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Poisson Geometry of the Moduli of Local Systems

on Smooth Varieties
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by

Tony Pantev and Bertrand Toën

Abstract

We study the moduli of G-local systems on smooth but not necessarily proper complex

algebraic varieties. We show that, when considered as derived algebraic stacks, they carry

natural Poisson structures, generalizing the well-known case of curves. We also construct

symplectic leaves of this Poisson structure by fixing local monodromies at infinity and

show that a new feature, called strictness, appears as soon as the divisor at infinity has

nontrivial crossings.
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➜0. Introduction

For a smooth complex algebraic curve X and a reductive group G, it is well

known that the moduli space MG(X) of G-local systems (in this paper, “G-local

systems” are representations of π1(X) into G) carries a canonical Poisson structure

(see [FoRo, GHJW, Gol, GuRa]). Moreover, the symplectic leaves of this Poisson

structure can be identified with moduli of G-local systems having fixed conju-

gacy classes of monodromies at infinity. This topological picture also has algebraic

counterparts for which local systems are replaced by flat bundles or Higgs bundles

possibly with irregular singularities, and is known to be compatible with the com-

parison isomorphisms between these different incarnations of the moduli problem
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(see for instance [Bo]). However, as far as the authors are aware, very little is

known about the Poisson geometry of local systems moduli on higher-dimensional

varieties outside of the proper case.

The purpose of this note is to explore the moduli of G-local systems on higher-

dimensional smooth open varieties, with a particular focus on their Poisson geom-

etry. For us, the results presented in this work represent a first step towards an

understanding of moduli of local systems on higher-dimensional varieties, with a

long term goal to extend Simpson’s non-abelian Hodge theory to the nonproper

case.

As a first comment, derived algebraic geometry is useful, and probably un-

avoidable, for this project. Indeed, for a higher-dimensional compact oriented man-

ifold M , it is known (see [PTVV, To1]) that the moduli space of G-local systems

on M carries canonical symplectic structure provided that

(1) the moduli space is considered as a derived algebraic stack and not simply as

a scheme or a stack;

(2) the symplectic structures involve a cohomological shift by 2−d, where d is the

dimension of M .

In this work, we consider the derived moduli stack LocG(X) of G-local systems on

a complex smooth algebraic variety X of complex dimension d. We establish two

principal results that can be summarized as follows:

Theorem A (See Theorem 4.7).

(1) The derived stack LocG(X) carries a canonical (2− 2d)-shifted Poisson struc-

ture.

(2) Assume that X admits a smooth compactification such that the divisor at in-

finity is a simple normal crossing and has at most double intersections. Let

LocG(X, {λi}) be the derived moduli of G-local systems with local monodromies

at infinity fixed to be in the conjugacy classes of λi ∈ G. Then LocG(X, {λi})

is a generalized symplectic leaf of LocG(X) as soon as the elements λi satisfy

a technical condition called strictness.

Before describing the content of this work we need to add a couple of com-

ments concerning the previous result. The Poisson structure on LocG(X) will be

constructed by using a very specific topological property of smooth complex alge-

braic varieties, namely that their boundary at infinity is a compact manifold (of

real dimension 2d− 1 if X is of dimension d). As a consequence, there is a natural

map LocG(X) → LocG(∂X) sending a G-local system on X to its restriction to

the boundary. By the work of Calaque [Ca] it is known that such restriction maps
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come equipped with a canonical Lagrangian structure, and by the work of Melani

and Safronov [MeSaI, MeSaII] it is known that Lagrangian structures induce Pois-

son structures. This roughly explains why statement (1) is true. Statement (2) is

subtler, mainly because one has to make precise what “fixing the monodromies at

infinity” means. This is particularly important in the derived setting where the

fixing of the local monodromies involves higher homotopy coherence conditions.

Moreover, we only prove (2) under the restrictive condition that the divisor at

infinity of X can be chosen to have at most double intersections. We will see that

even in this simple case a new feature appears, and that we have to impose an ad-

ditional condition on the local monodromies at infinity that we call strictness (see

Definition 4.6). This condition is invisible on the nonderived moduli space, but is

required in order to construct symplectic leaves in the full derived moduli stack.

The paper is organized as follows. In Section 1 we start with a short reminder

of the derived moduli of G-local systems on a space, and the various ways in which

one could describe this derived moduli in concrete algebraic terms. In Sections 2

and 3 we briefly recall shifted symplectic and Poisson structures, and introduce

the notion of generalized symplectic leaves in this context. In Section 4 we focus

on the case of complex smooth algebraic varieties. We examine their structure at

infinity and deduce the existence of the shifted Poisson structure on the derived

moduli of local systems. We first analyze the special case of a smooth divisor at

infinity and show that the construction works in essentially the same manner as

in the case of curves. Finally we study the case of a divisor with two smooth

intersecting components and show how the strictness condition appears naturally

when one tries to construct symplectic leaves. We also provide families of examples

of strict pairs. In Section 5 we collect some ideas indicating how the statements of

this paper can be generalized to the de Rham setting in which local systems are

replaced by bundles with flat connections.

Notation and conventions

k a field of characteristic zero

cdga
≤0
k the ∞-category of nonpositively graded commutative dg-algebras

over k

T the ∞-category of spaces, or equivalently the ∞-category of simplicial

sets

Pro(T) the ∞-category of pro-simplicial sets

G a reductive group over k

[G/G] the stack quotient of G by the conjugation action of G on itself

λ an element in G

Cλ the conjugacy class of λ in G
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α [̃G/G] → D locally constant stack with fiber [G/G] obtained by twisting the

constant stack with a circle bundle classified by α : D → BS1

Γ a finitely presentable discrete group

RG(Γ) the affine k-scheme parametrizing group homomorphisms Γ→G

MG(X) the G-character scheme of X

MG(X) the stack of G-local systems on X

LocG(X) the derived stack of G-local systems on X

LocG(X, {λi}) the derived stack of G-local systems with fixed conjugacy classes

of monodromies at infinity

Γ(F, SymO(TF [−n− 1]))[n+ 1] the complex of n-shifted polyvectors on a

derived Artin stack F

➜1. The moduli of local systems as a derived stack

In this section we review the basic constructions of character schemes, the stack

of local systems, as well as the derived stack of local systems, associated to a con-

nected finite CW complex X. We explain how to understand the derived structure

on the moduli stack of local systems by means of free resolutions of the space X.

We also discuss the basics of differential calculus on this derived stack by present-

ing an explicit model for computing algebraic de Rham cohomology. Most of the

material here is well known or at least part of the folklore.

➜1.1. The character scheme and the stack of local systems

Let k be a field of characteristic zero, X a connected finite CW complex and G a

reductive group over k. We consider G-local systems on X which are by definition

locally constant principal G-bundles on X. If we fix a basepoint x ∈ X we can

equivalently view G-local systems as G-valued representations of the discrete group

Γ := π1(X,x).

The moduli of G-local systems can then be defined by

MG(X) := RG(Γ)/G := Homgrp(Γ, G)/G.

This formula can have several interpretations, depending on how we view its

terms. In the most straightforward interpretation (see, e.g., [LuMa]) RG(Γ) =

Homgrp(Γ, G) is an affine scheme over k, classifying group homomorphisms Γ → G.

It can be constructed explicitly as a closed subscheme in Gp where p is the num-

ber of a chosen set of generators for Γ and the ideal cutting out RG(Γ) is given

by the relations among these generators. Alternatively we can define RG(Γ) as
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the affine k-scheme which represents the functor sending a commutative k-algebra

A to the set Homgrp(Γ, G(A)) of group homomorphisms from Γ to the group of

A-points G(A). The group G acts on RG(Γ) by conjugation. The quotient of RG(Γ)

by G can itself be interpreted as an affine GIT quotient. Thus MG(X) is an affine

scheme over k whose ring of functions is the ring of G-invariant functions on

RG(Γ). The set of k-points of MG(X) is in one-to-one correspondence with the set

of isomorphism classes of semisimple locally constant principal G-bundles on X.

The scheme MG(X) is also often called the G-character scheme of X.

A less naive viewpoint is to consider the quotient stack of RG(Γ) by the

action of the group G. This stack, denoted by MG(X) = [RG(Γ)/G], is called

the stack of G-local systems on X. The k-points of MG(X) form a groupoid

equivalent to the groupoid of all G-local systems on X. The stack MG(X) is an

algebraic stack in the sense of Artin and comes equipped with a structure mor-

phism MG(X) −→ MG(X) which is universal among all morphisms to schemes.

In other words, the character variety MG(X) is a coarse moduli space for the

stack MG(X).

➜1.2. Simplicial resolutions and the derived stack of local systems

In this work we will need a slightly more refined version of the stack of local systems

called the derived stack of local systems. The derived stack of local systems arises

naturally both as a way of encoding the algebraic complexity of the relations

defining Γ and as a device for repairing singularities in MG(X).

