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Poisson Geometry of the Moduli of Local Systems
on Smooth Varieties
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Abstract

We study the moduli of G-local systems on smooth but not necessarily proper complex
algebraic varieties. We show that, when considered as derived algebraic stacks, they carry
natural Poisson structures, generalizing the well-known case of curves. We also construct
symplectic leaves of this Poisson structure by fixing local monodromies at infinity and
show that a new feature, called strictness, appears as soon as the divisor at infinity has
nontrivial crossings.
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§0. Introduction

For a smooth complex algebraic curve X and a reductive group G, it is well
known that the moduli space Mg (X) of G-local systems (in this paper, “G-local
systems” are representations of 7 (X)) into G) carries a canonical Poisson structure
(see [FoRo, GHIJW, Gol, GuRal). Moreover, the symplectic leaves of this Poisson
structure can be identified with moduli of G-local systems having fixed conju-
gacy classes of monodromies at infinity. This topological picture also has algebraic
counterparts for which local systems are replaced by flat bundles or Higgs bundles
possibly with irregular singularities, and is known to be compatible with the com-
parison isomorphisms between these different incarnations of the moduli problem
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(see for instance [Bo]). However, as far as the authors are aware, very little is
known about the Poisson geometry of local systems moduli on higher-dimensional
varieties outside of the proper case.

The purpose of this note is to explore the moduli of G-local systems on higher-
dimensional smooth open varieties, with a particular focus on their Poisson geom-
etry. For us, the results presented in this work represent a first step towards an
understanding of moduli of local systems on higher-dimensional varieties, with a
long term goal to extend Simpson’s non-abelian Hodge theory to the nonproper
case.

As a first comment, derived algebraic geometry is useful, and probably un-
avoidable, for this project. Indeed, for a higher-dimensional compact oriented man-
ifold M, it is known (see [PTVV, Tol]) that the moduli space of G-local systems
on M carries canonical symplectic structure provided that

(1) the moduli space is considered as a derived algebraic stack and not simply as
a scheme or a stack;

(2) the symplectic structures involve a cohomological shift by 2 —d, where d is the
dimension of M.

In this work, we consider the derived moduli stack Locg(X) of G-local systems on
a complex smooth algebraic variety X of complex dimension d. We establish two
principal results that can be summarized as follows:

Theorem A (See Theorem 4.7).

(1) The derived stack Locg(X) carries a canonical (2 — 2d)-shifted Poisson struc-
ture.

(2) Assume that X admits a smooth compactification such that the divisor at in-
finity is a simple normal crossing and has at most double intersections. Let
Locg (X, {\:}) be the derived moduli of G-local systems with local monodromies
at infinity fized to be in the conjugacy classes of \; € G. Then Locg (X, {\:})
is a generalized symplectic leaf of Locg(X) as soon as the elements \; satisfy
a technical condition called strictness.

Before describing the content of this work we need to add a couple of com-
ments concerning the previous result. The Poisson structure on Locg (X)) will be
constructed by using a very specific topological property of smooth complex alge-
braic varieties, namely that their boundary at infinity is a compact manifold (of
real dimension 2d — 1 if X is of dimension d). As a consequence, there is a natural
map Locg(X) — Locg(0X) sending a G-local system on X to its restriction to
the boundary. By the work of Calaque [Ca] it is known that such restriction maps
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come equipped with a canonical Lagrangian structure, and by the work of Melani
and Safronov [MeSal, MeSall] it is known that Lagrangian structures induce Pois-
son structures. This roughly explains why statement (1) is true. Statement (2) is
subtler, mainly because one has to make precise what “fixing the monodromies at
infinity” means. This is particularly important in the derived setting where the
fixing of the local monodromies involves higher homotopy coherence conditions.
Moreover, we only prove (2) under the restrictive condition that the divisor at
infinity of X can be chosen to have at most double intersections. We will see that
even in this simple case a new feature appears, and that we have to impose an ad-
ditional condition on the local monodromies at infinity that we call strictness (see
Definition 4.6). This condition is invisible on the nonderived moduli space, but is
required in order to construct symplectic leaves in the full derived moduli stack.

The paper is organized as follows. In Section 1 we start with a short reminder
of the derived moduli of G-local systems on a space, and the various ways in which
one could describe this derived moduli in concrete algebraic terms. In Sections 2
and 3 we briefly recall shifted symplectic and Poisson structures, and introduce
the notion of generalized symplectic leaves in this context. In Section 4 we focus
on the case of complex smooth algebraic varieties. We examine their structure at
infinity and deduce the existence of the shifted Poisson structure on the derived
moduli of local systems. We first analyze the special case of a smooth divisor at
infinity and show that the construction works in essentially the same manner as
in the case of curves. Finally we study the case of a divisor with two smooth
intersecting components and show how the strictness condition appears naturally
when one tries to construct symplectic leaves. We also provide families of examples
of strict pairs. In Section 5 we collect some ideas indicating how the statements of
this paper can be generalized to the de Rham setting in which local systems are
replaced by bundles with flat connections.

Notation and conventions

k a field of characteristic zero

cdga,f0 the oo-category of nonpositively graded commutative dg-algebras
over k

T the co-category of spaces, or equivalently the co-category of simplicial
sets

Pro(T)  the oo-category of pro-simplicial sets

G a reductive group over k

[G/G] the stack quotient of G by the conjugation action of G on itself

A an element in G

Cy the conjugacy class of A in G
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«|G/G] = D locally constant stack with fiber [G/G] obtained by twisting the
constant stack with a circle bundle classified by a: D — BS?

r a finitely presentable discrete group

Rq(T) the affine k-scheme parametrizing group homomorphisms I' -G
Ma(X) the G-character scheme of X

Mg (X) the stack of G-local systems on X

Locg(X) the derived stack of G-local systems on X

(

Locg(X,{N\;i}) the derived stack of G-local systems with fixed conjugacy classes
of monodromies at infinity

I(F,Symy(Tp[—n —1]))[n+ 1] the complex of n-shifted polyvectors on a

derived Artin stack F'

§1. The moduli of local systems as a derived stack

In this section we review the basic constructions of character schemes, the stack
of local systems, as well as the derived stack of local systems, associated to a con-
nected finite CW complex X. We explain how to understand the derived structure
on the moduli stack of local systems by means of free resolutions of the space X.
We also discuss the basics of differential calculus on this derived stack by present-
ing an explicit model for computing algebraic de Rham cohomology. Most of the
material here is well known or at least part of the folklore.

§1.1. The character scheme and the stack of local systems

Let k be a field of characteristic zero, X a connected finite CW complex and G a
reductive group over k. We consider G-local systems on X which are by definition
locally constant principal G-bundles on X. If we fix a basepoint x € X we can
equivalently view G-local systems as G-valued representations of the discrete group
I:=m(X, ).

The moduli of G-local systems can then be defined by

Ma(X) := Re(I')/G := Homg,, (I', G) /G.

This formula can have several interpretations, depending on how we view its
terms. In the most straightforward interpretation (see, e.g., [LuMa]) Rg(T") =
Homyg,,(T', G) is an affine scheme over k, classifying group homomorphisms I — G.
It can be constructed explicitly as a closed subscheme in GP where p is the num-
ber of a chosen set of generators for I' and the ideal cutting out Rg(T') is given
by the relations among these generators. Alternatively we can define Rg(T") as
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the affine k-scheme which represents the functor sending a commutative k-algebra
A to the set Homg,,(I', G(A)) of group homomorphisms from I' to the group of
A-points G(A). The group G acts on Rg(T") by conjugation. The quotient of Rg(T")
by G can itself be interpreted as an affine GIT quotient. Thus Mq(X) is an affine
scheme over k£ whose ring of functions is the ring of G-invariant functions on
Rg(T). The set of k-points of Mg (X) is in one-to-one correspondence with the set
of isomorphism classes of semisimple locally constant principal G-bundles on X.
The scheme Mq(X) is also often called the G-character scheme of X.

A less naive viewpoint is to consider the quotient stack of Rg(T") by the
action of the group G. This stack, denoted by Mg(X) = [Rg(T")/G], is called
the stack of G-local systems on X. The k-points of Mg(X) form a groupoid
equivalent to the groupoid of all G-local systems on X. The stack Mg (X) is an
algebraic stack in the sense of Artin and comes equipped with a structure mor-
phism Mg (X) — Mg (X) which is universal among all morphisms to schemes.
In other words, the character variety Mg (X) is a coarse moduli space for the
stack Ma(X).

