must
be learnt is not always possible, and therein lies the benefit
of our deep learning approach that fuses these two phases
together and automates the entire process of classification. Au-
thors in [25] design a deep-learning-based UAV-fingerprinting
scheme by using modified generative adversarial networks
(GANSs). However, their objective is to classify different signal
protocols, which is not the same as our scenario, where the
same make/model UAVs transmit the same protocol.

Multi-classifier approaches have been applied in differ-
ent wireless problems. Authors in [26] propose a multi-
classifier scheme for robust WiFi-based positioning systems.
MFMCEF [27] propose a fingerprint-based localization system.
They construct three different fingerprints of signal strength
difference (SSD), hyperbolic location fingerprint (HLF), and
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Figure 2: Downlink transmissions of two DJI M100 UAVs.

received signal strength (RSS). MFMCEF fuses the fingerprints
in a single vector and trains three classifiers of K-nearest
neighbours (KNN), support vector machine (SVM), and ran-
dom forest (RF) for a robust localization system.

To the best of our knowledge, none of the previous works
address RF fingerprinting in identical, in-flight UAVs transmit-
ting a proprietary or unknown protocol. We start our investi-
gation by collecting a dataset from COTS DJI M100 UAVs
under realistic UAV hovering motion that greatly impacts the
wireless channel. Since we cannot equalize the signal, we must
rely only on fingerprinting using raw I/Q samples.

ITI. DATASET, TRAINING/TESTING PIPELINE

In this section, we provide brief insights on the proprietary
waveform used by the DJI M100 UAVs [28], describe the
experimental setup and dataset, detail the training pipeline,
and analyze different ways to report the test accuracy results
for UAV classification as well as new UAV detection.

A. COTS UAV Signal Analysis

1) Uplink: DII employs frequency-hopping spread spec-
trum (FHSS) for the remote controller (RC) to UAV link.
FHSS switches channels following a pseudo-random sequence
known at both ends of the link. DJI UAVs typically work on
the 5 GHz band (5.725-5.825 GHz) or the ISM band (2.401-
2.481 GHz). The FHSS characteristics vary among different
models.

2) Downlink: UAVs communicate periodically with the
RC in order to report telemetry data or battery level. They
may relay video stream data that requires high throughput
and low latency links. Based on application requirements,
video transmissions may vary in bandwidth and transmission
periodicity. The M100 UAVs use the Lightbridge protocol,
developed by DIJI specifically for long range (up to 5km),
robust aerial communication in the 2.4 GHz band. Lightbridge
has 8 selectable channels in the ISM band (2.401-2.481
GHz), with a separation of 2 MHz between carriers. Channel
selection can be done manually, or it can be left to the radio
to determine the channel with the least interference [29].

In Figure 2, we visualize spectrum usage from two con-
current DJI M100 transmissions, as captured by a Tektronix
RSAS07A spectrum analyzer. We see that each UAV selects
a different transmission band to avoid interference. Moreover,
the UAV accesses the medium at a fixed rate of ~50 Hz.

B. UAV Dataset

In an RF anechoic chamber, we collect signals from 7
identical DJI M100 UAVs as transmitters. An Ettus USRP

X310 [30] equipped with an UBX 160 USRP daughterboard
is used to capture signals at the receiver side. We fly the UAVs
one at a time at different distances of 6, 9, 12, and 15 feet
from the receiver, while they transmit. The receiver collects
I/Q samples only in the downlink 10 MHz channel where the
UAV is transmitting, as described in Section III-A2.

At each distance, we collect I/Q samples for ~2 seconds,
pause for ~10 seconds, and then repeat this process 3 more
times. The ~10-second intervals of time partition the overall
received signals into 4 non-overlapping bursts, each containing
~140 interleaved short periods of data and noise. A high-level
overview of the sequence collected at the receiver side for each
UAV at a given distance is shown in Figure 3. To complete the
dataset, the procedure shown in Figure 3 is collected from all
the 7 UAVs, flying at 4 different distances from the receiver.
The average calculated SNRs are approximately 33, 31, 28,
and 26 dB for distances of 6, 9, 12, and 15, respectively.

To prepare the sequences for our deep learning framework,
we extract the portions containing data and separate them
from interleaved noise periods to form ~140 sequences per
burst. From here on, we refer to these non-overlapping data
sequences as examples. With 7 UAVs, each having 4 distances,
each distance having 4 bursts, and each burst having ~140
examples, we have more than 13k examples with average
length of ~92k I/Q samples in the dataset. This complete UAV

dataset is released for future investigations'.

