

Mutual Learning: Part II --Reinforcement Learning
Kumpati S. Narendra

Center for Systems Science

Yale University

New Haven, CT 06521, USA

kumpati.narendra@yale.edu

Snehasis Mukhopadhyay

Computer and Information Science

Indiana University Purdue University Indianapolis

Indianapolis, IN 46202, USA

smukhopa@iupui.edu

Abstract—The concept of “Mutual Learning” was

introduced by the authors in Part I of this paper which was

presented at the 2019 ACC. This is the second of the series

of papers the authors propose to write on this subject. The

principal question addressed in all of them concerns the

process by which two agents “learn” from each other. More

specifically, the question is how two (or more) agents should

share their information to improve their performance.

In Part I, the concept of mutual learning was

introduced and discussed briefly in the context of two

deterministic learning automata learning from each other

in a static random environment. In this paper, we first

provide some reasons why the concept can become complex

even in such simple situations, and propose some (weak)

necessary conditions for the problem to be well defined.

Following this, we consider similar questions which arise

when two agents use reinforcement learning in both static

and dynamic environments. In particular, in the latter

category, mutual learning in Markov Decision Processes

(MDP) with finite states is discussed. Simulation results are

presented wherever appropriate to complement the

theoretical discussions.

Keywords—mutual learning, reinforcement, learning

automata, Markov Decision Processes

I. INTRODUCTION

Learning theory is a vast field, multidisciplinary in

character, in which a variety of different methods have

been investigated. Currently it has wide applications in

diverse areas including machine learning, multi-agent

systems, robotics, and neuroscience. Most of the work

on the subject reported in the literature has dealt with a

single learner operating in a deterministic or stochastic

environment. In part I of this paper (Narendra and

Mukhopadhyay, 2019), the authors introduced the

concept of “mutual learning” and discussed it in the

context of stochastic automata (Narendra and

Thathachar, 1989). Even though the term “mutual

learning” had already been in use, the paper by Narendra

and Mukhopadhyay was the first to suggest that the

concept be investigated in a quantitative sense. In

contrast to other works, it was suggested that mutual

learning be studied as a problem in systems theory,

focusing on general questions and issues. The principal

question raised is concerned with the manner in which

two or more agents who have partially learned about a

process or an environment should share their information

to improve their decisions.

Rationale for Mutual Learning:

Mutual learning can happen between two humans, a

human and a machine, or two machines. The first class

of problems can be of interest to researchers in

communities such as social psychology. Learning

between humans and machines is becoming increasingly

important with advances in autonomous technology, and

mutual learning between machines will be widely used

in the future, when machines performing similar tasks,

but trained using different approaches, attempt to

cooperate. Problems involving mutual learning are

ubiquitous, and range from the relatively simple to those

that are extremely complex and difficult (or, sometimes

impossible) to formulate analytically. This is due to the

fact that the learning procedures used by the two agents

may be identical, similar to each other, or vastly

different, making the interpretation of different

experiences in a single analytical framework quite

complex.

Objectives of the Paper: Our principal aim in this paper

is to introduce questions for discussion, suggest some

preliminary answers, and indicate the major difficulties

encountered. In (Narendra and Mukhopadhyay, 2019),

several scenarios were proposed in which mutual

learning can be studied. These scenarios included

optimization, decision-making, identification, pattern

recognition, etc.. In this paper, we study, in some detail,

mutual learning using deterministic and stochastic

reinforcement learning schemes in static environments,

as well as dynamic Markov Decision Processes (MDP)

with a finite number of states using both direct and

2020 American Control Conference
Denver, CO, USA, July 1-3, 2020

978-1-5386-8266-1/$31.00 ©2020 AACC 1105

Authorized licensed use limited to: Yale University. Downloaded on September 18,2022 at 19:14:23 UTC from IEEE Xplore. Restrictions apply.

indirect learning methods. Future papers will attempt to

extend the approaches to systems described by stochastic

nonlinear differential/difference equations. In fact, all

the principal learning approaches suggested in the

literature appear to fall within the scope of investigations

proposed in this paper.