The scheme RG(Γ) and hence the stack MG(X) can in general be very singu-

lar. However, when the group Γ happens to be free of rank p, RG(Γ) is isomorphic

to Gp and is thus smooth over k. When Γ is not free we can consider [May,

Chap. VI], [GoJa, Chap. 5] a simplicial free resolution BΓ• ≃ X of the space X.

More precisely, given a basepoint x ∈ X, consider a simplicial group model for

the loop group Ωx(X). This simplicial group can be resolved by free groups, i.e.,

replaced by a weakly equivalent simplicial group Γ• where each Γn is free on a

finite number of generators. Note that the geometric realization of the simplicial

space BΓ• is homotopy equivalent to X, and we can thus view Γ• as a free resolu-

tion of the pointed space (X,x). Note also that this resolution depends on X and

not just on the group Γ (except when X is itself a K(Γ, 1) in which case Γ• is a

free resolution of the group Γ). Applying RG(−) to Γ• yields a cosimplicial affine

scheme RG(Γ•), or equivalently a simplicial commutative k-algebra O(RG(Γ•)).

The passage to normalized chains defines a commutative dg-algebra, whose quasi-

isomorphism type does not depend on the choice of the resolution Γ• of X. In other

words, we get a commutative dg-algebra AG(X) which, up to quasi-isomorphism,

only depends on the homotopy type of X.
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By construction, H0(AG(X)) is naturally isomorphic to O(RG(Γ)), and

Hi(AG(X)) vanish for i > 0. The other cohomologies Hi(AG(X)) for i < 0 can

be nonzero. When X = K(Γ, 1), the cohomology H•(AG(X)) is the so-called rep-

resentation homology of the group ring k[Γ] in the sense of [BKR] and codifies

many interesting invariants of the group Γ. For an arbitrary CW complex X, the

k-vector spaces Hi(AG(X)) are invariants of the space X and may be nontrivial

even when X is simply connected (see Example 1.1).

As explained in [To1], the nonpositively graded cdga AG(X) has a spectrum

SpecAG(X) which is a derived affine scheme, that is, an affine k-scheme equipped

with a sheaf of cdga. The conjugation action of G on the various RG(Γn) gives

rise to an action on the commutative dg-algebra AG(X) and hence G acts on its

spectrum. The quotient stack

LocG(X) := [SpecAG(X)/G]

is the derived stack of G-local systems on X of [ToVe2]. We refer the reader to

[ToVe] for the formalism of derived schemes and derived stacks, in particular we

will not explain in this work how to formally construct the ∞-category of derived

stacks and how to define the above quotient.

Note that, as explained in [ToVe2], LocG(X) can also be considered as an

(∞−)functor,

LocG(X) : cdga≤0
k −→ T

on the ∞-category cdga
≤0
k of nonpositively graded commutative k-linear dg-

algebras. This functor sends a dg-algebra A to the simplicial set Map(S(X),

BG(A)) of maps from the singular simplices in X to the simplicial set of A-points

of the stack BG (see [ToVe2] for details). In the special case when G = GLn,

the simplicial set LocG(X)(A) also admits an alternative sheaf-theoretic descrip-

tion. Consider the category whose objects are sheaves of A-dg-modules on X that

are locally quasi-isomorphic to the constant sheaf A⊕n, and whose morphisms are

quasi-isomorphisms between such sheaves. The nerve of this category is naturally

equivalent to LocG(X)(A) (see [ToVe2]).

Example 1.1. There is another useful description of the derived stack LocG(X)

which instead of a free resolution Γ• of the space X uses a cell decomposition of

X as follows.

Let us assume that we have fixed a cell decomposition of X:

∅ = X0
�

� // · · · �
� // Xk

�

� // Xk+1
�

� // · · · �
� // Xn = X,
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where each inclusion Xk →֒ Xk+1 is obtained by a push-out

Xk
�

� // Xk+1

Snk
�

� //

OO

Bnk+1

OO

adding an (nk+1)-dimensional cell. The derived stack LocG(X) itself decomposes

as a tower of maps

LocG(X) // · · · // LocG(Xk+1) // LocG(Xk) // · · · // LocG(∅) = ∗,

where each map is a part of a pullback square

LocG(Xk+1)

��

// LocG(Xk)

��
LocG(B

nk+1) = BG // LocG(Snk).

Moreover, for an m-dimensional sphere Sm, the derived stack LocG(S
m) can be

computed explicitly, for instance by induction on m using the cell decomposition

Sm = Bm ⊔Sm−1 Bm. We have

LocG(S
0) ≃ BG×BG, LocG(S

1) ≃ [G/G],

and for any m > 1,

LocG(S
m) ≃ [SpecAG(S

m)/G]

with AG(S
m) ≃ Symk(g

∨[m − 1]) and where g∨ is the k-linear dual of the Lie

algebra of G.

➜1.3. Cotangent complexes and differential forms

The derived stack LocG(X), being a quotient of a derived affine scheme by an

algebraic group, is a derived Artin stack. In particular it has a cotangent complex

LLocG(X) which is a quasi-coherent complex on LocG(X). This can be described

explicitly in terms of the G-equivariant dg-algebra AG(X) as follows.

First note that the∞-category of quasi-coherent complexes on [SpecAG(X)/G]

is naturally equivalent to the ∞-category of G-equivariant AG(X)-dg-modules.

The derivative of the G-action on AG(X) induces a morphism of AG(X)-dg-

modules

a : L −→ g∨ ⊗k AG(X),

where L is the cotangent complex of the commutative dg-algebra AG(X) and g∨

is the dual of the Lie algebra of G. The homotopy fiber of a is a well-defined
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AG(X)-module which, considered as a quasi-coherent module on SpecAG(X), is

naturally equivalent to the pullback of the cotangent complex of LocG(X) by the

atlas map SpecAG(X) → LocG(X). This homotopy fiber carries a natural G-

equivariant structure, making it into a quasi-coherent module on LocG(X), which

is the cotangent complex of LocG(X).

Global sections are easier to understand in this setting, and are simply ob-

tained by taking G-invariants:

aG : LG −→ (g∨ ⊗k AG(X))G.

The homotopy fiber of the map aG computes Γ(LocG(X),LLocG(X)), the complex

of global sections of the cotangent complex.

More generally, as explained in [PTVV, To1], we can talk about differential

forms and the whole de Rham complex (endowed with its natural Hodge filtration)

on the derived Artin stack LocG(X). This is a complex A•(LocG(X)), filtered

by subcomplexes F pA•(LocG(X)) ⊂ A•(LocG(X)). The complex A•(LocG(X))

computes the de Rham cohomology of LocG(X), while the complex

Ap,cl(LocG(X)) := F pA•(LocG(X))[p]

is called the complex of closed p-forms on LocG(X). In our setting, these complexes

can be described explicitly as follows. With the same notation as above, we form

the graded k-module

C := (SymAG(X)(L[−1])⊗k Symk(g
∨[−2]))G.

This graded module comes equipped with a differential which is the sum of three

different terms: the internal cohomological differential of AG(X), the differential

induced by the coaction map a : L → g∨ ⊗k AG(X) and the de Rham differential

on SymAG(X)(L[−1]). This makes C into a complex of k-modules. Moreover, C

comes equipped with a natural Hodge filtration, i.e., the stupid filtration for the

natural grading on SymAG(X)(L[−1])⊗k Symk(g
∨[−2]). The complex C with this

filtration is a model for the filtered complex A•(LocG(X)).

➜2. Symplectic and Lagrangian structures

Recall from [PTVV, CPTVV] the notions of shifted symplectic and Poisson struc-

tures on derived Artin stacks. As we noted above, for a derived Artin stack F

we have a complex of closed 2-forms A2,cl(F ), defined as the second layer in

the Hodge filtration on its de Rham complex (shifted by 2). An n-cocycle in

the complex A2,cl(F ) is called a closed 2-form of degree n (see [PTVV]). Such

a form is furthermore nondegenerate if the contraction with the induced element



Poisson Moduli of Local Systems 967

in Hn(F,∧LF ) = Hn(A2,cl(F )) gives a quasi-isomorphism of quasi-coherent com-

plexes ω♭ : TF →̃ LF [n]. A nondegenerate closed 2-form of degree n on F is called

an n-shifted symplectic structure. This notion of symplectic structure can be ex-

tended to the relative setting and gives rise to the notion of a Lagrangian struc-

ture. For a morphism f : F → F ′ between derived Artin stacks, an (n− 1)-shifted

isotropic structure on f consists by definition of a pair (ω, h), where ω is an n-

shifted symplectic structure on F ′ and h is a homotopy between f∗(ω) and 0

inside the complex A2,cl(F ), i.e., h is a degree-(n− 1) cochain in A2,cl(X) with

coboundary f∗(ω). Such an isotropic structure is an (n− 1)-shifted Lagrangian

structure if, moreover, the induced canonical morphism h♭ : Tf →̃ LF [n− 1] from

the relative tangent complex Tf of f to the shifted cotangent complex of F is a

quasi-isomorphism.