C. Training and Testing the Neural Network

We form our training, validation, and test sets based on
the strategies explained in the next subsection. When the sets
are formed, we calculate mean p and standard deviation o
of the training set, in a preprocessing step, and use them
later for normalizing the training and test batches. We train
the neural network in a per-slice basis. Slices are overlapping
portions of examples and contain consecutive raw 1/Q samples.
We choose the slice size as [ = 200 and feed the training
set to the neural network as batches of slices. The training
batches are prepared by Data Generator, a special class
in Keras library [31]. Every time a batch is to be formed,
a random set of training examples are loaded to the memory
and from them, a number of random slices are selected. This
random selection of examples and slices, is the equivalent of
shuffling the training set, without loading all of them to the
memory. It helps the neural network see the training data in
a different order in every epoch, which contributes to training
more robust models. For each batch, a number of slices equal
to “batch size” are selected from different examples to form
a batch. Therefore, each batch is a tensor with dimensions
(batch size, [, 2), with I and Q coming in two separate channels
in the last dimension. Each batch is normalized with respect
to the previously recorded mean p and standard deviation o
of the training set, using (1) before being fed to the neural
network.

X—p
g
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Figure 3: Overview of I/Q samples collected from each UAV for a given distance.
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Figure 4: Neural Network architectures for (a) AlexNetl1D with
~1.1M parameters and (b) ResNet1D with ~16M parameters.

For the neural networks, we use 1D modified versions of
AlexNet [32] (abbreviated as AlexNetID) with ~1.1 million
parameters, and ResNet50 [33] (abbreviated as ResNetlD)
with ~16 million parameters. These architectures were pre-
viously successful in RF fingerprinting and modulation clas-
sification [14], [34]. Our version of AlexNetlD is a forward
convolutional neural network (CNN) with 5 blocks stacked
together. Each block consists of (i) a 1D convolutional layer
with 128 filters of size of 7, followed by (ii) a 1D convolutional
layer with 128 filters of size of 5, followed by (iii) a MaxPool-
ing layer. The 5 blocks are followed by 2 fully connected (FC)
layers of sizes 256 and 128, respectively. The final layer is a
FC-softmax layer with the same size as the number of classes.
Our version of ResNetlD is a combination of Projection blocks
and Identity blocks stacked together. More details about both
AlexNet1D and ResNetlD are visually depicted in Figure 4.

As this is a multi-class classification problem where among
multiple UAVs, a single UAV is to be selected as the trans-
mitter, we use categorical cross entropy loss. We train the
neural network using Adam optimizer [35] with learning rate
=0.0001. At the end of each epoch, we test the network on the
validation set. We stop training when the validation accuracy
does not improve for 3 consecutive epochs. When the training

is done, we test the trained network with the test set. Similar to
the training process, we test the neural network on a per-slice
basis. In the test phase, each example with length LL, is sliced
with a stride=1. Consequently, each example is fed to the
neural network as a tensor with dimensions (LL — [+ 1,1,2).
Test batches are also normalized with respect to mean p and
standard deviation o of the training set, as in (1).

When we feed in the test batches, the outputs of the neural
network are batches of probability vectors, each obtained
from an input slice. We obtain a prediction for a given slice
by performing an argmax on its corresponding probability
vector. To achieve a prediction for a given example, we
combine probability vectors of the slices in that example. We
do this through 1) Probability Sum and 2) Majority Vote [36]
that are briefly summarized below:

1. Probability Sum: We feed all the slices from a given
example to the neural network, and at the output, we sum all
the probability vectors to get a Probability Sum vector. The
predicted class for the example is obtained from the index of
the element having maximum value in the Probability Sum
vector.

2. Majority Vote: We classify all the slices in an example and
we choose the class that the majority of slices vote for as the
predicted class for that example.

We note there are two ways to report accuracy [14]:

A. Slice accuracy: we divide the number of correctly pre-
dicted slices by the total number of slices in the test set.

B. Example accuracy: we divide the number of correctly
predicted examples by the total number of examples in the
test set.

In the rest of this paper, we focus on example accuracy,
since it captures the neural network prediction for a complete
transmission (example).

D. Preliminary Experiments on UAV Classification

To empirically show the effect of imperfect hovering on
the received UAV fingerprint, we introduce two scenarios of
training and testing the neural network. We use AlexNetlD
architecture, unless specified otherwise.

1) Train on all bursts, test on all bursts: For each UAV,
each distance and each burst, we shuffle the examples
and partition the sequences by 60%, 20% and 20% for
training, validation and test, respectively. We observe a
test accuracy of 97%. In this scenario, other examples
before/after the unseen test example may be present in
the training set. As a result, the neural network performs
well, although this procedure cannot be applied for real-
time UAV classification.
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2) Train on bursts 1, 2, and 3 Test on burst 4: For
each UAV, each distance, and bursts 1, 2, and 3, we
shuffle examples and choose 90% and 10% for training
and validation, respectively. We test the trained network
on the unseen burst 4. In this scenario of training on
first examples and testing on last ones, we get 49%
accuracy with AlexNetlD. A deeper architecture like
ResNetlD also yields marginal improvement with 50%
accuracy. This drop in accuracy compared to the former
scenario shows the effect of slight UAV movements
while hovering. When the transmitting UAV hovers,
the received signals are impacted over time due to the
continuous channel variations. Since the channel effect
is non-negligible, both AlexNetlD and ResNetlD are
unable to classify UAVs from unseen (future) bursts with
high accuracy.

