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Abstract—The concept of “Mutual Learning” was 

introduced by the authors in Part I of this paper which was 

presented at the 2019 ACC. This is the second of the series 

of papers the authors propose to write on this subject. The 

principal question addressed in all of them concerns the 

process by which two agents “learn” from each other. More 

specifically, the question is how two (or more) agents should 

share their information to improve their performance. 

In Part I, the concept of mutual learning was 

introduced and discussed briefly in the context of two 

deterministic learning automata learning from each other 

in a static random environment. In this paper, we first 

provide some reasons why the concept can become complex 

even in such simple situations, and propose some (weak) 

necessary conditions for the problem to be well defined. 

Following this, we consider similar questions which arise 

when two agents use reinforcement learning in both static 

and dynamic environments. In particular, in the latter 

category, mutual learning in Markov Decision Processes 

(MDP) with finite states is discussed. Simulation results are 

presented wherever appropriate to complement the 

theoretical discussions. 

Keywords—mutual learning, reinforcement, learning 

automata, Markov Decision Processes 

I.  INTRODUCTION  

Learning theory is a vast field, multidisciplinary in 

character, in which a variety of different methods have 

been investigated. Currently it has wide applications in 

diverse areas including machine learning, multi-agent 

systems, robotics, and neuroscience. Most of the work 

on the subject reported in the literature has dealt with a 

single learner operating in a deterministic or stochastic 

environment. In part I of this paper (Narendra and 

Mukhopadhyay, 2019), the authors introduced the 

concept of “mutual learning” and discussed it in the 

context of stochastic automata (Narendra and 

Thathachar, 1989). Even though the term “mutual 

learning” had already been in use, the paper by Narendra 

and Mukhopadhyay was the first to suggest that the 

concept be investigated in a quantitative sense. In 

contrast to other works, it was suggested that mutual 

learning be studied as a problem in systems theory, 

focusing on general questions and issues. The principal 

question raised is concerned with the manner in which 

two or more agents who have partially learned about a 

process or an environment should share their information 

to improve their decisions. 

 

Rationale for Mutual Learning: 

 

Mutual learning can happen between two humans, a 

human and a machine, or two machines. The first class 

of problems can be of interest to researchers in 

communities such as social psychology. Learning 

between humans and machines is becoming increasingly 

important with advances in autonomous technology, and 

mutual learning between machines will be widely used 

in the future, when machines performing similar tasks, 

but trained using different approaches, attempt to 

cooperate. Problems involving mutual learning are 

ubiquitous, and range from the relatively simple to those 

that are extremely complex and difficult (or, sometimes 

impossible) to formulate analytically. This is due to the 

fact that the learning procedures used by the two agents 

may be identical, similar to each other, or vastly 

different, making the interpretation of different 

experiences in a single analytical framework quite 

complex. 

 

Objectives of the Paper: Our principal aim in this paper 

is to introduce questions for discussion, suggest some 

preliminary answers, and indicate the major difficulties 

encountered. In (Narendra and Mukhopadhyay, 2019), 

several scenarios were proposed in which mutual 

learning can be studied. These scenarios included 

optimization, decision-making, identification, pattern 

recognition, etc..  In this paper, we study, in some detail, 

mutual learning using deterministic and stochastic 

reinforcement learning schemes in static environments, 

as well as dynamic Markov Decision Processes (MDP) 

with a finite number of states using both direct and 
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indirect learning methods. Future papers will attempt to 

extend the approaches to systems described by stochastic 

nonlinear differential/difference equations. In fact, all 

the principal learning approaches suggested in the 

literature appear to fall within the scope of investigations 

proposed in this paper. 

 

Organization of the Paper: In section 2, the origin of the 

term Mutual Learning as introduced in this paper is 

discussed. As stated earlier in this Section, while the 

term had been used qualitatively by other authors, the 

suggestion that it be discussed quantitatively is due to the 

authors. In Section 2 the earlier work is briefly described. 