As shown in [PTVV], when X is a compact oriented manifold of dimension d,

the derived stack LocG(X) has a natural (2− d)-shifted symplectic structure. This

structure is canonical up to a choice of a nondegenerate element in (Sym2 g∨)G

which always exists since G is assumed to be reductive. This statement can be

extended to a compact oriented manifold X with nonempty boundary ∂X. By

[Ca], the induced restriction map

LocG(X) −→ LocG(∂X)

carries a canonical (2− d)-shifted Lagrangian structure for which the 3 − d =

(2− (d− 1))-shifted symplectic structure on the target is the one discussed above.

When ∂X = ∅ we have that LocG(∂X) = LocG(∅) = ∗ is a point and the

Lagrangian structure on LocG(X) → ∗ recovers the (2− d)-shifted symplectic

structure on LocG(X).

In fact, in order to get a Lagrangian structure on a map between moduli of

local systems it is not necessary for the map to be induced from restricting to

an actual boundary. Indeed, for a continuous map between finite CW complexes

f : Y → X, there is a notion of an orientation of dimension d on f . By definition,

such an orientation is given by a morphism of complexes or : C•(Y,X) −→ k[1−d],

where C•(Y,X) is the cofiber of the pullback map f∗C•(X) → C•(Y ) on singular

cochains with coefficients in k. The morphism or is also assumed to satisfy a nonde-

generacy condition that ensures Poincaré duality between H∗(X) and H∗(X,Y ).

Concretely, the composition of the cup-product on C•(X) with the orientation

map produces a well-defined pairing

C•(X)⊗ C•(X,Y ) −→ k[1− d]

and we require that this pairing is nondegenerate on cohomology and induces a

quasi-isomorphism C•(Y,X) ≃ C•(X)∗[1− d].
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By [Ca], when f : Y → X is endowed with an orientation of dimension d, the

pullback map on the derived stacks of local systems f∗ : LocG(Y ) −→ LocG(X)

carries a canonical (2− d)-shifted Lagrangian structure (again up to a choice of a

nondegenerate element in Sym2(g∨)G).

Example 2.1 (See [Ca, Sa]). In the special case where X is a Riemann surface

with boundary ∂X, we expect this to match the well-known symplectic structures

on moduli of G-local systems on X with prescribed monodromies at infinity which

are usually constructed by quasi-Hamiltonian reduction (see [AMM]). Indeed, here

Y = ∂X is a disjoint union of oriented circles, and we thus have LocG(Y ) ≃∏
[G/G] where [G/G] denotes the stack quotient ofG by its conjugation self-action.

The stack LocG(S
1) = [G/G] carries a canonical symplectic structure of degree 1.

Moreover, for any element λ ∈ G with conjugacy class Cλ and centralizer Gλ, the

inclusion Cλ ⊂ G produces a canonical Lagrangian structure BGλ ≃ [Cλ/G] ⊂

[G/G]. Therefore, by choosing a family of elements λi ∈ G, we have two 0-shifted

Lagrangian morphisms

∏
BGλi

%%

LocG(X).

xx∏
[G/G]

By [PTVV], the fiber product of these two maps therefore comes equipped with

a 0-shifted symplectic structure. This fiber product, denoted by LocG(X, {λi}) is

the derived stack of G-local systems on X whose local monodromies at infinity are

required to belong to the conjugacy classesCλi
. This should recover the symplectic

structures of [AMM, FoRo, GHJW, Gol, GuRa]. However, the precise analysis of

this comparison has not been carried out in the literature.

➜3. Poisson structure and generalized symplectic leaves

There is a notion of a shifted Poisson structure, generalizing the notion of a

shifted symplectic structure. The definitions can be found in [CPTVV, Pri, PV]

but are long and technical and will not be discussed here. We only recall that

for any derived Artin stack F we can form the complex of n-shifted polyvectors

Γ(F, SymO(TF [−n − 1]))[n + 1] which carries a canonical Lie bracket making it

into a graded dg-Lie algebra (see [CPTVV] for details). By definition, an n-shifted

Poisson structure on F consists of a morphism in the ∞-category of graded dg-Lie

algebras

p : k[−1](2) −→ Γ(F, SymO(TF [−n− 1]))[n+ 1],
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where k[−1](2) is the graded dg-Lie algebra which is just k placed in homological

degree 1 and grading degree 2, equipped with the zero Lie bracket.

One of the main comparison results of [CPTVV, Pri] states that the space

of all n-shifted symplectic structures on a derived stack F is equivalent to the

space of all nondegenerate n-shifted Poisson structures. This result was recently

generalized [MeSaI, MeSaII] to Lagrangian structures: the space of all Lagrangian

structures on a morphism F → F ′ is equivalent to the space of all nondegenerate

coisotropic structures. In particular, an n-shifted Lagrangian morphism of derived

Artin stacks F → F ′ always induces an n-shifted Poisson structure on F . Moreover,

it is expected that all n-shifted Poisson structures arise this way as soon as one

allows F ′ to be a formal derived stack rather than a derived Artin stack. Here the

formal derived stack F ′ is the quotient of F by a derived Lie algebroid defined by

the Poisson structure. Although the quotient F ′ can be given a precise meaning (see

for instance [Nu]), the fact that this can be enhanced to an equivalence between

shifted Poisson structures on F and Lagrangian maps out of F has been announced

by Costello–Rozenblyum but not written up yet. At any rate, this suggests that we

can view an n-shifted Poisson structure on a given derived stack F as an equivalence

class of n-shifted Lagrangian morphisms F → F ′ with F ′ possibly formal derived

Artin stack. Here two such morphisms F → F ′ and F → F ′′ are declared to be

equivalent if there is a third one F → G and a commutative diagram

F ′

F //

>>

  

G

a

OO

b

��
F ′′

with a and b formally étale and compatible with the Lagrangian structures. In

fact, any morphism f : F → F ′ can be factored as F // F̂ //F ′ , where F̂ is

the formal completion of the morphism f and F̂ → F is étale. The derived stack F̂

is only a formal stack in general, and can be obtained as the quotient of F by the

action of the Lie algebroid induced from the morphism f , i.e., the Lie algebroid

corresponding to the relative tangent complex Tf of f . Intuitively this quotient

contracts infinitesimally all fibers of f . Therefore, the derived stack G in the above

diagram can always be taken to be F̂ (for one of the two morphisms). Conversely,

given an n-shifted Poisson structure on F , one can define from it a symplectic Lie

algebroid in the sense of [PySa], whose quotient is expected to recover a Lagrangian

map F −→ F ′ that induces back the original Poisson structure on F .
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Even though this point of view cannot be extracted completely from the

currently existing literature, it will be adopted in this paper, and we will only deal

with the class of Poisson structures arising from Lagrangian morphisms. Thus, for

us an n-shifted Poisson structure on F will be defined as an equivalence class of

n-shifted Lagrangian maps F → F ′ where F ′ is a formal derived stack (in fact, in

most of the examples we consider, F ′ will be a derived Artin stack). The typical

example is thus the restriction map

(1) LocG(X) −→ LocG(∂X),

where X is a compact oriented manifold of dimension d with boundary ∂X. By

[Ca] this is a Lagrangian map and so by the discussion above can be considered as

a (2− d)-shifted Poisson structure on LocG(X). When X is a Riemann surface, we

think this recovers the Poisson structure of [FoRo, GHJW, Gol, GuRa]. In general,

the bivector underlying the shifted Poisson bracket given by (1) can be understood

explicitly as follows. The tangent complex of LocG(X) at a given G-local system

ρ is H∗(X, ad(ρ))[1]. By Lefschetz duality we have a natural quasi-isomorphism

(H•(X, ad(ρ))[1])∨ ≃ H•(X, ∂X, ad(ρ))[d− 2], and thus a natural element

k
LD // H•(X, ad(ρ))[1]⊗H•(X, ∂X; ad(ρ))[d− 2].

We can compose this with the boundary mapH•(X, ∂X; ad(ρ)) → H•(X, ad(ρ))[1]

to obtain a map

k

LD

))

p // (H•(X, ad(ρ))[1]⊗H•(X, ad(ρ))[1])[d− 2]

H•(X, ad(ρ))[1]⊗H•(X, ∂X; ad(ρ))[d− 2].

OO

This morphism p is the underlying bivector of the (2− d)-shifted Poisson structure

on LocG(X).

Classically, a Poisson structure on a smooth variety induces a foliation of

the variety by symplectic leaves. In our setting, for an n-shifted Poisson structure

on a derived stack F given by a Lagrangian map f : F → F ′, the symplectic

leaves are the appropriately interpreted fibers of f . Here we need the qualifier

“appropriately interpreted” because we must consider the fibers in the sense of

symplectic geometry, that is, as fiber products of Lagrangians in F ′. Note that

specifying a Lagrangian morphism Λ → F ′ is the same thing as specifying a
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morphism ∗ → F ′ in the category of Lagrangian correspondences, and thus is a

“point” in this sense. We are therefore led to the following notion.