Organization of the Paper: In section 2, the origin of the

term Mutual Learning as introduced in this paper is

discussed. As stated earlier in this Section, while the

term had been used qualitatively by other authors, the

suggestion that it be discussed quantitatively is due to the

authors. In Section 2 the earlier work is briefly described.

Section 3 is devoted to mutual learning in static

stochastic environments. The discussion also leads to

some simple necessary conditions for problems in

mutual learning to be well defined. Finally, in Section 4

mutual learning in Markov decision processes is

discussed.

II. MUTUAL LEARNING – RESEARCH AND

APPLICATIONS

As mentioned in (Narendra and Mukhopadhyay, 2019),

the authors introduced the term “Mutual Learning” as

one derived from the problem of “Mutual Adaptation”

investigated by the first author and his co-workers.

However, a survey of the literature revealed to the

authors that the term had been studied by others

qualitatively in diverse areas. In the following, we

summarize some of this work on mutual learning.

Ikemoto et al (2012) discuss an interesting study

involving mutual learning and co-adaptation in a human-

robot system, inspired by the parenting behavior in

humans. In the context of artificial neural networks,

Zhang et al (2017) discuss the problem of an ensemble

of deep neural networks learning from each other in the

context of a classification task. It was concluded that a

collection of small neural networks with mutual learning

can outperform a “powerful” single teacher network. In

machine vision, Nie et al (2018) discuss mutual learning

to achieve superior performance between two related,

but disparate computer vision tasks, i.e., human parsing

and pose estimation. Klein et al (2005) and Rosen-Zvi et

al (2002) discuss the problem of synchronization

between two neural networks through mutual learning

whereby their weights converge to two parallel vectors.

They also show how these synchronized parallel vectors

can be used for data encryption. Liu et al (2012) discuss

the integration of suitable mutual learning in an artificial

bee colony optimization algorithm, and demonstrate

through simulation studies that improved performance

can be obtained by incorporating such mutual learning.

Another related research theme is multi-agent learning

systems, where the agents focusing on different,

disparate subtasks of a complex task cooperate to solve

the problem, in a spirit similar to mathematical game

theory. Panait and Luke (2005) provide a survey of this

somewhat well-established field, highlighting the issues

of inter-agent communication, task decomposition, and

scalability in such multi-agent systems. In contrast to this

theme of multi-agent systems, in mutual learning, the

agents are involved in solving the same or similar tasks,

and the objective is for them to act as (partial) teachers

to each other in order to improve their learning. Further,

our objective, in contrast to other works, is to study such

mutual learning problems as systems theory problems,

focusing on general questions and issues. Our choice of

reinforcement learning as the initial framework for

studying mutual learning is motivated by the availability

of statistical and mathematical learning theories to

analyze convergence of reinforcement learning systems,

thereby making the mutual learning problem analytically

tractable in this framework.

III. MUTUAL LEARNING IN STATIC, STOCHASTIC

ENVIRONMENTS – LEARNING AUTOMATA

The complex questions that arise in mutual learning can

be illustrated using simple learning automata schemes,

described in the earlier paper by the authors. The

discussion of such schemes also reveals that some simple

conditions need to be satisfied if the learning is to

proceed in a rational manner.

A learning automaton consists of an environment 𝐸

connected in feedback with an automaton 𝐴 as shown in

Figure 1. An environment 𝐸 (figure 1a) is described by

the triple {𝛼, 𝑑, 𝛽} where 𝛼 = {𝛼1, 𝛼2, … , 𝛼𝑟} represents

the finite input set with r actions 𝛼𝑖, an output set 𝛽 =
{𝛽1, 𝛽2} with 𝛽1 = 1 representing a reward, and 𝛽2 = 0

representing a penalty, and 𝑑 = {𝑑1, 𝑑2, … , 𝑑𝑟} a set of

unknown reward probabilities 𝑑𝑖 = Prob[𝛽(𝑛) =
1|𝛼(𝑛) = 𝛼𝑖].