Section 3 is devoted to mutual learning in static 

stochastic environments. The discussion also leads to 

some simple necessary conditions for problems in 

mutual learning to be well defined. Finally, in Section 4 

mutual learning in Markov decision processes is 

discussed.  

II. MUTUAL LEARNING – RESEARCH AND 

APPLICATIONS 

As mentioned in (Narendra and Mukhopadhyay, 2019), 

the authors introduced the term “Mutual Learning” as 

one derived from the problem of “Mutual Adaptation” 

investigated by the first author and his co-workers. 

However, a survey of the literature revealed to the 

authors that the term had been studied by others 

qualitatively in diverse areas. In the following, we 

summarize some of this work on mutual learning. 

Ikemoto et al (2012) discuss an interesting study 

involving mutual learning and co-adaptation in a human-

robot system, inspired by the parenting behavior in 

humans. In the context of artificial neural networks, 

Zhang et al (2017) discuss the problem of an ensemble 

of deep neural networks learning from each other in the 

context of a classification task. It was concluded that a 

collection of small neural networks with mutual learning 

can outperform a “powerful” single teacher network. In 

machine vision, Nie et al (2018) discuss mutual learning 

to achieve superior performance between two related, 

but disparate computer vision tasks, i.e., human parsing 

and pose estimation. Klein et al (2005) and Rosen-Zvi et 

al (2002) discuss the problem of synchronization 

between two neural networks through mutual learning 

whereby their weights converge to two parallel vectors. 

They also show how these synchronized parallel vectors 

can be used for data encryption. Liu et al (2012) discuss 

the integration of suitable mutual learning in an artificial 

bee colony optimization algorithm, and demonstrate 

through simulation studies that improved performance 

can be obtained by incorporating such mutual learning. 

Another related research theme is multi-agent learning 

systems, where the agents focusing on different, 

disparate subtasks of a complex task cooperate to solve 

the problem, in a spirit similar to mathematical game 

theory. Panait and Luke (2005) provide a survey of this 

somewhat well-established field, highlighting the issues 

of inter-agent communication, task decomposition, and 

scalability in such multi-agent systems. In contrast to this 

theme of multi-agent systems, in mutual learning, the 

agents are involved in solving the same or similar tasks, 

and the objective is for them to act as (partial) teachers 

to each other in order to improve their learning. Further, 

our objective, in contrast to other works, is to study such 

mutual learning problems as systems theory problems, 

focusing on general questions and issues. Our choice of 

reinforcement learning as the initial framework for 

studying mutual learning is motivated by the availability 

of statistical and mathematical learning theories to 

analyze convergence of reinforcement learning systems, 

thereby making the mutual learning problem analytically 

tractable in this framework.   

III. MUTUAL LEARNING IN STATIC, STOCHASTIC 

ENVIRONMENTS – LEARNING AUTOMATA 

The complex questions that arise in mutual learning can 

be illustrated using simple learning automata schemes, 

described in the earlier paper by the authors. The 

discussion of such schemes also reveals that some simple 

conditions need to be satisfied if the learning is to 

proceed in a rational manner.  

 

A learning automaton consists of an environment 𝐸 

connected in feedback with an automaton 𝐴 as shown in 

Figure 1. An environment 𝐸 (figure 1a) is described by 

the triple {𝛼, 𝑑, 𝛽} where 𝛼 = {𝛼1, 𝛼2, … , 𝛼𝑟} represents 

the finite input set with r actions 𝛼𝑖, an output set 𝛽 =
{𝛽1, 𝛽2} with 𝛽1 = 1 representing a reward, and 𝛽2 = 0 

representing a penalty, and 𝑑 = {𝑑1, 𝑑2, … , 𝑑𝑟} a set of 

unknown reward probabilities 𝑑𝑖  = Prob[ 𝛽(𝑛) =
1|𝛼(𝑛) = 𝛼𝑖]. 
 

 
 

Objective: The overall objective of the learning 

automaton is to choose the best action 𝛼𝑜𝑝𝑡 among the 

actions in the action set 𝛼. This is accomplished by the 

automaton making a rational decision after every 

experiment in the environment. 

