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A B S T R A C T

Voice controlled systems (VCS) in Internet of Things (IoT), speaker verification systems, voice-based biometrics,
and other voice-assistant-enabled systems are vulnerable to different spoofing attacks i.e., replay, cloning,
cloned-replay, etc. VCS are not only susceptible to these attacks in a non-network environment, but they
are also vulnerable to multi-order spoofing attacks in networked IoT. Additionally, deepfakes with artificially
generated audio pose a great threat to the all systems having voice-interfaces. Most of the existing counter-
measures against these voice spoofing attacks work for only one specific attack (e.g. voice replay) and fail to
generalize this for other classes of spoofing attacks. Additionally, generalization is also crucial for cross-corpora
evaluation. Thus, there exists a need to develop a unified voice anti-spoofing framework capable of detecting
multiple spoofing attacks. This work presents a unified anti-spoofing framework that uses novel (ATCoP-GTCC)
features to combat the variety of voice spoofing attacks. The proposed novel acoustic-ternary co-occurrence
patterns (ATCoP) encode the co-occurrence of similar patterns between the center and neighboring samples.
Our experiments demonstrate that ATCoP can better capture the microphone induced distortions in replays,
unnatural prosody and algorithmic artifacts in cloned samples, and both the distortions and artifacts in cloned-
replays including compression on multi-hop attacks in the spoofing samples. The performance of ATCoP could
be further enhanced by the Gammatone cepstral coefficients. To evaluate the effectiveness of the proposed
anti-spoofing system for multi-order replay and cloned-replay attacks detection, we created a diverse voice
spoofing detection corpus (VSDC) containing multi-order replay and cloned-replay audios against the bonafide
and cloned audio recordings, respectively. Experimental results obtained on VSDC, ASVspoof 2019, Google’s
LJ Speech, and YouTube deepfakes datasets illustrate the effectiveness of the proposed system in terms of
accurate detection for a variety of voice spoofing attacks.
1. Introduction

Smart Speakers (SS), such as Google Home, Alexa, etc., that man-
age various Voice Controlled Systems (VCSs) of Internet of Things
(IoT) and other voice assistants (e.g. Siri, Cortana, bixbi) are expected
to transform our homes, businesses, and vehicles to smart ones due
to the advancement of voice recognition system, high accuracy of
knowledge-driven question answering engines, and integration of smart
speakers with various cyber–physical/intelligent systems. Additionally,
automatic speaker verification (ASV) technology has progressed in
recent years and its applications are growing in diverse real-world
authentication scenarios involving both the logical and physical access
(Sahidullah et al., 2019).

In recent years, we have witnessed a tremendous evolution in voice
biometrics from a basic security feature to be an enabler for remote
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communications (Hrabi, 2020). Artificial Intelligence (AI)-enabled se-
cure emerging applications use voice biometrics for access control
(e.g. physical facilities), voice controlled systems in IoT at home and of-
fice setup (Malik, Malik, & Baumann, 2019), transaction authentication
(e.g. toll fraud prevention, bank wire transfers), monitoring (e.g. re-
mote time and attendance logging), information retrieval (e.g. customer
information for call centers, forensics (e.g voice sample matching),
and so on. Since voice as an authentication mechanism in biometrics
security has less potential to spread infections compared to other
contemporary authentication methods (e.g. face recognition, finger
printing, password entry using keyboard), deployment of ASV and VCS
during the COVID-19 pandemic is expected to rise in future genera-
tion expert systems. However, VCS and ASV systems pose significant
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security and privacy threats as they may be vulnerable to various
voice presentation attacks e.g. replay, cloning, voice conversion, etc.
(Malik et al., 2019; Sahidullah et al., 2019). In the near future, these
threats are expected to rise due to proliferation of smart speakers and
VCS, integration of ASV systems in various online and physical access
scenarios, and ease of voice attack generation on them. For example,
voice replay attacks can be generated easily because of the access of
high-quality recording devices and non-requirement of technical skills
(Sahidullah et al., 2019). Likewise, the availability of modern-day tools
like Tensorflow or Keras, publicly-available trained models such as
WaveNet (Mwiti, 2019), and low-cost computing machines is easing the
creation of AI-synthesized speech (a type of deepfake), also known as
cloned voice. Voice cloning is becoming a vital component of deepfakes
where a source speaker’s voice is also cloned besides the video. These
deepfakes have immense potential to destroy public trust and empower
criminals to exploit business deals or family phone calls. Recently one
case has been reported where the robbers used the synthetic voice
of a company executive’s speech to convince their employees into
transferring a massive amount to a confidential account (Harvel, 2019).
Therefore, unlike existing approaches like Agarwal et al. (2019) that
focus on visual forgeries detection only, audio forgeries should also be
detected.

VCSs in IoT are more vulnerable to voice-based spoofing attacks
compared to traditional devices with voice interfaces. We have demon-
strated that various smart speakers, particularly Amazon smart devices
with drop-in feature (Metz, 2019), and VCS are not only vulnerable to
replay attacks in non-network environment but are also susceptible to
multi-order replay attacks (Malik et al., 2019). An example of a multi-
order replay attack is shown in Fig. 1(a) where an intruder uses his
phone to play the recorded speech ‘‘Alexa, turn off the heat’’ (first-
order replay) on the baby monitor by hacking the wireless LAN using
tools such as Aircrack-Ng (2020). Next, this speech is replayed (second-
order replay) to the SS of targeted person’s home to switch off the heat.
Secondly, our analysis shows that VCS in IoT domain are prone to voice
cloning attacks, and we emphasize that the speech cloning attacks will
be more destructive in IoT environment when intruders will combine
their social engineering skills in the process of generating them. Shown
in Fig. 1(b) is an example of a voice cloning attack on VCS where a
cloned speech is played on VCS through the SS to open the garage door.
Thirdly, our experimental analysis confirms that VCS in IoT settings
are also prone to a hybrid of cloned and replay attacks—cloned-replay
attacks. Shown in Fig. 1(c) is an example of a cloned-replay attack
on VCS where a cloned speech is replayed on SS-2 via SS-1 (1st-order
cloned-replay attack). Later, this 1st-order cloned-replay is replayed on
SS3 via SS-2 to generate the 2nd-order cloned-replay attack that is then
used to open the garage door.