§1.2. Simplicial resolutions and the derived stack of local systems

In this work we will need a slightly more refined version of the stack of local systems
called the derived stack of local systems. The derived stack of local systems arises
naturally both as a way of encoding the algebraic complexity of the relations
defining I" and as a device for repairing singularities in Mg (X).

The scheme R¢(I') and hence the stack Mg (X) can in general be very singu-
lar. However, when the group I' happens to be free of rank p, R;(I") is isomorphic
to GP and is thus smooth over k. When I' is not free we can consider [May,
Chap. VI], [GoJa, Chap. 5] a simplicial free resolution BT's ~ X of the space X.
More precisely, given a basepoint z € X, consider a simplicial group model for
the loop group Q,(X). This simplicial group can be resolved by free groups, i.e.,
replaced by a weakly equivalent simplicial group Iy where each T',, is free on a
finite number of generators. Note that the geometric realization of the simplicial
space BT, is homotopy equivalent to X, and we can thus view I'y as a free resolu-
tion of the pointed space (X, z). Note also that this resolution depends on X and
not just on the group I' (except when X is itself a K(T',1) in which case T'y is a
free resolution of the group I'). Applying Rg(—) to T’y yields a cosimplicial affine
scheme Rg(T.), or equivalently a simplicial commutative k-algebra O(Rg(T)).
The passage to normalized chains defines a commutative dg-algebra, whose quasi-
isomorphism type does not depend on the choice of the resolution I'g of X . In other
words, we get a commutative dg-algebra @75 (X ) which, up to quasi-isomorphism,
only depends on the homotopy type of X.
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By construction, H%(#/;(X)) is naturally isomorphic to O(Rg(T)), and
H((X)) vanish for ¢ > 0. The other cohomologies H(#;(X)) for i < 0 can
be nonzero. When X = K (I, 1), the cohomology H® (4 (X)) is the so-called rep-
resentation homology of the group ring k[I'] in the sense of [BKR] and codifies
many interesting invariants of the group I'. For an arbitrary CW complex X, the
k-vector spaces H(#z(X)) are invariants of the space X and may be nontrivial
even when X is simply connected (see Example 1.1).

As explained in [Tol], the nonpositively graded cdga #7;(X) has a spectrum
Spec @5 (X) which is a derived affine scheme, that is, an affine k-scheme equipped
with a sheaf of cdga. The conjugation action of G on the various Rg(T,,) gives
rise to an action on the commutative dg-algebra «7;(X) and hence G acts on its
spectrum. The quotient stack

Locg(X) := [Spec 75 (X) /G|

is the derived stack of G-local systems on X of [ToVe2]. We refer the reader to
[ToVe] for the formalism of derived schemes and derived stacks, in particular we
will not explain in this work how to formally construct the oo-category of derived
stacks and how to define the above quotient.

Note that, as explained in [ToVe2|, Locg(X) can also be considered as an
(co—)functor,

Locg(X): cdgas® — T

on the oo-category cdgalf0 of nonpositively graded commutative k-linear dg-
algebras. This functor sends a dg-algebra A to the simplicial set Map(S(X),
BG(A)) of maps from the singular simplices in X to the simplicial set of A-points
of the stack BG (see [ToVe2| for details). In the special case when G = GL,,
the simplicial set Locg(X)(A) also admits an alternative sheaf-theoretic descrip-
tion. Consider the category whose objects are sheaves of A-dg-modules on X that
are locally quasi-isomorphic to the constant sheaf A®™, and whose morphisms are
quasi-isomorphisms between such sheaves. The nerve of this category is naturally
equivalent to Locg(X)(A) (see [ToVe2]).

Example 1.1. There is another useful description of the derived stack Locg(X)
which instead of a free resolution I'y of the space X uses a cell decomposition of
X as follows.

Let us assume that we have fixed a cell decomposition of X:

@:Xoc ... C Xk:( Xk+1c ... C XnZX,
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where each inclusion Xy < Xy is obtained by a push-out

X —— Xit1

]

Snk N Bnk+1

adding an (nj + 1)-dimensional cell. The derived stack Locg(X) itself decomposes
as a tower of maps

Locg(X) — -+ — Locg(Xk+1) — Locg(Xg) — -+ — Locg(9) = x,

where each map is a part of a pullback square

LOCG (Xk+1) —— LOCG(Xk)

| |

Locg(B™*1) = BG —— Locg(S™*).

Moreover, for an m-dimensional sphere S™, the derived stack Locg(S™) can be
computed explicitly, for instance by induction on m using the cell decomposition
S™ = B™ lUgm-1 B™. We have

Locg(SY) ~ BG x BG, Locg(Sh) ~ [G/G],

and for any m > 1,

Locg(S™) ~ [Spec @5 (S™) /G|
with @75 (S™) ~ Symy(g¥[m — 1]) and where g¥ is the k-linear dual of the Lie
algebra of G.

§1.3. Cotangent complexes and differential forms

The derived stack Locg(X), being a quotient of a derived affine scheme by an
algebraic group, is a derived Artin stack. In particular it has a cotangent complex
Liocs(x) which is a quasi-coherent complex on Locg(X). This can be described
explicitly in terms of the G-equivariant dg-algebra </ (X) as follows.

First note that the co-category of quasi-coherent complexes on [Spec ¢ (X)/G]
is naturally equivalent to the oo-category of G-equivariant Ag(X)-dg-modules.
The derivative of the G-action on #z(X) induces a morphism of @/ (X)-dg-
modules

a:L — g¥ @ 95(X),
where L is the cotangent complex of the commutative dg-algebra «7;(X) and g¥
is the dual of the Lie algebra of G. The homotopy fiber of a is a well-defined
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(X )-module which, considered as a quasi-coherent module on Spec @7 (X), is
naturally equivalent to the pullback of the cotangent complex of Locg(X) by the
atlas map Spec #c(X) — Locg(X). This homotopy fiber carries a natural G-
equivariant structure, making it into a quasi-coherent module on Locg(X), which
is the cotangent complex of Locg(X).

Global sections are easier to understand in this setting, and are simply ob-
tained by taking G-invariants:

a%: LY — (g¥ @k #a(X))°.

The homotopy fiber of the map a“ computes I'(Loca(X), Liocg(x)), the complex
of global sections of the cotangent complex.

More generally, as explained in [PTVV, Tol], we can talk about differential
forms and the whole de Rham complex (endowed with its natural Hodge filtration)
on the derived Artin stack Locg(X). This is a complex A®(Locg (X)), filtered
by subcomplexes FPA*(Locg(X)) C A®*(Locg(X)). The complex A*(Locg(X))
computes the de Rham cohomology of Locg(X), while the complex

AP (Locg (X)) == FP A*(Loca (X)) [p]

is called the complex of closed p-forms on Locg(X). In our setting, these complexes
can be described explicitly as follows. With the same notation as above, we form
the graded k-module

C 1= (Sym oz, x) (L[~1]) @ Symy (g"[-2]))"

This graded module comes equipped with a differential which is the sum of three
different terms: the internal cohomological differential of 7 (X), the differential
induced by the coaction map a: L — g¥ ®; #z(X) and the de Rham differential
on Sym,, x)(L[~1]). This makes C' into a complex of k-modules. Moreover, C'
comes equipped with a natural Hodge filtration, i.e., the stupid filtration for the
natural grading on Sym,, ) (L[~1]) ® Sym,(g*[~2]). The complex C' with this
filtration is a model for the filtered complex A®(Locg(X)).

§2. Symplectic and Lagrangian structures

Recall from [PTVV, CPTVV] the notions of shifted symplectic and Poisson struc-
tures on derived Artin stacks. As we noted above, for a derived Artin stack F
we have a complex of closed 2-forms A%°(F), defined as the second layer in
the Hodge filtration on its de Rham complex (shifted by 2). An n-cocycle in
the complex A%°(F) is called a closed 2-form of degree n (see [PTVV]). Such
a form is furthermore nondegenerate if the contraction with the induced element
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in H"(F,A\Lr) = H"(A%*°}(F)) gives a quasi-isomorphism of quasi-coherent com-
plexes w’: T = Lp[n]. A nondegenerate closed 2-form of degree n on F is called
an n-shifted symplectic structure. This notion of symplectic structure can be ex-
tended to the relative setting and gives rise to the notion of a Lagrangian struc-
ture. For a morphism f: F — F’ between derived Artin stacks, an (n — 1)-shifted
isotropic structure on f consists by definition of a pair (w,h), where w is an n-
shifted symplectic structure on F’ and h is a homotopy between f*(w) and 0
inside the complex A%<(F), i.e., h is a degree-(n — 1) cochain in A%°(X) with
coboundary f*(w). Such an isotropic structure is an (n — 1)-shifted Lagrangian
structure if, moreover, the induced canonical morphism h”: T; = Lg[n — 1] from
the relative tangent complex Tf of f to the shifted cotangent complex of F'is a
quasi-isomorphism.