We first consider a simple approach in which all the 

actions are chosen with equal probabilities 
1

𝑟
. This 
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involves no learning, and the expected reward will be 

𝑑𝑎𝑣 =
1

𝑟
∑ 𝑑𝑖

𝑟
𝑖=1 . Learning is consequently used to 

achieve a reward greater than the above. When the 

expected reward is greater than 𝑑𝑎𝑣 , the automaton is 

said to be expedient. When the learning scheme chooses 

the best action with probability 1, it is said to be optimal. 

From a practical standpoint, it is not possible to conduct 

the experiment an infinite number of times. Only 

tentative conclusions can be drawn using a finite number 

of trials in an environment. 

Deterministic Automaton: An automaton is said to be 

deterministic if on the basis of the action 𝛼𝑖  and the 

environmental response 𝛽𝑖  ∈ {0,1}, it chooses the next 

action using a fixed rule. 

Stochastic Automaton: The automaton is said to be 

stochastic if, on the basis of response of the environment 

after every trial, it updates the probabilities with which 

the actions are to be chosen. 

Mutual Learning: Let two automata operate in the same 

environment. If one of the automata has performed a 

very large number of trials, it essentially knows most of 

the details about the environment, and, in particular, the 

best action (based on the probabilities computed). Such 

an automaton may be considered a teacher. However, our 

interest is in automata which have performed the 

experiments only a finite number of times, and want to 

improve their decisions based on the information 

received from the other. 

Interaction of the Automata: The following questions 

become relevant while considering mutual learning: 

a) How often do the automata communicate with each 

other – only once, a finite number of times, periodically, 

or, at random intervals? What information do they 

communicate to each other? (Communication) 

b) Do both the automata use the same algorithm, similar 

algorithms, or very different algorithms? In the latter two 

cases, how do they interpret each other’s communicated 

information? (Translation) 

c) How much credence do the two automata have in each 

other, based on past interactions? (Trust) 

d) Do the automata share the same (or, similar) goals? 

(Goal Congruence) 

 

3.1 Simulation Experiments with Learning Automata 

 

In this subsection we include a few simple simulation 

studies of mutual learning of increasing complexity in 

static environments. These include deterministic and 

stochastic learning schemes described earlier. 

Simulation Study 1: Tsetlin Automata: In this study we 

consider the simple case of two Tsetlin automata 

learning from each other. This is shown in Figure 2. 

𝛼1 and 𝛼2 are two actions which have unknown reward 

probabilities of 0.9 and 0.2 respectively in a static 

environment. It is seen that an automaton starting in state 

𝜑1(i.e., choosing action 𝛼1) stays in the same state with 

probability 0.9, while one starting in state 𝜑2 switches to 

state 𝜑1  with probability 0.8. (Note that at any instant 

only one action is chosen so that the count of the other 

action remains constant as the number of trials 

increases). Figures 3(a) and 3(b) show the the number of 

times the two actions 𝛼1 and 𝛼2 are chosen for the two 

automata. Three different cases can be considered: 

(i) Both automata have performed the same number of 

trials 

(ii) The first automaton has performed a large number of 

trials, while the second has performed only a few, i.e., 

𝑛1  ≫ 𝑛2. 

(iii) 𝑛1  ≪ 𝑛2. 

 

In view of the great disparity between the reward 

probabilities of the two actions, both automata conclude 

that 𝛼1 is the better action after the number of trials 

exceeds 7. When 𝑛1  ≫ 𝑛2 (𝑛1 = 10, 𝑛2 = 3), the first 

automaton concludes that 𝛼1 is the better action. After 

communication between the two automata, the second 

automaton “learns” from the first that 𝛼1 is the better 

action (i.e., the first automaton acts as a teacher for the 

second).  

 
Fig. 2: A scheme of the transition probabilities. 

 

 
(a) Scheme 1.  

 

 
 

(b) Scheme 2. 

Fig. 3: Results of simulation 1. 