Most of the research has focused on developing robust detectors to
detect either voice replay or cloned voice attacks on ASV (Nagarsheth,
Khoury, Patil, & Garland, 2017; Witkowski, Kacprzak, Zelasko, Kowal-
czyk, & Galka, 2017). These existing binary-class-based (Bonafide vs
Spoofed) detectors are not ready to fully combat the emerging threat
of different multiple attacks on ASV systems. For example, results
of recent work show that spoofing detectors trained with a certain
group of spoofing attacks fail to generalize better for other groups
of spoofing attacks (Gonçalves, Violato, Korshunov, Marcel, & Simoes,
2017; Korshunov & Marcel, 2016). In other words, anti-spoofing sys-
tems trained with voice cloning based spoofed speech often offer a
degraded performance for replay detection (Paul, Sahidullah, & Saha,
2017). Additionally, no effort has been made to address the replay
or cloning attacks in multi-hop/multi-vector attack scenarios where
multiple smart speakers and microphones are chained/linked together
(Fig. 1). Therefore, there exists a strong need to develop a unified anti-
spoofing system to reliably detect the replay, cloning and cloned-replay
attacks in multi-hop scenario. Unlike traditional binary class detectors,
our framework models this task as a multi-class problem because there
2

exists a probability that one SS is robust against replay attacks, receives
data from other SS (of different vendor) in a chained scenario that
is vulnerable to replay attacks because of a fragile or absent replay
detector. Therefore, the received audio will be considered bonafide, and
the detector will eventually fail for all the linked devices.

To address this need, we present a unified anti-spoofing frame-
work that can effectively be used to detect multiple categories of
voice spoofing attacks (i.e. multi-order replays, multi-order cloned-
replays, and cloning) using our novel acoustic ternary co-occurrence
patterns (ATCoP) and gammatone cepstral coefficients (GTCC) features.
It is important to mention that the human speech contains dynamic
attributes due to speaker induced variations, whereas, the synthetic
speech contains unusual prosody i.e., absence of natural pauses, lack
of unvoiced consonants, unusual pitch, and few mispronunciations, etc.
These unnatural prosody in cloned voice and speaker induced varia-
tions in bonafide speech demands to develop those features which can
analyze these patterns. Thus, we propose time-domain ATCoP features
that are capable of analyzing and better capturing those distinctive
traits of the bonafide and cloned speech. Further, replay audios include
the microphone induced distortions and cloned audios include the
artificial ‘whine’ which can be reliably captured by both the ATCoP
and GTCC due to their tolerance against the noise. Thus, we fused the
ATCoP with the GTCCs to create a robust feature descriptor for voice
anti-spoofing system. The major contributions of our work are:

• We propose a novel acoustic feature descriptor ATCoP to bet-
ter capture the microphone induced distortions (also known as
microphone signature) from the replay samples, dynamic speech
variations of bonafide signals and artifacts of cloning algorithms.

• We report that VCS are vulnerable to a hybrid voice spoofing
attack i.e., cloned-replay which can be generated by playing the
synthetic/cloned audio.

• We present that multi-order replay and cloned-replay attacks are
feasible and VCSs are unable to detect them.

• We present the baseline for a unified anti-spoofing framework
that is able to detect the multi-order replay-, cloning-, and cloned-
replay attacks through our ATCoP-GTCC descriptor.

• Our anti-spoofing method effectively detects the voice spoof-
ing attacks in compressed audio samples along-with the uncom-
pressed audios.

• We have performed rigorous experimentation on four different
datasets including the hybrid dataset to signify the effectiveness
of our anti-spoofing framework.

2. Related work

VCSs need a unified anti-spoofing framework to counter multiple
voice spoofing attacks. The selection of features for audio signal rep-
resentation is an important step in developing this unified framework.
Additionally, none of the existing anti-spoofing methods have consid-
ered cloned-replay attacks. This section presents a thorough analysis of
existing up-to-date spoofing detection systems.

2.1. Replay spoofing detection techniques

Existing approaches for replay spoofing detection have explored
different features using either conventional machine learning classifiers
i.e. Gaussian Mixture Model (GMM) or deep learning models like CNN,
RNN, etc.

2.1.1. Conventional machine learning (ML) classifiers-based approaches
In Yamagishi et al. (2019), two ASVspoof baseline models based on

constant Q-transform cepstral coefficients (CQCC) and linear frequency
cepstral coefficients (LFCC) were presented with the GMM classifier
for spoofing detection including the replays. In Kumar and Bharathi
(2021), a filtering based cepstral coefficients (FBCC) based on the

discrete cosine transform of log compressed energy variations of the
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Fig. 1. Examples of audio spoofing attacks.
Fig. 2. 1st-order voice spoofing (replay) attack.

audios were employed with the GMM for spoofing detection including
the replay attacks.

Few techniques (Nagarsheth et al., 2017; Witkowski et al., 2017)
have reported the importance of high-frequency bands analysis to bet-
ter capture the attributes available in the replay audios. In Nagarsheth
et al. (2017), high-frequency cepstral coefficients and CQCC features
were employed to generate the embeddings using a deep neural net-
work. Later, these embeddings were used to train the SVM for replay
detection. Witkowski et al. (2017) have employed the inverted-MFCC
(IMFCC), linear predictive cepstral coefficients (LPCC), LPCCres, CQCC,
MFCC, and Cepstrum features to train the GMM for replay detection.

Existing studies (Mishra, Singh, & Pati, 2018; Saranya, Padman-
abhan, & Murthy, 2018; Yang & Das, 2019) have also highlighted
that reverberation, channel information, recording and playback device
characteristics should be investigated for replay spoofing detection. In
Saranya et al. (2018), MFCC, CQCC, and Mel-Filterbank-Slope features
were employed with GMM to capture the characteristics of channel and
reverberation from the audio for replay detection.

