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Abstract—Spiking Neural Networks (SNNs) are brain-
inspired computing models incorporating unique temporal
dynamics and event-driven processing. Rich dynamics in both
space and time offer great challenges and opportunities for
efficient processing of sparse spatiotemporal data compared
with conventional artificial neural networks (ANNs). Specifi-
cally, the additional overheads for handling the added temporal
dimension limit the computational capabilities of neuromorphic
accelerators. Iterative processing at every time-point with
sparse inputs in a temporally sequential manner not only
degrades the utilization of the systolic array but also intensifies
data movement.

In this work, we propose a novel technique and architecture
that significantly improve utilization and data movement while
efficiently handling temporal sparsity of SNNs on systolic
arrays. Unlike time-sequential processing in conventional SNN
accelerators, we pack multiple time points into a single time
window (7'W) and process the computations induced by active
synaptic inputs falling under several 7'W's in parallel, leading
to the proposed parallel time batching. It allows weight reuse
across multiple time points and enhances the utilization of
the systolic array with reduced idling of processing elements,
overcoming the irregularity of sparse firing activities. We op-
timize the granularity of time-domain processing, i.e., the T
size, which significantly impacts the data reuse and utilization.
We further boost the utilization efficiency by simultaneously
scheduling non-overlapping sparse spiking activities onto the
array. The proposed architectures offer a unifying solution
for general spiking neural networks with commonly exhibited
temporal sparsity, a key challenge in hardware acceleration,
delivering 248X energy-delay product (EDP) improvement on
average compared to an SNN baseline for accelerating various
networks. Compared to ANN based accelerators, our approach
improves EDP by 47X on the CIFAR10 dataset.

Keywords-Spiking Neural Networks (SNNs), Neural Network
Accelerator, Systolic Array, Parallel Processing

I. INTRODUCTION

Conventional non-spiking artificial neural network mod-
els, or simply ANNs, employ only rate coding where
continuous-valued signals resulted from activation functions
such as sigmoid and rectified linear unit (ReLU) correspond
to average firing rates. On the other hand, spiking neural
networks (SNNs) more closely resemble biological neurons,
explicitly model all-or-none firing spikes across both space
and time, and can leverage a rich family of rate and temporal
codes for complex spatiotemporal information processing.

Recent studies reported competitive performances for vari-
ous image and speech tasks with biologically inspired [1,2]
and backpropagation based [3,4] SNN training methods.
With great potentials in ultra-low power event-driven learn-
ing leveraging the spatiotemproal dynamics of SNNs [5],
neuromorphic processors have gathered significant interest
in both academia and industry, resulting in well-known
neuromorphic chips including IBM’s TrueNorth [6] and
Intel’s Loihi [7].

Nevertheless, hardware acceleration of spike-based mod-
els is complicated by temporal computation and sparse
spiking activities in both space and time, two new challenges
that are absent in accelerators of non-spiking networks such
as DNNs. The added temporal dimension is fundamental
to SNNs but introduces difficulties in managing compute
and data movement. Furthermore, biological brains and
engineered SNN models often exhibit a great deal of firing
activity sparsity across both space and time, manifesting
their promising efficiency. The sparse spiking activities of
a well-trained SNN may vary from neurons to neurons,
and from time points to time points. To fully explore the
benefits of SNNs, one must address the challenges brought
by irregular patterns of spatial and temporal sparsity.

Compared to the large body of work on DNN accelerators,
e.g., [8]-[12], much less research has been devoted to SNN
hardware accelerator architectures [13]-[17]. The two best-
known industrial neuromorphic chips, IBM’s TrueNorth [6]
and Intel’s Loihi [7], are based on a many-core architecture,
comprising neuro-synaptic cores with an asynchronous mesh
for core-to-core communication. Each neuromorphic core
emulates a certain number of spiking neurons in a time-
sequential manner. While both architectures target large-
scale spiking neural computations with low power, there
exist two primary disadvantages in these two designs: 1)
lack of parallelism in each core: the computations associated
with different spiking neurons are executed sequentially, one
neuron at a time, and from time points to time points; and
2) assumption of large core memory: as opposed to many
practical cases, it is assumed that all weights of the net-
work are fully stored on-chip, and hence efficient dataflows
maximizing the reuse of weight data are not targeted. These
issues limit the achievable throughput and/or do not well
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support SNN acceleration on resource-constrained hardware
like ones for edge computing.

The recent SNN architecture SpinalFlow explores a novel
compressed, time-stamped, and sorted spike input/output
representation [13]. The main drawback of SpinalFlow is
that it only targets the class of temporally-coded spiking
neuronal models in which each neuron fires at most once,
which is a highly restrictive type and has limited accuracy
for challenging learning tasks [18,19]. While the smart
exploration of such extreme temporal sparsity leads to large
latency and energy efficiency benefits, SpinalFlow is not
applicable to broader classes of SNNs employing rate and
other types of temporal codes or a combination of thereof for
high-accuracy decision making. Since the maximum firing
count for each neuron is one, the structured sparse firing
activities are handled as chronologically sorted inputs with
a dearth of parallel acceleration through time.

This work aims to develop a systolic-array architecture
for general SNN models consisting of densely connected
and convolutional spiking layers with the flexibility in
employing various rate and temporal codes. We propose
two key techniques to enable spike-based computation while
efficiently exploring unstructured firing activity sparsity in
both space and time. First, the (sparse) firing activity of one
(active) synaptic neuron over multiple time points are packed
into one time window T'W. The integration of such sparse
firing inputs into the membrane potential of a connected
post-synaptic neuron over the given T'W is referred to as
a time batch, which is mapped to a processing element
(PE) on the systolic array. This gives rise to the proposed
parallel time batching (PTB) technique by which multiple
time batches are processed simultaneously on the array. On
top of PTB, we further propose a spatiotemporally-non-
overlapping spiking activity packing (StSAP) technique to
identify and combine time batches whose spike inputs are
non-overlapping either in time or space. This work provides
a novel solution to address limitations in stereotypical (time-
serial) approaches for energy-efficient dataflow and parallel
processing in time-domain towards memory-intensive SNN
accelerators.