 

Simulation Study 2: Stochastic Automata: A stochastic 

automaton using the 𝐿𝑅𝐼  scheme was simulated in the 

same environment, and the convergence of the scheme 

was studied. The convergence was found to be 

substantially slower. However, it is evident after detailed 
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exchange of information regarding trials and rewards, 

that the superior action was selected. 

Simulation Study 3: The same experiment carried out in 

Simulation 1, with two simple deterministic schemes 

was replaced with an environment with reward 

probabilities 0:8 and 0:6. 

 
 (a) Scheme 1. 

 
 (b) Scheme 2. 

Fig. 4: Results of simulation 3. 

The evolution of the rewards obtained as a function of 

the trials are shown for both the schemes in Figure 4. At 

the end of 10 trials, the learning scheme 1 has 9 rewards 

and 1 reward with actions a1 and a2 while the second 

scheme has 6 and 4 respectively. Assuming a threshold 

of 0.8 for the reward probability, scheme 1 concludes 

that action a1 is the best action. But scheme 2 has tobase 

its action on the information obtained from scheme 1. 

scheme 2 which also chooses a1 as the best action. 

IV. MUTUAL LEARNING IN DYNAMIC, STOCHASTIC 

ENVIRONMENTS  REINFORCEMENT LEARNING 

4.1 The Markov Decision Problem 

A Markov Decision Process (MDP) is defined by the 

following quantities: 

 The State Space S, a finite set, 

 The action set A, a finite set, listing all actions 

available to the agent in any state 

 A state transition probability function P : S X S X A 

 (0, 1) 

 An immediate payoff function R : S X S X A  [0; 1] 

where 0 corresponds to no reward and 1 corresponds to 

reward. 

The objective of the agent is to maximize the overall 

discounted reward, i.e., the objective is not merely to 

maximize the reward of the next transition, but to 

maximize the reward over all future transitions from an 

initial state. 

4.2 Conventional Reinforcement Learning 

Reinforcement learning aims to find the optimal decision 

(or, decision rule) in feedback with an unknown and 

uncertain teacher or environment, on the basis of a 

qualitative and noisy on-line performance feedback 

provided by the teacher in the form of a reinforcement 

signal. There exists a large variety of learning models 

and algorithms (Kaelbling, Littman, and Moore, 1996; 

Sutton and Barto, 1998) depending on the assumptions 

on the teacher or environment. One of the earliest 

reinforcement learning models is the learning automaton 

discussed in the previous section. 

 

While the basic learning automaton model was proposed 

for a stationary but unknown environment (constant 

reward probabilities), more recent and advanced models 

have focused on nonstationary and dynamic 

environments. Such models deal with the case where the 

state of the environment evolves dynamically based on 

ov Decision Process 

(MDP) model (for discrete state case) or a stochastic 

nonlinear difference equation model (for continuous 

state case) is used to describe the environment. The 

objective in this dynamic formulation is once again, to 

learn an optimal policy. However, in this case it is to 

maximize the long-term (over a finite or infinite horizon) 

possibly discounted reward or pay-off received by the 

dynamic programming (for discrete-state MDPs) and 

Hamilton-Jacobi-Bellman (HJB) equation (Al-Tamimi, 

Lewis, and Abu-Khalaf, 2008) or its linear version 

Riccati equation (for continuous-state environments) 

have been proposed to learn the optimal policies in such 

stochastic, unknown, dynamic environments. 

Model-free (Direct) and Model-based (Indirect) 

Learning: The large classes of algorithms available for 

various reinforcement learning models can be broadly 

categorized into two classes: Model-free and Model-

based methods. Model-free methods (such as linear 

reward-inaction algorithm for learning automata, and 

temporal difference (Sutton, 1988) and Q-learning 

(Watkins and Dayan, 1992) algorithms for MDPs aim to 

directly learn the optimal policy without attempting to 

learn a model or estimate of the environment. Model-

based methods such as Adaptive Dynamic Programming 

(Barto, Bradtke, and Singh, 1995) and Approximate 

Dynamic Programming (Powell, 2007), on the other 

hand, maintain and update a model of the environment, 

and it is this model which is used to compute the optimal 

policy. 