2.1.2. Deep learning-based techniques
Deep learning (DL) techniques have also been employed for spoof-

ing detectors apart from the conventional ML based methods. In Cai,
Cai, Liu, Li, and Li (2017), the original spectrogram was used instead
of CQCC to train a deep residual network for features extraction.
This method is taxing due to manual data augmentation and achieves
higher equal error rate (EER) due to using only the short time Fourier
3

transform based spectrogram. MFCC and CQCC were employed in Chen,
Xie, Zhang, and Xu (2017) with the GMM, DNN and ResNet for replay
spoofing detection. Fusion of CQCC-GMM, CQCC-ResNet, and MFCC-
ResNet obtained the minimum EER. Fusion of the two deep networks
and GMM makes it less practical to deploy on resource constraint
VCSs. In Bakar and Hanilçi (2018), long term average spectrum (LTAS)
and MFCC features were employed to train the DNN for spoofing
detection. Light-weight CNN was employed for audio spoofing detec-
tion in Lavrentyeva et al. (2017) and Lavrentyeva et al. (2019). In
Monteiro, Alam, and Falk (2020), an end-to-end LCNN ensemble model
was proposed based on training a model on the predictions of two
separately trained models for replay and cloning attacks respectively.
Although this method (Monteiro et al., 2020) outperforms the ASVspoof
baseline model (Yamagishi et al., 2019), but with increased features
computation cost.

2.2. Voice cloning detection approaches

Existing approaches have employed various magnitude- and phase-
oriented features for synthetic/cloned speech detection.

2.2.1. Phase-oriented approaches
In De Leon, Pucher, Yamagishi, Hernaez, and Saratxaga (2012),

relative phase shift (RPS) features were extracted from the speech seg-
ments of the audio signal and used with the GMM for speech synthesis
detection. Similarly, RPS was used with the GMM for synthetic speech
detection in Saratxaga, Sanchez, Wu, Hernaez, and Navas (2016). In
Janicki (2017), long term prediction residual signals comprised of
23 different parameters were used with the SVM to classify the hu-
man and cloned speech. In Wester, Wu, and Yamagishi (2015), MFCC
and cosine-normalized phase (cos-phase) features were used with the
GMM-Universal background model for voice cloning detection.

2.2.2. Magnitude-oriented approaches
In Patel and Patil (2015), cochlear filter cepstral coefficients (CFCC)

and CFCC-instantaneous frequency (CFCCIF) features were used with
the GMM for audio spoofing detection. In Wu, Xiao, Chng, and Li
(2013), modulation features were used to design a model for syn-
thetic speech detection. For this purpose, MFCC and modified group
delay cepstral coefficients (MGDCC) features were extracted from the
magnitude and phase spectrums, respectively, and used by the GMM
to classify the speech as bonafide or clone. Malik (2019) employed
the higher-order spectral analysis (HOSA) features and gaussian and
linearity tests to capture the traces of generative models for bonafide
and cloned audio detection.
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Fig. 3. GTCC features for bona fide, first-, and second-order replay: Twelve coefficients of GTCC features are plotted against the frames of entire audio signal to reveal the details
of distortions/artifacts.
3. Analysis of single- and multi-order audio spoofing

Voice spoofing attacks can be employed to exploit both the ASV and
VCSs. We categorize these attacks into replays, cloning, and cloned-
replay (Fig. 1), and these can be either single- or multi-order.

We model the first-order voice spoofing attack (replay) depicted
in Fig. 2 as microphone-speaker-microphone (MSM) processing chain.
This is similar to three second-order systems in cascade. Therefore,
this MSM chain (demonstrating a 1st-order replay attack) is antici-
pated to add higher-order non-linearities because of the cascade of the
MSM chain. More specifically, this MSM chain introduces beyond 7th-
order non-linearity in the replay signal. Higher-order audio replay and
cloned-replay attacks are likely to generate stronger higher-order har-
monic distortions (HoHDs) in the replay samples (Fig. 1). Conversely,
bonafide voice samples lack MSM processing chain and likely to present
lesser HoHDs. Therefore, we argue that the HoHDs can be used to
discriminate between a bonafide and spoofed voice sample. Spectral
features i.e., MFCC, GTCC, etc., or time-domain features i.e., ATCoP
can be employed to capture the artifacts of these HoHDs.

Unlike replay and cloned-replay attacks where harmonic distortions
exist due to MSM chain, voice cloning attacks are expected to be more
linear compared to the bonafide sample. This is because the process
of synthetic speech generation is comparatively more linear than the
bonafide speech generation process that consists of non-linear sub-
processes i.e., respiration, phonation, resonance, and articulation. The
bonafide audio recording consists of several components that are input
speech signal 𝑠(𝑡), environment distortion (reverberant signal 𝑟(𝑡) and
background noise 𝜂(𝑡)), microphone distortion 𝜂𝑚(𝑡), encoding distortion
𝜂𝑒(𝑡), and transcoding distortion 𝜂𝑡(𝑡). Let ℎ𝑚(𝑡) be the microphone
impulse response and ℎ𝑟(𝑡) be the room impulse response; we can
express the digital audio recording signal as:

𝑋(𝑡) = ℎ𝑟(𝑡) × ℎ𝑚(𝑡) × 𝑠(𝑡) + ℎ𝑚(𝑡) × 𝜂(𝑡) + 𝜂𝑚(𝑡) + 𝜂𝑡(𝑡) (1)

Contrarily, cloned voice generation does not include any record-
ing mechanism and thus considered linear compared to the bonafide
speech. Additionally, cloned voice will not contain microphone fin-
gerprints like those found in the bonafide audio signal. Therefore, we
hypothesize that acoustic and spectral characteristics of cloned signal
should be different than the bonafide ones, and ATCoP and GTCC
should be able to detect these differences with high accuracy.

In our prior work (Malik, 2012; Malik et al., 2019), we have
demonstrated that replay attacks add HoHDs and employed the HOSA
4

to capture these nonlinear distortions. However, HOSA features are less
feasible for VCSs because of higher computational cost. Additionally,
there exists a need to develop robust audio features which are capable
of effectively detecting multiple spoofing attacks. To support our claims
and need of robust features, we discuss an example of replay attacks.
We created the plots of GTCC features (Fig. 3) for bonafide (left),
1st-order (center), and 2nd-order replay (right) audios to show the ef-
fectiveness of our ATCoP-GTCC features to better capture the harmonic
distortions. Fig. 3 reveals that replay attacks add harmonic distortions
(highlighted ellipses) in the replay samples; and our proposed features
can capture these distortions. From Fig. 3, we can also observe that
these distortions are more prominent in 2nd-order replay audios as
compared to the 1st-order replay audios. This fact endorses our claim
that higher-order audio spoofing attacks are more likely to instigate stronger
HoHDs in the audios.