E. Detecting a New UAV

If a trained network is tested with an example from a new
UAVY, it classifies the example as one of the known classes,
inevitably. To discriminate this prediction from a “correct” old
device prediction, we use the statistics obtained from a test set
of known old devices —as also used for standard WiFi in [17]-
to label each unknown test example as “old” or “new”.

1) Overview of the Approach: Our algorithm in [17] was
originally used for new device detection in datasets where the
training and test sets are non-overlapping, but share a common
distribution. To use the algorithm for new UAV detection,
after the network is trained on the legitimate (old) UAVs,
an intermediate test set containing signals from only these
trained (in-library) devices with known true labels are fed
to it. Assume the test set has M examples each indexed
with m={0,1,..., M — 1}. The example m is classified using
Majority Vote method as the predicted old class C'("™), and
two thresholds are recorded:

1. Probability threshold 0p(u): For each specific UAV u,
we gather the probability vectors of all the slices classified
as O™ across all examples, in a set P,. Then a statistic
mapping function, x(A), is applied to set P,, to obtain the
probability threshold for device u, represented as 6 p(u). This
process is repeated for all the old UAVs to achieve separate
probability thresholds for each UAV.

2. Ratio threshold 6 (u): For each specific UAV u, we gather
the ratio of slices classified as C'™) in all the examples, in a
set R,. Then, the same statistic mapping x(A) is applied to
generate the ratio threshold for UAV wu, represented as 6p(u).
Again, this process is repeated for all the old UAVs.

At this point, two thresholds are calculated for each old
UAV. We now form a final unseen test set of old and new
UAVs, with B examples in total, each being indexed with
b={0,1,...,B — 1}. If slices from a given example b, whether
new or old, are fed to the neural network, the example will
be classified inevitably as one of the old UAVs. The predicted
class for example b, noted as (%) is called the “best guess”.
In order to decide whether example b is from an old or a new
device, we calculate two metrics:

Metric 1. Transmission prediction probability p(*): We
collect the probability vectors from all the slices in example

b classified as the best guess in a set P(®). The set P() is

mapped to the metric transmission prediction probability p(®),

using the statistical mapping function .

Metric 2. Estimated correct slice ratio 7#(*): We divide the

number of best guess slices by the total number of slices in

example b, for the metric estimated correct slice ratio 7#(%).
Finally, example b is labeled as new or old using (2).

y(b) . {new (F(b) < QR(g(b))) and (ﬁ(b) < Gp(g(b)))
) old

b=0,1,2,...,B—1

otherwise

2

2) Preliminary Experiments on New UAV Detection: For
detecting new UAVs, we follow the steps explained in Sec-
tion III-E1. For the statistics mapping function x, we use (3),
which showed the best performance among various options
explored in [17].

X(A) = avg(A) — std(A) 3)

with avg and std being the average and standard deviation
functions, respectively.

Among the 7 UAVs, without loss of generality, we choose
UAV4 as the new device and other 6 UAVs as old devices. To
simulate the real-world situation where the new UAV signal
appears in the future burst 4, we form our training/validation
sets using old UAV examples in bursts 1, 2, and 3. We shuffle
the examples and use 90% of them as training set and 10%
as validation set. We train a single AlexNetlD on the training
set, and use the validation set as the old device intermediate
test set to record thresholds. We form the new device test set
using examples from UAV4 in burst 4, so that similar to the
real case scenario, the new UAV is also from an unseen burst.
In this case, the new UAV detection accuracy is defined as the
number of examples with yg;) labeled as “new”, divided by the
total number examples in the new device test set. Our results
show a new UAV detection accuracy of 68% with AlexNetlD,
meaning a single neural network is not able to detect new
UAVs from an unseen burst, with high accuracy. However,
as we will show later, this accuracy can be boosted up to
99% using this same method, when combined with our multi-
classifier approach.

IV. PROPOSED ROBUST MULTI-CLASSIFIER APPROACH

In this section, we introduce our multi-classifier approach
with a score-based two-level aggregation method that returns a
fused decision for each test example. Additionally, we describe
a data augmentation method to increase robustness during
training. For a robust detection of new hovering UAVs, we
combine the new device detection algorithm with the multi-
classifier scheme.

A. Multi-classifier Scheme

As we experimentally showed in Section III-D, UAV hov-
ering changes the wireless channel significantly over time. To
gain deeper insights on how channel conditions vary in the
case of hovering UAVs, as compared to a static radio case,
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we conduct additional experiments. Since the UAVs used in
this paper transmit Lightbridge proprietary waveforms, we use
software defined radios (SDRs) transmitting standard WiFi to
study the estimated channel in two different cases. We generate
a waveform with standard protocol of IEEE WiFi 802.11a with
5 MHz bandwidth, using MATLAB WLAN toolbox. We
transmit the waveform over the air using an Ettus USRP X310
radio as the transmitter hardware, in two different situations
described below:

1) Static Tx: We place the transmitter statically on the
ground.

2) Hovering Tx: We mount the transmitter on an M100
UAV, fly the UAV and transmit signals as the UAV
hovers in its place.