The main contributions of this work are:
Parallel Time Batching (PTB) - We introduce a novel
technique for parallel acceleration in both space and
time based on simultaneous processing of multiple time
batches with a temporal granularity defined by the Time-
Window (TW) size. PTB significantly improves latency and
energy dissipation by efficiently handling the spatially and
temporally sparse nature of general spiking models.
Spatiotemporally-non-overlapping  Spiking  Activity
Packing (StSAP) - We identify non-overlapping structures
of time batches and maximize systolic array utilization by
scheduling an increased number of time batches onto the
array, leading to further improved latency.
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Figure 1: (a): Layer operation in SNNs. (b): Main steps of
spatiotemporal operation in a spiking neuron.

Systolic array-based Accelerator Architecture - We
propose a systolic array-based architecture capable
of exploiting PTB and StSAP. We optimize the key
architectural parameters of the proposed accelerator, and
demonstrate significantly improved energy efficiency and
latency.

We evaluate the proposed techniques with a spiking CNN
(S-CNN) architecture simulator based on high-performance
S-CNNs trained using state-of-the-art SNN training meth-
ods [20] on realistic neuromorophic datasets including DVS-
Gesture [21] and CIFAR10-DVS datasets [22], and synthetic
spiking based AlexNet [23] model. We examine how tem-
poral granularity in terms of the time window (TW) and the
proposed techniques PTB and StSAP impact data movement,
utilization and energy efficiency. The proposed architecture
and techniques significantly improve the energy efficiency,
latency, and energy-delay product (EDP) by 248X on aver-
age, compared to a baseline systolic array architecture.

II. BACKGROUND
A. Unique Characteristics of SNNs

Compared with non-spiking ANNSs, the most distinctive
features of SNNs are temporal data processing and data
representation. All data types in ANNS, e.g., input/output
feature maps (IFmap/OFmap) and filters data in widely
adopted convolutional neural networks (CNNs), are multi-
bit. The most commonly used data representations in non-
spiking CNN hardware accelerators are based on 8- to 16-
bit precision [8,12,24,25], which may be further compressed
using techniques such as weight quantization [26,27]. On
the other hand, input/output activations of a spiking layer
are binary due to the all-or-none characteristics of spiking
neural firing characteristics, which can be more compactly
stored than multi-bit partial sum data. This disparity in data
representations can be explored in dataflow optimization
[13,14].

While integration and activation steps in ANNs exclude
temporal information, a spiking neuron integrates its in-
puts over time, as shown in Fig. 1(b). The spatiotemporal
information processing in SNNs empower various models

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 18,2022 at 18:56:45 UTC from IEEE Xplore. Restrictions apply.



Input feature
maps (IFmaps)

Filters (W) T A
A % T
o

1

Output feature
maps (OFmaps)

RI@ R4 E‘M

Figure 2: Computation of convolution layer in S-CNNs.

and applications [3,28,29]. However, the added temporal
dimension causes intertwined spatiotemporal interactions,
rendering SNN hardware accelerators to confront complex
data movement/computation, which we address in later
sections.

B. SNN Basics

Time point is a minimum unit of time in SNNs. At each
time point 7, operations in a single spiking neuron comprise
three main steps as shown in Fig. 1: 1) integration of spike
inputs from its receptive field (pre-synaptic spike inputs), 2)
membrane potential update based on the integrated spike
inputs and the membrane potential of the previous time
point, 3) conditional generation of a spike output whenever
the updated membrane potential exceeds a pre-determined
threshold. The above three steps can be represented as:
Step 1: Synaptic input integration at t:

MRF
Z wy; X s [tr] (1
Step 2: Membrane potentlal update:

vf [tr] = 0P [te—1] + DY [tr] = Viear @

Step 3: Conditional spike output generation:

pYltk] =

on 1 J1, i vP[t] > VS
sl = 0 else

where the RF and O represents the receptive field from
the pre-synaptic layer, and the output (post-synaptic) layer,
and j and ¢ represent the neuron indices in the two layers
respectively, as shown in Fig. 1(a). p©[tx], v [tx], and 5O [t]
denote the integrated partial sum of the spike inputs from
the receptive field, membrane potential and spike output
of the neuron ¢ in the post-synaptic layer at time ty,

= ol [te] =0

— 0P [tr] = v [tk] )

Table I: Shape parameters of a CONV layer in S-CNNs

Shape Parameter Description
H/H ifmap width / height
E/E ofmap width / height
R /R filter width / height

C # of ifmap/filter channels
M # of ofmap channels
T # of time steps

respectively. wj; is the feedforward synaptic weight between
neurons ¢ and j, and M RF g the number of neurons in the
receptive field. Vi, and Vi., are the firing threshold and
leaky parameter, respectively. We distinguish the two most
popular spiking neuron models, i.e., leaky integrate-and-
fire (LIF) model [30] or integrate-and-fire (IF) model [31],
depending on whether the leaky parameter is considered
or not. In the above, Step 1 and Step 2 constitute the
dominant complexity of hardware acceleration due to their
large computational overhead.