As shown in [PTVV], when X is a compact oriented manifold of dimension d,
the derived stack Locg (X) has a natural (2 — d)-shifted symplectic structure. This
structure is canonical up to a choice of a nondegenerate element in (Sym2 g )¢
which always exists since G is assumed to be reductive. This statement can be
extended to a compact oriented manifold X with nonempty boundary 0X. By
[Ca], the induced restriction map

Locg(X) — Locg(0X)

carries a canonical (2 — d)-shifted Lagrangian structure for which the 3 — d =
(2 — (d —1))-shifted symplectic structure on the target is the one discussed above.
When 0X = & we have that Locg(0X) = Locg(@) = * is a point and the
Lagrangian structure on Locg(X) — #* recovers the (2 — d)-shifted symplectic
structure on Locg(X).

In fact, in order to get a Lagrangian structure on a map between moduli of
local systems it is not necessary for the map to be induced from restricting to
an actual boundary. Indeed, for a continuous map between finite CW complexes
f:Y — X, there is a notion of an orientation of dimension d on f. By definition,
such an orientation is given by a morphism of complexes or: C*(Y, X) — k[1—d],
where C*(Y, X) is the cofiber of the pullback map f*C*®(X) — C*(Y) on singular
cochains with coefficients in k. The morphism or is also assumed to satisfy a nonde-
generacy condition that ensures Poincaré duality between H*(X) and H*(X,Y).
Concretely, the composition of the cup-product on C*(X) with the orientation
map produces a well-defined pairing

C*(X) @ C*(X,Y) — k[l — d]

and we require that this pairing is nondegenerate on cohomology and induces a
quasi-isomorphism C*(Y, X) ~ C*(X)*[1 — d].
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By [Ca], when f:Y — X is endowed with an orientation of dimension d, the
pullback map on the derived stacks of local systems f*: Locg(Y) — Locg(X)
carries a canonical (2 — d)-shifted Lagrangian structure (again up to a choice of a
nondegenerate element in Sym?(g¥)).

Example 2.1 (See [Ca, Sa]). In the special case where X is a Riemann surface
with boundary 90X, we expect this to match the well-known symplectic structures
on moduli of G-local systems on X with prescribed monodromies at infinity which
are usually constructed by quasi-Hamiltonian reduction (see [AMM]). Indeed, here
Y = 0X is a disjoint union of oriented circles, and we thus have Locg(Y) ~
[1IG/G] where [G/G] denotes the stack quotient of G by its conjugation self-action.
The stack Locg(S') = [G/G] carries a canonical symplectic structure of degree 1.
Moreover, for any element A\ € G with conjugacy class C, and centralizer G, the
inclusion C, C G produces a canonical Lagrangian structure BG) ~ [C,/G] C
[G/G]. Therefore, by choosing a family of elements \; € G, we have two 0-shifted
Lagrangian morphisms

I—[.B(;)\1 LOCG(X).

>~ 7

[1lG/G)

By [PTVV], the fiber product of these two maps therefore comes equipped with
a O-shifted symplectic structure. This fiber product, denoted by Locg (X, {\;}) is
the derived stack of G-local systems on X whose local monodromies at infinity are
required to belong to the conjugacy classes Cj,. This should recover the symplectic
structures of [AMM, FoRo, GHIJW, Gol, GuRa]. However, the precise analysis of
this comparison has not been carried out in the literature.

83. Poisson structure and generalized symplectic leaves

There is a notion of a shifted Poisson structure, generalizing the notion of a
shifted symplectic structure. The definitions can be found in [CPTVV, Pri, PV]
but are long and technical and will not be discussed here. We only recall that
for any derived Artin stack F' we can form the complex of n-shifted polyvectors
I'(F,Symy(Tp[—n — 1]))[n + 1] which carries a canonical Lie bracket making it
into a graded dg-Lie algebra (see [CPTVV] for details). By definition, an n-shifted
Poisson structure on F' consists of a morphism in the co-category of graded dg-Lie
algebras
p: k[=1](2) — I(F, Symo (Tr[—n —1]))[n + 1],
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where k[—1](2) is the graded dg-Lie algebra which is just k& placed in homological
degree 1 and grading degree 2, equipped with the zero Lie bracket.

One of the main comparison results of [CPTVV, Pri] states that the space
of all n-shifted symplectic structures on a derived stack F' is equivalent to the
space of all nondegenerate n-shifted Poisson structures. This result was recently
generalized [MeSal, MeSall] to Lagrangian structures: the space of all Lagrangian
structures on a morphism F — F” is equivalent to the space of all nondegenerate
coisotropic structures. In particular, an n-shifted Lagrangian morphism of derived
Artin stacks F' — F’ always induces an n-shifted Poisson structure on F. Moreover,
it is expected that all n-shifted Poisson structures arise this way as soon as one
allows F” to be a formal derived stack rather than a derived Artin stack. Here the
formal derived stack F’ is the quotient of F' by a derived Lie algebroid defined by
the Poisson structure. Although the quotient F’ can be given a precise meaning (see
for instance [Nu]), the fact that this can be enhanced to an equivalence between
shifted Poisson structures on F' and Lagrangian maps out of F' has been announced
by Costello-Rozenblyum but not written up yet. At any rate, this suggests that we
can view an n-shifted Poisson structure on a given derived stack F' as an equivalence
class of n-shifted Lagrangian morphisms F — F’ with F’ possibly formal derived
Artin stack. Here two such morphisms F' — F’ and F' — F" are declared to be
equivalent if there is a third one F' — G and a commutative diagram

F/

S

F——G

N

F//

with a and b formally étale and compatible with the Lagrangian structures. In
fact, any morphism f: F — F’ can be factored as F%ﬁ%F’, where F is
the formal completion of the morphism f and F — Fis étale. The derived stack F
is only a formal stack in general, and can be obtained as the quotient of F' by the
action of the Lie algebroid induced from the morphism f, i.e., the Lie algebroid
corresponding to the relative tangent complex T; of f. Intuitively this quotient
contracts infinitesimally all fibers of f. Therefore, the derived stack G in the above
diagram can always be taken to be F (for one of the two morphisms). Conversely,
given an n-shifted Poisson structure on F', one can define from it a symplectic Lie
algebroid in the sense of [PySal, whose quotient is expected to recover a Lagrangian
map F' — F’ that induces back the original Poisson structure on F'.
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Even though this point of view cannot be extracted completely from the
currently existing literature, it will be adopted in this paper, and we will only deal
with the class of Poisson structures arising from Lagrangian morphisms. Thus, for
us an n-shifted Poisson structure on F will be defined as an equivalence class of
n-shifted Lagrangian maps F' — F’ where F” is a formal derived stack (in fact, in
most of the examples we consider, F’ will be a derived Artin stack). The typical
example is thus the restriction map

(1) Locg(X) — Locg(0X),

where X is a compact oriented manifold of dimension d with boundary 0X. By
[Ca] this is a Lagrangian map and so by the discussion above can be considered as
a (2 — d)-shifted Poisson structure on Locg (X ). When X is a Riemann surface, we
think this recovers the Poisson structure of [FoRo, GHIJW, Gol, GuRa]. In general,
the bivector underlying the shifted Poisson bracket given by (1) can be understood
explicitly as follows. The tangent complex of Locg(X) at a given G-local system
p is H*(X,ad(p))[1]. By Lefschetz duality we have a natural quasi-isomorphism
(H*(X,ad(p))[1])¥ ~ H*(X,0X,ad(p))[d — 2], and thus a natural element

E—2 ~ H*(X,ad(p))[1] ® H*(X,0X;ad(p))[d — 2.

We can compose this with the boundary map H*(X,0X;ad(p)) — H*(X,ad(p))[1]
to obtain a map

p

(H*(X,ad(p))[1] @ H*(X,ad(p))[1])[d — 2]

H*(X,ad(p))[1] @ H*(X,0X;ad(p))[d — 2.