For both cases, we use an Ettus USRP X310 radio placed on
the ground, as the downlink receiver, to collect I/Q samples
and estimate the channel. With FFT size 64, if we eliminate
the guardband subcarriers, we have 52 channel coefficients
for each WiFi packet. We calculate the magnitude of channel
coefficients for each packet at three different instants of 0, 1.9
ms, and 596 ms in Figure 5. It is observed that in case of

a static transmitter, the channel does not change much during
596 ms. However, in case of a hovering UAV, channel changes
drastically from the starting instant O to the 596 ms mark.

Thus, when a hovering UAV is transmitting, the rapid
changes in wireless channel distort the transmitted fingerprint
with rapidly changing transforms. This causes different snap-
shots of the received signal to have different distributions of
I/Q samples. Since data distribution varies over time, instead
of a single neural network trained on all data parts, we
independently train multiple neural networks each on non-
overlapping portions of the dataset. As an illustrative example,
Figure 6 shows a specific case of training 12 independent
neural networks with different portions of bursts 1, 2, and 3. In
this case, each burst is equally partitioned into 4 sefs to form
12 (=3x4) non-overlapping training sets. We test the trained
networks on the examples from the unseen burst 4 by feeding
slices from each example to all the trained neural networks
and combine their predictions using an aggregation method
described next.
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B. Aggregation Method

1. Aggregating predictions at the output of each neural
network: As explained in Section III-C, in the test phase,
two previous methods of Probability Sum and Majority Vote
yield ~50% accuracy for the hovering UAV dataset (more in
Section V).

In the proposed method for the first level of aggregation, we
further divide each (relatively long) example of length ~92k
samples, to K=10 equal length sub-examples. We slice each
sub-example with index k (k={0,1,..., K-1}) as explained in
Section III-C, and feed it to the trained neural network in a per-
slice basis. If each sub-example with length L is sliced with
slice size I, the whole sub-example yields (L — [ 4 1) slices.
Consequently, at the output of the neural network, we have
L — 1+ 1 probability vectors pgflzl for k' sub-example, with
i being the slice index (i={0,1,..., L-1}). We make predictions
for each sub-example using Probability Sum method. Here,
the sum of probability vectors piklzl for all slices in the sub-
example k yields the Probability Sum vector Vs(fgfw, as in
4. L

‘/;(:lz—ex = Zpg]lcizi )
i=0

The predicted class Ciﬁifex for the sub-example with index

k, using Probability Sum method is shown in (5).
c®) k=0,1,2,...,K-1 (5

sub—ex

k=0,1,2,....,K-1 (4

:argmax(V(k) )

sub—ex
At this point, each sub-example with index k, yields L—I+1
slices, among which M* < (L —1+41) are classified as

sub—ex
class ng?)fez’ as in (6).

L—1
MY = 3 (steets)
=0

. (©6)
: (ki) _ (k)
'y(slice(k’i)) _ 1 if G’Tg’rn.a‘x(pslice) - Csubfea:
0 otherwise
For each sub-example with index k, we define Séﬁ;kex as

the maximum value of vector Vs(fzfem divided by total number
of slices in the sub-example, which is an indicator of the

average prediction probability for the sub-example (7).

(k)
(k) _ max(VGub—er{:) .
e = L1y 0 R OL2e KL ()

For each sub-example with index k, we calculate a score,
as shown in (8), based on which we do the first level of
aggregation.

(k) — g

sub—ex sub—ex

« M)

score sub—ex 3

k=0,....K-1 (8)

In the last step, we take a vote among sub-examples: We
. . (k)
choose the maximum among the list of score; .. as the
score of the whole example, score.,, as shown in (9). We
select the corresponding sub-example as the winning sub-
example, and its predicted class C,p—ez, as the predicted class
C., for the whole example, as in (10).
K-1

scoree, = maz( U scoregi)b_em) ©))
k=0

example

W

sub-ex (K-2)

sub-ex (K-1)

probability sum ~ sesessesasn probability sum

€O = argmax(v(©))
S0) = max(v(9)
M©) = num_slices(C(®)
score(® = sO)*M(©)
L

CK = argmax(vK)
S(K1) = max(v(K-1)
MK = num_slices(CK-1)
score(K-1) = g(K-1)\(K-1)

J

Winning sub-ex = argmax ( [score(o), ..... score(K‘”] )

<>

predicted class for the example = predicted class of winning sub-ex

Figure 7: Proposed method of sub-example voting for the first
level of aggregation.

K-1
(argmaa:( U scoreilf‘)b_m))
k=0 subTew

Cea::C

sub—ex

(10)

In summary, we make a prediction for an example at the

output of one neural network, by comparing scores of its sub-
examples and selecting a winning sub-example. The score for
each sub-example relies on the average prediction probability
and the number of slices classified same as the sub-example.
Selecting winning sub-examples helps us better identify the
wrongly predicted sub-examples and suppress their votes.
As the sub-examples vote with their scores, to determine a
winning sub-example, we refer to this method as sub-ex voting.
An overview of this scheme is depicted in Figure 7.
2. Aggregating the predictions from multiple NNs: Previ-
ously, we explained how we make a decision for an example at
the output of a neural network, as the first level of aggregation.
Here we explain how to combine results from multiple neural
networks in the second level of aggregation.