4. Unified voice spoofing detection framework

This section provides a detailed discussion of the proposed unified
anti-spoofing framework. The details of the proposed novel ATCoP-
GTCC features are presented in this section. The framework of our
system is presented in Fig. 4.

4.1. Features extraction

For accurate spoofing detection, we need to develop robust features
that can better extract the unique traits of bonafide and spoofed audios.
For this purpose, we introduce a novel hybrid ATCoP-GTCC features to
detect various diverse voice spoofing attacks. We provide the details of
the proposed features extraction methods below.

4.1.1. Acoustic ternary co-occurrence patterns
The 1-D acoustic patterns i.e. local binary patterns (LBP), local

ternary patterns (LTP) (Adnan et al., 2018) have been employed in
various audio processing applications including the audio spoofing
detection. However, these descriptors have certain limitations such
as LBP is sensitive to noise, and possibility of different LBP codes
generation for the same class that makes it less effective for bonafide vs
spoof classification. On the other hand, LTP employs a fixed threshold-
based method that is not much robust over dynamic patterns that exist
in the spoofed audios. The limitations of these existing acoustic patterns
motivated us to propose a novel feature representation i.e. ATCoP
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Fig. 4. Architecture of the proposed unified anti-spoofing framework.
Fig. 5. ATCoP features extraction method.
for 1-D acoustic signals. ATCoP encodes the co-occurrence of similar
ternary patterns between the center and neighboring samples without
needing any threshold. Additionally, ATCoP provides an effective rep-
resentation of the audio that can reliably be used to better capture the
characteristics of bonafide and spoofed speeches.

Let 𝑋[𝑛] be an audio signal with N samples divided into m over-
lapping frames 𝐹 (𝑖) having 17 samples in each frame with a step-size
of 8, where i = 1, 2, . . . , m. In each frame 𝐹 (𝑖), c denotes the central
sample (Fig. 5(a)). We divide each frame into two windows 𝑤1 and 𝑤2
having adjacent neighbors 𝑧𝑗𝑤1

and far away neighbors 𝑧𝑗𝑤2
as shown

in (Fig. 5(b)), where j is the neighboring index w.r.t the sample c. 𝑤1
consists of 4 adjacent neighbors on each side of the central sample
c that is highlighted in blue color in 𝐹 (𝑖) (Fig. 5(b)). Whereas, 𝑤2
consists of remaining 8 samples in 𝐹 (𝑖) that is highlighted in green color
in Fig. 5(b). To compute the ATCoP, we first calculate the 1st-order
derivative between the central and each neighboring sample in 𝑤1 and
repeat this process for 𝑤2 as shown in Eqs. (2) and (3).

𝐷(𝑧𝑗𝑤1
, 𝑐) = 𝑧𝑗𝑤1

− 𝑐 (2)

𝐷(𝑧𝑗𝑤2
, 𝑐) = 𝑧𝑗𝑤2

− 𝑐 (3)

where 𝑧𝑗𝑤1
and 𝑧𝑗𝑤2

represent the neighboring samples of 𝑤1 and 𝑤2,
respectively. 𝐷(𝑧𝑗𝑤1

, 𝑐) and 𝐷(𝑧𝑗𝑤2
, 𝑐) represent the first-order derivatives

computed between the center and neighboring samples in 𝑤 and 𝑤
5

1 2
respectively. Next, we code them according to the sign of first-order
derivative as follows:

𝑃𝑙(𝑧
𝑗
𝑤1

, 𝑐) =

{

1, 𝐷(𝑧𝑗𝑤1
, 𝑐) > 0,

2, 𝐷(𝑧𝑗𝑤1
, 𝑐) ≤ 0

(4)

𝑃𝑙(𝑧
𝑗
𝑤2

, 𝑐) =

{

1, 𝐷(𝑧𝑗𝑤2
, 𝑐) > 0,

2, 𝐷(𝑧𝑗𝑤2
, 𝑐) ≤ 0

(5)

where 𝑃𝑙(𝑧
𝑗
𝑤1

, 𝑐) and 𝑃𝑙(𝑧
𝑗
𝑤2

, 𝑐) represents the assigned codes to the sam-
ples of 𝑤1 and 𝑤2, respectively. Next the samples of the corresponding
locations in 𝑤1 and 𝑤2 are compared to generate the ternary values as
follows:

𝑇𝐶𝑜𝑃 (𝑧𝑗 , 𝑐) =

⎧

⎪

⎨

⎪

⎩

𝑓 (𝑃1(𝑧
𝑗
𝑤1

, 𝑐), 𝑃1(𝑧
𝑗
𝑤2

, 𝑐)),
𝑓 (𝑃2(𝑧

𝑗
𝑤1

, 𝑐), 𝑃2(𝑧
𝑗
𝑤2

, 𝑐)),… ,
𝑓 (𝑃8(𝑧

𝑗
𝑤1

, 𝑐), 𝑃8(𝑧
𝑗
𝑤2

, 𝑐))
(6)

where,

𝑇𝐶𝑜𝑃 (𝑧𝑗 , 𝑐) =

⎧

⎪

⎨

⎪

⎩

1, 𝑖𝑓𝑥 = 𝑦 = 1
2, 𝑖𝑓𝑥 = 𝑦 = 2
0, 𝑖𝑓𝑥 ≠ 𝑦

(7)

where 𝑇𝐶𝑜𝑃 (𝑧𝑗 ,c) represents the ternary patterns. We further divide
the ternary patterns into two binary patterns that are upper patterns
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𝑇𝐶𝑜𝑃𝑢𝑝 (.) and lower patterns 𝑇𝐶𝑜𝑃𝑙𝑤 (.). We retain all values of 1 in
𝐶𝑜𝑃𝑢𝑝 (.) and replaced the rest with zeros as follows:

𝐶𝑜𝑃 𝑢𝑝(𝑧𝑗 , 𝑐) =

{

1, 𝑖𝑓𝑇𝐶𝑜𝑃 (𝑧𝑗 , 𝑐) = 1
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8)