Objective: The overall objective of the learning

automaton is to choose the best action 𝛼𝑜𝑝𝑡 among the

actions in the action set 𝛼. This is accomplished by the

automaton making a rational decision after every

experiment in the environment.

We first consider a simple approach in which all the

actions are chosen with equal probabilities
1

𝑟
. This

1106

Authorized licensed use limited to: Yale University. Downloaded on September 18,2022 at 19:14:23 UTC from IEEE Xplore. Restrictions apply.

involves no learning, and the expected reward will be

𝑑𝑎𝑣 =
1

𝑟
∑ 𝑑𝑖

𝑟
𝑖=1 . Learning is consequently used to

achieve a reward greater than the above. When the

expected reward is greater than 𝑑𝑎𝑣 , the automaton is

said to be expedient. When the learning scheme chooses

the best action with probability 1, it is said to be optimal.

From a practical standpoint, it is not possible to conduct

the experiment an infinite number of times. Only

tentative conclusions can be drawn using a finite number

of trials in an environment.

Deterministic Automaton: An automaton is said to be

deterministic if on the basis of the action 𝛼𝑖 and the

environmental response 𝛽𝑖 ∈ {0,1}, it chooses the next

action using a fixed rule.

Stochastic Automaton: The automaton is said to be

stochastic if, on the basis of response of the environment

after every trial, it updates the probabilities with which

the actions are to be chosen.

Mutual Learning: Let two automata operate in the same

environment. If one of the automata has performed a

very large number of trials, it essentially knows most of

the details about the environment, and, in particular, the

best action (based on the probabilities computed). Such

an automaton may be considered a teacher. However, our

interest is in automata which have performed the

experiments only a finite number of times, and want to

improve their decisions based on the information

received from the other.

Interaction of the Automata: The following questions

become relevant while considering mutual learning:

a) How often do the automata communicate with each

other – only once, a finite number of times, periodically,

or, at random intervals? What information do they

communicate to each other? (Communication)

b) Do both the automata use the same algorithm, similar

algorithms, or very different algorithms? In the latter two

cases, how do they interpret each other’s communicated

information? (Translation)

c) How much credence do the two automata have in each

other, based on past interactions? (Trust)

d) Do the automata share the same (or, similar) goals?

(Goal Congruence)

3.1 Simulation Experiments with Learning Automata

In this subsection we include a few simple simulation

studies of mutual learning of increasing complexity in

static environments. These include deterministic and

stochastic learning schemes described earlier.

Simulation Study 1: Tsetlin Automata: In this study we

consider the simple case of two Tsetlin automata

learning from each other. This is shown in Figure 2.

𝛼1 and 𝛼2 are two actions which have unknown reward

probabilities of 0.9 and 0.2 respectively in a static

environment. It is seen that an automaton starting in state

𝜑1(i.e., choosing action 𝛼1) stays in the same state with

probability 0.9, while one starting in state 𝜑2 switches to

state 𝜑1 with probability 0.8. (Note that at any instant

only one action is chosen so that the count of the other

action remains constant as the number of trials

increases). Figures 3(a) and 3(b) show the the number of

times the two actions 𝛼1 and 𝛼2 are chosen for the two

automata. Three different cases can be considered:

(i) Both automata have performed the same number of

trials

(ii) The first automaton has performed a large number of

trials, while the second has performed only a few, i.e.,

𝑛1 ≫ 𝑛2.

(iii) 𝑛1 ≪ 𝑛2.