In the second level of aggregation, we need the score., and
C,, recorded from all the neural networks. Assume we have
J trained neural networks, classifying the same example in
parallel. After the first level of aggregation, at the output of
the neural networks, we have a list of J scores, score., and
J predicted classes Co, (11):

J—1
SCOT ey list = U score((jz)
j=0

J—1 (11)
Oy list = | ] €

j=0
We follow the same logic of using scores to take a vote
between neural networks, as we did for sub-examples, and
select the classifier with the highest score, as the winning
classifier. The class predicted by that classifier is selected as
the predicted class C for the input example, as shown in (12).

C = Cey_list(argmaz(scoree,_list)) (12)
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acc_improv = new_acc - past_acc

Figure 8: The steps of determining the size of multi-NN
scheme.

For calculating the accuracy of the multi-classifier scheme,
we follow the equations (5)—(12) for all the examples in the
test set, and ultimately record combined predicted classes
C for each example. Classification accuracy of the multi-
classifier is calculated by dividing the number of correctly
predicted examples by the total number of test examples.

C. Choosing the Size of the Multi-classifier Scheme

We propose a step-by-step dataset partitioning process to
find the number of neural networks that compose the multi-
classifier scheme. Without losing generality, for our exper-
iments we use AlexNetlD architecture as each individual
classifier.

We start by using first-arriving I/Q sequences as training set
(called as set) and last-arriving as an intermediate test set. We
initialize the number of neural networks in the multi-classifier
scheme (J) equal to 1. The goal is to determine J by mon-
itoring the accuracy improvement after each training/testing
process. To do this, we follow the steps below:

1) We sort the examples in the set(s) in temporal order, and
split them into two parts. Now each part becomes a new
set, and we update J by doubling it.

2) We train J independent neural networks on 90% of each
set. As explained in Section III-C we choose 10% of
each set for validation to decide when to stop training.

3) After the neural networks are fully trained, we test
them on the unseen intermediate test set. We use the
proposed two-level aggregation method (explained in
Section IV-B) to calculate the multi-classifier accuracy.

4) Next, we check to see if the accuracy improvement is
less than or equal to 2%. If yes, we stop the partitioning
process and report J as the number of neural networks
required in the multi-classifier scheme. If no, we go to
step 1 and repeat the steps.

Figure 8 demonstrates an overview of the dataset splitting
process for determining the number of neural networks in the
multi-classifier scheme. Each loop that corresponds to going
through steps 1-4 is considered a round. Since, in each round
the former set is halved and the number of classifiers doubles,
the algorithm reports .J after log, J rounds.

The stopping criterion of 2% can be increased or decreased
depending on the user’s need. Increasing this criteria causes
an earlier stopping point, which results in lower J and lowers
final accuracy. Decreasing it, however, potentially increases
final accuracy at the expense of larger number of classifiers, re-
sulting in longer training/testing time in the multi-NN scheme.

D. Data Augmentation (DA)

Data augmentation (DA) is a means to expand the training
set by modifying the original training samples in a principled
manner [37], [38]. While collecting more training data that
contains all the variations is expensive, DA can artificially
create those variations in the original training set. Moreover,
our DA method obviates the need of storing a large and varied
training set on disk, since the variation injection happens on
the flight in the training pipeline.

In our method of DA, first we normalize the training
batch X according to mean u, and standard deviation o of
the complete training set using (1). Next, the normalized
batch passes through the DA block before being fed to the
neural network (See Figure 9). The block contains a multi-
tap complex FIR filter that is convolved with the data batch
passing through it. The convolution happens in “same” mode,
which means each slice is zero padded before passing through
the filter, and the dimensions of the data batch do not change
after filtering. The filter taps are independent and chosen
from the same distribution. For the purpose of this paper,
we choose an 11-tap FIR filter and we draw its coefficients
from complex Gaussian distribution with mean pu,=0 and
standard deviation ¢5,=0.125. However, FIR parameters such
as number of taps, mean, and standard deviation can be varied
for different datasets to optimize the method and achieve the
best results.

In each epoch, when each data batch is loaded by Keras
Data Generator [31], a new set of filter coefficients are
drawn from the distribution. In this way, the augmentation
block provides extensive variety to the training set over epochs.
The resulting trained model is less likely to over-fit, and it
is more robust compared to a model obtained from classical
training without DA.