Likewise, we retain all values of 2 in 𝑇𝐶𝑜𝑃𝑙𝑤(.) while replacing the
rest with zeros as follows:

𝑇𝐶𝑜𝑃 𝑙𝑤(𝑧𝑗 , 𝑐) =

{

1, 𝑖𝑓𝑇𝐶𝑜𝑃 (𝑧𝑗 , 𝑐) = 2
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(9)

Next, we adopt the concept of picking uniform patterns over non-
uniform patterns (Ojala, Pietikäinen, & Harwood, 1996). The uniform
patterns hold significant attributes of the signal, whereas, non-uniform
patterns mostly contain the redundant information. We computed the
uniform patterns, 𝑇𝐶𝑜𝑃 𝑢𝑝

𝑢 (.) and 𝑇𝐶𝑜𝑃 𝑙𝑤
𝑢 (.) from the 𝑇𝐶𝑜𝑃 𝑢𝑝(.) and

𝑇𝐶𝑜𝑃 𝑙𝑤(.) as depicted in Fig. 5(c), and represented these ternary
co-occurrence patterns in decimal form as:

𝑇𝐶𝑜𝑃 𝑢𝑝
𝑢 (𝑧𝑗 , 𝑐) =

𝑗=7
∑

𝑗=0
𝑇𝐶𝑜𝑃 𝑢𝑝

𝑢 (𝑧𝑗 , 𝑐) × 2𝑗 (10)

𝑇𝐶𝑜𝑃 𝑙𝑤
𝑢 (𝑧𝑗 , 𝑐) =

𝑗=7
∑

𝑗=0
𝑇𝐶𝑜𝑃 𝑙𝑤

𝑢 (𝑧𝑗 , 𝑐) × 2𝑗 (11)

where the 𝑇𝐶𝑜𝑃𝑢 value represents the number of bit-wise transitions
(0/1 changes) in the pattern. The co-occurrence patterns with mini-
mal transitions are considered uniform i.e., 11111111 and 00000001
patterns have uniform values of 0 and 1 respectively. After computing
the 𝑇𝐶𝑜𝑃 𝑢𝑝

𝑢 and 𝑇𝐶𝑜𝑃 𝑙𝑤
𝑢 , we calculate the histograms of these uniform

patterns. We assign one histogram bin for each uniform pattern and
include all non-uniform patterns in a single bin to ensure reducing only
the redundant information from the input sample (Fig. 5(d)).

𝐻𝑇𝐶𝑜𝑃 𝑢𝑝
𝑢 (𝑇𝐶𝑜𝑃 𝑢𝑝, 𝑛) =

𝐾
∑

𝑘=1
𝛿(𝑇𝐶𝑜𝑃 𝑢𝑝

𝑘 , 𝑛) (12)

𝐻𝑇𝐶𝑜𝑃 𝑙𝑤
𝑢 (𝑇𝐶𝑜𝑃 𝑙𝑤, 𝑛) =

𝐾
∑

𝑘=1
𝛿(𝑇𝐶𝑜𝑃 𝑙𝑤

𝑘 , 𝑛) (13)

here n shows the histogram bins corresponding to the uniform ATCoP
odes and 𝛿(.) is the Kronecker delta function. We performed substan-
ial experiments to generate these ATCoP codes by selecting different
umber of bins for uniform patterns. After detailed experimentation,
e observe that the first 20 uniform patterns from each of 𝑇𝐶𝑜𝑃 𝑢𝑝

𝑢 and
𝐶𝑜𝑃 𝑙𝑤

𝑢 were enough to capture the distortions in replay, artifacts in
loning, and dynamic speech variations of bonafide samples. Therefore,
e create a 20-D ATCoP code each for 𝑇𝐶𝑜𝑃 𝑢𝑝

𝑢 and 𝑇𝐶𝑜𝑃 𝑙𝑤
𝑢 and fused

hem to generate a 40-D ATCoP features as follows:

𝑇𝐶𝑜𝑃 = [𝐻𝑇𝐶𝑜𝑃 𝑢𝑝
𝑢

⨆

𝐻𝑇𝐶𝑜𝑃 𝑙𝑤
𝑢 ] (14)

here ⨆ represents the concatenation operator for vectors.

nalysis of ATCoP features. Due to the vulnerability of the smart speak-
rs against different voice spoofing attacks, we need a robust anti-
poofing system that should investigate the following facts while de-
igning the features: (i) the microphone introduces a layer of non-
inearity because of inter-modulation distortions, which introduce the
iscernible patterns, (ii) introduction of the higher-order non-linearities
n consequent recordings of the given recording make these audios
ore distinct, (iii) voice cloning methods also add the algorithmic

rtifacts, and (iv) presence/absence of dynamic speech variations in
onafide/cloned voice. Hence, these facts must be considered while
roposing a robust voice anti-spoofing system.

Our ATCoP features are developed to capture the traces of unique
ttributes of bonafide and spoof audios in time domain. To justify
he effectiveness of our ATCoP features for distinct representation of
6

onafide and various categories of spoof audios, we created the detailed s
raphs of ATCoP features for the bonafide, cloned, replay, and cloned-
eplay audios as shown in Fig. 6. For each analysis, we selected the
udios of same speaker for both the bonafide and spoof categories for
air comparison. We plotted the ATCoP features of bonafide, 1st-order
eplay, and second-order replay for VSDC audios in Fig. 6(a). Likewise,
eatures of bonafide and replay for ASV-spoof PA, and bonafide and
loned for ASV-spoof LA corpus are presented in Fig. 6(b) and (c) re-
pectively. Finally, ATCoP features for cloned, 1st-order cloned replay,
nd second-order cloned replay are shown in Fig. 6(d). By analyzing the
eaks of these graphs, we can conclude that our ATCoP features give
istinct representation for bonafide and different categories of spoof
udios at same feature-points. This analysis demonstrate that ATCoP
eatures can reliably be used to represent the input audios for spoofing
etection problem.