In view of the great disparity between the reward

probabilities of the two actions, both automata conclude

that 𝛼1 is the better action after the number of trials

exceeds 7. When 𝑛1 ≫ 𝑛2 (𝑛1 = 10, 𝑛2 = 3), the first

automaton concludes that 𝛼1 is the better action. After

communication between the two automata, the second

automaton “learns” from the first that 𝛼1 is the better

action (i.e., the first automaton acts as a teacher for the

second).

Fig. 2: A scheme of the transition probabilities.

(a) Scheme 1.

(b) Scheme 2.

Fig. 3: Results of simulation 1.

Simulation Study 2: Stochastic Automata: A stochastic

automaton using the 𝐿𝑅𝐼 scheme was simulated in the

same environment, and the convergence of the scheme

was studied. The convergence was found to be

substantially slower. However, it is evident after detailed

1107

Authorized licensed use limited to: Yale University. Downloaded on September 18,2022 at 19:14:23 UTC from IEEE Xplore. Restrictions apply.

exchange of information regarding trials and rewards,

that the superior action was selected.

Simulation Study 3: The same experiment carried out in

Simulation 1, with two simple deterministic schemes

was replaced with an environment with reward

probabilities 0:8 and 0:6.

 (a) Scheme 1.

 (b) Scheme 2.

Fig. 4: Results of simulation 3.

The evolution of the rewards obtained as a function of

the trials are shown for both the schemes in Figure 4. At

the end of 10 trials, the learning scheme 1 has 9 rewards

and 1 reward with actions a1 and a2 while the second

scheme has 6 and 4 respectively. Assuming a threshold

of 0.8 for the reward probability, scheme 1 concludes

that action a1 is the best action. But scheme 2 has tobase

its action on the information obtained from scheme 1.

scheme 2 which also chooses a1 as the best action.

IV. MUTUAL LEARNING IN DYNAMIC, STOCHASTIC

ENVIRONMENTS REINFORCEMENT LEARNING

4.1 The Markov Decision Problem

A Markov Decision Process (MDP) is defined by the

following quantities:

 The State Space S, a finite set,

 The action set A, a finite set, listing all actions

available to the agent in any state

 A state transition probability function P : S X S X A

 (0, 1)

 An immediate payoff function R : S X S X A [0; 1]

where 0 corresponds to no reward and 1 corresponds to

reward.

The objective of the agent is to maximize the overall

discounted reward, i.e., the objective is not merely to

maximize the reward of the next transition, but to

maximize the reward over all future transitions from an

initial state.

4.2 Conventional Reinforcement Learning

Reinforcement learning aims to find the optimal decision

(or, decision rule) in feedback with an unknown and

uncertain teacher or environment, on the basis of a

qualitative and noisy on-line performance feedback

provided by the teacher in the form of a reinforcement

signal. There exists a large variety of learning models

and algorithms (Kaelbling, Littman, and Moore, 1996;

Sutton and Barto, 1998) depending on the assumptions

on the teacher or environment. One of the earliest

reinforcement learning models is the learning automaton

discussed in the previous section.

While the basic learning automaton model was proposed

for a stationary but unknown environment (constant

reward probabilities), more recent and advanced models

have focused on nonstationary and dynamic

environments. Such models deal with the case where the

state of the environment evolves dynamically based on

ov Decision Process

(MDP) model (for discrete state case) or a stochastic

nonlinear difference equation model (for continuous

state case) is used to describe the environment. The

objective in this dynamic formulation is once again, to

learn an optimal policy. However, in this case it is to

maximize the long-term (over a finite or infinite horizon)

possibly discounted reward or pay-off received by the

dynamic programming (for discrete-state MDPs) and

Hamilton-Jacobi-Bellman (HJB) equation (Al-Tamimi,

Lewis, and Abu-Khalaf, 2008) or its linear version

Riccati equation (for continuous-state environments)

have been proposed to learn the optimal policies in such

stochastic, unknown, dynamic environments.