For testing a model that is trained with DA, in order to
maintain the same scale for the test data as the training data,
after the conventional normalization in (1), we need to filter
the test data, too. For this purpose, we use FIR filters with the
same parameters (i.e., number of taps, mean, and standard
deviation) as the FIR parameters in the training phase. To
remove the effect of random FIR choice in the test phase,
instead of just one filter per batch, we use a number of different
filters per test slice. Since the classification decision is made
on an ensemble of resulting outputs, we call this method,
ensemble FIR. As shown in Figure 10, per test slice in the test
batch, we draw ensembleFactor=10 different sets of FIR taps
from the same distribution. We pass the slice through these 10
different filters and stack them together, in the filtered batch.
In this case, if the original batch contains L — [+ 1 slices, the
filtered batch will have 10 x (L — [+ 1) slices. Consequently,
the neural network yields 10 x (L — [+ 1) probability vectors.
Same as before, we use Probability Sum method to aggregate
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Figure 9: Data augmentation training phase using complex filter being convolved with each data batch.
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Figure 10: Ensemble FIR method with ensembleFactor=10 is
used in the test phase of data augmentation scheme.

p(jlz)e and obtain a prediction for each sub-example. In this

case, probability sum vector in (4) changes to (13).

(10x (L—1+1)—1)

>

=0

(k)

k
V( ) = pslice )

g k=0,....K-1  (13)

Recall that in our multi-classifier scheme, we use the sets in
Figure 6 to train J neural networks. The new training sets are
considerably smaller and less varied than the original training
set that contains all of bursts 1, 2, and 3. In such situations,
DA is a good candidate to prevent trained neural networks
from over-fitting.

E. Improving New UAV Detection using Multi-Classifiers

Here, we improve the new device detection algorithm dis-
cussed in Section III-E1, by combining outputs from all neural
networks in the multi-classifier scheme. We assume we have
J neural networks trained and tested on old UAVs, with 2
thresholds being recorded per neural network, and per UAV,
as explained in Section III-E1. We also keep the assumption
of having K sub-examples in each example. In this case, for
each example, we have J lists as in (14) each containing K

113 t3) 113 EL) 4,k
labels of “new” or “old” represented as yg,jubl e

§=0,1,....,J—1 (14)

K-1
old-new-list") = U ygfdljlw ,
k=0
The goal of aggregation is to combine these J x K values
in a way to achieve a single y,, that determines whether the
example is from an old UAV or a new one. Since the labels
can only get 2 values in new UAV detection (either “new” or

“old”), instead of the rather complex score-based aggregation
method (discussed in Section IV-B), we use a simple Majority
Vote at both levels of aggregation.

At the first level of aggregation, we identify an example
as a new UAV example, if the majority of its sub-examples
(more than %) vote for it to be “new”. In (15) yéi) is the “old”
or “new” label for each example at the output of new device
detection algorithm.

o old

() _ ) new old-new-list") .count(“new”) > floor(%)
B otherwise

5)

At the second level of aggregation, we create a list of J

members of all the labels ygg)for one specific example, as in
(16).

J-1
old-new-list(*otal) = U y\) (16)
7=0

We take another Majority Vote this time across J labels to
determine the final ensemble prediction y., for each example,
as in (17).

_Jnew
Yex = old

In the next section, we present numerical results for all the
proposed methods and compare them against baseline results.

t(total)

if old-new-lis .count(“new”) > floor(%)

otherwise
(17)

V. PERFORMANCE EVALUATION

We use our UAV dataset collected from 7 hovering UAVs
(Section III-B) to show numerical results for the proposed
schemes. First, we show the contribution of our first level
of aggregation (sub-example voting) on individual neural
networks of AlexNetlD and ResNetlD. Second, we run the
algorithm explained in Section IV-C on the UAV dataset, and
determine the number of neural networks in the multi-classifier
scheme. Third, we show the results of the proposed multi-
classifier scheme with two levels of aggregation. Fourth, to
show the contribution of DA, we retrain the individual neural
networks in the multi-classifier scheme using DA, and report
their decisions using the two-level aggregation. Last, we show
the contribution of multi-classifier scheme on detecting new
UAVs with high accuracy.
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As mentioned in Section III-C, in all the experiments we
use slice size of [ = 200, and categorical cross entropy loss
function, to train the neural networks.

A. Sub-example (sub-ex) Voting

As explained in Section IV-B, the proposed sub-ex voting is
an aggregation method for determining the prediction for an
example within one neural network. To compare the sub-ex
voting method with previously existing aggregation methods
for a single neural network, we train two different architectures
of AlexNetlD and ResNet1D on bursts 1,2 and 3 and we test
them on burst 4. For combining the probability vectors at the
output of each neural network, we compare three methods of
1) Probability Sum, 2) Majority Vote, and the proposed 3)
sub-ex voting. Figure 11a shows that the results of Probability
Sum and Majority Vote are in the same range of ~50% for
this dataset. Compared to these methods, our proposed sub-ex
voting, improves the accuracy to 61% and 63% for a single
AlexNet1D and ResNet1D, respectively.