.1.2. Gammatone cepstral coefficients (GTCC)
Spectral features such as GTCC, MFCC, etc., can be employed to

apture the non-linearities in frequency scale of the input audio signal.
FCC features have been explored for various audio processing appli-

ations due to its effectiveness to capture the significant attributes of
he acoustic signal. Recently, GTCC features have also been employed
ue to their enhanced filter response that better resemble the human
uditory system. We employed the GTCC features with our ATCoP
eatures for voice spoofing detection due to two reasons: i) GTCC are
ore tolerant to noise over MFCC (Cooper, 2013), and (ii) provide
arginally better classification performance over MFCC with compara-

le computational cost. The ability of GT filter to offer more frequency
omponents in low-frequency band and less frequency components in
igh-frequency band allows us to better capture the non-linearities in
he audio signal.

For GTCC extraction, we employed the fast Fourier transform (FFT)
n the input audio signal. Next, the gammatone filter bank consisting of
ifferent GT filters is applied to the FFT to compute the energy of each
ub-band. The discrete cosine transform is applied on the log of each
nergy band to extract the GTCC features as shown in Fig. 7, where
e obtain a 13-D GTCC features vector. It is to be noted that 13 to 20

oefficients are considered enough for optimal audio analysis. Thus, we
xtracted 13 GTCC coefficients and later fused them with the proposed
ovel ATCoP features for audio signal representation.

.2. Classification

To address the multi-class classification problem, we employed the
rror correcting output codes (ECOC) framework (Escalera, Pujol, &
adeva, 2009) by combining three binary classifiers. ECOC model
enerates a codeword against each class during encoding and predict
he class of given test sample at the decoding phase.

Since we have three classes for replay and cloned-replay detection,
e train three binary learners using two classes at a time to obtain
3-digit codeword for each class. Each bit of the codeword specifies

he response of the given binary learner. More precisely, we used three
odes -1,0,1 during the encoding to ignore one class and compare the
ther two in the one vs one approach (Table 1). So, our ternary coding
atrix for three classes is shown in Table 1, where the 3-bit error

orrecting output code word is presented for three-class classification.
ach class is assigned a unique 3-bit code-word. One binary classifier is
earned for each column during the training. As shown in Table 1, first
earner (L-1) is trained to separate class 1 and 2, second learner (L-2)
s trained to separate class 1 and 3, whereas, the third learner (L-3)
s trained to distinguish class 2 and 3. For each column, 0 is used to
gnore the third class while the remaining two classes are used in the
lassification process. Three binary classifiers are trained in this way.

At decoding, all of these three binary classifiers are evaluated to
btain a 3-bit code. We employed the hamming distance to compute
he closest match between this 3-bit code and the assigned code-words
f each class. Finally, we select the class of the input audio as the
ne whose code-word has minimum distance with the 3-bit code of
he sample. Our ECOC framework uses three binary SVM learners for
poofing detection.
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Fig. 6. ATCoP features analysis.
Fig. 7. GTCC features extraction method.
Table 1
Coding matrix design for 3 class classification.

L-1 L-2 L-3

C-1 1 1 0
C-2 −1 0 1
C-3 0 −1 −1

5. Experimental setup and results

5.1. Dataset

Performance of our system is measured on in-house created VSDC
(Baumann et al., 2021), ASVspoof 2019 (Yamagishi et al., 2019),
Google’s LJ Speech (Ito & Johnson, 2021), and YouTube deepfakes
(Agarwal et al., 2019) datasets. VSDC is designed for single- and multi-
order voice replay and cloned-replay attacks detection for diverse and
challenging scenarios. VSDC comprises both the first- and second-order
replay audios against the bonafide ones, unlike ASVspoof (Yamagishi
et al., 2019) that contains only the first-order replay samples against
the bonafide. Our VSDC (Baumann et al., 2021) is diverse in terms
of environment, configurations, speaker genre, recording and playback
devices, recording and playback configurations, and number of speak-
ers (Table 2). Each bonafide and replay audio sample in our dataset
is 6 s in duration. Since we introduce a new spoofing threat, cloned-
replay, that represents the recording of cloned voice sample, we used
the ASVspoof synthetic samples to generate the first- and second-order
cloned replay samples. Our VSDC is publicly available and more details
can be found at (Baumann et al., 2021).

ASVspoof 2019 dataset (Yamagishi et al., 2019) contains the logical
access (cloning) and physical access (replay) samples for training, de-
velopment and evaluation. Training, development, and evaluation sets
7

for replay contain 54 000, 33 534, and 153 522 samples, respectively.
Whereas, training, development, and evaluation sets for voice cloning
contain 25 380, 24 844 and 71 933 samples, respectively.

LJ Speech is a public domain dataset consisting of 13 100 bonafide
audio samples. The duration of voice samples of this dataset varies from
1 to 10 s with a total length of 24 h. Each voice sample is recorded
with sampling rate of 22 050 Hz. We employed Google’s cloning model
(Kang, 2021) to generate 1500 spoofing samples and later used these
bonafide and cloned samples for voice cloning detection.

Deepfakes corpus (Agarwal et al., 2019) contains different YouTube
videos of various US politicians with average length of 1.5 h. The audio
streams of these videos are also forged, and we used them to evaluate
our framework.

5.2. Performance evaluation of proposed anti-spoofing system

Performance of the proposed system is measured using the min-
tDCF, and EER. We designed separate experiments to detect the replay,
cloning, and cloned-replay attacks. For replay experiments, we com-
puted the results on both the ASVspoof 2019 and VSDC. For speech
synthesis, we used ASVspoof 2019, LJ Speech, and YouTube deepfakes
datasets, whereas, we used the VSDC corpus for cloned-replay detec-
tion. The details of datasets division for experimentation are presented
in Table 2.

5.2.1. Detection performance of ATCoP, GTCC, and fusion
We conducted an experiment to investigate the performance of

ATCoP, GTCC, and their fusion for audio spoofing detection. For this
purpose, we employed the ATCoP features with SVM for replay de-
tection (on ASVspoof 2019 and VSDC datasets separately), synthetic
speech/cloning detection (on ASVspoof 2019 and LJSpeech datasets
separately), and cloned-replay detection on VSDC. The results are
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Table 2
Datasets division for experimentation.