Definition 3.1. Let F be a derived Artin stack with an n-shifted Poisson struc-

ture given by an n-shifted Lagrangian morphism f : F → F ′. A generalized sym-

plectic leaf of F is a derived stack of the form F×F ′ Λ for any n-shifted Lagrangian

morphism Λ → F ′

By [PTVV], a generalized symplectic leaf carries a canonical n-shifted sym-

plectic structure. However, the above definition is a bit awkward as it depends on

the choice of f . We will not try to refine this definition and will take it as a model

of several constructions appearing in the sequel of this work.

Again, the typical example is given by a compact Riemann surface with

boundary X. The restriction map LocG(X) −→ LocG(∂X) =
∏
[G/G] carries a 0-

shifted Lagrangian structure and thus corresponds to a 0-shifted Poisson structure

on LocG(X). As we have already seen, among the generalized symplectic leaves of

LocG(X) we have LocG(X, {λi}), the derived moduli stack of G-local systems on

X whose monodromies at infinity are fixed to be conjugate to the given elements

λi ∈ G.

As a final note, it is instructive to point out that the above notion of general-

ized symplectic leaves is a rather flabby notion. For instance, when the n-shifted

Poisson structure on F is nondegenerate (i.e., comes from an n-shifted symplectic

structure) then the generalized symplectic leaves are all n-shifted symplectic de-

rived stacks of the form F × R for some other n-shifted symplectic derived stack

R. Another example is given by the Poisson structure on LocG(X) induced by the

restriction map LocG(X) −→ LocG(∂X), for an oriented manifold with boundary.

Assume that Y is another oriented manifold with an identification ∂Y ≃ ∂X;

then LocG(M) becomes a generalized symplectic leaf, when M = Y ⊔∂X X. This

provides a lot of generalized symplectic leaves, all given by the different possible

ways to complete X to an oriented manifold without boundary.

➜4. Symplectic leaves in the moduli of G-local systems on smooth

complex varieties

In this section we fix a smooth (separated, quasi-compact and connected) complex

algebraic variety Z of complex dimension d. We denote by X := Z(C) the un-

derlying topological space of C-points of X endowed with the Euclidean topology.

We also keep the notation k for a given field of characteristic zero and we fix a

reductive group G over k with a chosen nondegenerate element in Sym2(g∨)G. The
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derived stack LocG(X) is then a derived Artin stack of finite type over k and we

are interested in the following problem:

Problem 4.1. Show that LocG(X) carries a natural (2−2d)-shifted Poisson struc-

ture and describe its generalized symplectic leaves.

As we noted before, there are way too many generalized symplectic leaves

according to our Definition 3.1. To make the problem more manageable we will

focus on a class of generalized symplectic leaves that is geometrically meaningful.

We also want to keep in mind the case of curves, and when Z is of dimension 1

we want our description to recover the symplectic derived stacks LocG(X, {λi)),

of G-local systems with prescribed monodromy at infinity.

In the discussion below we will propose a first answer to Problem 4.1. However,

we will restrict ourselves to varieties Z with nice behavior at infinity. As we will

see, the problem has a rather direct and easy answer when the divisor at infinity

for Z can be chosen to be smooth. We will also provide a solution when this divisor

can be chosen to be simple normal crossings with two components where already

some new phenomena arise. We have not analyzed more complicated behaviors

but we are convinced that one can indeed extend our result to any variety Z.

➜4.1. The boundary at infinity of a smooth variety

We start with a general discussion of the notion of boundary at infinity of a space,

and study the specific case of complex algebraic varieties. These results are not

new and we do not claim any originality, but we record them here for the lack of

an adequate reference.

Definition 4.2. The boundary of a topological space Y is by definition the pro-

homotopy type

∂Y := Lim
K⊂Y

(Y −K) ∈ Pro(T),

where Lim is the limit taken in the ∞-category Pro(T) of pro-homotopy types

and over the opposite category of compact subsets K ⊂ Y .

The pro-object ∂Y is in general not constant and can be extremely compli-

cated. However, when Y = X = Z(C) is the underlying space of a smooth variety

Z then ∂Y is equivalent to a constant pro-object. In fact, more is true:

Proposition 4.3. For a smooth n-dimensional complex algebraic variety Z with

underlying topological space X = Z(C), the pro-object ∂X is equivalent to a con-

stant pro-object in T which has the homotopy type of a compact oriented topological

manifold of dimension 2n− 1.
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Proof. Let Z ⊂ Z be a smooth compactification such that D = Z − Z is a divi-

sor with simple normal crossing. Fix a Riemannian metric on the C∞ manifold

underlying Z and for any ǫ > 0 consider the compact subsets

Kǫ := {x ∈ Z | d(x,D) ≥ ǫ} ⊂ X.

The system of compact subsets {Kǫ}ǫ∈R>0
is cofinal in the system of all com-

pact subsets of X. We mean here cofinal in the sense of ∞-category theory, and

the important consequence is that the two pro-objects LimK⊂Y (Y − K) and

Limǫ>0(Y − Kǫ) are equivalent in the ∞-category Pro(T). Moreover, the sets

Dǫ = Z−Kǫ of points of distance < ǫ from D satisfy

❼ for ǫ1 < ǫ2 small enough, the inclusion Dǫ1 ⊂ Dǫ2 is a homotopy equivalence;

❼ for small enough ǫ the tubular neighborhood Dǫ retracts to D.

This is clear near the smooth points of D. But near a singular point, D is given

by the local equation z1z2 · · · zk = 0 for some local complex analytic coordinates

z1, . . . , zn on Z. In this case the function |z1z2 · · · zk|
2 on Z has a nonvanishing gra-

dient and the gradient flow gives the desired retraction and homotopy equivalence.

Restricting the retraction and homotopy equivalence to the corresponding

punctured tubular neighborhoods Dǫ − D = X −Kǫ, we then get that the open

subsets X −Kǫ ⊂ X satisfy

❼ for ǫ1 < ǫ2 small enough the inclusion X − Kǫ1 ⊂ X − Kǫ2 is a homotopy

equivalence;

❼ for ǫ small enough, X −Kǫ retracts to {x ∈ Z | d(x,D) = ǫ}.

This shows that the pro-object ∂X is equivalent to the constant pro-object X−Kǫ

for ǫ small enough and that this constant pro-object is given by {x∈Z |d(x,D)=ǫ}.

But {x ∈ Z | d(x,D) = ǫ} is a compact submanifold of X of dimension 2n− 1 as

can be checked locally. Indeed, ifD is given by the local equation z1 · · · zk = 0, then

locally the exponential map on Z gives an identification of {x ∈ Z | d(x,D) = ǫ}

with the closed subset in Cn given by the equation |z1 · · · zk| = ǫ. It comes, more-

over, equipped with a canonical orientation coming from the complex structure

of X.

Remark 4.4. In the setup of the proof of the previous proposition it is instructive

to compare the constant pro-object ∂X with the boundary of the real oriented

blowup of Z along the normal crossings divisor D. Recall [Gil] that given a strict

normal crossings divisor D ⊂ Z in a smooth complex algebraic variety, we can form

a new topological space: the real oriented blowup BlD(Z) of Z along D. The space

BlD(Z) comes with a natural continuous map π : BlD(Z) → Z and is uniquely

characterized (see [Gil]) by the properties
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(a) π : BlD(Z)− π−1(D) → Z−D is a homeomorphism;

(b) if (U, z1, . . . , zn) is an analytic chart of Z, such that U ∩ D is given by the

equation z1 · · · zk = 0, and if S1 = {t ∈ C | |t| = 1} is the unit circle, then

π−1(U) ∼=
{
(z, t) ∈ U × (S1)k

∣∣ z1 = t1|z1|, . . . , zk = tk|zk|
}
,

and in this identification the projection π is given by π(z, t) = z.

From (a) and (b) it is clear that π : BlD(Z) → Z is defined in the C∞ category

and as a C∞ object BlD(Z) is a manifold with corners. As a topological space,

BlD(Z) is just a topological manifold with boundary δ given by the preimage of

D. The topological manifold with boundary BlD(Z) is homotopy equivalent to

its interior BlD(Z) − δ = Z −D and the pair (BlD(Z), δ) is homotopy equivalent

to the pair (X, ∂X). Thus δ ∼= π−1(D) provides another model for the constant

pro-object ∂X.

Note however that the structure of δ as a C∞ manifold with corners or even

as a stratified topological manifold depends on the good compactification Z of X.

Indeed, if we replace Z by the usual complex blowup Ẑ of a point p in Z which is a

smooth point in D, then Ẑ is a new good compactification of X whose boundary

divisor D̂ has an extra component. The real oriented blowup BlD̂(Ẑ) will have an

extra corner and so will have a boundary δ̂ which is the same as a topological

manifold but is different as a C∞ manifold with corners.

This is the reason why we only view ∂X as the homotopy type of a topological

manifold and not as the isotopy type of a stratified manifold or a manifold with

corners: we need a notion which is intrinsically associated to X, and does not

depend on a particular good compactification.