This morphism p is the underlying bivector of the (2 — d)-shifted Poisson structure
on Locg(X).

Classically, a Poisson structure on a smooth variety induces a foliation of
the variety by symplectic leaves. In our setting, for an n-shifted Poisson structure
on a derived stack F' given by a Lagrangian map f: F — F’, the symplectic
leaves are the appropriately interpreted fibers of f. Here we need the qualifier
“appropriately interpreted” because we must consider the fibers in the sense of
symplectic geometry, that is, as fiber products of Lagrangians in F’. Note that
specifying a Lagrangian morphism A — F’ is the same thing as specifying a
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morphism * — F’ in the category of Lagrangian correspondences, and thus is a
“point” in this sense. We are therefore led to the following notion.

Definition 3.1. Let F be a derived Artin stack with an n-shifted Poisson struc-
ture given by an n-shifted Lagrangian morphism f: F — F'. A generalized sym-
plectic leaf of F is a derived stack of the form F' X A for any n-shifted Lagrangian
morphism A — F”

By [PTVV], a generalized symplectic leaf carries a canonical n-shifted sym-
plectic structure. However, the above definition is a bit awkward as it depends on
the choice of f. We will not try to refine this definition and will take it as a model
of several constructions appearing in the sequel of this work.

Again, the typical example is given by a compact Riemann surface with
boundary X. The restriction map Locg(X) — Locg(9X) = [[[G/G] carries a 0-
shifted Lagrangian structure and thus corresponds to a 0-shifted Poisson structure
on Locg(X). As we have already seen, among the generalized symplectic leaves of
Locg(X) we have Locg (X, {A:}), the derived moduli stack of G-local systems on
X whose monodromies at infinity are fixed to be conjugate to the given elements
Ai € G.

As a final note, it is instructive to point out that the above notion of general-
ized symplectic leaves is a rather flabby notion. For instance, when the n-shifted
Poisson structure on F' is nondegenerate (i.e., comes from an n-shifted symplectic
structure) then the generalized symplectic leaves are all n-shifted symplectic de-
rived stacks of the form F' x R for some other n-shifted symplectic derived stack
R. Another example is given by the Poisson structure on Locg(X) induced by the
restriction map Locg(X) — Locg(0X), for an oriented manifold with boundary.
Assume that Y is another oriented manifold with an identification 0Y ~ 0X;
then Locg (M) becomes a generalized symplectic leaf, when M =Y Usx X. This
provides a lot of generalized symplectic leaves, all given by the different possible
ways to complete X to an oriented manifold without boundary.

§4. Symplectic leaves in the moduli of G-local systems on smooth
complex varieties

In this section we fix a smooth (separated, quasi-compact and connected) complex
algebraic variety Z of complex dimension d. We denote by X := Z(C) the un-
derlying topological space of C-points of X endowed with the Euclidean topology.
We also keep the notation k for a given field of characteristic zero and we fix a
reductive group G over k with a chosen nondegenerate element in Sym?(g¥)“. The
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derived stack Locg(X) is then a derived Artin stack of finite type over k and we
are interested in the following problem:

Problem 4.1. Show that Locg(X) carries a natural (2—2d)-shifted Poisson struc-
ture and describe its generalized symplectic leaves.

As we noted before, there are way too many generalized symplectic leaves
according to our Definition 3.1. To make the problem more manageable we will
focus on a class of generalized symplectic leaves that is geometrically meaningful.
We also want to keep in mind the case of curves, and when Z is of dimension 1
we want our description to recover the symplectic derived stacks Locg (X, {\;)),
of G-local systems with prescribed monodromy at infinity.

In the discussion below we will propose a first answer to Problem 4.1. However,
we will restrict ourselves to varieties Z with nice behavior at infinity. As we will
see, the problem has a rather direct and easy answer when the divisor at infinity
for Z can be chosen to be smooth. We will also provide a solution when this divisor
can be chosen to be simple normal crossings with two components where already
some new phenomena arise. We have not analyzed more complicated behaviors
but we are convinced that one can indeed extend our result to any variety Z.

§4.1. The boundary at infinity of a smooth variety

We start with a general discussion of the notion of boundary at infinity of a space,
and study the specific case of complex algebraic varieties. These results are not
new and we do not claim any originality, but we record them here for the lack of
an adequate reference.

Definition 4.2. The boundary of a topological space Y is by definition the pro-
homotopy type
Y = Lim(Y — K) € Pro(T),
KCY

where £im is the limit taken in the oo-category Pro(T) of pro-homotopy types
and over the opposite category of compact subsets K C Y.

The pro-object dY is in general not constant and can be extremely compli-
cated. However, when Y = X = Z(C) is the underlying space of a smooth variety
Z then 0Y is equivalent to a constant pro-object. In fact, more is true:

Proposition 4.3. For a smooth n-dimensional complex algebraic variety Z with
underlying topological space X = Z(C), the pro-object 0X is equivalent to a con-
stant pro-object in T which has the homotopy type of a compact oriented topological
manifold of dimension 2n — 1.
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Proof. Let Z C 3 be a smooth compactification such that D = 3 — Z is a divi-
sor with simple normal crossing. Fix a Riemannian metric on the C°° manifold
underlying 3 and for any € > 0 consider the compact subsets

K.:={x€3]|d(x,D)>¢} CX.

The system of compact subsets {K,}ecr., is cofinal in the system of all com-
pact subsets of X. We mean here cofinal in the sense of co-category theory, and
the important consequence is that the two pro-objects Limgcy (Y — K) and
Limo(Y — K.) are equivalent in the oo-category Pro(T). Moreover, the sets
D. = 3 — K. of points of distance < € from D satisfy

o for €; < e3 small enough, the inclusion D., C D, is a homotopy equivalence;

e for small enough € the tubular neighborhood D, retracts to D.

This is clear near the smooth points of D. But near a singular point, D is given
by the local equation z1z5 - - -z = 0 for some local complex analytic coordinates
21, ..., 2y on 3. In this case the function |21 29 - - - 2% on 3 has a nonvanishing gra-
dient and the gradient flow gives the desired retraction and homotopy equivalence.

Restricting the retraction and homotopy equivalence to the corresponding
punctured tubular neighborhoods D. — D = X — K, we then get that the open
subsets X — K, C X satisfy

o for €y < ey small enough the inclusion X — K., C X — K, is a homotopy
equivalence;

e for € small enough, X — K, retracts to { € 3| d(z, D) = €}.

This shows that the pro-object 9.X is equivalent to the constant pro-object X — K
for € small enough and that this constant pro-object is given by {z € 3|d(z, D) =¢€}.
But {x € 3 | d(z, D) = €} is a compact submanifold of X of dimension 2n — 1 as
can be checked locally. Indeed, if D is given by the local equation z; - - - 2z, = 0, then
locally the exponential map on 3 gives an identification of {x € 3 | d(z, D) = €}
with the closed subset in C™ given by the equation |21 - - - zx| = €. It comes, more-
over, equipped with a canonical orientation coming from the complex structure
of X. O

Remark 4.4. In the setup of the proof of the previous proposition it is instructive
to compare the constant pro-object 0X with the boundary of the real oriented
blowup of 3 along the normal crossings divisor D. Recall [Gil] that given a strict
normal crossings divisor D C 3 in a smooth complex algebraic variety, we can form
a new topological space: the real oriented blowup Blp(3) of 3 along D. The space
Blp(3) comes with a natural continuous map 7: Blp(3) — 3 and is uniquely
characterized (see [Gil]) by the properties
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(a) m: Blp(3) — 7 (D) — 3 — D is a homeomorphism;
(b) if (U, z1,...,2,) is an analytic chart of Z, such that U N D is given by the
equation z; -+ -2, = 0, and if ST = {t € C| |[t| = 1} is the unit circle, then

ﬂ—il(U) = {(th) eU x (Sl)k | 21 = t1|21|, sy Rk = tk-|2k|},
and in this identification the projection 7 is given by 7 (z,t) = 2.

From (a) and (b) it is clear that 7: Blp(3) — 3 is defined in the C*° category
and as a C* object Blp(3) is a manifold with corners. As a topological space,
Blp(3) is just a topological manifold with boundary § given by the preimage of
D. The topological manifold with boundary Blp(3) is homotopy equivalent to
its interior Blp(3) — 6 = 3 — D and the pair (Blp(3),d) is homotopy equivalent
to the pair (X,0X). Thus § = 7~ 1(D) provides another model for the constant
pro-object 0.X.