C. Basics of Spiking CNNs (S-CNNs)

The proposed architecture accelerates a given deep SNN
consisting of multiple fully-connected and/or convolutional
layers in a layer-by-layer manner. The fundamental opera-
tions of a single spiking neuron in spiking-CNNs (S-CNNs)
follow the aforementioned three main steps (1)~(3) where
the computation involves multiple filters:

At a given time-point ¢,
Step 1: Integration of receptive field synaptic inputs at t:

Pim][z][y][ts] =
C—-1R-1R-1
Z > Wimllellilli] x Xe][Uz +d][Uy + i{t]

“
Step 2: Membrane potential update:

Vim]lzlly][tr] = Vim]l]ly][te—1] + Plm][z][y][te]  (5)

Step 3: Conditional spike output generation:

Ofm][z][y][tr] =
{1» if Vim][z][y][te] > Vi) + Vim][z][y][tx] = 0 ©)
0 else: V[m][z][y][ts] = VIm][z][y][tx]

0<z,y<E, E=(H—R+U)/U, 0<c<C, 0<m<M, 0<t<T

Step 4: Move onto the next time-point (¢541), and repeat.

where P, V, O, I and W are the matrices of the partial
sums (Psums), membrane potentials, output feature maps
(OFmaps), input feature maps (IFmaps) and filters, respec-
tively. P[m][z][y][tx] is the partial sum of the neuron at
position (x,y) and in output channel m of the OFmap at
time t;. Other matrices are defined similarly. U is a given
stride size, T is the number of processing time steps, and
all the other shape parameters are listed and illustrated in
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Figure 3: Spatial and temporal sparsity emergent in SNNG.

Table I and Fig. 2. (4)~(6) correspond to each of the three
steps discussed in (1)~(3).

D. Systolic Array

Systolic array architectures offer efficient parallel process-
ing with high spatiotemporal locality and compute density.
In many prior works, a tightly coupled 2-D systolic array has
been adopted for CNN accelerations with clear advantages
[11,12,32,33]. Systolic arrays propagate data horizontally
and vertically, i.e., from left to right and from top to
bottom through all processing elements (PEs) in a globally
synchronized manner, hence naturally exploit high locality
and compute density. For example, a unidirectional link is
utilized in the vertical data propagation to allow each PE to
receive the input from its upstream neighbor, perform the
computation and store the results, and continue to pass the
data to its downstream neighbor. Furthermore, data are fed
from edges of the array to provide sufficient data distribution
bandwidth. The above properties result in a streamlined
accelerator platform for managing data fetching without
requiring complicated inter-PE communication. With the
advantages in terms of complexity, distribution bandwidth,
locality, and compute density, systolic arrays are adopted for
efficient acceleration of spiking computation in this work.

III. CHALLENGES OF SNN ACCELERATORS

While SNNs are promising brain-inspired models of com-
putation, complex spatial and temporal interactions in data
movement and computation hinder their hardware acceler-
ation. Firing sparsity emergent in both spatial and tempo-
ral domains provides an opportunity for building efficient
SNN accelerators. However, tapping to this opportunity is
challenging and requires tackling the unstructured nature of
spiking data sparsity from which severe PE under-utilization
and energy efficiency degradation may be resulted.

A. Spatial and Temporal Sparsity in SNNs

Unlike in conventional ANNS, information processing in
SNNs takes place both spatially across different neurons
and temporally through an operational period of multiple
time points. Spatiotemporally sparse firing activities often
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Figure 4: Normalized firing rate and distribution of neurons

in (a): DVS-Gesture, and (b): CIFAR10-DVS.

arise in well-trained SNNs. However, such sparsity is usually
irregular, as shown for a pair of adjacent presynaptic and
postsynatic layers in Fig. 3.
Spatial sparsity- At each time point ¢, not all neurons in
the pre-synaptic layer fire; spatial sparsity can be leveraged
to only fetch the data and process the computation associated
with active pre-synaptic neurons at a given time point.
Temporal sparsity- Different neurons might fire different
number of times within the same operational period; tempo-
ral sparsity can be exploited to avoid redundant computation
and/or data movement at time points when a neuron is silent.
As one example, Fig. 4(a) and (b) show the normal-
ized average firing rate distributions of two well-trained
SNNs based on the neuromorphic DVS-Gesture [21] and
CIFARI10-DVS [22] datasets, respectively. Only 0.0001% of
neurons at the CONV3 layer of the DVS-Gesture model
produce 150 spikes over 300 time points. Unlike the extreme
temporal sparsity assumed in [13], neurons in practical high-
performance SNNs may fire more than once. On the other
hand, they exhibit a great deal of unstructured sparsity
such that neglecting such sparsity as in [14] abandons
opportunities for performance improvements.

B. Existing SNN Accelerators

While holding a great deal of promise, neuromorphic SNN
hardware accelerators have not been extensively studied.
Time-serial processing in SNN accelerators - The most
natural approach for SNN acceleration is to emulate the
evolution of neural membrane potentials and firing activities
time point by time point in a sequential manner. This
has been adopted in several SNN accelerators [15,34,35].
We refer to this time-serial processing approach as the
conventional approach in this paper. In essence, this con-
ventional approach follows the paradigms of non-spiking
ANN accelerators for processing at each time step. Time-
serial processing can introduce significant inefficiency due
to iterative weight data access and low utilization efficiency,
as will be discussed in Fig. 7. From the memory point of
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Figure 5: (a): Overall architecture. (b): Simplified schematic representation of the processing element (PE) in systolic array.
(c): Schematic representation of time point, time batch (TB), TB-tag and time stride (TS).

Table II: Summary of key features in existing and our SNN
accelerators.

Applicability® Parallel” Sparsity Learning®
processing | handling Performance
Ref* High No Limited High
Ref** High No Yes High
[13] Low No Yes Low
[14] High Limited No High
Ours High Yes Yes High

Ref*: Conventional approach: [15,34,35]

Ref**: Industrial neuromorphic chips: TrueNorth [6], Loihi [7]

a: Applicability for general SNNs P: Parallel processing in time domain
¢: Learning performance (achievable accuracy)

view, the time-sequential process requires alternating access
to different weight matrices for different time points.
Other Existing SNN Accelerators - As discussed in
Section I, [13] proposed an efficient method to accelerate
temporally-encoded SNNs. However, [13] only considers
a very constrained case of extreme temporal sparsity that
prevents its application to more general SNN in which
neurons fire more than once and may employ other types of
rate and temporal coding for high accuracy. [14] introduced
dataflow optimization for SNNs while operating in the time
domain. However, the tiling technique in [14] does not
consider firing sparsity, has limited weight reuse, and may
lead to a significant PE under-utilization and comprised
energy efficiency. Table II summarizes the key features and
limitations of the prior works and our work. Importantly, our
work is the first work that proposes parallel acceleration of
SNNs while incorporating spatiotemporal sparsity.