By construction, both X and ∂X have the homotopy type of a finite CW com-

plex, and thus the derived stacks LocG(X) and LocG(∂X) discussed in the previous

section are derived Artin stacks of finite presentation. Moreover, the canonical map

∂X −→ X induces a restriction morphism of derived Artin stacks

r : LocG(X) −→ LocG(∂X).

Since the constant pro-object ∂X can be identified with the topological subman-

ifold {x ∈ Z | d(x,D) = ǫ} of the complex manifold Z, we see that ∂X inherits

a canonical orientation of dimension 2n− 1. Thus by [PTVV] the derived stack

LocG(∂X) carries a canonical (3− 2n)-shifted symplectic structure which depends

only on this canonical orientation and on the chosen nondegenerate G-invariant

bilinear form on g. In fact more is true: the morphism ∂X −→ X has the homotopy

type of the inclusion of the boundary of an oriented 2n-dimensional manifold. By
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[Ca] this implies that the restriction morphism

r : LocG(X) −→ LocG(∂X)

carries a canonical Lagrangian structure with respect to the canonical shifted sym-

plectic structure on LocG(∂X) we just described. On the level of tangent com-

plexes, this Lagrangian structure reflects the Poincaré–Lefschetz duality of the

manifold with boundary (X, ∂X). For a given G-local system ρ on X, the La-

grangian structure provides a natural quasi-isomorphism of complexes

TLocG(X),ρ ≃ LLocG(X)/LocG(∂X),ρ[2− 2n]

which on cohomology spaces induces the Poincaré duality isomorphism on (X, ∂X)

with coefficients in ad(ρ):

Hi(X, ad(ρ)) ≃ H2n−i(X, ∂X; ad(ρ))∨.

As explained in the previous section, the Lagrangian morphism r : LocG(X) −→

LocG(∂X) defines a canonical (2− 2n)-shifted Poisson structure on the derived

Artin stack LocG(X) and so our Problem 4.1 reduces to the problem of describing

the generalized symplectic leaves of LocG(X).

As we saw in Example 2.1, when Z is of complex dimension 1 the generalized

symplectic leaves are obtained by quasi-Hamiltonian reduction. Recall that in the

language of derived algebraic geometry, the pertinent reductions were constructed

as Lagrangian intersections. Indeed, if dimC Z = 1, the boundary ∂X has the

homotopy type of a disjoint union of oriented circles, and so the restriction map r

can be identified with a map

r : LocG(X) −→
∏

i

[G/G],

where the product is taken over the points of Z − Z for some smooth compacti-

fication Z of Z. The Lagrangian structure on this map is equivalent to the data

of a quasi-Hamiltonian system, i.e., of the data of an equivariant group-valued

moment map (see [Ca, Sa] for details). Fix elements λi ∈ G for each point

i ∈ Z − Z, and consider the centralizers Gλi
⊂ G of the elements λi. We have

canonical maps BGλi
−→ [G/G] which are the residual gerbes of each point λi

in [G/G]. For the canonical 1-shifted symplectic structure on [G/G] each of the

maps BGλi
−→ [G/G] comes equipped with a canonical Lagrangian structure (for

degree reasons the space of Lagrangian structures on this map is a contractible

space). As a result, we can form the Lagrangian intersection

LocG(X, {λi}) := LocG(X) ×∏
i[G/G]

∏
BGλi

.
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This is the derived Artin stack of G-local systems on Z with local monodromy

around the point i ∈ Z − Z fixed to be in the conjugacy class of λi. Being a

Lagrangian intersection of 1-shifted Lagrangian structures this derived stack car-

ries a canonical 0-shifted symplectic structure, which on the smooth locus seems

to recover the well-known symplectic structure on symplectic leaves in character

varieties.

Going back to the general case where Z is no longer necessarily a curve,

again we would like to realize the generalized symplectic leaves of the shifted

Poisson derived stack LocG(X) by an appropriate quasi-Hamiltonian reduction

construction. For this we start by fixing a good smooth compactification Z of Z,

i.e., a smooth proper complex variety Z, containing Z as a Zariski open subset and

such that D = Z− Z is a simple normal crossing divisor.

The idea is to construct again another Lagrangian map LocG(∂X, {λi}) −→

LocG(∂X), where the λi are elements in G but now i labels the irreducible compo-

nents Di of D = Z−Z. In the presence of intersections of the components of D, the

construction of the Lagrangian LocG(∂X, {λi}) → LocG(∂X) appears to be quite

complicated. However, we analyse below two special cases: the case of a smooth

divisor at infinity and the case where D has only two irreducible components, or

more generally has no more than double points (which is enough for the case of

dimension 2). We believe that the general case can be handled using similar ideas

but we have not pursued this direction.

➜4.2. The smooth divisor case

First we consider the simplest case where D is a smooth divisor: a disjoint union

of connected components Di. In this case, ∂X has the homotopy type of an ori-

ented circle bundle over
⊔

i Di, which is classified by a collection {αi} where

αi ∈ H2(Di,Z) is the first Chern class of the normal bundle of Di ⊂ Z. Let

us fix, as above, elements λi ∈ G with centralizers Gλi
⊂ G. The group S1 acts

on the stack [G/G] = Map(S1, BG) by loop rotations and this action and the

cohomology classes αi can be used to define twisted versions αi
[̃G/G] of [G/G] on

each Di.

To understand this properly we first need to discuss the notion of a locally

constant family of derived stacks over a space. For this, we recall that any space T

can be viewed as a constant derived stack T ∈ dStk over k. By definition, a family

of derived stacks over T is a derived stack F together with a map F −→ T . If T is

connected, all the fibers of F −→ T are abstractly equivalent as objects in dStk.

We say that the family has fiber F0 if all its fibers are (noncanonically) equivalent

to F0. Since dStk is an ∞-topos, there is an equivalence between H-equivariant
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derived stacks and derived stacks over BH. Below we apply this systematically to

the case when H = S1 = BZ.

Write the classes αi as continuous maps

αi : Di −→ BS1.

As the group S1 acts on the stack [G/G] we can form the quotient [[G/G]/S1]

which is a stack over BS1. Using αi we can pull back [[G/G]/S1] to Di by αi to

get a locally constant family of stacks on Di, whose fibers are [G/G]. We denote

this family by αi
[̃G/G] → Di and we write

[̃G/G] =
⊔

i

αi
[̃G/G] −→

⊔

i

Di = D

for the corresponding locally constant family over all of D.

Alternatively we can construct [̃G/G] as follows. The class αi defines a circle

bundle D̃i → Di, and so the collection {αi} defines a circle bundle p : D̃ =
⊔

i D̃i →⊔
i Di = D over all of D. In terms of this projection we have [̃G/G] ≃ p∗(BG) as

derived stacks over D.

Next observe that for each i, the group S1 also acts on the classifying stack

BGλi
, by means of the central element λi ∈ Z(Gλi

) = π1(aut(BGλi
), id). More-

over, for each i the canonical 1-shifted Lagrangian map BGλi
−→ [G/G] comes

equipped with a natural S1-equivariant structure for the S1 actions on BGλi
and

[G/G]. Twisting the source and target of this Lagrangian map by using αi we

get locally constant families of stacks αi
B̃Gλi

→ Di and αi
[̃G/G] → Di, and a

1-shifted Lagrangian morphism

(2) αi
B̃Gλi

−→ αi
[̃G/G]

inside the ∞-category of locally constant families of derived Artin stacks over

Di. Since each Di is a compact topological manifold endowed with a canonical

orientation, the map (2) induces on the derived stack of global sections a (3− 2n)-

shifted Lagrangian morphism of derived Artin stacks

ri : LocGλi
,αi

(Di) −→ LocG(∂iX).

This result is a consequence of the slight generalization of the main theorem of

[PTVV] for which the mapping stacks are replaced by global sections of locally

constant derived stacks. This slight generalization is proven the exact same way

as the case of constant coefficients, and we will freely use it in this paper.

Here, ∂iX is the connected component of ∂X lying over Di, and by defini-

tion LocGλi
,αi

(Di) is the derived stack of αi-twisted principal Gλi
-bundles on Di.
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Combining all the ri we get the desired (3− 2n)-shifted Lagrangian morphism

r =
∏

i

ri :
∏

i

LocGλi
,αi

(Di) −→
∏

i

LocG(∂iX) = LocG(∂X).

By the Lagrangian intersection theorem of [PTVV] we thus have that the fiber

product of derived stacks

LocG(X, {λi}) :=

(∏

i

LocGλi
,αi

(Di)

)
×

LocG(∂X)

LocG(X)

carries a canonical (2− 2n)-shifted symplectic structure. By construction/defini-

tion, LocG(X, {λi}) is the derived stack of locally constant G-bundles on X whose

local monodromy around Di is fixed to be in the conjugacy class Cλi
of λi. Also

by construction, the natural projection

LocG(X, {λi}) −→ LocG(X)

exhibits LocG(X, {λi}) as a symplectic leaf of the (2− 2n)-shifted Poisson struc-

ture on LocG(X).