Model-free (Direct) and Model-based (Indirect)

Learning: The large classes of algorithms available for

various reinforcement learning models can be broadly

categorized into two classes: Model-free and Model-

based methods. Model-free methods (such as linear

reward-inaction algorithm for learning automata, and

temporal difference (Sutton, 1988) and Q-learning

(Watkins and Dayan, 1992) algorithms for MDPs aim to

directly learn the optimal policy without attempting to

learn a model or estimate of the environment. Model-

based methods such as Adaptive Dynamic Programming

(Barto, Bradtke, and Singh, 1995) and Approximate

Dynamic Programming (Powell, 2007), on the other

hand, maintain and update a model of the environment,

and it is this model which is used to compute the optimal

policy.

4.3 Mutual Reinforcement Learning in an MDP

The Markov Decision Problem was briefly described in

sections 4.1 and 4.2. It was also mentioned there that

both direct (model-free) and indirect (model-based)

approaches have been proposed in the literature for

solving the reinforcement learning problem in MDPs. In

the former (e.g., in Temporal difference or Q-learning

algorithms), a value function (a function of state in

temporal difference, and a function of state-action pairs

1108

in Q-learning) is directly updated on the basis of the

reinforcements received, without taking recourse to

estimating a model of the underlying MDP.

The mutual learning problem, then, reduces to how to

combine the knowledge structures of two agents,

possibly exploring different state space regions and/or

following different trajectories, developing independent

estimates (of value functions or of MDP parameters).

Mutual Learning in MDPs using Direct Methods: Given

two value functions 𝑉1(𝑥) and 𝑉2(𝑥) corresponding to

the two agents using the temporal difference algorithm,

each agent can use a weighted combination of the two as

the new value function.

𝑉(𝑥) =
𝑤1(𝑥)

(𝑤1(𝑥) + 𝑤2(𝑥))
𝑉1(𝑥) +

𝑤2(𝑥)

(𝑤1(𝑥) + 𝑤2(𝑥))
𝑉2(𝑥)

where the relative magnitudes of 𝑤𝑖(𝑥) at a particular

state will determine which agent acts as the teacher and

which agent the student. In a simplified scenario, 𝑤𝑖(𝑥)

is binary valued, i.e., 1 for the teacher (which agent is the

teacher is appropriately determined, as explained

below), and 0 for the student at a particular state x. In the

case when the agents are using Q-learning, the value

functions V(x) is replaced by the Q-values Q(x,a) for

both the agents.

Mutual Learning in MDPs using Indirect Methods: In

this case, detailed counts of the state transitions are

maintained by the reinforcement learning algorithm

itself, and the experiences of the two agents can be easily

combined (such as by means of simple aggregation) to

determine the current estimates of the MDP parameters.

Such parameters can then be used to estimate the optimal

policy using certainty equivalence principles.

In the following, we further clarify the mutual learning

algorithm by considering the four issues of Trust,

Communication, Goal Congruence, and Translation, of

mutual learning mentioned earlier in the paper.

Trust: As explained earlier in this section, for simplicity

we assume Trust 𝑤𝑖(𝑥) of each agent to be binary valued

(i.e., 1 for the teacher and 0 for the student). The identity

of the teacher and the student can be determined using

various heuristic rules. We propose a rule based on a

measure of uncertainty in the experience of an agent. In

particular, each agent maintains counts 𝑁𝐼𝑖(𝑥) and

𝑁𝐷𝑖(𝑥) corresponding to the number of times its value

function, using its own experience, was incremented and

decremented respectively. Then, whichever agent j has

the highest absolute value of (𝑁𝐼𝑗(𝑥) − 𝑁𝐷𝑗(𝑥)) at a

particular x is the teacher at that x.

Communication: The amount of communication

between the two agents is determined both by the

frequency of communication as well as the information

communicated in each communicating instant. This, in

turn, guides the design of the mutual learning algorithm.