IV. PROPOSED ARCHITECTURE

The proposed systolic-array SNN accelerator architecture
is supported by two novel techniques, namely, parallel time
batching (PTB) for parallel acceleration in both space and
time, and spatiotemporally-non-overlapping spiking activity
packing (StSAP) to further improve array utilization. Both

techniques are geared towards efficient exploitation of un-
structured firing sparsity.

A. Overview of the Proposed Architecture

The overall architecture is composed of a tiled array of
processing element (PE) with unidirectional links to form
a systolic array along with memories for data storage, as
illustrated in Fig 5(a). As in Fig. 5(b), each PE consists
of 1) an accumulate (AC) unit, 2) a comparator, 3) a
small scratch-pad memory and 4) simple controller logic.
While non-spiking accelerators generally adopt multiply-
and-accumulate (MAC) units, simpler AC units are em-
ployed to accumulate weights under (binary) input spikes.
To minimize the data movement overhead of multi-bit partial
sums (Psum), one of the main bottlenecks of SNN accel-
erators [14], the scratchpad in each PE stores the Psums
for a given time window (TW). We adopt three levels of
the memory hierarchy: 1) an off-chip RAM, 2) a global
buffer, and 3) a double buffered L1 cache [36], [32]. The
2-D systolic array exploits spatial and temporal parallelisms
for which spike input and weight data propagate vertically
and horizontally across the array. The membrane potential
update and spike output generation for each neuron involves
simple local computation. In the rest of the paper, we focus
on synaptic input integration, the dominant complexity of
SNN acceleration.

B. Time Batch (TB) and TB-tag

Time stride(TS): Full range of time points over which the
SNN operates. TS is split into multiple time windows (TWs).
Time window(TW): One TW packs the firing activity of one
(active) synaptic neuron over multiple time points.

Time batch(TB): The integration of such sparse firing inputs
into the membrane potential of a connected post-synaptic
neuron over the given T'W, which is mapped to a processing
element (PE) on the systolic array. A TB corresponds to the
basic unit of workload assignable to a PE.
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Figure 6: Mapping of the (a): inputs and (b): outputs into the systolic array. (c): Example of enhanced spike input density
in DVS-Gesture dataset with temporally-non-overlapping spikingactivity packing (StSAP).

In Fig. 5(c), for example, the pre-synaptic neuron a (IN,)
generates three TB workloads within the given TS. A TB-
tag is associated with TBs to indicate the existence of input
spikes in the corresponding time windows: each bits in TB-
tag is set to 1 if there is input activity; otherwise it is set to
0. We classify the pre-synaptic neurons into three categories
based on their TB-tags as shown in Fig. 5(c). If the TB-
tags of a neuron are all-zeros, i.e., a neuron does not fire
throughout all 7Ws in T, we call this neuron a silent neuron,
e.g., Neuron b (V) in Fig. 5(c). We skip silent pre-synaptic
neurons to avoid redundant processing. . We call a neuron a
bursting neuron if its TB-tags are all-ones, meaning that it
fires at all TWs, e.g., Neuron a (N,) in Fig. 5(c). All other
neurons are defined as non-bursting neurons, e.g., Neuron ¢
(N.) in Fig. 5(c).

C. Parallel Time Batching (PTB)

Instead of operating in a time-sequential manner as in
conventional approach, the proposed architecture accelerates
multiple TBs for multiple post-synaptic neurons in different
rows, and for different TWs in different columns, in parallel.

1) Mapping Inputs/Outputs: We assign a single PE for
processing computations within a given TB of a targeted
post-synaptic neuron over the time points in the corre-
sponding TW. Fig. 6(b) illustrates how the computations
of an OFmap are mapped to the PEs. Each row of the
array is utilized to compute output activation of a single
post-synaptic neuron for different TWs with multiple time-
batched inputs (TBs). PEs in each column process the same
TW but for different post-synaptic neurons. Spike inputs
into the array are assigned according to the mapping of
PEs for post-synaptic neurons, as shown in Fig. 6(a). In
the array iteration that executes computations for targeted
post-synaptic neurons over the TS, the [Fmap and filter data
of the TBs in range of TS from the corresponding receptive
fields are fetched into the array.

Under PTB, the computations of a single PE for a CONV
layer can be expressed by modifying (4) ~ (6) as:
(For a specific post-synaptic neuron)
Step A: For all input neurons in receptive field -
Integration of synaptic inputs for a given TW, from time
point tx to tryTw—_1:

PS5tk - teprw—1] = wyi X s [ty ooy b 1]
MRF

P [t s tirrwo1] = Y DGltks s terrw 1]
j=1

@)

Step B: Membrane potential update & Conditional spike
output generation for a given TW, from ¢ to t5 7w _1 (for
m=0,1, .., (TW —1)).

vio [thrm} =p *ZO [thrm] + UZ‘O [thrmfl}

e [torm] = L,if Uio [titm] > Vtg : Uio [tktm] =0
! 0 else: vO[thrm) = v [thrm]

®)

where p+© denotes the integrated partial sum of all spike
inputs from receptive field in output neuron i. All the
other expressions follow the definition described in (1) ~
(6). PTB groups Step 1 in (4) across multiple time-points
with the batch size TW as in (7). With mapping of the
computations into PEs as described in Fig. 6, PTB enables
parallel processing in both 1) space - for output neurons at
different positions, and 2) time - executing different TWs,
for Step A in (7), the dominant complexity.

2) Energy reduction: To exploit unstructured firing spar-
sity as shown in Fig. 4, PTB minimizes the weight access
with two different types of reuse, as shown in Fig. 7(b)
and (c). First, PTB reduces alternating accesses to different
weights, which is however inevitable in the conventional
time-serial processing as shown in Fig. 7(a). In the latter
approach, the array cycles through all required weight data
to compete the processing of all post-synaptic neurons at .
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At the next time point ¢, the above process is repeated
without allowing weight data sharing between the two time
points. Differently, PTB processes each TB while allowing
the same weight data associated with the presynaptic neuron
to be reused across the multiple time points within the TB,
as shown in Fig. 7(b). Furthermore, as PEs in the same row
of the array performs computations of different TWs for a
given post-synaptic neuron; the same weight data is reused
across these PEs, as illustrated in Fig. 7(c). In summary,
PTB enables weight data reuse within each TB (PE) and
across different TBs (PEs).

3) Utilization: PTB alleviates severe under-utilization
which originates from the inactive processing elements with
a silent receptive field. Since TB packs multiple presynaptic
spikes into a TB and assign the entire TB to a PE, it
reduces the number of idling PEs due to the larger temporal
granularity defined by the time window (TW) size. For
example, the only spike in ¢; from Neuron a (N,) results
in degradation of utilization in the conventional approach
while PTB hides the absence of spikes within the packed
input spikes in the PB as described in Fig. 7(d).

D. Spatiotemporally-non-overlapping Spiking Activity Pack-
ing (StSAP)

To further leverage the utilization efficiency, we propose
a novel compression scheme, dubbed spatiotemporally-non-
overlapping spiking activity packing (StSAP), which packs
sparse spike inputs into a denser format. The key idea here is
to combine non-overlapping spike inputs based on the TB-
tags, which enables simultaneous scheduling/processing of
the non-overlapping spiking activities and hence increases
the utilization efficiency.

re-synaptic neuron

Combined inputs
of non -bursting
neurons with StSAP

TB-tag /Bursting
1, L1

{(1,1;0y; Try
= 1’s complement
i . I:l 1,0,1) ry nearest
].\‘ (1,0,0)
0, 1,0)
Systolic Systolic (0,0, 1)
Array Array (0,0,0) + silent
(@) (b) ©

Figure 8: Schematic representation of StSAP. Mapping of the
spike inputs from non-bursting neurons (a): without StSAP,
(b): with StSAP. (c): Greedy policy applied to find nearest
I’s complement based on TB-tag.

1) Packing strategy: Recognizing the sparsity emergent
across different neurons and TWs, we combine TBs of
non-bursting neurons. First, we trim out silent presynaptic
neurons with all-zero TB-tags without fetching them to
the array. By removing silent neurons which do not fire
throughout all TWs, we compress the sparse input firing
activity spatially. Then, we use plain spike inputs for the
bursting neurons, as bursting neurons generate non-zero TBs
across TS. Finally, StSAP is applied to the non-bursting
neurons to explore temporal sparsity. For simple and efficient
packing, we adopt a greedy combining policy for searching
TBs that can be packed together. Starting from a given
TB with its TB-tag, StSAP first tries packing with 1’s
complements and finds the nearest non-overlapping TB-tags
if the exact 1’s complement does not exist, as shown in
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Table III: A high-level overview of the input parameters.

Input Parameter Description
Array Array width/height, size of the scratch-pad
configuration in each PE
Memory Size of the memory, partitioning of the memory
configuration for each type of data, at each level
Time Window Ranging from each time-point (T'W=1) to
(T'W) Size cover all time-points with given array width
Packing Packing the non-bursting neurons or use
plain inputs
Network Number of layers, number of the neurons
Structure in each layer, layer type (CONYV, FC)

Fig. 8(c). We limit the number of neurons for packing to
two to simplify the packing process.

2) Utilization efficiency: Recognizing the unique sparse
nature of SNNs, StSAP manages the spatial and tempo-
ral sparsity of the spike inputs in the time-domain based
on TB-tags. In Fig. 8, for example, four TBs from non-
bursting neurons are packed into two with StSAP. Fig. 6(c)
demonstrates the packing of realistic spiking input data, re-
vealing significantly densified input by the proposed StSAP.
Simultaneous scheduling of non-bursting neurons alleviates
severe PE under-utilization, and is particularly well-suited
for sparse spiking computations.

Importantly, StSAP directly points to the actual activation
values and fundamentally different from the existing packing
strategies for DNNs [11,12,37]-[41]. For example, [11] and
[12] proposed packing of sparse columns of a convolutional
filter matrix into a denser weight matrix. However, as the
time dimension is not incorporated in DNNs, [11] and [12]
primarily focused on combining non-zero weights into a
denser format. However, StSAP focuses on unique features
of sparse spike inputs over time and explores the unstruc-
tured sparsity with TB-tags.

V. EVALUATION METHODOLOGY

We introduce an analytic architecture simulator to support
unique features in SNNs and trace data movement for assess-
ing the latency and energy dissipation. The user-specified
inputs for the simulator is summarized in Table III.

A. Modeling systolic array & memory hierarchy

Systolic array - The developed simulator adopts a systolic
array as a central compute substrate. The array comprises
tiled processing elements (PEs) with unidirectional links.
The structure of the PEs is detailed in Section IV. We use a
fixed number of PEs for a fair comparison. In particular, we
use a 128-PE systolic array. Similar sizes have been adopted
in other works [8,13]. While using a fixed number of PEs, we
consider different shapes of the array, as the array dimension
is an important variable that impacts the performance of the
accelerator. Mostly, we analyze the impact of TW size or
our packing strategy based on 16x8 array by default.

Table IV: Architecture specifications.

Components Proposed Architecture
Number of PEs 128
ALU in PEs Adder, Comparator - 8-bit
Global Buffer Size 54KB
L1/Scratchpad Size 2KB / 96 x 8-bit
DRAM Bandwidth 30GB/sec
Bit precisions Weight/Membrane Potential - 8-bit
Input/Output Spike - TWS X 1-bit
(TWS: TW size)

Memory hierarchy - We follow the standard practice of
three-level memory hierarchy for memory-intensive neural
computations [8,36,42]. Similar to many other analytic mod-
els [10,32,36], each level of memory is double-buffered
to hide latency and partitioned to separately store each
type of data (IFmaps, OFmaps and Psums) for the array
computation. Architecture specifications are summarized in
Table 1V.

B. Performance modeling

The simulator generates unique addresses for each data
type with respect to the inputs/outputs for the array. The
simulator produces read/write traces with the generated
addresses for each-level of memory to evaluate memory
access and latency, following the estimation methods in
many previous works [14,32,36].

Latency - The systolic array fetches the required data from
the working buffer whenever the data is ready, pursuing stall-
free operation while the loading buffer continuously seizes
the data needed for the following computation. Therefore,
the resulting latency per array iteration is estimated with the
worst delay between data access and array computation. The
total latency is calculated with sum of all latencies.
Memory access - For a given network configuration, the
simulator generates a trace of data scheduling based on the
mapping order. With the pre-determined sequence of data
required from the array, a memory access to higher level
caches takes place if a specific data is absent in the current
storage. For example, if the L1 buffer requires a specific data
which is only presented in the global buffer, it initializes a
global buffer read and a L1 buffer write.

Energy dissipation - Energy dissipation is evaluated based
on the traces of read/writes at each level of memory and
the total number of arithmetic operations in PEs based on
the standard modeling strategy [8,14,32,36]. Using CACTI
[43] configured for 32nm CMOS technology, the energy
dissipation is evaluated with the number of accesses based
on the read/write traces, multiplied by energy per memory
access at each level of memory hierarchy. The computation
energy is estimated with the total number of AC operations
for the given network multiplied by the energy per AC
operation [36].
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Table V: CONV/FC layer shape configurations in three
different networks used in this work.

Dataset [ Layer [ H JRJE] C [ M
DVS-Gesture CONV1 32 3 32 2 64
(Actual data) CONV2 32 3 32 64 128

Timesteps: 300 | CONV3 16 3 16 128 256
FC1 8 8 1 256 256

FC2 1 1 1 256 11

CIFAR10-DVS | CONV1 42 3 40 2 128
(Actual data) CONV2 40 3 40 128 128
Timesteps: 100 | CONV3 20 3 20 128 128
CONV4 20 3 20 128 256
FC1 10 10 1 256 1024

FC2 1 1 1 1024 10

AlexNet CONVI | 224 | 11 | 55 3 96

(Synthesized) CONV2 27 5 27 48 256

Timesteps: 300 | CONV3 13 3 13 256 384
CONV4 13 3 13 192 384

CONV5 13 3 13 192 256

FC1 6 6 1 256 4096

FC2 1 1 1 4096 | 4096

FC3 1 1 1 4096 | 1000

C. Benchmarks

We use a comprehensive set of S-CNN spiking activity

data, either actual or synthetic, to evaluate the proposed
architecture. Table V shows the shape configurations of each
convolutional (CONV) and fully-connected (FC) layer.
DVS-Gesture, CIFAR10-DVS - The images/gestures are
recorded by a dynamic vision sensor (DVS) camera and con-
verted into neuromorphic data with spikes spanned through
time. We train two S-CNNs with the state-of-the-art algo-
rithm [20], using the widely adopted neuromorphic DVS-
Gesture [21] and CIFAR10-DVS [22] datasets, respectively,
and evaluate the architecture performance using the actual
spiking activity data extracted from the trained models. The
DVS-Gesture dataset consists of 1,463 test samples with
11 different classes of hand gestures, and CIFAR10-DVS
comprises 10,000 test samples with 10 different classes of
images. To speed up the simulation, each sample is converted
into a 300-/100-time step binary matrix by compressing the
time resolution.
AlexNet - Furthermore, we adopt the network structure of
the widely used AlexNet [23] DNN model with synthetic
spiking activities. The simulation takes 300 timesteps and
the averaged firing activities distribution is set based on
the activity data from the DVS-Gesture and CIFAR10-DVS
datasets.

VI. RESULTS

We evaluate the performance of the proposed architecture
focusing on the impact of the proposed PTB and StSAP
described in Section IV based on the setups described in
Section V. The performance of the proposed architecture
hinges on optimizing tradeoffs between reuse of multi-bit
weight and binary input activation data, storage of multi-bit
partial sums, and array utilization, which are also dependent
on structures of layers of the spiking neural network to
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Figure 9: Energy dissipation breakdown of CONV2 in DVS-
Gesture with different (a): TW size. (b): array size (TW=8).

be accelerated. There exist two critical architectural pa-
rameters, i.e., time window (T'W) size and systolic array
dimension that impact the above tradeoffs. We first examine
how to near-optimally choose array dimension, and then
comprehensively evaluate the proposed architecture based
on realistic S-CNN networks.

A. Optimization of Array Dimension

As discussed, without using StSAP, PEs in each row of
the systolic array perform computations for the same post-
synaptic neuron at different time windows while PEs in
each column process different post-synaptic neurons for the
same TW. Having more columns by increasing the array
width processes each post-synaptic neuron over a longer
overall time span, resulting in more multi-bit weight data
reuse. When the PE count is fixed, this will lead to a
fatter array that processes fewer post-synaptic neurons per
array iteration. This has the downside of reduced input
activation data reuse across different post-synaptic neurons.
Oppositely, skinner arrays encourage input data reuse among
different post-synaptic neurons while reducing weight data
reuse across multiple time points. TW size plays an impor-
tant role in the tradeoffs between input/weight data reuse and
Psum data storage, and impacts the optimal array dimension.

1) Impact of Time Window Size: PTB improves weight
data reuse by grouping multiple time-points into a single
TW, maximizing the weight data sharing opportunity within
each time window. Movement of binary input activation data
tends to a lesser problem compared to that of other multi-
bit data types. No data compression is applied to binary
input data when it is fed onto the systolic array to avoid the
overheads of compression and decompression. To this end,
while wider TWs improve the reuse of multi-bit weight data
on the array, but there is a tendency of packing an increased
number of zero-valued input activations within the TW,
incurring higher overheads of data fetching to and input data
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Figure 10: Normalized energy dissipation and latency of layers with different TW sizes, with- and without StSAP, in each
dataset. (a),(b): DVS-Gesture, (c),(d): CIFAR10-DVS, and (e),(f): Alexnet. PTB with non-optimized TW size (TWS=1)
improves the total energy dissipation and latency by DVS-Gesture: 6.68X and 5.53X, CIFAR10-DVS: 7.82X and 4.26X,

and Alexnet: 4.16X and 7.45X, over the baseline.

storage on the array. Also, wide TWs stretch the integration
of synaptic inputs over many time points, producing more
multi-bit partial sum data that must be stored.

We use the CONV2 layer trained for the DVS-Gesture
dataset as a representative layer configuration to evaluate
the impact of TW size in Fig. 9(a), which clearly shows
decreased weight access and increased input activation data
access at larger T'W sizes. Typically, a T'W size of 8 is near
optimal, which is further discussed in Section VI-B.

2) Near-Optimal Array Dimensions: While fixing the
TW size to 8, we examine how array dimension impacts
the energy dissipation when accelerating the representative
CONV2 layer of the DVS-Gesture dataset. Fig. 9(b) shows
the normalized energy dissipation and the tradeoff between
weight (filter) and input activation data access (inset) under
different array dimensions when the PE count is fixed at 128.
The array dimension of 16x8 is typically a near-optimal
choice, which is adopted for the rest of the paper.

B. Comprehensive Evaluation

While fixing the array dimension, we jointly optimize the
proposed PTB and StSAP techniques with the other key ar-
chitectural parameter T'W size and compare our architecture

with the baseline. We adopt the approaches in [14] as our
baseline. We also examine the dependencies on SNN layer
structures to shed light on how the proposed techniques
exploit sparsity of spike data and the granularity of time-
domain processing to improve the overall performance.

1) SNN Layer-Dependent Tradeoffs: Reuse of multi-bit
weight and binary input activation data, storage of multi-
bit partial sums, and array utilization can be traded off by
altering the granularity of time batching, i.e., the TW size.
The resulting optimal tradeoffs have a strong dependency on
the structure of spiking neural network layers.

In general, fully-connected (FC) layers favor larger TW
sizes as the multi-bit weight data have a greater footprint and
the overhead of weight data movement tends to dominate.
The number of input channels in a convolutional (CONV)
layer determines the amount of IFmap data that must be
fetched to the array for each time batch. The lateral dimen-
sion of the filters determines the sheer amount of weight
data that must be fetched. Therefore, CONV layers with
many few input channels and large filter sizes benefit from
enlarged T'W sizes as the overhead of the input activation
data movement is more than compensated by the improved
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weight data reuse. The opposite can be said for CONV layers
with many input channels but small sized filters.

2) Performance of PTB: PTB offers significant benefits in
terms of latency and energy dissipation across most CONV
and FC layers in the three SNN models compared with the
baseline as demonstrated in Fig. 10. The impact of the TW
size, on the other hand, varies from layer to layer as a
result of changing tradeoffs between weight (filter) and input
(IFmap) data movement.

Energy dissipation: Energy dissipation in CONV layers is
reduced as the TW size increases to a certain point from
which any further increase in the TW size degrades energy
efficiency. In typical S-CNNs, early CONV layers and FC
layers have large sized filters or a great amount of weight
data while the number of input channels tends to be limited.
This is in contrast to later CONV layers which are featured
by small-sized [Fmaps, but very importantly many input
channels. As such, FC layers favor large TW sizes across
the board, and the same is for early CONV layers, e.g.,
layer CONV1 in Fig. 10 (e). The figure shows the energy
dissipation of different layers in the AlexNet model along
with the total energy. The benefit from increasing the TW
size is even more pronounced for early CONV layers than
FC layers. On the other hand, for later CONV layers such as
CONV4, energy dissipation is initially reduced by applying
a small window size; however, going beyond a TW size of 4
degrades energy efficiency due to the comprised input data
movement as shown in Fig. 10 (e).

Latency: We observe a clear improvement of latency by
using PTB in all three networks, as shown in Fig. 10. As
discussed in Section IV, PTB mitigates systolic array under-
utilization by packing multiple input activities into time
batches, reducing the idling of the PEs. In general, applying
a larger TW size further reduces the number of idling PEs
and hence latency. However, it is possible to experience a
very modest increase of latency for certain layers at large
TW sizes. This is caused by the fact that a fewer number of
time points are packed into time batches towards to the very
end of the operational time period, introducing idling PEs
while processing the latest time batches. Array utilization is
further improved by the proposed StSAP, discussed next.

3) Performance of StSAP : On top of PTB, StSAP offers
further array utilization and latency improvements for all
most all CONV and FC layers, as shown in Fig. 10. PTB
improves PE utilization by packing multiple input spikes
in a given time batch, which is to be processed on a PE.
StSAP takes one step further to analyze the patterns of
sparse spiking inputs. A set of time batches that are non-
overlapping either in time or space are processed simulta-
neously on the array, further reducing PE idling and overall
latency. It shall be noted that overlaps between time batches
may increase with the TW size, which may comprise the
benefits of StSAP. Moreover, the choice of TW size impacts
the performance of the underlying PTB based on which
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Figure 11: Total energy-delay product (EDP) of three differ-
ent benchmarks. EDP values are normalized to the baseline
result, which exclude merging and TW size optimization.

StSAP is applied. As a result, the overall performance of
StSAP is also layer dependent; overly large TW sizes can
degrade the benefit of StSAP, and hence the latency.

4) EDP evaluation: We use energy-delay product (EDP)
to simultaneously consider latency and energy dissipation for
evaluation of the overall system performance. We multiply
the total energy consumption and the total amount of time
for executing (latency) at each layer, and then integrate
EDP values of all layers to calculate total EDP. Fig. 11
shows the normalized EDP of three different networks with
varying TW sizes. The baseline is based on the approach
proposed in [14], which exploits limited temporal parallel
processing without handling the sparsity. Both DVS-Gesture
and CIFAR10-DVS models show a clear optimal choice
at TW size of 8. The optimal trade-off point of TW size
is larger for the AlexNet model. In AlexNet, the energy
dissipation of later CONV layers is minimized by choosing a
proper TW size while other layers are benefited continously
with increasing TW size, as shown in Fig. 10 (e). Since
the overheads of later CONV layers constitute to a small
portion of the total overhead, the overall optimal TW size
of AlexNet is larger than those of the other two models.
With the optimized TW sizes, the proposed architecture
delivers 172X, 198X and 373X EDP improvement over
the baseline for accelerating the DVS-Gesture, CIFAR10-
DVS and AlexNet models, respectively. On average, our
architecture delivers 248X EDP improvement.

VII. DISCUSSION

SNNs have shown great potentials and results in both
energy efficiency and performance [3,20,44]. SNNs can
show better efficiency over ANNs when key factors, i.e.,
data reuse, sparsity handling and repeated operations through
time, are efficiently managed as discussed in [13,45]. We
discuss broader impacts and promises of our work.
Machine learning performance: As shown in Table VI,
SNNs achieved comparable performance to ANNs with
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Table VI: Performance comparison of ANNs and SNNs.

Workload ANN SNN
MNIST 99.80% (461, | 99.62% [31,
99.04% [26] *99.53% [20]
CIFAR10 90.49% [47], | *91.41% [20],
93.75% [48] | 93.58% [49]
DVS-Gesture | 92.01% [4%1, | 95.49% [501,
93.75% (48] *93.75% [20]
CIFAR10-DVS | 31.00% [51], | 58.10% [44],
52.40% [52] | *56.86% [20]

*: This work.

promising training algorithms and network structures. Es-
pecially, with advantages in handling spatiotemporal infor-
mation, SNNs can achieve better performance over ANNs
in neuromorphic datasets. Apart from machine learning
performance, the main focus of our work is to develop
efficient architectures and techniques for accelerating SNNs.
Hardware acceleration: [13] showed outperforming energy
efficiency over ANNs [8] with constraint that each neuron
fires at most once, exploring extremely high temporal spar-
sity and low bit resolution. However, extreme sparsity often
suffer from low performance. General SNNs employing
various rate and temporal codes lack efficient architectures
and techniques for hardware acceleration, which is addressed
in our work.

For accelerating CIFAR10 dataset, our approach delivers
14.6X and 3.3X improvement over the ANN counterpart
[32,47] for energy dissipation and latency, respectively, as
shown in Fig. 12(b). We adopted same network structure
in [20,47] and architecture specifications using [32] for fair
comparison. We adopted the training algorithm in [20] and
applied actual spiking activities of a well-trained network
to our pre-determined architecture specifications. Our work
addresses the main source of inefficiency in SNNs, i.e., iter-
ative and irregular patterns of data access repeated through
time, and presents promising methods to outperform ANNs.
Scalability of PTB w.r.t. sparsity level: As shown in Fig.
12(b), the benefit of PTB depends on temporal sparsity level:
1) low sparsity (high firing rate) increases PTB benefits, 2)
high sparsity (low firing rate) decreases PTB benefits. Still,
PTB improves energy efficiency by 28X even for the rare
case of 1% firing rate. Importantly, as shown in 12(a), firing
rate of well-trained networks ranges from 1~15% in practice
for which PTB can significantly improve energy efficiency.
Generality of PTB: PTB pre-calculates the synaptic input
integration (S-I) step for multiple time-points in parallel
prior to the rest step. The S-I step can be performed without
knowing the state of the post-synaptic neuron and hence
without violating causality. Thus, as shown in Fig. 12(c),
PTB is applicable across: 1) all typical spiking neuron
models (LIF, IF, etc.), 2) all layer structures (fully-connected,
convolutional, recurrent, etc.), 3) general SNNs with various
layer types, and 4) SNN accelerators of any given ar-
ray/memory size with flexible choice of TW size. Layerwise
fine-grained optimization is possible if the optimal TW size
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Figure 12: (a) Firing rate of well-trained networks. (b) PTB
significantly improves energy efficiency across wide range
of sparsity-levels. With PTB, SNN showed better result than
ANN. (c) PTB supports diverse family of spiking models.

is chosen offline, based on the given architecture, sparsity-
level and layer type.

VIII. CONCLUSION

Unique features of SNNs pose challenges for develop-
ing efficient accelerators. Especially, spatial and temporal
sparsity emerged in SNNs causes unstructured sparsity of
spiking activities and degrades the overall performance of
accelerators. This paper presents the first analysis framework
to evaluate temporal parallel processing of systolic array-
based hardware architecture for accelerating SNNs, which
efficiently manages the sparse nature of spiking computa-
tions and supports a diverse family of spiking models.

The proposed architecture is built upon a novel parallel
time batching (PTB) technique and a spatiotemporally-non-
overlapping spiking activity packing (StSAP) strategy. PTB
introduces parallel acceleration of time windows (TWs) that
incorporates multiple time-points, and significantly improves
energy efficiency and under-utilization by reducing iterative
data access and idling of processing units. StSAP densifies
the grouped input spikes (TBs) by combining non-bursting
neurons with greedy policy, which further benefits the uti-
lization efficiency of the array. We also observe that larger
TW size does not always provide monotonic improvements,
and hence perform a joint optimization of PTB and StSAP
with varying TW sizes for different networks. Our experi-
mental results provide insights for parallel acceleration with
an optimal choice of handling the fundamental trade-offs in
SNNs. Experimentally, our work improves the energy-delay
product (EDP) of the array accelerator for DVS-Gesture,
CIFAR10-DVS, and AlexNet by 248X over a baseline, on
average. Compared to ANN based accelerator, our approach
improves EDP by 47X on the CIFAR10 dataset.
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