4.3 Mutual Reinforcement Learning in an MDP 

The Markov Decision Problem was briefly described in 

sections 4.1 and 4.2. It was also mentioned there that 

both direct (model-free) and indirect (model-based) 

approaches have been proposed in the literature for 

solving the reinforcement learning problem in MDPs. In 

the former (e.g., in Temporal difference or Q-learning 

algorithms), a value function (a function of state in 

temporal difference, and a function of state-action pairs 
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in Q-learning) is directly updated on the basis of the 

reinforcements received, without taking recourse to 

estimating a model of the underlying MDP.  

The mutual learning problem, then, reduces to how to 

combine the knowledge structures of two agents, 

possibly exploring different state space regions and/or 

following different trajectories, developing independent 

estimates (of value functions or of MDP parameters). 

Mutual Learning in MDPs using Direct Methods: Given 

two value functions 𝑉1(𝑥) and 𝑉2(𝑥) corresponding to 

the two agents using the temporal difference algorithm, 

each agent can use a weighted combination of the two as 

the new value function.  

𝑉(𝑥) =  
𝑤1(𝑥)

(𝑤1(𝑥) + 𝑤2(𝑥))
𝑉1(𝑥) +

𝑤2(𝑥)

(𝑤1(𝑥) + 𝑤2(𝑥))
𝑉2(𝑥) 

where the relative magnitudes of 𝑤𝑖(𝑥) at a particular 

state will determine which agent acts as the teacher and 

which agent the student. In a simplified scenario, 𝑤𝑖(𝑥) 

is binary valued, i.e., 1 for the teacher (which agent is the 

teacher is appropriately determined, as explained 

below), and 0 for the student at a particular state x. In the 

case when the agents are using Q-learning, the value 

functions V(x) is replaced by the Q-values Q(x,a) for 

both the agents. 

Mutual Learning in MDPs using Indirect Methods: In 

this case, detailed counts of the state transitions are 

maintained by the reinforcement learning algorithm 

itself, and the experiences of the two agents can be easily 

combined (such as by means of simple aggregation) to 

determine the current estimates of the MDP parameters. 

Such parameters can then be used to estimate the optimal 

policy using certainty equivalence principles. 

In the following, we further clarify the mutual learning 

algorithm by considering the four issues of Trust, 

Communication, Goal Congruence, and Translation, of 

mutual learning mentioned earlier in the paper. 

Trust: As explained earlier in this section, for simplicity 

we assume Trust 𝑤𝑖(𝑥) of each agent to be binary valued 

(i.e., 1 for the teacher and 0 for the student). The identity 

of the teacher and the student can be determined using 

various heuristic rules. We propose a rule based on a 

measure of uncertainty in the experience of an agent. In 

particular, each agent maintains counts 𝑁𝐼𝑖(𝑥)  and  

𝑁𝐷𝑖(𝑥) corresponding to the number of times its value 

function, using its own experience, was incremented and 

decremented respectively. Then, whichever agent j has 

the highest absolute value of  (𝑁𝐼𝑗(𝑥) − 𝑁𝐷𝑗(𝑥)) at a 

particular x is the teacher at that x. 

Communication: The amount of communication 

between the two agents is determined both by the 

frequency of communication as well as the information 

communicated in each communicating instant. This, in 

turn, guides the design of the mutual learning algorithm. 

For example, we may assume that communication (and, 

hence mutual learning) takes place once every T units of 

time, interspersed with self-learning (i.e., learning from 

one’s own experiences). We can then experiment with 

different values of T. Further, we may assume that, 

during each communication, the two agents only 

communicate the values of current states (and the 

corresponding state’s count variables NI and ND). This 

is in contrast to communicating the information for all 

states which would allow for the possibility of updating 

the values of all states through mutual learning. 