Dataset Training Testing

Division Number of
samples

Division Number of
samples

ASVspoof-PA Train 54,000 Eval 1,53,522
ASVspoof-LA Train 25,380 Eval 71,933
VSDC 70% 8397 30% 3603
LJSpeech 70% 18,340 30% 7860
YouTubes deepfakes 70% 63 30% 27

Table 3
Comparative analysis of ATCoP, GTCC, and ATCoP-GTCC.

Spoofing Dataset Features min-tDCF EER%

Replay

ASVspoof
ATCoP 0.097 2.80
GTCC 0.211 8.35
ATCoP-GTCC 0.064 1.00

VSDC
ATCoP 0.079 2.10
GTCC 0.21 7.98
ATCoP-GTCC 0.056 0.90

Synthesis/Cloning

ASVspoof
ATCoP 0.059 0.80
GTCC 0.132 6.10
ATCoP-GTCC 0.011 0.10

LJSpeech
ATCoP 0.007 0.10
GTCC 0.019 0.28
ATCoP-GTCC 0.0 0.0

Cloned replay VSDC
ATCoP 0.05 0.90
GTCC 0.19 3.99
ATCoP-GTCC 0.002 0.03

Table 4
Replay detection results.

Dataset SVM Kernel min-tDCF EER%

VSDC

Linear 0.503 25.00
Quadratic 0.078 2.00
Cubic 0.0576 0.90
RBF 0.05 0.75

ASVspoof

Linear 0.068 1.50
Quadratic 0.064 1.00
Cubic 0.064 1.00
RBF 0.068 1.50

provided in Table 3. We repeated this experiment for the evaluation of
GTCC and ATCoP-GTCC features. From these results, we found that the
ATCoP offers better performance as compared to the GTCC, but ATCoP-
GTCC fusion performed the best. Thus, we employed the ATCoP-GTCC
features for audio spoofing detection.

5.2.2. Detection performance of the proposed ATCoP-GTCC features for
replay attack detection

We used our ATCoP-GTCC features to train the SVM using differ-
ent kernels on both the VSDC and physical access (PA) collection of
ASVspoof datasets and results are presented in Table 4. For VSDC,
we obtained the lowest min-tDCF and EER of 0.05 and 0.75% on the
radial basis function (RBF) kernel, respectively. For ASVspoof 2019
corpus, we obtained the lowest min-tDCF and EER of 0.064 and 1%
on quadratic and cubic kernels. We can observe from Table 4 that the
SVM tuned with higher-order polynomial (cubic) and RBF kernels gives
superior performance over other kernels on both datasets.

From the results, we observed that SVM tuned on higher-order
polynomial kernel better captures the non-linearities exist in multi-
order replay audios. As expected, SVM with linear kernel attains the
highest min-tDCF. We also found that 3𝑟𝑑 -order polynomial (cubic) ker-
nel provides better classification over 2nd-order polynomial (quadratic)
for multi-order replay detection. This demonstrates the effectiveness
8

of the cubic kernel in differentiating the non-linearities available in
Table 5
Speech synthesis detection results.

Dataset SVM Kernel min-tDCF EER%

ASVspoof

Linear 0.078 2.00
Quadratic 0.05 0.75
Cubic 0.047 0.70
RBF 0.05 0.75

LJSpeech

Linear 0.0 0.0
Quadratic 0.0 0.0
Cubic 0.0 0.0
RBF 0.0 0.0

Table 6
Cloned replay detection results.

Dataset SVM Kernel min-tDCF EER%

ASVspoof

Linear 0.011 0.17
Quadratic 0.007 0.10
Cubic 0.002 0.03
RBF 0.01 0.15

Table 7
Feature vectors.

Feature-vector Features

Spectral-MFCC-GTCC 40-D GTCC [1–13], MFCC [1–13], Spectral (Kurtosis,
Skewness, Slope, Centroid, Flatness, Entropy,
Decrease, Rolloff point, Flux, Crest, Spread), Energy

ATCoP-Spectral 51-D ATCoP [40-D], Spectral [11-D]
ATP-MFCC 53-D ATCoP [40-D], MFCC [13-D]
ATP-GTCC 53-D ATCoP [40-D], GTCC [13-D]

multi-order audio replays. Therefore, we argue that the proposed fea-
tures with SVM tuned on the cubic kernel effectively detects the non-
linearities in the replays.

5.2.3. Detection performance of the proposed ATCoP-GTCC features for
speech synthesis (voice cloning) detection

Performance of the proposed anti-spoofing framework is also evalu-
ated on logical access (LA) collection of ASVspoof 2019 and LJ Speech
1.1 datasets for voice cloning detection. For this purpose, we used our
features to train the SVM for classification of audio as bonafide or spoof
and results obtained on the SVM using different kernels are provided
in Table 5.

From the results (Table 5), we can observe that the SVM tuned on
higher-order polynomial (cubic and quadratic) and RBF kernels provide
remarkable classification performance. It is to be noted that SVM tuned
with cubic kernel performs marginally better than quadratic and RBF
kernels. More specifically, we obtained min-tDCF and EER of 0.047 and
0.7% on ASVspoof 2019 LA dataset. On the other hand, we obtained
the optimal 0.0 min-tDCF and 0% EER for voice cloning detection on LJ
Speech dataset. This remarkable performance is attributed to the fact
that these cloned samples do not have microphone signatures which
our framework successfully detects.

5.2.4. Detection performance of the proposed ATCoP-GTCC features for
cloned-replay attack detection

We used the ASVspoof 2019 LA dataset of cloned voices of different
speakers to create the first- and second-order cloned replay recordings.
We extracted the features from these cloned and cloned-replay samples
(1st- and 2nd-order) and train the SVM for classification, and results are
reported in Table 6. We conclude from these results that SVM provides
remarkable results on all kernels to classify among the cloned, 1st- and
nd-order cloned audio replays. However, higher-order polynomial ker-
el (cubic) achieves best results with a small margin. More specifically,
e obtained min-tDCF of 0.002 and EER of 0.03% on the cubic kernel
f SVM.
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Table 8
Comparative analysis of the proposed and other spectral features for replay attacks
detection.