B. Determining the Size of Multi-NN Scheme (J)

To use the method described in Section IV-C for our UAV
dataset, we leave aside burst 4 which is our final test set, to
prevent information leakage from this burst into the process
of determining J. Bursts 1 and 2 which are the first arriving
bursts serve as initial training set, and burst 3 which is
collected after them, serves as the intermediate test set. In
round 1, we create 2 sefs, containing complete burst 1 and

Individual Multi-NN Individual Multi-NN
accuracies accuracy accuracies accuracy
33% 22%
41% 76%
30%
(a) round 1: 2 NNs 32%
Individual | Multi-NN 21%
accuracies accuracy 45% 89%
27% 42%
31%
38%
45% 87% .
0% 40%

(b) round 2: 4 NNs (c) round 3: 8 NNs

Table I: Intermediate results for the process of determining the
size of multi-NN scheme.

burst 2, respectively. We train 2 separate neural networks on
the two sets and test them on the unseen burst 3. We use
the two level aggregation method to calculate the final multi-
classifier accuracy. Individual and multi-classifier accuracies
for this round are shown in Table Ia. In round 2, we create 4
sets by dividing each previous set into two parts. The 4 sets
contain first half of burst 1, second half of burst 1, first half of
burst 2, and second half of burst 2, respectively. Consequently,
we train 4 neural network on these sets and test them on burst
3. Individual and multi-classifier accuracies for round 2 are
shown in Table Ib. In round 3, we create 8 sets again by
dividing each previous set into two parts. Therefore, 8 neural
networks are trained on the 8 sets ranging from the first quarter
of burst 1 to the fourth quarter of burst 2. The test results on the
unseen burst 3 in round 3 are shown in Table Ic. The splitting
process stops when accuracy improvement diminishes to 2%
after 3 rounds and the final J is calculated as 8. At this point,
each of bursts 1 and 2 are partitioned into 4 sets.

For the final training/testing, we bring burst 3 into the
training scheme, so that we have more sets and larger number
of classifiers. Same as bursts 1 and 2, burst 3 is also partitioned
into 4 sets, which yields 12 sets in total. The final outcome
of dataset partitioning flow is shown in Figure 6, where we
train J = 12 independent but identical classifiers on different
portions of bursts 1, 2, and 3. We finally test all of the networks
on the unseen burst 4.

C. Multi-classifier with Two Levels of Aggregation

As explained in Section V-B, for the multi-classifier scheme,
we train 12 identical AlexNetlDs (less complex network in
Figure 4a) in parallel. At test time, we feed each example to
all the 12 trained neural networks, and use three methods to
combine their results:

o As the first level of aggregation, we combine results
of sub-examples, using Probability Sum. At the second
level, we use Majority Vote among the 12 neural networks
in the multi-classifier scheme.

o We use Majority Vote in both levels of aggregation, for
combining both sub-example results and multi-classifier
results.

o« We use the proposed two-level aggregation method to
combine the results.
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Single Single Multi(12
Scheme AlexNefID  ResNetiD AlexN(etll))
No. of parameters ~1.1M ~16M ~13.2M
Training Time (h) 20.5 44 34
Test Time (h) 2.5 14 30
Total Time (h) 23 58 64
Final Accuracy 49% 50% 91%

Table II: The trade-off between complexity of the schemes and
final accuracy.

Figure 11b shows the numerical results for these three cases.
The combination of Probability Sum and Majority Vote is
shown as “PM” (45% accuracy), Majority Vote at both levels
as “MM” (46% accuracy), and the two-level aggregation as
“2level” (91% accuracy). The two-level aggregation improves
the accuracy for multi-classifier scheme by more than 100%.
Moreover, our score-based multi-classifier improves the accu-
racy of single classifiers using Probability Sum or Majority
Vote (Figure 11a). This improvement is 85% and 82% for
AlexNet1D and ResNetlD, respectively.

Interestingly, the accuracy improvement in multi-classifier
approach, compared to single ResNetlD, comes at no cost
of increase in model size. There are ~16M and ~13.2M
(=12x1.1) parameters, in ResNetlD and our multi-classifier
scheme, respectively. In other words, the multi-classifier
scheme with 12 AlexNetlDs still has fewer parameters than a
single ResNet1D, even though it yields 82% improvement in
accuracy of ResNetlD. This accuracy boost, however, comes
at a cost of longer training/testing process. As shown in
Table II, the training and test time increases from 23 and 58
hours for single AlexNet1D and ResNet1D, respectively, to 64
hours for the multi-classifier scheme.

The benefit of our method comes from learning different
data sequence distributions collected over time in parallel. At
test time, in both levels of aggregation, we suppress the least
certain predictions and keep only the most certain one.

D. Data Augmentation (DA)

To show the contribution of DA towards improving the
accuracy of individual neural networks, we independently
retrain each of the 12 classifiers on sets shown in Figure 6,
with the DA block included in the training pipeline. We
train the neural networks for 50 epochs to ensure sufficient
variations of training data is provided to the network. In
the test phase, we use the FIR ensemble method to test the
classifiers on the unseen burst 4, and calculate individual accu-
racies, as well as the multi-classifier accuracy using the two-
level aggregation method. The individual accuracies without
and with augmentation block, and their corresponding multi-
classifier accuracies can be seen in Table III. It is observed
that DA improves the overall accuracy from 91% to 95%.

Figure 12 further shows the confusion matrices for four
different cases of (a) a single AlexNetlD being trained on
bursts 1, 2, 3 and tested on burst 4 using Probability Sum
for per-example accuracy (49% accuracy), (b) same case with
DA in the pipeline (56% accuracy), (c¢) multi-classifier scheme
with two levels of aggregation (91% accuracy), and (d) same

case with DA in the pipeline (95% accuracy). We can see in
the latter case, diagonal dark cells have formed, which indicate
correct predictions.