Note however that the structure of § as a C°*° manifold with corners or even
as a stratified topological manifold depends on the good compactification 3 of X.
Indeed, if we replace 3 by the usual complex blowup Jofa point p in 3 which is a
smooth point in D, then 3 is a new good compactification of X whose boundary
divisor D has an extra component. The real oriented blowup Bl B(:’;) will have an
extra corner and so will have a boundary 5 which is the same as a topological
manifold but is different as a C'>° manifold with corners.

This is the reason why we only view 0X as the homotopy type of a topological
manifold and not as the isotopy type of a stratified manifold or a manifold with
corners: we need a notion which is intrinsically associated to X, and does not
depend on a particular good compactification.

By construction, both X and 90X have the homotopy type of a finite CW com-
plex, and thus the derived stacks Locg (X ) and Locg (90X ) discussed in the previous
section are derived Artin stacks of finite presentation. Moreover, the canonical map
0X — X induces a restriction morphism of derived Artin stacks

r: Locg(X) — Locg(0X).

Since the constant pro-object 0X can be identified with the topological subman-
ifold {x € 3 | d(x, D) = €} of the complex manifold Z, we see that 0X inherits
a canonical orientation of dimension 2n — 1. Thus by [PTVV] the derived stack
Locg (0X) carries a canonical (3 — 2n)-shifted symplectic structure which depends
only on this canonical orientation and on the chosen nondegenerate G-invariant
bilinear form on g. In fact more is true: the morphism X — X has the homotopy
type of the inclusion of the boundary of an oriented 2n-dimensional manifold. By
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[Ca] this implies that the restriction morphism
r: Locg(X) — Locg(0X)

carries a canonical Lagrangian structure with respect to the canonical shifted sym-
plectic structure on Locg(0X) we just described. On the level of tangent com-
plexes, this Lagrangian structure reflects the Poincaré—Lefschetz duality of the
manifold with boundary (X,0X). For a given G-local system p on X, the La-
grangian structure provides a natural quasi-isomorphism of complexes

TLOC@(X),p = ]LLO(:(;(X)/Locc(aX),p[2 - 2”]

which on cohomology spaces induces the Poincaré duality isomorphism on (X, 9X)
with coefficients in ad(p):

H(X,ad(p)) ~ H*"/(X,0X;ad(p))".

As explained in the previous section, the Lagrangian morphism r: Locg(X) —
Locg(0X) defines a canonical (2 — 2n)-shifted Poisson structure on the derived
Artin stack Locg(X) and so our Problem 4.1 reduces to the problem of describing
the generalized symplectic leaves of Locg(X).

As we saw in Example 2.1, when Z is of complex dimension 1 the generalized
symplectic leaves are obtained by quasi-Hamiltonian reduction. Recall that in the
language of derived algebraic geometry, the pertinent reductions were constructed
as Lagrangian intersections. Indeed, if dim¢ Z = 1, the boundary dX has the
homotopy type of a disjoint union of oriented circles, and so the restriction map r
can be identified with a map

r: Locg(X) — H[G/G],

where the product is taken over the points of 3 — Z for some smooth compacti-
fication 3 of Z. The Lagrangian structure on this map is equivalent to the data
of a quasi-Hamiltonian system, i.e., of the data of an equivariant group-valued
moment map (see [Ca, Sa] for details). Fix elements \; € G for each point
i € 3 — Z, and consider the centralizers Gy, C G of the elements \;. We have
canonical maps BG, — [G/G] which are the residual gerbes of each point \;
in [G/G]. For the canonical 1-shifted symplectic structure on [G/G] each of the
maps BG,, — [G/G] comes equipped with a canonical Lagrangian structure (for
degree reasons the space of Lagrangian structures on this map is a contractible
space). As a result, we can form the Lagrangian intersection

Locg (X, {Ai}) :=Loca(X) X [[BGa.
I1,1G/G]
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This is the derived Artin stack of G-local systems on Z with local monodromy
around the point ¢ € 3 — Z fixed to be in the conjugacy class of ;. Being a
Lagrangian intersection of 1-shifted Lagrangian structures this derived stack car-
ries a canonical 0-shifted symplectic structure, which on the smooth locus seems
to recover the well-known symplectic structure on symplectic leaves in character
varieties.

Going back to the general case where Z is no longer necessarily a curve,
again we would like to realize the generalized symplectic leaves of the shifted
Poisson derived stack Locg(X) by an appropriate quasi-Hamiltonian reduction
construction. For this we start by fixing a good smooth compactification 3 of Z,
i.e., a smooth proper complex variety 3, containing Z as a Zariski open subset and
such that D = 3 — Z is a simple normal crossing divisor.

The idea is to construct again another Lagrangian map Locg (90X, {\;}) —
Locg(0X), where the A; are elements in G but now ¢ labels the irreducible compo-
nents D; of D = 3—Z. In the presence of intersections of the components of D, the
construction of the Lagrangian Locg (90X, {\;}) — Locg(0X) appears to be quite
complicated. However, we analyse below two special cases: the case of a smooth
divisor at infinity and the case where D has only two irreducible components, or
more generally has no more than double points (which is enough for the case of
dimension 2). We believe that the general case can be handled using similar ideas
but we have not pursued this direction.

§4.2. The smooth divisor case

First we consider the simplest case where D is a smooth divisor: a disjoint union
of connected components D;. In this case, X has the homotopy type of an ori-
ented circle bundle over | |, D;, which is classified by a collection {a;} where
a; € H?(D;,Z) is the first Chern class of the normal bundle of D; C 3. Let
us fix, as above, elements \; € G with centralizers G, C G. The group S! acts
on the stack [G/G] = Map(S', BG) by loop rotations and this action and the
cohomology classes «; can be used to define twisted versions ,, [G/—TG] of [G/G] on
each D;.

To understand this properly we first need to discuss the notion of a locally
constant family of derived stacks over a space. For this, we recall that any space T
can be viewed as a constant derived stack T' € dSt;, over k. By definition, a family
of derived stacks over T is a derived stack F' together with a map F — T. If T' is
connected, all the fibers of I — T are abstractly equivalent as objects in dSty.
We say that the family has fiber Fy if all its fibers are (noncanonically) equivalent
to Fp. Since dSt;, is an oco-topos, there is an equivalence between H-equivariant
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derived stacks and derived stacks over BH. Below we apply this systematically to
the case when H = S! = BZ.
Write the classes «; as continuous maps

(67 Dz — BSl

As the group S! acts on the stack [G/G] we can form the quotient [[G/G]/S]
which is a stack over BS!. Using «; we can pull back [[G/G]/S'] to D; by «; to
get a locally constant family of stacks on D;, whose fibers are [G/G]. We denote
this family by 4, [G/TC;] — D; and we write

G/ = alG/G) — [ |Di=D

K3

for the corresponding locally constant family over all of D.
Alternatively we can construct [G/G] as follows. The class «; defines a circle
bundle D; — D;, and so the collection {c; } defines a circle bundle p: D = | |, D; —

Ll; Di = D over all of D. In terms of this projection we have [G/G] ~ p.(BG) as
derived stacks over D.

Next observe that for each i, the group S! also acts on the classifying stack
BG,,, by means of the central element \; € Z(G),) = m1(aut(BGy,),id). More-
over, for each 7 the canonical 1-shifted Lagrangian map BGy, — [G/G] comes
equipped with a natural S'-equivariant structure for the S! actions on BG), and
[G/G]. Twisting the source and target of this Lagrangian map by using a; we
get locally constant families of stacks a,igéx,- — D, and ai[G/—?_C?] — D;, and a
1-shifted Lagrangian morphism

—_~—

inside the oo-category of locally constant families of derived Artin stacks over
D;. Since each D; is a compact topological manifold endowed with a canonical
orientation, the map (2) induces on the derived stack of global sections a (3 — 2n)-
shifted Lagrangian morphism of derived Artin stacks

ri: Locgy (D;) — Locg(9;X).

This result is a consequence of the slight generalization of the main theorem of
[PTVV] for which the mapping stacks are replaced by global sections of locally
constant derived stacks. This slight generalization is proven the exact same way
as the case of constant coefficients, and we will freely use it in this paper.

Here, 0; X is the connected component of 0X lying over D;, and by defini-
tion Loca, ,,a; (D;) is the derived stack of a;-twisted principal G,-bundles on D;.
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Combining all the r; we get the desired (3 — 2n)-shifted Lagrangian morphism

r= HTZ': HLOCGAI_,QI. (D;)) — HLOCG(@X) = Locg(0X).

By the Lagrangian intersection theorem of [PTVV] we thus have that the fiber
product of derived stacks

Loca(X, {\}) == (HLOCGWI.(DZ-)) X Locg(X)

Locg (0X)

carries a canonical (2 — 2n)-shifted symplectic structure. By construction/defini-
tion, Locg (X, {\:}) is the derived stack of locally constant G-bundles on X whose
local monodromy around D; is fixed to be in the conjugacy class Cy, of A;. Also
by construction, the natural projection

Locg (X, {\i}) — Locg(X)

exhibits Locg (X, {\;}) as a symplectic leaf of the (2 — 2n)-shifted Poisson struc-
ture on Locg(X).

Remark 4.5. Note that the derived stack Locg, , (D;) may be empty. Indeed,
the groupoid of k-points of this stack is the groupoid of G-local systems on 9; X
whose local monodromy around D, is conjugate to ;. These k-points can also
be described as follows. Let Z(Gy,) be the center of G,. Any Gy, /Z(G),)-local
system on D; determines a class in H2(D;, Z(G,)), which is the obstruction to lift-
ing this local system to a G,-local system. For Locg,, o, (D;) to be nonempty one
needs to have a G, /Z(G),)-local system on D; whose obstruction class matches
with the image of «; under the map H?(D;,Z) — H?*(D;, Z(Gy,)) given by
Xi: Z — Z(Gy,). Given «; and \; the existence of such a local system is a subtle
question, closely related to the existence of Azumaya algebras. For instance, when
A;i is a regular semisimple element then G, is a maximal torus in G (assume
G simple and k algebraically closed), and thus we see that the image of «; in
H?(D;,Gy,) must be zero. For instance, if in this situation ); is of infinite order,
this forces a; to be a torsion class in H?(D;,Z).

§4.3. The case of two components

We now assume that D = D; U Dy is the union of two smooth irreducible
components meeting transversally at a smooth codimension 2 subvariety D15 =
Dy N Ds. Since the local fundamental group of 3 — D is abelian we fix two com-
muting elements A, A2 in G. Our goal is to construct a derived moduli stack
Locg(X,{A1,A2}) of G-bundles on X with fixed monodromy A; around D; and
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fixed monodromy A on around D5 and to realize this stack as a generalized sym-
plectic leaf of Locg (X).

To set up the problem we need to introduce some notation and auxiliary
stacks. In this setting the homotopy type X can be represented (see Remark 4.4)
as a homotopy push-out

X ~ 01X | | 0:X.
012X

Here 0, X is an oriented circle bundle over D{ = D; — D12, and 012X is an oriented
(S x S1)-bundle over D;z. These circle bundles are the restrictions of the natural
circle bundles in O3(D;) or equivalently of the natural circle bundles in the normal
bundles of D; in 3. The space d12 X has the homotopy type of an oriented compact
manifold of dimension 2n — 2, and each component 0; X has the homotopy type of
an oriented compact manifold of dimension 2n—1 with boundary canonically iden-
tified with 012X . In the same manner, each boundary 9(D?) is naturally identified
with an oriented S'-fibration over Dis.

For each D? we have a Z-gerbe on D¢ given by restriction of o; € H?(D;,Z),
which is the restriction of the first Chern class of the normal bundle of D; inside
3. As before, we can form the a;-twisted Lagrangian maps

0, BGx, — o.[G/G),

i

of locally constant derived stacks on DJ. We now use the mapping theorem for
manifolds with boundary of [Ca] (see also [Tol]) applied to the manifold with
boundary DY and the Lagrangian map above. Unfolding the definitions we get a
Lagrangian map of derived Artin stacks

—_~—

D(DY; o, BGy,) — L(3(DY); 0, BG,) X T(Dga[G/Q)),
[(3(D?);a, [G/G))

where T' here denotes the derived stack of global sections.! By construction, we
have

I(DyY; o,[G/G]) ~ Locg(0;X) and T(9(DY);q,[G/G]) ~ Locg(012X).
We write
LOCG(aiX, )\z) = F(Df; aiBG,\i)
for the derived stack of G-bundles on 0; X with monodromy A; around DJ. Similarly

we write

Loc (812X, \;) := D(8(D?); o, BGy,)

TAs explained above, derived stacks of global sections are the twisted version of derived
mapping stacks and can be defined formally as being direct images of derived stacks.
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for the derived stack of G-bundles on 012X with monodromy X\; around D;. We
can thus rewrite the above Lagrangian maps as

gi : Locg (81X, )\z) — LOCG(ang, )\z) >< Locg (81X)
Locg(c'?ng)

For ¢ = 1,2 these are two Lagrangian maps towards an (3 — n)-shifted symplectic
target. We can consider the direct product ¢ := ¢; x ¢5 which is still a Lagrangian
morphism

Locg (91X, A1) x Locg (92X, Ao)——= [] Loca(d12X,\) X Locg(9;X).
i=1,2 Locg(012X)

Here we think of ¢ as a Lagrangian correspondence between two Lagrangians in
Locg(012X) X Locg(012X), namely

LOCg(ang, )\1) X LOCG(812X, )\2) — LOCG(ang) X LOCG(ang)

and
Locg(01X) x Locg(02X) — Locg(012X) x Locg(012X).

Pulling back everything to the diagonal of Locg(912X) X Locg(012X) we get a
Lagrangian morphism

£: Locg(0h X, A1) X Locg (02X, Ay) — Locg (0X)xLocg (012X, {1, A2 }),
LOCG(alzX)

where we use the short cut notation

LOCG(ang, {)\1, /\2}) = LOCG(ang, /\1) >< LOCG(ang, )\2)
Locg (012X)

In contrast with the smooth divisor case, this setting has an important new feature,
namely the extra term Locg(012X, {A1, A2}), which does not appear when the
smooth components of D do not intersect. Thus, in order to get a Lagrangian
map towards Locg(0X) alone we need to find an extra Lagrangian mapping to
Locg (012X, {\1, A2}). Tt is not clear to us that such a Lagrangian always exists,
but there is a natural candidate for it that we will now describe.

We let G(x, x,) = Gx, NGy, be the centralizer of the pair (A1, A2). On Dio,
we have a natural Z2-gerbe, i.e., the external sum «; B ao of the restrictions of
the two gerbes over D;. It corresponds to 912X as a principal (S x S')-bundle
over Dio. The group S x S' acts on the stack BG (x,,2,), by the canonical map
72 — m (aut(BG(a, ,a,)),1d) = Z (G, ,2,)) given by the pair (A1, A2). This provides

a twist o, Ba, BG (A 2y) Of BG(x, x,) O0 Di2. In the same way, we can define a
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twist of the double loop stack Map(S* x St, BG) = [G * G/G], where G * G is the
derived SubSCE@\H_lE of commuting elements in G x G. That is we have a twisted
form ,,ma, |G * G/G] of [G x G/G] over Dy5. The two elements \; provide natural
inclusion maps

Gy, X {2} — G %G, {M} x Gy, — GxG.

These induce two inclusion maps on quotient stacks [Gy,/Zx,] = [G *G/G], which
are naturally (S* x S1)-equivariant. We thus get maps of twisted stacks on Do, i.e.,
o [GA/EA] — o Bay [G:\C_;?G]. Denote the fiber product of these two maps by
F12. By definition, this is a locally constant family of derived Artin stacks furnished
with a fiberwise (—1)-shifted symplectic structures, and so we get an equivalence
of derived Artin stacks equipped with (3 — n)-shifted symplectic structures

I'(D12, Fi2) =~ Locg (012X, {1, A2}).