Goal Congruence: In most of the simulation studies 

reported later, it is assumed that the payoff functions of 

the two agents are the same. This is to avoid the 

possibilities that the two agents may have different 

optimal policies in which case mutual learning will in 

fact hinder the learning by each agent. For example, with 

inverted payoff functions of the two agents, mutual 

learning may indeed have undesirable effects (e.g., lack 

of convergence, or wrong convergence). 

Translation: For most of our discussions on mutual 

learning, we assume that the two agents are using the 

same learning algorithm. The problem of mutual 

learning may become considerably more difficult (and in 

fact, possibly ill-posed), if the two agents use two 

different learning algorithms. For example, consider the 

case of agent 1 using a direct learning algorithm (such as 

Q-learning), while agent 2 uses an indirect learning 

method (such as adaptive dynamic programming). 

Translation from the state of the agent using the indirect 

method to that of the agent using direct method is fairly 

straightforward using Bellman equations. However,  

without any additional constraints, the reverse is indeed 

ill-posed, due to the non-uniqueness of model 

parameters (transition probability and immediate reward 

matrices) that result in a given set of state values.  

4.4 Simulation Experiment for an MDP 

While both Direct and Indirect methods were described 

in the previous section, due to space limitations, only the 

Direct method is used in the following simulation study. 

The Problem:  An MDP has four states and two actions 

in each state. The transition probabilities for action 1 

are:[0.5 0.5 0 0; 0.4 0.5 0.1 0; 0 0.5 0.3 0.2; 0 0 0.5 0.5]. 

The transition probabilities for action 2 are: [0.6 0.4 0 0; 

0.4 0.6 0 0; 0 0 0.6 0.4; 0 0 0.4 0.6]. The rewards in the 

four states are :  [0.1 0.1 0.9 0.9]. 

The Simulation:  We first implement just 1 agent with Q-

learning. This corresponds to using only conventional 

reinforcement learning without any mutual learning. The 

Q-values for all state action pairs are initialized to 0, and 

the initial state is chosen to be s1 (the first state). The Q 

values of the state action pair are then updated using the 

standard Q-learning algorithm. (The actions are chosen 

in state s, according to the  Boltzmann distribution, with 

probabilities: 

𝐸𝑥𝑝 (𝑄(𝑠, 𝑎)/𝑇) /∑ 𝐸𝑥𝑝(𝑄(𝑠, 𝑏)/𝑇)𝑏  

1109

Authorized licensed use limited to: Yale University. Downloaded on September 18,2022 at 19:14:23 UTC from IEEE Xplore.  Restrictions apply. 



where T is the temperature parameter which is initially a 

large value (say, 1000) and is reduced with k (time steps) 

as say, 1000/√𝑘). 

We next implement two agents using identical Q-

learning algorithms. The two agents communicating 

their information to each other would correspond to 

mutual learning.  Agent 1 starts in state s1, while agent 2 

starts in state s4, and both agents update their Q values  

with a mutual learning interval of 5 trials.  

Results: Due to space limitations, only Agent 1's average 

reward per time step is shown in Figure 5 with and 

without mutual learning. It is evident that the average 

reward increases faster for agent 1 in the second case 

with mutual learning, than in the first case when it is 

working alone. 

Possible Explanation: For some of the states that Agent 

1 visits, Agent 2 has a more reliable estimate of the Q-

values than Agent 1. In those states, Agent 2 acts as a 

teacher to Agent 1, which improves Agent 1’s Q-values. 

This, in turn, gets reflected in a higher average reward 

with mutual learning. 

 
 

Figure 5: Mutual reinforcement learning 

V.  COMMENTS AND CONCLUSIONS 

The paper introduces the concept of “mutual learning” in 
which two (or more) agents which “learn” in a random 
static or dynamic environment, attempt to improve 
themselves based on the information provided by the 
other(s). The essential difference between what is 
proposed in the current paper and past work is the 
suggestion that the problems should be formulated within 
a mathematical framework and that the changes in each 
participant should be quantified in some fashion. The 
authors believe that the paper will give rise to interesting 
and meaningful discussions in the systems community 
concerning mutual learning. 
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