Remark 4.5. Note that the derived stack LocGλi,αi
(Di) may be empty. Indeed,

the groupoid of k-points of this stack is the groupoid of G-local systems on ∂iX

whose local monodromy around Di is conjugate to λi. These k-points can also

be described as follows. Let Z(Gλi
) be the center of Gλi

. Any Gλi
/Z(Gλi

)-local

system onDi determines a class inH2(Di, Z(Gλi
)), which is the obstruction to lift-

ing this local system to a Gλi
-local system. For LocGλi

,αi
(Di) to be nonempty one

needs to have a Gλi
/Z(Gλi

)-local system on Di whose obstruction class matches

with the image of αi under the map H2(Di,Z) → H2(Di, Z(Gλi
)) given by

λi : Z → Z(Gλi
). Given αi and λi the existence of such a local system is a subtle

question, closely related to the existence of Azumaya algebras. For instance, when

λi is a regular semisimple element then Gλi
is a maximal torus in G (assume

G simple and k algebraically closed), and thus we see that the image of αi in

H2(Di, Gλi
) must be zero. For instance, if in this situation λi is of infinite order,

this forces αi to be a torsion class in H2(Di,Z).

➜4.3. The case of two components

We now assume that D = D1 ∪ D2 is the union of two smooth irreducible

components meeting transversally at a smooth codimension 2 subvariety D12 =

D1 ∩D2. Since the local fundamental group of Z −D is abelian we fix two com-

muting elements λ1, λ2 in G. Our goal is to construct a derived moduli stack

LocG(X, {λ1, λ2}) of G-bundles on X with fixed monodromy λ1 around D1 and
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fixed monodromy λ2 on around D2 and to realize this stack as a generalized sym-

plectic leaf of LocG(X).

To set up the problem we need to introduce some notation and auxiliary

stacks. In this setting the homotopy type ∂X can be represented (see Remark 4.4)

as a homotopy push-out

∂X ≃ ∂1X
⊔

∂12X

∂2X.

Here ∂iX is an oriented circle bundle over Do
i = Di−D12, and ∂12X is an oriented

(S1×S1)-bundle over D12. These circle bundles are the restrictions of the natural

circle bundles in OZ(Di) or equivalently of the natural circle bundles in the normal

bundles of Di in Z. The space ∂12X has the homotopy type of an oriented compact

manifold of dimension 2n− 2, and each component ∂iX has the homotopy type of

an oriented compact manifold of dimension 2n−1 with boundary canonically iden-

tified with ∂12X. In the same manner, each boundary ∂(Do
i ) is naturally identified

with an oriented S1-fibration over D12.

For each Do
i we have a Z-gerbe on Do

i given by restriction of αi ∈ H2(Di,Z),

which is the restriction of the first Chern class of the normal bundle of Di inside

Z. As before, we can form the αi-twisted Lagrangian maps

αi
B̃Gλi

−→ αi
[̃G/G],

of locally constant derived stacks on Do
i . We now use the mapping theorem for

manifolds with boundary of [Ca] (see also [To1]) applied to the manifold with

boundary Do
i and the Lagrangian map above. Unfolding the definitions we get a

Lagrangian map of derived Artin stacks

Γ(Do
i ; αi

B̃Gλi
) −→ Γ(∂(Do

i ); αi
B̃Gλi

) ×
Γ(∂(Do

i
);αi

[̃G/G])

Γ(Do
i ; αi

[̃G/G]),

where Γ here denotes the derived stack of global sections.1 By construction, we

have

Γ(Do
i ; αi

[̃G/G]) ≃ LocG(∂iX) and Γ(∂(Do
i ); αi

[̃G/G]) ≃ LocG(∂12X).

We write

LocG(∂iX,λi) := Γ(Do
i ; αi

B̃Gλi
)

for the derived stack of G-bundles on ∂iX with monodromy λi around Do
i . Similarly

we write

LocG(∂12X,λi) := Γ(∂(Do
i ); αi

B̃Gλi
)

1As explained above, derived stacks of global sections are the twisted version of derived
mapping stacks and can be defined formally as being direct images of derived stacks.
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for the derived stack of G-bundles on ∂12X with monodromy λi around Di. We

can thus rewrite the above Lagrangian maps as

ℓi : LocG(∂iX,λi) −→ LocG(∂12X,λi) ×
LocG(∂12X)

LocG(∂iX).

For i = 1, 2 these are two Lagrangian maps towards an (3− n)-shifted symplectic

target. We can consider the direct product ℓ := ℓ1 × ℓ2 which is still a Lagrangian

morphism

LocG(∂1X,λ1)× LocG(∂2X,λ2)
ℓ //

∏

i=1,2

LocG(∂12X,λi) ×
LocG(∂12X)

LocG(∂iX).

Here we think of ℓ as a Lagrangian correspondence between two Lagrangians in

LocG(∂12X)× LocG(∂12X), namely

LocG(∂12X,λ1)× LocG(∂12X,λ2) −→ LocG(∂12X)× LocG(∂12X)

and

LocG(∂1X)× LocG(∂2X) −→ LocG(∂12X)× LocG(∂12X).

Pulling back everything to the diagonal of LocG(∂12X) × LocG(∂12X) we get a

Lagrangian morphism

ℓ : LocG(∂1X,λ1) ×
LocG(∂12X)

LocG(∂2X,λ2) −→ LocG(∂X)×LocG(∂12X, {λ1, λ2}),

where we use the short cut notation

LocG(∂12X, {λ1, λ2}) := LocG(∂12X,λ1) ×
LocG(∂12X)

LocG(∂12X,λ2).

In contrast with the smooth divisor case, this setting has an important new feature,

namely the extra term LocG(∂12X, {λ1, λ2}), which does not appear when the

smooth components of D do not intersect. Thus, in order to get a Lagrangian

map towards LocG(∂X) alone we need to find an extra Lagrangian mapping to

LocG(∂12X, {λ1, λ2}). It is not clear to us that such a Lagrangian always exists,

but there is a natural candidate for it that we will now describe.

We let G(λ1,λ2) = Gλ1
∩ Gλ2

be the centralizer of the pair (λ1, λ2). On D12,

we have a natural Z2-gerbe, i.e., the external sum α1 ⊞ α2 of the restrictions of

the two gerbes over Di. It corresponds to ∂12X as a principal (S1 × S1)-bundle

over D12. The group S1 × S1 acts on the stack BG(λ1,λ2), by the canonical map

Z2 → π1(aut(BG(λ1,λ2)), id) = Z(G(λ1,λ2)) given by the pair (λ1, λ2). This provides

a twist α1⊞α2
B̃G(λ1,λ2) of BG(λ1,λ2) on D12. In the same way, we can define a
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twist of the double loop stack Map(S1×S1, BG) = [G ∗G/G], where G ∗G is the

derived subscheme of commuting elements in G × G. That is we have a twisted

form α1⊞α2
˜[G ∗G/G] of [G ∗G/G] over D12. The two elements λi provide natural

inclusion maps

Gλ2
× {λ2} −→ G ∗G, {λ1} ×Gλ1

−→ G ∗G.

These induce two inclusion maps on quotient stacks [Gλi
/Zλi

] → [G∗G/G], which

are naturally (S1×S1)-equivariant. We thus get maps of twisted stacks onD12, i.e.,

αi
˜[Gλi
/Gλi

] −→ α1⊞α2
˜[G ∗G/G]. Denote the fiber product of these two maps by

F12. By definition, this is a locally constant family of derived Artin stacks furnished

with a fiberwise (−1)-shifted symplectic structures, and so we get an equivalence

of derived Artin stacks equipped with (3− n)-shifted symplectic structures

Γ(D12,F12) ≃ LocG(∂12X, {λ1, λ2}).

There is a canonical point (λ1, λ2) inside [Gλ1
/Gλ1

] ×[G∗G/G] [Gλ2
/Gλ2

] whose

stabilizer is G(λ1,λ2). This induces a morphism BG(λ1,λ2) −→ [Gλ1
/Gλ1

]×[G∗G/G]

[Gλ2/Gλ2 ], which is S1 × S1-equivariant in a natural way. We therefore get a

twisted version of this map α1⊞α2
B̃G(λ1,λ2) −→ F12. This map has a canonical

isotropic structure and, to be more precise, the space of isotropic structures on the

above map is a contractible space for degree reasons. By taking global sections we

thus obtain an isotropic map

ℓ12 : LocG(λ1,λ2),α(D12) −→ LocG(∂12X, {λ1, λ2}),

where LocG(λ1,λ2),α(D12) is defined to be Γ(D12; α1⊞α2
B̃G(λ1,λ2)).