There is a canonical point (A1, A2) inside [G,/Gx,] X[cva/q) [Gr,/Ga,] Whose
stabilizer is Gy, x,). This induces a morphism BG(y, x,) — [Gx,/Gx,] X[csa/a)
[Gx,/Ga,], which is S x Sl-equivariant in a natural way. We therefore get a
twisted version of this map alEEMB\é(Al,AQ) — Fi2. This map has a canonical
isotropic structure and, to be more precise, the space of isotropic structures on the
above map is a contractible space for degree reasons. By taking global sections we
thus obtain an isotropic map

6121 LOCGO\I,)\Q),a(Dlg) — LOCG(612X7 {/\17 >\2})7

where LOCG(M,)\Z),a(DH) is defined to be I'(D12; o, Bas BG(x;,29))-
The question now reduces to understanding whether the isotropic map ¢ is
Lagrangian. This is the case when the map of derived stacks

BG(>\1,)\2) — [G/\I/GAI] X [G)\z/sz]
(GG /G

is Lagrangian. A simple examination of the amplitudes of the tangent complexes
shows that this map is Lagrangian if and only if the tangent complex of

[G)\I/G)\l] X [G)\z /G/\z]
(G+G/G)

at the canonical point (A1, A2) is cohomologically concentrated in the two extremal
degrees —1 and 2. This leads to the following notion.
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Definition 4.6. A pair of elements (A1, A2) € G x G is called strict if it is a
commuting pair and if the morphism

BG()\17)\2) — [GAI/GAI] X [GA2/G>\2]
(GG /G

is Lagrangian (for its canonical isotropic structure).
Assume that (A1, A2) is a strict pair. We now have a new Lagrangian
£12 : LOCGO\I»Q)_’Q(DlQ) — LOCG (812X)

By composing with the Lagrangian ¢ constructed above, we get the desired La-
grangian map

Locg(01 X, A1) X Locg(02X,A2) X LOCG(A17A2),Q(D12)—>L00G(8X).
Locg (012 X) Locg (012 X,{A1,\2})

The pullback of this morphism along the restriction map Locg(X) — Locg(0X)
is thus a derived Artin stack with a (2 — 2n)-shifted symplectic structure, and
its projection to Locg(X) can be thought of as a symplectic leaf of the Poisson
structure on Locg(X). We denote this symplectic leaf by Loca (X, {A1, A2}). We
have therefore proven the following result.

Theorem 4.7. We use the notation above.

(1) The derived Artin stack Locg(X) carries a canonical (2 — 2n)-shifted Poisson
structure, which is realized by the Lagrangian map Locg(X) — Locg(0X).

(2) Let 3 be a smooth compactification of Z, and assume that 3—Z = D is smooth
with connected components D;. Then, for any choice of elements \; € G, the
derived Artin stack Locg(X, {\:}), of principal G-bundles on X whose mon-
odromies around D; are in Cy,, carries a natural (2 — 2n)-shifted symplectic
structure and is a symplectic leaf of Locg(X).

(3) Let 3 be a smooth compactification of Z, and assume that 3 — Z = D1 U Dy is
a strict normal crossings divisor with D; smooth and connected. Then for any
commuting pair of elements (A1, A2) € G x G, the natural map

LOCG(alX, Al) >< LOCG (82X, )\2) — LOCG(aX) X LOCG(ang, {)\1, AQ})
LOCG(812X)

comes equipped with a natural Lagrangian structure.

(4) If, moreover, the pair (A1, \2) is strict then the derived Artin stack

LOCG(X, {)\1, )\2})
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comes equipped with a natural (2 — 2n)-shifted symplectic structure which is a
symplectic leaf of Locg(X).

Remark 4.8. In order to better understand this proposition, it is instructive to
examine the situation on the truncated stacks involved. To start with, the trun-
cation of Locg (0X) is the underived stack of G-local systems on dX. This can be
described as a quotient stack [Homg, (71 (0X), G)/G| (assuming X is connected).
The truncation of Locg (01X, A1) XLocg (910 x) Loca (92X, A2) is then the full sub-
stack consisting of all G-local systems on 0X for which the local monodromy
around D; is conjugate to A; € G. The truncation of the stack Locg (912X, {1, A2 })
is the full substack of the stack of G-local systems on 012X whose local mon-
odromies around D; are conjugate to ;. Finally, LOCG(MYAZ),Q(DH) is the full
substack of Locg (012X, {A1, A2}) whose local monodromy at points of D1 is con-
jugate to the pair (A1, \2) € G x G.

As a consequence, the truncation of the derived stack Locg (X, {A1, A2}) is
naturally equivalent to the full substack of Locg (0X) consisting of G-local systems
whose local monodromies around D; are conjugate to A; but also whose local
monodromy at points in Dy N Dy is conjugate to the pair (A1, A2). Therefore
statement (4) above can be interpreted as the claim that this stack admits a
natural derived structure for which it carries a natural (2 — 2n)-shifted symplectic
structure.

§4.4. Strict pairs

The following result provides many examples of strict pairs.

Proposition 4.9. Let (A1, A\2) be a commuting pair of elements in G, and u :=
Id —ad(A1) and v :=1d —ad(\3) be the corresponding endomorphisms of g induced
by the adjoint representation. Then the pair (A1, A2) is strict if and only if u is
strict with respect to the kernel of v, i.e., we have

Im (V) ker(u)) = Im(v) Nker(u).
Proof. We use the notation introduced above. Consider the derived stack

(G, /G ] X[Gecra) [Gae /G,

where G, C G is the centralizer of \;. The derived stack [GxG/G] = Locg (S xSt)
carries a canonical 0-shifted symplectic structure, and each map [Gy,/Gx;] —
|G G /G] is Lagrangian. Therefore [G, /G, ]| X[g«a/q)[Gr,/Ga,] carries a canon-
ical (—1)-shifted symplectic structure. For degree reasons the isotropic map

BG(/\L)\z) — [G>\1 /G/\l} X[G*xG/ G [G/\z/G)\z]
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is Lagrangian if and only if the tangent complex T of [G, /G, ] X[gxa/q)[Grs /G r,]
taken at the canonical point (A1, A2) is such that

H®(T) = H'(T) = 0.

As T is equipped with a (—1)-shifted symplectic form, we have that H°(T) = 0 if
and only if H!(T) = 0. Therefore, the pair (A, A1) is strict if and only if H°(T) = 0.

Let x := ad(\1) and y := ad()\2). The space H%(T) sits in an five-term exact
sequence

0 —— H,(H;(g)) & Hy(H,)(g)) — H; ,(9) — H°(T) )

C

Here = and y are considered as actions of Z on g, and H7 and H; denote group

H)(H(g)) & HL(H)(g)) — H} ,(g) — -

cohomologies of Z with coefficients in g. In the same way Hj , denotes group
cohomology of Z? with coefficients in g.

We have canonical isomorphisms HY(H,) ~ H)(HY)) ~ HY  and the first
map above is isomorphic to the sum map on Hg)y(g)7 and therefore is surjective.

This implies that H°(T) = 0 if and only if the last morphism
¢: Hy(H;(9)) ® Hy(Hy () — Hy,(0)

is an injective map. Using the Serre spectral sequence for the projection to the
first factor Z2 — Z we get a short exact sequence

0 —— H,(H,(9)) — H; ,(9) — Hy(H,(g)) —=0.

z,y
The morphism ¢ above is compatible with this short exact sequence and provides

a commutative diagram with exact rows

0 —— H,(Hy(9)) ——— H; ,(9) ————— HJ(H,(g)) —=0

| ! |

0 —— H,(H,)(9)) — H,(H}(g)) ® H;(H,(9)) — H,(H}(g)) —0.

The map on the left-hand side is an identity, and thus we see that H°(T) = 0 if
and only if the natural morphism

H, (HY(g)) — HY(H,(g))

is injective. Unfolding the definition we find the strictness condition of the propo-
sition. O
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Note that since the strictness condition on a pair of elements in G is symmetric
by definition, the condition derived in Proposition 4.9 must be symmetric as well.
In particular the roles of u and v in the statement of Proposition 4.9 can be
exchanged, and so both conditions are equivalent to each other and equivalent
to strictness. We can use Proposition 4.9 to produce the following interesting
examples of strict pairs.

Corollary 4.10. Let (A1, A2) be a commuting pair of elements in G.

(1) If at least one of the A; is semisimple then the pair (A1, A2) is strict.

(2) Assume that Ay and A2 are unipotent elements in G, and let
jii SL2 — G

be group embeddings sending ((1) %) to \;. If the two copies of SLo in G commute
(i.e., the j1 and jo combine into a group homomorphism ji X ja: SLa x SLgy —
G) then the pair (A1, A2) is strict.

Proof.

(1) If A is semisimple it defines a grading on g which is preserved by v = Id —
ad(Ag). If uw = Id — ad(\1) then ker(u) is the graded component of degree 0, and
this obviously implies that strictness holds.