For example, we may assume that communication (and,

hence mutual learning) takes place once every T units of

time, interspersed with self-learning (i.e., learning from

one’s own experiences). We can then experiment with

different values of T. Further, we may assume that,

during each communication, the two agents only

communicate the values of current states (and the

corresponding state’s count variables NI and ND). This

is in contrast to communicating the information for all

states which would allow for the possibility of updating

the values of all states through mutual learning.

Goal Congruence: In most of the simulation studies

reported later, it is assumed that the payoff functions of

the two agents are the same. This is to avoid the

possibilities that the two agents may have different

optimal policies in which case mutual learning will in

fact hinder the learning by each agent. For example, with

inverted payoff functions of the two agents, mutual

learning may indeed have undesirable effects (e.g., lack

of convergence, or wrong convergence).

Translation: For most of our discussions on mutual

learning, we assume that the two agents are using the

same learning algorithm. The problem of mutual

learning may become considerably more difficult (and in

fact, possibly ill-posed), if the two agents use two

different learning algorithms. For example, consider the

case of agent 1 using a direct learning algorithm (such as

Q-learning), while agent 2 uses an indirect learning

method (such as adaptive dynamic programming).

Translation from the state of the agent using the indirect

method to that of the agent using direct method is fairly

straightforward using Bellman equations. However,

without any additional constraints, the reverse is indeed

ill-posed, due to the non-uniqueness of model

parameters (transition probability and immediate reward

matrices) that result in a given set of state values.

4.4 Simulation Experiment for an MDP

While both Direct and Indirect methods were described

in the previous section, due to space limitations, only the

Direct method is used in the following simulation study.

The Problem: An MDP has four states and two actions

in each state. The transition probabilities for action 1

are:[0.5 0.5 0 0; 0.4 0.5 0.1 0; 0 0.5 0.3 0.2; 0 0 0.5 0.5].

The transition probabilities for action 2 are: [0.6 0.4 0 0;

0.4 0.6 0 0; 0 0 0.6 0.4; 0 0 0.4 0.6]. The rewards in the

four states are : [0.1 0.1 0.9 0.9].

The Simulation: We first implement just 1 agent with Q-

learning. This corresponds to using only conventional

reinforcement learning without any mutual learning. The

Q-values for all state action pairs are initialized to 0, and

the initial state is chosen to be s1 (the first state). The Q

values of the state action pair are then updated using the

standard Q-learning algorithm. (The actions are chosen

in state s, according to the Boltzmann distribution, with

probabilities:

𝐸𝑥𝑝 (𝑄(𝑠, 𝑎)/𝑇) /∑ 𝐸𝑥𝑝(𝑄(𝑠, 𝑏)/𝑇)𝑏

1109

Authorized licensed use limited to: Yale University. Downloaded on September 18,2022 at 19:14:23 UTC from IEEE Xplore. Restrictions apply.

where T is the temperature parameter which is initially a

large value (say, 1000) and is reduced with k (time steps)

as say, 1000/√𝑘).

We next implement two agents using identical Q-

learning algorithms. The two agents communicating

their information to each other would correspond to

mutual learning. Agent 1 starts in state s1, while agent 2

starts in state s4, and both agents update their Q values

with a mutual learning interval of 5 trials.

Results: Due to space limitations, only Agent 1's average

reward per time step is shown in Figure 5 with and

without mutual learning. It is evident that the average

reward increases faster for agent 1 in the second case

with mutual learning, than in the first case when it is

working alone.

Possible Explanation: For some of the states that Agent

1 visits, Agent 2 has a more reliable estimate of the Q-

values than Agent 1. In those states, Agent 2 acts as a

teacher to Agent 1, which improves Agent 1’s Q-values.

This, in turn, gets reflected in a higher average reward

with mutual learning.

Figure 5: Mutual reinforcement learning

V. COMMENTS AND CONCLUSIONS

The paper introduces the concept of “mutual learning” in
which two (or more) agents which “learn” in a random
static or dynamic environment, attempt to improve
themselves based on the information provided by the
other(s). The essential difference between what is
proposed in the current paper and past work is the
suggestion that the problems should be formulated within
a mathematical framework and that the changes in each
participant should be quantified in some fashion. The
authors believe that the paper will give rise to interesting
and meaningful discussions in the systems community
concerning mutual learning.