The question now reduces to understanding whether the isotropic map ℓ12 is

Lagrangian. This is the case when the map of derived stacks

BG(λ1,λ2) −→ [Gλ1/Gλ1 ] ×
[G∗G/G]

[Gλ2/Gλ2 ]

is Lagrangian. A simple examination of the amplitudes of the tangent complexes

shows that this map is Lagrangian if and only if the tangent complex of

[Gλ1/Gλ1 ] ×
[G∗G/G]

[Gλ2/Gλ2 ]

at the canonical point (λ1, λ2) is cohomologically concentrated in the two extremal

degrees −1 and 2. This leads to the following notion.
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Definition 4.6. A pair of elements (λ1, λ2) ∈ G × G is called strict if it is a

commuting pair and if the morphism

BG(λ1,λ2) −→ [Gλ1/Gλ1 ] ×
[G∗G/G]

[Gλ2/Gλ2 ]

is Lagrangian (for its canonical isotropic structure).

Assume that (λ1, λ2) is a strict pair. We now have a new Lagrangian

ℓ12 : LocG(λ1,λ2),α(D12) −→ LocG(∂12X).

By composing with the Lagrangian ℓ constructed above, we get the desired La-

grangian map

LocG(∂1X,λ1) ×
LocG(∂12X)

LocG(∂2X,λ2) ×
LocG(∂12X,{λ1,λ2})

LocG(λ1,λ2),α(D12) −→ LocG(∂X).

The pullback of this morphism along the restriction map LocG(X) −→ LocG(∂X)

is thus a derived Artin stack with a (2− 2n)-shifted symplectic structure, and

its projection to LocG(X) can be thought of as a symplectic leaf of the Poisson

structure on LocG(X). We denote this symplectic leaf by LocG(X, {λ1, λ2}). We

have therefore proven the following result.

Theorem 4.7. We use the notation above.

(1) The derived Artin stack LocG(X) carries a canonical (2− 2n)-shifted Poisson

structure, which is realized by the Lagrangian map LocG(X) −→ LocG(∂X).

(2) Let Z be a smooth compactification of Z, and assume that Z−Z = D is smooth

with connected components Di. Then, for any choice of elements λi ∈ G, the

derived Artin stack LocG(X, {λi}), of principal G-bundles on X whose mon-

odromies around Di are in Cλi
, carries a natural (2− 2n)-shifted symplectic

structure and is a symplectic leaf of LocG(X).

(3) Let Z be a smooth compactification of Z, and assume that Z−Z = D1 ∪D2 is

a strict normal crossings divisor with Di smooth and connected. Then for any

commuting pair of elements (λ1, λ2) ∈ G×G, the natural map

LocG(∂1X,λ1) ×
LocG(∂12X)

LocG(∂2X,λ2) −→ LocG(∂X)×LocG(∂12X, {λ1, λ2})

comes equipped with a natural Lagrangian structure.

(4) If, moreover, the pair (λ1, λ2) is strict then the derived Artin stack

LocG(X, {λ1, λ2})
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comes equipped with a natural (2− 2n)-shifted symplectic structure which is a

symplectic leaf of LocG(X).

Remark 4.8. In order to better understand this proposition, it is instructive to

examine the situation on the truncated stacks involved. To start with, the trun-

cation of LocG(∂X) is the underived stack of G-local systems on ∂X. This can be

described as a quotient stack [Homgrp(π1(∂X), G)/G] (assuming ∂X is connected).

The truncation of LocG(∂1X,λ1) ×LocG(∂12X) LocG(∂2X,λ2) is then the full sub-

stack consisting of all G-local systems on ∂X for which the local monodromy

aroundDi is conjugate to λi ∈ G. The truncation of the stack LocG(∂12X, {λ1, λ2})

is the full substack of the stack of G-local systems on ∂12X whose local mon-

odromies around Di are conjugate to λi. Finally, LocG(λ1,λ2),α(D12) is the full

substack of LocG(∂12X, {λ1, λ2}) whose local monodromy at points of D12 is con-

jugate to the pair (λ1, λ2) ∈ G×G.

As a consequence, the truncation of the derived stack LocG(X, {λ1, λ2}) is

naturally equivalent to the full substack of LocG(∂X) consisting of G-local systems

whose local monodromies around Di are conjugate to λi but also whose local

monodromy at points in D1 ∩ D2 is conjugate to the pair (λ1, λ2). Therefore

statement (4) above can be interpreted as the claim that this stack admits a

natural derived structure for which it carries a natural (2− 2n)-shifted symplectic

structure.

➜4.4. Strict pairs

The following result provides many examples of strict pairs.

Proposition 4.9. Let (λ1, λ2) be a commuting pair of elements in G, and u :=

Id− ad(λ1) and v := Id− ad(λ2) be the corresponding endomorphisms of g induced

by the adjoint representation. Then the pair (λ1, λ2) is strict if and only if u is

strict with respect to the kernel of v, i.e., we have

Im(v| ker(u)) = Im(v) ∩ ker(u).

Proof. We use the notation introduced above. Consider the derived stack

[Gλ1
/Gλ1

]×[G∗G/G] [Gλ2
/Gλ2

],

whereGλi
⊂ G is the centralizer of λi. The derived stack [G∗G/G] = LocG(S

1×S1)

carries a canonical 0-shifted symplectic structure, and each map [Gλi
/Gλi

] −→

[G∗G/G] is Lagrangian. Therefore [Gλ1
/Gλ1

]×[G∗G/G] [Gλ2
/Gλ2

] carries a canon-

ical (−1)-shifted symplectic structure. For degree reasons the isotropic map

BG(λ1,λ2) −→ [Gλ1
/Gλ1

]×[G∗G/G] [Gλ2
/Gλ2

]
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is Lagrangian if and only if the tangent complex T of [Gλ1
/Gλ1

]×[G∗G/G] [Gλ2
/Gλ2

]

taken at the canonical point (λ1, λ2) is such that

H0(T) = H1(T) = 0.

As T is equipped with a (−1)-shifted symplectic form, we have that H0(T) = 0 if

and only ifH1(T) = 0. Therefore, the pair (λ2, λ1) is strict if and only ifH0(T) = 0.

Let x := ad(λ1) and y := ad(λ2). The space H0(T) sits in an five-term exact

sequence

0 // H0
y (H

0
x(g))⊕H0

x(H
0
y (g)) // H0

x,y(g) // H0(T)

..
H1

y (H
0
x(g))⊕H1

x(H
0
y (g)) // H1

x,y(g) // · · ·

.

Here x and y are considered as actions of Z on g, and H•
x and H•

y denote group

cohomologies of Z with coefficients in g. In the same way H•
x,y denotes group

cohomology of Z2 with coefficients in g.

We have canonical isomorphisms H0
x(H

0
y ) ≃ H0

y (H
0
x) ≃ H0

x,y and the first

map above is isomorphic to the sum map on H0
x,y(g), and therefore is surjective.

This implies that H0(T) = 0 if and only if the last morphism

φ : H1
y (H

0
x(g))⊕H1

x(H
0
y (g)) −→ H1

x,y(g)

is an injective map. Using the Serre spectral sequence for the projection to the

first factor Z2 −→ Z we get a short exact sequence

0 // H1
x(H

0
y (g)) // H1

x,y(g) // H0
x(H

1
y (g)) // 0.

The morphism φ above is compatible with this short exact sequence and provides

a commutative diagram with exact rows

0 // H1
x(H

0
y (g)) // H1

x,y(g) // H0
x(H

1
y (g)) // 0

0 // H1
x(H

0
y (g)) //

OO

H1
y (H

0
x(g))⊕H1

x(H
0
y (g))

OO

// H1
y (H

0
x(g))

OO

// 0.

The map on the left-hand side is an identity, and thus we see that H0(T) = 0 if

and only if the natural morphism

H1
y (H

0
x(g)) −→ H0

x(H
1
y (g))

is injective. Unfolding the definition we find the strictness condition of the propo-

sition.



Poisson Moduli of Local Systems 985

Note that since the strictness condition on a pair of elements in G is symmetric

by definition, the condition derived in Proposition 4.9 must be symmetric as well.

In particular the roles of u and v in the statement of Proposition 4.9 can be

exchanged, and so both conditions are equivalent to each other and equivalent

to strictness. We can use Proposition 4.9 to produce the following interesting

examples of strict pairs.

Corollary 4.10. Let (λ1, λ2) be a commuting pair of elements in G.

(1) If at least one of the λi is semisimple then the pair (λ1, λ2) is strict.

(2) Assume that λ1 and λ2 are unipotent elements in G, and let

ji : SL2 →֒ G

be group embeddings sending
(
1 1
0 1

)
to λi. If the two copies of SL2 in G commute

(i.e., the j1 and j2 combine into a group homomorphism j1×j2 : SL2×SL2 −→

G) then the pair (λ1, λ2) is strict.

Proof.

(1) If λ1 is semisimple it defines a grading on g which is preserved by v = Id −

ad(λ2). If u = Id − ad(λ1) then ker(u) is the graded component of degree 0, and

this obviously implies that strictness holds.