Dataset Features min-tDCF EER%

VSDC

MFCC-GTCC-Spectral 0.084 2.33
ATCoP-Spectral 0.108 4.60
ATCoP-MFCC 0.065 1.16
ATCoP-GTCC 0.0576 0.90

ASVspoof

MFCC-GTCC-Spectral 0.137 6.75
ATCoP-Spectral 0.064 1.00
ATCoP-MFCC 0.064 1.00
ATCoP-GTCC 0.064 1.00

Table 9
Comparative analysis of the proposed and other spectral features for speech cloning
detection.

Dataset Features min-tDCF EER%

ASVspoof

MFCC-GTCC-Spectral 0.099 3.00
ATCoP-Spectral 0.053 0.80
ATCoP-MFCC 0.05 0.75
ATCoP-GTCC 0.043 0.65

LJSpeech

MFCC-GTCC-Spectral 0.021 0.30
ATCoP-Spectral 0.0 0.0
ATCoP-MFCC 0.0 0.0
ATCoP-GTCC 0.0 0.0

Table 10
Comparative analysis of the proposed and other spectral features for cloned replay
detection.

Dataset Features min-tDCF EER%

VSDC

MFCC-GTCC-Spectral 0.028 0.40
ATCoP-Spectral 0.064 1.00
ATCoP-MFCC 0.021 0.30
ATCoP-GTCC 0.002 0.03

5.2.5. Evaluation of proposed ATCoP and spectral features fusions
To justify the robustness of our features for voice spoofing detection,

we created different combination of features using our ATCoP and
spectral features (Table 7). For classification, we employed the SVM
and results are presented in Tables 8 to 10.

The results of replay attack detection are presented in Table 8.
From Table 8, we can see that our proposed ATCoP-GTCC features
outperform others and attained the min-tDCF and EER of 0.0576 and
0.9% on VSDC, and 0.064 and 1% on the ASVspoof dataset. Whereas,
we obtained the highest min-tDCF of 0.084 and 0.137 on MFCC-GTCC-
spectral features for VSDC and ASVspoof PA datasets respectively.

Similarly, we provided the results of voice cloning/speech synthesis
detection in Table 9. Again, our ATCoP-GTCC features provide better
results over other features by attaining min-tDCF of 0.043 and 0.0.
Whereas, MFCC-GTCC-spectral achieved the highest min-tDCF of 0.099
and 0.021 for ASVspoof and LJ Speech datasets, respectively. It is
important to mention that for LJ Speech dataset, all features fusion con-
taining ATCoP features achieve an optimal min-tDCF of 0.0. However,
our ATCoP-GTCC features outperform other features on the ASVspoof
LA dataset.

Finally, we evaluated the performance of all feature combinations
for cloned-replay detection on VSDC cloned-replay collection, and re-
sults are provided in Table 10. Similar to the other experiments, we also
achieved the best results for cloned-replay detection using our proposed
features. More specifically, we obtained min-tDCF of 0.028 on MFCC-
GTCC-spectral, 0.064 on ATCoP-spectral, 0.021 on ATCoP-MFCC, and
0.002 on our ATCoP-GTCC features.

We can observe from the results presented in Tables 8 to 10 that the
proposed ATCoP-GTCC features outperform other features-sets. More
specifically, we obtained the lowest min-tDCF of 0.0576 for replay
attacks detection, optimal 0.0 for voice cloning detection, and 0.002 for
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cloned-replay detection. These results illustrate the effectiveness of the
proposed features for accurate spoofing detection. In short, our novel
ATCoP-GTCC features lay the foundation for a unified anti-spoofing
framework capable of reliable detection of multiple types of voice
spoofing attacks.

5.3. Comparative analysis using different classifiers

We designed an experiment to compare the performance of the
proposed features on other machine learning classifiers for replay,
cloned-replay, and speech synthesis detection. For this, we used our
ATCoP-GTCC features to train the conventional ML and DL classifiers
and results are reported in Table 11.

5.3.1. Decision trees classification
For decision trees (Breiman, Friedman, Olshen, & Stone, 2017), we

computed the classification results on different depths i.e. fine, medium
and coarse, where fine-level has more depth and coarse-level has least
depth in tree structure. It is to be noted that decision trees trained at
fine-level performed best for all types of spoofing detection. The results
on decision trees tuned at fine-level are shown in Table 11.

5.3.2. Naïve Bayes classification
For Naïve Bayes (Fu, Lu, Ting, & Zhang, 2010), we computed the

results using the gaussian and kernel distributions. For replay detection,
we obtained the min-tDCF of 0.651 and 0.478 with gaussian distri-
bution, and 0.528 and 0.421 with kernel distribution on VSDC and
ASVspoof PA datasets, respectively. For voice cloning, we obtained
the min-tDCF of 0.139 and 0.0 on gaussian and 0.097 and 0.0 on
kernel distribution for ASVspoof LA and LJ Speech datasets. Similarly,
for cloned replay detection, we obtained the min-tDCF of 0.106 and
0.067 on gaussian and kernel distributions, respectively. We observed
from the experiments that Naïve Bayes using the kernel distribution
outperforms the gaussian distribution for voice spoofing detection,
however with higher computational cost and memory. The results on
Naive Bayes using the kernel distribution are shown in Table 11.

5.3.3. K-nearest neighbor (KNN) classification
For KNN (Zhang, Li, Zong, Zhu, & Wang, 2017) experiments, we

tuned three parameters i.e number of neighbors 𝑘𝑛, distance weights
𝑑𝑤, and distance metric 𝑑𝑚. We measured the performance on three
different values of 𝑘𝑛 (1, 10, 100), three different 𝑑𝑚 (Euclidean, cubic,
cosine), and two variations of 𝑑𝑤 (equal, squared inverse). For all three
spoofing categories, we obtained best results on weighted-KNN (𝑘𝑛=10,
𝑑𝑤 = squared inverse, 𝑑𝑚=Euclidean) for all datasets, as shown in
Table 11.

5.3.4. Ensemble learning models
We also evaluated our method on different ensemble classifiers

(Dietterich, 2000) i.e. bagged trees (Sun, Lang, Fujita, & Li, 2018),
boosted trees (Hubáček, Šourek, & Železný, 2019), RUSBoosted trees
(Moeyersons, Varon, Testelmans, Buyse, & Van Huffel, 2017), sub-
space discriminant (Hang, Liu, Song, & Sun, 2015), and subspace KNN
(Zhang, Cao, Wang, & