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Abstract—The concept of “Mutual Learning” was
introduced by the authors in Part I of this paper which was
presented at the 2019 ACC. This is the second of the series
of papers the authors propose to write on this subject. The
principal question addressed in all of them concerns the
process by which two agents “learn” from each other. More
specifically, the question is how two (or more) agents should
share their information to improve their performance.

In Part I, the concept of mutual learning was
introduced and discussed briefly in the context of two
deterministic learning automata learning from each other
in a static random environment. In this paper, we first
provide some reasons why the concept can become complex
even in such simple situations, and propose some (weak)
necessary conditions for the problem to be well defined.
Following this, we consider similar questions which arise
when two agents use reinforcement learning in both static
and dynamic environments. In particular, in the latter
category, mutual learning in Markov Decision Processes
(MDP) with finite states is discussed. Simulation results are
presented wherever appropriate to complement the
theoretical discussions.

Keywords—mutual learning, reinforcement, learning
automata, Markov Decision Processes

1. INTRODUCTION

Learning theory is a vast field, multidisciplinary in
character, in which a variety of different methods have
been investigated. Currently it has wide applications in
diverse areas including machine learning, multi-agent
systems, robotics, and neuroscience. Most of the work
on the subject reported in the literature has dealt with a
single learner operating in a deterministic or stochastic
environment. In part I of this paper (Narendra and
Mukhopadhyay, 2019), the authors introduced the
concept of “mutual learning” and discussed it in the
context of stochastic automata (Narendra and
Thathachar, 1989). Even though the term “mutual
learning” had already been in use, the paper by Narendra
and Mukhopadhyay was the first to suggest that the
concept be investigated in a quantitative sense. In
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contrast to other works, it was suggested that mutual
learning be studied as a problem in systems theory,
focusing on general questions and issues. The principal
question raised is concerned with the manner in which
two or more agents who have partially learned about a
process or an environment should share their information
to improve their decisions.

Rationale for Mutual Learning:

Mutual learning can happen between two humans, a
human and a machine, or two machines. The first class
of problems can be of interest to researchers in
communities such as social psychology. Learning
between humans and machines is becoming increasingly
important with advances in autonomous technology, and
mutual learning between machines will be widely used
in the future, when machines performing similar tasks,
but trained using different approaches, attempt to
cooperate. Problems involving mutual learning are
ubiquitous, and range from the relatively simple to those
that are extremely complex and difficult (or, sometimes
impossible) to formulate analytically. This is due to the
fact that the learning procedures used by the two agents
may be identical, similar to each other, or vastly
different, making the interpretation of different
experiences in a single analytical framework quite
complex.

Objectives of the Paper: Our principal aim in this paper
is to introduce questions for discussion, suggest some
preliminary answers, and indicate the major difficulties
encountered. In (Narendra and Mukhopadhyay, 2019),
several scenarios were proposed in which mutual
learning can be studied. These scenarios included
optimization, decision-making, identification, pattern
recognition, etc.. In this paper, we study, in some detail,
mutual learning using deterministic and stochastic
reinforcement learning schemes in static environments,
as well as dynamic Markov Decision Processes (MDP)
with a finite number of states using both direct and
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indirect learning methods. Future papers will attempt to
extend the approaches to systems described by stochastic
nonlinear differential/difference equations. In fact, all
the principal learning approaches suggested in the
literature appear to fall within the scope of investigations
proposed in this paper.

Organization of the Paper: In section 2, the origin of the
term Mutual Learning as introduced in this paper is
discussed. As stated earlier in this Section, while the
term had been used qualitatively by other authors, the
suggestion that it be discussed quantitatively is due to the
authors. In Section 2 the earlier work is briefly described.
Section 3 is devoted to mutual learning in static
stochastic environments. The discussion also leads to
some simple necessary conditions for problems in
mutual learning to be well defined. Finally, in Section 4
mutual learning in Markov decision processes is
discussed.

II. MUTUAL
APPLICATIONS

As mentioned in (Narendra and Mukhopadhyay, 2019),
the authors introduced the term “Mutual Learning” as
one derived from the problem of “Mutual Adaptation”
investigated by the first author and his co-workers.
However, a survey of the literature revealed to the
authors that the term had been studied by others
qualitatively in diverse areas. In the following, we
summarize some of this work on mutual learning.

LEARNING

RESEARCH AND

Ikemoto et al (2012) discuss an interesting study
involving mutual learning and co-adaptation in a human-
robot system, inspired by the parenting behavior in
humans. In the context of artificial neural networks,
Zhang et al (2017) discuss the problem of an ensemble
of deep neural networks learning from each other in the
context of a classification task. It was concluded that a
collection of small neural networks with mutual learning
can outperform a “powerful” single teacher network. In
machine vision, Nie et al (2018) discuss mutual learning
to achieve superior performance between two related,
but disparate computer vision tasks, i.e., human parsing
and pose estimation. Klein et al (2005) and Rosen-Zvi et
al (2002) discuss the problem of synchronization
between two neural networks through mutual learning
whereby their weights converge to two parallel vectors.
They also show how these synchronized parallel vectors
can be used for data encryption. Liu et al (2012) discuss
the integration of suitable mutual learning in an artificial
bee colony optimization algorithm, and demonstrate
through simulation studies that improved performance
can be obtained by incorporating such mutual learning.
Another related research theme is multi-agent learning
systems, where the agents focusing on different,
disparate subtasks of a complex task cooperate to solve
the problem, in a spirit similar to mathematical game
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theory. Panait and Luke (2005) provide a survey of this
somewhat well-established field, highlighting the issues
of inter-agent communication, task decomposition, and
scalability in such multi-agent systems. In contrast to this
theme of multi-agent systems, in mutual learning, the
agents are involved in solving the same or similar tasks,
and the objective is for them to act as (partial) teachers
to each other in order to improve their learning. Further,
our objective, in contrast to other works, is to study such
mutual learning problems as systems theory problems,
focusing on general questions and issues. Our choice of
reinforcement learning as the initial framework for
studying mutual learning is motivated by the availability
of statistical and mathematical learning theories to
analyze convergence of reinforcement learning systems,
thereby making the mutual learning problem analytically
tractable in this framework.

IIIl. MUTUAL LEARNING IN STATIC, STOCHASTIC
ENVIRONMENTS — LEARNING AUTOMATA

The complex questions that arise in mutual learning can
be illustrated using simple learning automata schemes,
described in the earlier paper by the authors. The
discussion of such schemes also reveals that some simple
conditions need to be satisfied if the learning is to
proceed in a rational manner.

A learning automaton consists of an environment E
connected in feedback with an automaton A as shown in
Figure 1. An environment E (figure 1a) is described by
the triple {a, d, B} where a = {a;, a5, ..., @, } represents
the finite input set with r actions a;, an output set § =
{B1, B>} with B; = 1 representing a reward, and 8, = 0
representing a penalty, and d = {d,, d,, ..., d,} a set of
unknown reward probabilities d; = Prob[ f(n) =
1lla(n) = a;].

Output Set
| = {Reward=0, Penalty=1}
—

Action Set

o = e, ,«,_'!

Reward Probabilities
d= {(1’1‘-—-‘4 }

Figure 1 {a): The environment

Action Set
R CASE

—

A={01} Determistic or

Stochastic Rule

Figure 1 {b): The automaton

Figure 1 (c): The learning automaton

Objective: The overall objective of the learning
automaton is to choose the best action aopt among the
actions in the action set . This is accomplished by the
automaton making a rational decision after every
experiment in the environment.

We first consider a simple approach in which all the

actions are chosen with equal probabilities % This
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involves no learning, and the expected reward will be
dav = % ;:1 di :
achieve a reward greater than the above. When the
expected reward is greater than d,,, the automaton is
said to be expedient. When the learning scheme chooses
the best action with probability 1, it is said to be optimal.
From a practical standpoint, it is not possible to conduct
the experiment an infinite number of times. Only
tentative conclusions can be drawn using a finite number
of trials in an environment.

Deterministic Automaton: An automaton is said to be
deterministic if on the basis of the action @; and the
environmental response 5; € {0,1}, it chooses the next
action using a fixed rule.

Stochastic Automaton: The automaton is said to be
stochastic if, on the basis of response of the environment
after every trial, it updates the probabilities with which
the actions are to be chosen.

Mutual Learning: Let two automata operate in the same
environment. If one of the automata has performed a
very large number of trials, it essentially knows most of
the details about the environment, and, in particular, the
best action (based on the probabilities computed). Such
an automaton may be considered a teacher. However, our
interest is in automata which have performed the
experiments only a finite number of times, and want to
improve their decisions based on the information
received from the other.

Interaction of the Automata: The following questions
become relevant while considering mutual learning:

a) How often do the automata communicate with each
other — only once, a finite number of times, periodically,
or, at random intervals? What information do they
communicate to each other? (Communication)

b) Do both the automata use the same algorithm, similar
algorithms, or very different algorithms? In the latter two
cases, how do they interpret each other’s communicated
information? (Translation)

¢) How much credence do the two automata have in each
other, based on past interactions? (Trust)

d) Do the automata share the same (or, similar) goals?
(Goal Congruence)

Learning is consequently used to

3.1 Simulation Experiments with Learning Automata

In this subsection we include a few simple simulation
studies of mutual learning of increasing complexity in
static environments. These include deterministic and
stochastic learning schemes described earlier.
Simulation Study 1: Tsetlin Automata: In this study we
consider the simple case of two Tsetlin automata
learning from each other. This is shown in Figure 2.

a; and a, are two actions which have unknown reward
probabilities of 0.9 and 0.2 respectively in a static
environment. It is seen that an automaton starting in state
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¢4 (i.e., choosing action a,) stays in the same state with
probability 0.9, while one starting in state ¢, switches to
state ¢, with probability 0.8. (Note that at any instant
only one action is chosen so that the count of the other
action remains constant as the number of trials
increases). Figures 3(a) and 3(b) show the the number of
times the two actions a; and a, are chosen for the two
automata. Three different cases can be considered:

(i) Both automata have performed the same number of
trials

(i1) The first automaton has performed a large number of
trials, while the second has performed only a few, i.e.,
n, > n,.

(i) ny K ny,.

In view of the great disparity between the reward
probabilities of the two actions, both automata conclude
that a; is the better action after the number of trials
exceeds 7. When n; » n, (n; = 10,n, = 3), the first
automaton concludes that a,is the better action. After
communication between the two automata, the second
automaton “learns” from the first that ais the better
action (i.e., the first automaton acts as a teacher for the
second).

0.1
e @es
0.8

Fig. 2: A scheme of the transition probabilities.
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Fig. 3: Results of simulation 1.

Simulation Study 2: Stochastic Automata: A stochastic
automaton using the Lg; scheme was simulated in the
same environment, and the convergence of the scheme
was studied. The convergence was found to be
substantially slower. However, it is evident after detailed
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exchange of information regarding trials and rewards,
that the superior action was selected.

Simulation Study 3: The same experiment carried out in
Simulation 1, with two simple deterministic schemes
was replaced with an environment with reward
probabilities 0:8 and 0:6.
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(b) Scheme 2.

Fig. 4: Results of simulation 3.

The evolution of the rewards obtained as a function of
the trials are shown for both the schemes in Figure 4. At
the end of 10 trials, the learning scheme 1 has 9 rewards
and 1 reward with actions al and a2 while the second
scheme has 6 and 4 respectively. Assuming a threshold
of 0.8 for the reward probability, scheme 1 concludes
that action al is the best action. But scheme 2 has tobase
its action on the information obtained from scheme 1.
Hence, "learning” in this case is entirely on the part of
scheme 2 which also chooses al as the best action.

IV. MUTUAL LEARNING IN DYNAMIC, STOCHASTIC
ENVIRONMENTS — REINFORCEMENT LEARNING

4.1 The Markov Decision Problem

A Markov Decision Process (MDP) is defined by the
following quantities:

[J The State Space S, a finite set,

[J The action set A, a finite set, listing all actions
available to the agent in any state

[ A state transition probability function P : S X S X A
- (0,1)

[J An immediate payoff functionR: SX S X A - [0; 1]
where 0 corresponds to no reward and 1 corresponds to
reward.

The objective of the agent is to maximize the overall
discounted reward, i.e., the objective is not merely to
maximize the reward of the next transition, but to
maximize the reward over all future transitions from an
initial state.

4.2 Conventional Reinforcement Learning
Reinforcement learning aims to find the optimal decision
(or, decision rule) in feedback with an unknown and
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uncertain teacher or environment, on the basis of a
qualitative and noisy on-line performance feedback
provided by the teacher in the form of a reinforcement
signal. There exists a large variety of learning models
and algorithms (Kaelbling, Littman, and Moore, 1996,
Sutton and Barto, 1998) depending on the assumptions
on the teacher or environment. One of the earliest
reinforcement learning models is the learning automaton
discussed in the previous section.

While the basic learning automaton model was proposed
for a stationary but unknown environment (constant
reward probabilities), more recent and advanced models
have focused on nonstationary and dynamic
environments. Such models deal with the case where the
state of the environment evolves dynamically based on
the agent’s actions, and a Markov Decision Process
(MDP) model (for discrete state case) or a stochastic
nonlinear difference equation model (for continuous
state case) is used to describe the environment. The
objective in this dynamic formulation is once again, to
learn an optimal policy. However, in this case it is to
maximize the long-term (over a finite or infinite horizon)
possibly discounted reward or pay-off received by the
agent. Many different methods based on Bellman’s
dynamic programming (for discrete-state MDPs) and
Hamilton-Jacobi-Bellman (HJB) equation (Al-Tamimi,
Lewis, and Abu-Khalaf, 2008) or its linear version
Riccati equation (for continuous-state environments)
have been proposed to learn the optimal policies in such
stochastic, unknown, dynamic environments.
Model-free (Direct) and Model-based (Indirect)
Learning: The large classes of algorithms available for
various reinforcement learning models can be broadly
categorized into two classes: Model-free and Model-
based methods. Model-free methods (such as linear
reward-inaction algorithm for learning automata, and
temporal difference (Sutton, 1988) and Q-learning
(Watkins and Dayan, 1992) algorithms for MDPs aim to
directly learn the optimal policy without attempting to
learn a model or estimate of the environment. Model-
based methods such as Adaptive Dynamic Programming
(Barto, Bradtke, and Singh, 1995) and Approximate
Dynamic Programming (Powell, 2007), on the other
hand, maintain and update a model of the environment,
and it is this model which is used to compute the optimal
policy.

4.3 Mutual Reinforcement Learning in an MDP

The Markov Decision Problem was briefly described in
sections 4.1 and 4.2. It was also mentioned there that
both direct (model-free) and indirect (model-based)
approaches have been proposed in the literature for
solving the reinforcement learning problem in MDPs. In
the former (e.g., in Temporal difference or Q-learning
algorithms), a value function (a function of state in
temporal difference, and a function of state-action pairs
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in Q-learning) is directly updated on the basis of the
reinforcements received, without taking recourse to
estimating a model of the underlying MDP.
The mutual learning problem, then, reduces to how to
combine the knowledge structures of two agents,
possibly exploring different state space regions and/or
following different trajectories, developing independent
estimates (of value functions or of MDP parameters).
Mutual Learning in MDPs using Direct Methods: Given
two value functions V;(x) and V,(x) corresponding to
the two agents using the temporal difference algorithm,
each agent can use a weighted combination of the two as
the new value function.
wy (x) wa(x)

0= G +we) O w0 +waey 1Y
where the relative magnitudes of w;(x) at a particular
state will determine which agent acts as the teacher and
which agent the student. In a simplified scenario, w; (x)
is binary valued, i.e., 1 for the teacher (which agent is the
teacher is appropriately determined, as explained
below), and 0 for the student at a particular state x. In the
case when the agents are using Q-learning, the value
functions V(x) is replaced by the Q-values Q(x,a) for
both the agents.
Mutual Learning in MDPs using Indirect Methods: In
this case, detailed counts of the state transitions are
maintained by the reinforcement learning algorithm
itself, and the experiences of the two agents can be easily
combined (such as by means of simple aggregation) to
determine the current estimates of the MDP parameters.
Such parameters can then be used to estimate the optimal
policy using certainty equivalence principles.
In the following, we further clarify the mutual learning
algorithm by considering the four issues of Trust,
Communication, Goal Congruence, and Translation, of
mutual learning mentioned earlier in the paper.
Trust: As explained earlier in this section, for simplicity
we assume Trust w; (x) of each agent to be binary valued
(i.e., 1 for the teacher and 0 for the student). The identity
of the teacher and the student can be determined using
various heuristic rules. We propose a rule based on a
measure of uncertainty in the experience of an agent. In
particular, each agent maintains counts NI;(x) and
ND;(x) corresponding to the number of times its value
function, using its own experience, was incremented and
decremented respectively. Then, whichever agent j has
the highest absolute value of (NI;(x) — ND;(x)) at a
particular x is the teacher at that x.
Communication: The amount of communication
between the two agents is determined both by the
frequency of communication as well as the information
communicated in each communicating instant. This, in
turn, guides the design of the mutual learning algorithm.
For example, we may assume that communication (and,
hence mutual learning) takes place once every T units of
time, interspersed with self-learning (i.e., learning from

Vi(x) +
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one’s own experiences). We can then experiment with
different values of T. Further, we may assume that,
during each communication, the two agents only
communicate the values of current states (and the
corresponding state’s count variables NI and ND). This
is in contrast to communicating the information for all
states which would allow for the possibility of updating
the values of all states through mutual learning.

Goal Congruence: In most of the simulation studies
reported later, it is assumed that the payoff functions of
the two agents are the same. This is to avoid the
possibilities that the two agents may have different
optimal policies in which case mutual learning will in
fact hinder the learning by each agent. For example, with
inverted payoff functions of the two agents, mutual
learning may indeed have undesirable effects (e.g., lack
of convergence, or wrong convergence).

Translation: For most of our discussions on mutual
learning, we assume that the two agents are using the
same learning algorithm. The problem of mutual
learning may become considerably more difficult (and in
fact, possibly ill-posed), if the two agents use two
different learning algorithms. For example, consider the
case of agent 1 using a direct learning algorithm (such as
Q-learning), while agent 2 uses an indirect learning
method (such as adaptive dynamic programming).
Translation from the state of the agent using the indirect
method to that of the agent using direct method is fairly
straightforward using Bellman equations. However,
without any additional constraints, the reverse is indeed
ill-posed, due to the non-uniqueness of model
parameters (transition probability and immediate reward
matrices) that result in a given set of state values.

4.4 Simulation Experiment for an MDP

While both Direct and Indirect methods were described
in the previous section, due to space limitations, only the
Direct method is used in the following simulation study.
The Problem: An MDP has four states and two actions
in each state. The transition probabilities for action 1
are:[0.50.500;0.40.50.10;00.50.30.2;000.50.5].
The transition probabilities for action 2 are: [0.6 0.4 0 0;
0.40.600;,000.60.4;00 0.4 0.6]. The rewards in the
four states are : [0.1 0.1 0.9 0.9].

The Simulation: We first implement just 1 agent with Q-
learning. This corresponds to using only conventional
reinforcement learning without any mutual learning. The
Q-values for all state action pairs are initialized to 0, and
the initial state is chosen to be sl (the first state). The Q
values of the state action pair are then updated using the
standard Q-learning algorithm. (The actions are chosen
in state s, according to the Boltzmann distribution, with
probabilities:

Exp (Q(s,@)/T) /Xy Exp(Q(s, b)/T)
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where T is the temperature parameter which is initially a
large value (say, 1000) and is reduced with k (time steps)
as say, 1000//k).

We next implement two agents using identical Q-
learning algorithms. The two agents communicating
their information to each other would correspond to
mutual learning. Agent | starts in state s1, while agent 2
starts in state s4, and both agents update their Q values
with a mutual learning interval of 5 trials.

Results: Due to space limitations, only Agent 1's average
reward per time step is shown in Figure 5 with and
without mutual learning. It is evident that the average
reward increases faster for agent 1 in the second case
with mutual learning, than in the first case when it is
working alone.

Possible Explanation: For some of the states that Agent
1 visits, Agent 2 has a more reliable estimate of the Q-
values than Agent 1. In those states, Agent 2 acts as a
teacher to Agent 1, which improves Agent 1’s Q-values.
This, in turn, gets reflected in a higher average reward
with mutual learning.

0.45

=~ With Mutual Lsarmirg
—Wihout Mutual Leanirg

04

Figure 5: Mutual reinforcement learning

V. COMMENTS AND CONCLUSIONS

The paper introduces the concept of “mutual learning” in
which two (or more) agents which “learn” in a random
static or dynamic environment, attempt to improve
themselves based on the information provided by the
other(s). The essential difference between what is
proposed in the current paper and past work is the
suggestion that the problems should be formulated within
a mathematical framework and that the changes in each
participant should be quantified in some fashion. The
authors believe that the paper will give rise to interesting
and meaningful discussions in the systems community
concerning mutual learning.
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