(2) The morphism SL2 × SL2 −→ G induces an (SL2 × SL2)-action on the Lie

algebra g. This action defines a decomposition g = ⊕p,qgp,q of g, for which the

weights p and q are integers. Moreover, with respect to this decomposition, u acts

with bidegree (1, 0) and v acts with bidegree (0, 1). Finally, the Lefschetz property

is satisfied:

up,q : gp,q −→ gp+1,q

is injective for p < 0 and surjective for p ≥ 0, and similarly

vp,q : gp,q −→ gp,q+1

is injective for q < 0 and surjective for q ≥ 0. Moreover, we have that the map

vp,q : ker(up,q) −→ ker(up,q+1)

is surjective for all q ≥ 0.

Let x ∈ Im(v) ∩ ker(u). We can decompose x =
∑

p,q xp,q according to the

bigrading g = ⊕p,qgp,q, and by the properties above we have xp,q = 0 for p < 0.

As x lies in the image of u, there are yp,q−1 such that v(yp,q−1) = xp,q. Moreover,

for q ≥ 1 we can choose yp,q−1 ∈ ker(u). But if q ≤ 0, we have vu(yp,q−1) =

u(xp,q) = 0, and because vp,q−1 is injective we have u(yp,q−1) = 0. This shows
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that y =
∑

p,q yp,q is such that u(y) = 0 and v(y) = x. Therefore, Im(v)∩ker(u) =

Im(v| keru) and strictness holds.

Remark 4.11.

❼ The hypothesis postulating the existence of commuting SL2’s in part (2) of

the previous corollary is a special case of the notion of a Jordan–Lefschetz pair

defined and studied by Looijenga and Lunts in [LoLu].

❼ From the proof of part (2) of the above statement, we see that a stronger

result holds: the pair (λ1, λ2) is strict if a bigrading g = ⊕p,qgp,q as in proof

exists. Such gradings exist for instance in the setting of principal nilpotent

pairs of [Gi].

Remark 4.12. Finally we note that strictness is a nontrivial condition. For in-

stance, if λ is any nontrivial unipotent element in G, then the pair (λ, λ) does

not satisfy the strictness condition of Proposition 4.9 and thus is not a strict

pair. Indeed, in this case u is a nonzero nilpotent endomorphism of g and thus

ker(u) ∩ Im(u) 6= 0, but Im(u| ker(u)) = 0.

➜4.5. The case of at most double intersection

The discussion above for a divisor at infinity with at most two smooth components

can be easily extended to the case of any components with the condition that at

most two components intersect at a given point. This is for instance automatic

when Z is a surface.

Assume that we have chosen a compactification Z such that D = Z − Z

can be written as the union of smooth connected components D = ∪Di for i =

1, . . . , p. Moreover, we assume that Di ∩ Dj is connected when nonempty, and

we will denote it by Dij (we always assume i < j here). Finally we assume that

Di∩Dj∩Dk = ∅ for any three distinct labels i, j, k. As usual we denote by Do
i the

open subset in Di consisting of smooth points of D inside Di. The boundary ∂X

is now (see Remark 4.4) the union of ∂iX (S1-fibrations over Do
i ) glued together

along components of their boundaries ∂ijX ((S1 × S1)-fibrations over Dij).

For any i we fix an element λi ∈ G. We assume that (λi, λj) is a strict pair in

the sense of Definition 4.6 as soon as Dij 6= ∅. Let Gλi
⊂ G be the centralizer of λi

in G. We have a category CD, whose objects are the Di and the Dij as subvarieties

in Z, and whose morphisms are the inclusions. There is an ∞-functor

F : Cop
D −→ dStk

sending each Di to LocG(∂iX,λi), the derived stack of G-local systems on ∂iX

whose local monodromy along Di is conjugate to λi. By definition, the ∞-functor
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F sends Dij to LocG(∂ijX), where ∂ijX is the part of ∂X sitting over Dij as an

(S1 × S1)-bundle. The transition morphisms for the ∞-functor F are defined by

restriction.

Let F be the limit of F inside derived stacks. It has a natural projection to

the product

F −→
∏

i<j

LocG(∂ijX, {λi, λj}),

where LocG(∂ijX, {λi, λj}) is defined as before. For each i < j we have a canonical

morphism

LocG(λi,λj)
,α(Dij) −→ LocG(∂ijX, {λi, λj}),

where LocG(λi,λj)
,α(Dij) is the derived stack of twisted G(λi,λj)-local systems

on Dij as defined before. The pullback possesses a natural morphism towards

LocG(∂X),

F ×∏
i<j LocG(∂ijX,{λi,λj})

∏

i<j

LocG(λi,λj)
,α(Dij) −→ LocG(∂X).

This proves the following

Proposition 4.13. Under the above assumptions there exists a natural Lagrang-

ian structure on the morphism

F ×∏
i<j LocG(∂ijX,{λi,λj})

∏

i<j

LocG(λi,λj)
,α(Dij) −→ LocG(∂X).

We can define the derived stack LocG(X, {λ1, . . . , λp}) as the pullback of the

Lagrangian in this proposition by the restriction map LocG(X) → LocG(∂X).

As a corollary, LocG(X, {λ1, . . . , λp}) carries a natural (2− 2n)-shifted symplectic

structure. As before, the truncation of LocG(X, {λ1, . . . , λp}) is the full substack of

LocG(X) consisting of all G-local systems on X whose local monodromies around

Di are conjugate to λi, and whose local monodromies at Dij are conjugate to the

strict pair (λi, λj).

➜5. Towards a Poisson moduli space of connections

We would like to finish this manuscript with some ideas about how to extend the

present results when local systems are replaced by bundles with flat connections.

To start with, for a smooth complex algebraic variety X, it is no longer possible to

use the boundary ∂X, as this would only make sense in the holomorphic category.

Moreover, when X is defined over a smaller field K ⊂ C we also want the moduli
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of flat bundles on X to be defined over K. As a consequence, if we want to gen-

eralize Theorem 4.7 to the case of flat bundles, a first step is to find an algebraic

counterpart of ∂X.

As far as we know there is no algebraic version of ∂X; however, in recent

years several authors have been studying a formal analogue denoted by ∂̂X (see

[BeTe, Ef, HPV]). For a good compactification Z of X, with divisor D = Z −X,

the formal boundary at infinity of X is morally defined as D̂ −D, where D̂ is the

formal completion of Z along D. This is only a moral definition as D̂−D does not

actually make sense (it is an empty space when considered in the sense of formal

schemes), but several possible incarnations of this object have been introduced in

[BeTe, Ef, HPV]. For us, we follow the approach of [Ef] and [HPV], which do not

define ∂̂X as an object on its own, but define categories and stacks of sheaves of

perfect complexes Perf(∂̂X). Using the same line of ideas it is possible to define the

derived stack of vector bundles on ∂̂X endowed with flat connections Vect∇(∂̂X).

One key result, proved in [Ef], is that Vect
∇(∂̂X) depends on X alone and not

on the chosen compactification Z used to define it. The derived stack Vect
∇(∂̂X)

is our algebraic analogue of LocG(∂X) studied in this work. It is then possible

to prove statements analogous to the results mentioned above. As an example we

state here a result that will appear in [PT].

Theorem 5.1. Let X be a smooth algebraic variety over k of dimension d and

Vect
∇(X) the derived stack of vector bundles with flat connections on X.

(1) There is a restriction map r : Vect∇(X) → Vect
∇(∂̂X). This map is endowed

with a canonical Lagrangian structure of degree 2− 2d.

(2) The fibers of r are representable by derived quasi-algebraic stacks locally of

finite presentation.

Some comments about the previous statement are appropriate. First of all,

we do not impose any regularity assumption on the connections, and Vect
∇(X)

is the derived stack of all connections. In contrast to the case of local systems,

the derived stacks Vect
∇(X) and Vect

∇(∂̂X) are not representable as they can

have infinite-dimensional deformation spaces over general ring-valued points. The

meaning of statement (1) is thus subtle as one has to work with notions such

as symplectic and Lagrangian structures on nonrepresentable objects. Moreover,

the object ∂̂X does not exist on its own, so the usual construction methods for

symplectic structures of [Ca, PTVV] do not apply because these are based on

evaluation maps which do not exist here. We overcome this difficulty by using

a completely different construction method, based on rigid tensor categories and

explained in the note [To2]. The consequence of (1) is of course that Vect
∇(X)
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carries a canonical Poisson structure. Finally, the representability statement (2)

states that the derived moduli space of flat connections whose formal structures

are fixed at infinity is representable.

We also believe that symplectic leaves of the Poisson structure on Vect
∇(X)

can be defined and studied in a similar fashion to what we have done in the

topological setting. We expect (2) above to ensure that these symplectic leaves are

indeed representable by actual derived algebraic stacks of finite type. Hopefully,

the two results Proposition 4.9 and Theorem 5.1 can then be related by means of

the Riemann–Hilbert correspondence. Ultimately, one also has to study derived

moduli of Higgs bundles in a similar fashion, and relate to three kinds of moduli

spaces by means of the non-abelian Hodge correspondence of T. Mochizuki.

Acknowledgements

We would like to thank Sasha Efimov, Dmitry Kaledin, Takuro Mochizuki and

Gabriele Vessozi for several illuminating discussions on the subject of this work.

During the preparation of this work Bertrand Toën was partially supported
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