In order to show the effect of DA on over-fitting of the
neural network, we do another experiment. We train a network
with setl in Figure 6 as an example (NN1). At the end of
each training epoch, we test the model on the unseen burst
4, in order to keep track of loss and slice accuracy of the
test set over epochs. We do this process without and with DA
block. Figures 13a and 13b show the gap between training
and test loss reduces from 6.54 to 1.77, when DA is used,
which shows a reduction in over-fitting. An increase in the
test loss over epochs that we observe in Figure 13a and 13b
is not necessarily equivalent to a decrease in test accuracy.
This increasing trend could specially be observed in our case
of training on setl and testing on burst 4, where training and
test sets are collected under different channels and different
distributions. As it can be seen in Figure 13c and 13d, test
accuracies are actually improving over epochs, in both cases
of without and with DA. The important point is as seen in
Figure 13c, without DA training accuracy quickly increases,
however test accuracy does not increase with it. This means
the model is doing well on the training data, however, it cannot
well generalized to the unseen test set, and hence, over-fitting
is happening. This adverse situation can be ameliorated by
augmenting the training data as seen in Figure 13d. In this
case, the model is more robustly trained with DA, which leads
to an increase in slice accuracy from 28% to 33%. As shown
in Table III, the example accuracy corresponding to this case
(NN1) has even a larger increase from 30% to 40% with DA.

E. New UAV Detection

To implement the new UAV detection method along with
multi-classifier scheme, as explained in Section IV-E, we
choose UAV4 as the new UAV, and other 6 UAVs as the old
ones (same as Section III-E). We exclude signals of UAV4
from sets shown in Figure 6, and use 90% of each set as
training set, and 10% as validation set. We train J = 12
networks on the old UAV training sets and test them on the
old UAV validation sets to record thresholds, as explained in
Section III-E1. We form the new UAV test set using examples
from UAV4 in burst 4, so that the new UAV signal is also
from an unseen burst. After comparing the ratios with the
thresholds, we obtain individual accuracies for new UAV
detection, shown in Table III. As shown in this table, the multi-
classifier accuracy for new UAV detection equals 99%.

To show how the new UAV detection algorithm performs
when an old UAV is fed to it, we do another experiment.
We choose UAV6 in burst 4 as an old device in the unseen
burst, and we feed its signals to the 12 neural networks trained
in this subsection. We repeat the step of comparing ratios
and thresholds for each neural network to decide whether the
input comes from a new UAV or an old one. Then we use the
aggregation method to calculate the multi-classifier accuracy.
It should be noted that the old UAV is from the unseen burst 4,
which adds to the difficulty of the task. The results shown in
Table III illustrate that 11% of examples from the old UAV are
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NN 7 31% 37% 76% 17%

NN 8 35% 35% 91% 23%

NN 9 45% 42% 89% 20%

NN 10 35% 38% 92% 12%

NN 11 31% 37% 88% 21%

NN 12 33% 40% 81% 16%
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Architecture H Prep. ‘ Single NN | Multi-NN
UAV classif.-AlexNet1D - 49% 91%
UAV classif.-AlexNet1D DA 56% 95%
UAV classif.-ResNet1D - 50% -
New UAV-AlexNet1D - 68% 99%

Table IV: Comparing accuracy in single NN and multi-NN
schemes for UAV classification and new UAV detection.

incorrectly categorized as new UAV examples. Even though
the true negative rate of our new UAV detection algorithm is
89%, the high 99% rate of true positives can effectively detect
signals from outlier (new) UAVs.

Table IV shows the improvement of accuracy in multi-
classifier scheme compared to single classifier. In all cases,
training is done on bursts 1, 2, and 3 and test is done
on the unseen burst 4. We see that classification accuracy
improves from 50% for the best case of single classifier with
previously existing methods to 95% with our multi-classifier
scheme using two levels of aggregation and data augmentation.
Moreover, as shown in Table IV, the 99% new UAV detection
accuracy is 45% improvement over the single classifier result
of 68% that we reported in Section III-E.

VI. CONCLUSION

In this paper, we addressed the problem of classifying hov-
ering UAVs that emit proprietary/unknown waveforms using
RF fingerprinting with deep neural networks. We empirically
showed the adverse effect of imperfect hovering on classifi-
cation accuracy for 7 UAVs, which initially resulted in a low
499% accuracy using conventional single architecture methods.
To tackle this problem, we proposed a multi-classifier scheme
to separately learn from different dataset portions. To combine
test results at the output of the neural networks, we proposed a
novel two-level score-based aggregation method, that returned
an overall accuracy of 91%. We used data augmentation to
improve individual accuracies of the neural networks in the
multi-classifier scheme, which ultimately boosted the classi-
fication accuracy upto 95%. Furthermore, our multi-classifier
scheme yielded a new UAV detection accuracy of 99%, giving
a high confidence that this approach will work in real-world
applications.
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