ACKNOWLEDGMENT

The research reported here was supported by the National
Science Foundation under grant numbers 1930601 (to
Yale) and 1930606 (to IUPUI).The authors are very
grateful to Kasra Esfandiari for his help with the
simulation studies.

REFERENCES

[1] Al-Tamimi, A., Lewis, F. L., & Abu-Khalaf, M. (2008). Discrete-

time nonlinear HJB solution using approximate dynamic
programming: convergence proof. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, 38(4),
943-949.

[2] Atkeson, C. G., & Santamaria, J. C. (1997, April). A comparison
of direct and model-based reinforcement learning. In Robotics
and Automation, 1997. Proceedings., 1997 IEEE International
Conference on (Vol. 4, pp. 3557-3564). IEEE.

[3] Barto, A., & Anandan, P. (1985). Pattern-recognizing stochastic
learning automata. Systems, Man and Cybernetics, IEEE
Transactions on, (3), 360-375.

[4] Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995). Learning to
act using real-time dynamic programming. Artificial Intelligence,
72(1), 81-138.

[5] Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996).
Reinforcement Learning: A Survey. Journal of Artificial
Intelligence Research, 4, 237-285.

[6] Klein, E., Mislovaty, R., Kanter, I., Ruttor, A. and Kinzel, W.,
2005. Synchronization of neural networks by mutual learning and
its application to cryptography. In Advances in Neural
Information Processing Systems (pp. 689-696).

[7] Liu, Y., Ling, X., Liang, Y. and Liu, G., 2012. Improved artificial
bee colony algorithm with mutual learning. Journal of Systems
Engineering and Electronics, 23(2), pp.265-275.

[8] Narendra, K. S., & Mukhopadhyay, S. (1991). Associative
learning in random environments using neural networks. Neural
Networks, IEEE Transactions on, 2(1), 20-31.

[9] Narendra, Kumpati S., Mukhopadhyay, Snehasis, "Mutual
Learning: Part I – Learning Automata", Accepteed, American
Control Conference, 2019

[10] Narendra, K. S., & Thathachar, M. A. (1989). Learning automata.
Prentice-Hall.

[11] Nie, X., Feng, J. and Yan, S., 2018. Mutual learning to adapt for
joint human parsing and pose estimation. In Proceedings of the
European Conference on Computer Vision (ECCV) (pp. 502-
517).

[12] Powell, W. B. (2007). Approximate Dynamic Programming:
Solving the curses of dimensionality (Vol. 703). John Wiley &
Sons.

[13] Rosen-Zvi, M., Klein, E., Kanter, I. and Kinzel, W., 2002. Mutual
learning in a tree parity machine and its application to
cryptography. Physical Review E, 66(6), p.066135.

[14] Sutton, R. S. (1988). Learning to predict by the methods of
temporal differences. Machine learning, 3(1), 9-44.

[15] Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An
introduction (Vol. 1, No. 1). Cambridge: MIT press.

[16] Tilak, O., Martin, R., & Mukhopadhyay, S. (2011). Decentralized
indirect methods for learning automata games. Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transactions on,
41(5), 1213-1223.

[17] Tilak, O., & Mukhopadhyay, S. (2011). Partially decentralized
reinforcement learning in finite, multiagent Markov decision
processes. AI Communications, 24(4), 293-309.

[18] Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine
learning, 8(3-4), 279-292.

[19] Zhang, Y., Xiang, T., Hospedales, T.M. and Lu, H., 2017. Deep
mutual learning. arXiv preprint arXiv:1706.00

1110

Authorized licensed use limited to: Yale University. Downloaded on September 18,2022 at 19:14:23 UTC from IEEE Xplore. Restrictions apply.