(2) The morphism SLs x SLy — G induces an (SLg x SLg)-action on the Lie
algebra g. This action defines a decomposition g = @, 49p,q of g, for which the
weights p and ¢ are integers. Moreover, with respect to this decomposition, u acts
with bidegree (1,0) and v acts with bidegree (0, 1). Finally, the Lefschetz property
is satisfied:

Up,q* Bp,q — Bp+lg

is injective for p < 0 and surjective for p > 0, and similarly

Up,q* Bp,q — Op,g+1

is injective for g < 0 and surjective for ¢ > 0. Moreover, we have that the map
Up,gt ker(up,q) — ker(up,g+1)

is surjective for all ¢ > 0.

Let x € Im(v) Nker(u). We can decompose x = x4 according to the
bigrading g = ®y ¢0p,q, and by the properties above we have z, , = 0 for p < 0.
As z lies in the image of u, there are y, 4—1 such that v(yp,q—1) = xp 4. Moreover,
for ¢ > 1 we can choose y, 4—1 € ker(u). But if ¢ < 0, we have vu(y, 4—1) =
u(zp,q) = 0, and because v, 41 is injective we have u(yp4—1) = 0. This shows
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that y = > Yp,q is such that u(y) = 0 and v(y) = 2. Therefore, Im(v) Nker(u) =
Im (V] ker ) and strictness holds. O

Remark 4.11.

e The hypothesis postulating the existence of commuting SLy’s in part (2) of
the previous corollary is a special case of the notion of a Jordan—Lefschetz pair
defined and studied by Looijenga and Lunts in [LoLu].

e From the proof of part (2) of the above statement, we see that a stronger
result holds: the pair (A1, A2) is strict if a bigrading g = @, 40p,q as in proof
exists. Such gradings exist for instance in the setting of principal nilpotent
pairs of [Gi].

Remark 4.12. Finally we note that strictness is a nontrivial condition. For in-
stance, if A is any nontrivial unipotent element in G, then the pair (A, A) does
not satisfy the strictness condition of Proposition 4.9 and thus is not a strict
pair. Indeed, in this case u is a nonzero nilpotent endomorphism of g and thus
ker(u) N Im(u) # 0, but Im (| ker(w)) = 0.

§4.5. The case of at most double intersection

The discussion above for a divisor at infinity with at most two smooth components
can be easily extended to the case of any components with the condition that at
most two components intersect at a given point. This is for instance automatic
when Z is a surface.

Assume that we have chosen a compactification 3 such that D = 3 — Z
can be written as the union of smooth connected components D = UD; for i =
1,...,p. Moreover, we assume that D; N D; is connected when nonempty, and
we will denote it by D;; (we always assume ¢ < j here). Finally we assume that
D;ND;NDy = @ for any three distinct labels ¢, j, k. As usual we denote by Dy the
open subset in D; consisting of smooth points of D inside D;. The boundary 0X
is now (see Remark 4.4) the union of 9; X (S!-fibrations over D?) glued together
along components of their boundaries 9;; X ((S* x S')-fibrations over D;;).

For any i we fix an element \; € G. We assume that (\;, ;) is a strict pair in
the sense of Definition 4.6 as soon as D;; # @. Let G, C G be the centralizer of A;
in G. We have a category Cp, whose objects are the D; and the D;; as subvarieties
in 3, and whose morphisms are the inclusions. There is an oco-functor

F:C%® — dSty

sending each D; to Locg(9;X, A;), the derived stack of G-local systems on 0; X
whose local monodromy along D; is conjugate to A;. By definition, the oo-functor
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F sends D;; to Locg(0;;X), where 0;; X is the part of 0X sitting over D;; as an
(8! x S)-bundle. The transition morphisms for the co-functor F are defined by
restriction.

Let F be the limit of F inside derived stacks. It has a natural projection to
the product

F — [ Loca (09X, {Xi, A1),
i<j

where Locg (0;; X, {\i, A;}) is defined as before. For each ¢ < j we have a canonical
morphism

Locg s, a,).e(Dij) — Loca (955X, {Ai; A1),

where LOCG(A_A_),Q(DU) is the derived stack of twisted Gy, x;)-local systems
on D;; as defined before. The pullback possesses a natural morphism towards
Locg(0X),

F X HLOCG(Aiy)\j)’a(DZ‘j) — Locg(0X).
[Tic; Loca (9 X, {Xi, A5 }) i<

This proves the following

Proposition 4.13. Under the above assumptions there exists a natural Lagrang-
ian structure on the morphism

F X HLOCGW’AJ_%Q(DU) — Locg(0X).
H’i<j LOCc(ain,{Ai,Aj}) 1<J

We can define the derived stack Locg (X, {A1,...,Ap}) as the pullback of the
Lagrangian in this proposition by the restriction map Locg(X) — Locg(0X).
As a corollary, Loca (X, {A1,...,Ap}) carries a natural (2 — 2n)-shifted symplectic
structure. As before, the truncation of Locg (X, {1, ..., Ap}) is the full substack of
Locg (X)) consisting of all G-local systems on X whose local monodromies around
D; are conjugate to \;, and whose local monodromies at D;; are conjugate to the
strict pair (\;, A;).

§5. Towards a Poisson moduli space of connections

We would like to finish this manuscript with some ideas about how to extend the
present results when local systems are replaced by bundles with flat connections.
To start with, for a smooth complex algebraic variety X, it is no longer possible to
use the boundary 90X, as this would only make sense in the holomorphic category.
Moreover, when X is defined over a smaller field K C C we also want the moduli
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of flat bundles on X to be defined over K. As a consequence, if we want to gen-
eralize Theorem 4.7 to the case of flat bundles, a first step is to find an algebraic
counterpart of 9.X.

As far as we know there is no algebraic version of 9X; however, in recent
years several authors have been studying a formal analogue denoted by X (see
[BeTe, Ef, HPV]). For a good compactification 3 of X, with divisor D = 3 — X,
the formal boundary at infinity of X is morally defined as D - D, where D is the
formal completion of 3 along D. This is only a moral definition as D — D does not
actually make sense (it is an empty space when considered in the sense of formal
schemes), but several possible incarnations of this object have been introduced in
[BeTe, Ef, HPV]. For us, we follow the approach of [Ef] and [HPV], which do not
define X as an object on its own, but define categories and stacks of sheaves of
perfect complexes Perf (5X ). Using the same line of ideas it is possible to define the
derived stack of vector bundles on X endowed with flat connections Vect” (5X ).
One key result, proved in [Ef], is that Vect” (9X) depends on X alone and not
on the chosen compactification 3 used to define it. The derived stack Vectv(gX )
is our algebraic analogue of Locg(0X) studied in this work. It is then possible
to prove statements analogous to the results mentioned above. As an example we
state here a result that will appear in [PT].

Theorem 5.1. Let X be a smooth algebraic variety over k of dimension d and
Vect” (X)) the derived stack of vector bundles with flat connections on X.

(1) There is a restriction map r: Vect™ (X) — Vect™ (9X). This map is endowed
with a canonical Lagrangian structure of degree 2 — 2d.

(2) The fibers of r are representable by derived quasi-algebraic stacks locally of
finite presentation.

Some comments about the previous statement are appropriate. First of all,
we do not impose any regularity assumption on the connections, and VectV (X)
is the derived stack of all connections. In contrast to the case of local systems,
the derived stacks Vect¥ (X) and Vectv(gX ) are not representable as they can
have infinite-dimensional deformation spaces over general ring-valued points. The
meaning of statement (1) is thus subtle as one has to work with notions such
as symplectic and Lagrangian structures on nonrepresentable objects. Moreover,
the object dX does not exist on its own, so the usual construction methods for
symplectic structures of [Ca, PTVV] do not apply because these are based on
evaluation maps which do not exist here. We overcome this difficulty by using
a completely different construction method, based on rigid tensor categories and
explained in the note [To2]. The consequence of (1) is of course that Vect" (X)
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carries a canonical Poisson structure. Finally, the representability statement (2)
states that the derived moduli space of flat connections whose formal structures
are fixed at infinity is representable.

We also believe that symplectic leaves of the Poisson structure on Vect" (X))
can be defined and studied in a similar fashion to what we have done in the
topological setting. We expect (2) above to ensure that these symplectic leaves are
indeed representable by actual derived algebraic stacks of finite type. Hopefully,
the two results Proposition 4.9 and Theorem 5.1 can then be related by means of
the Riemann—Hilbert correspondence. Ultimately, one also has to study derived
moduli of Higgs bundles in a similar fashion, and relate to three kinds of moduli
spaces by means of the non-abelian Hodge correspondence of T. Mochizuki.
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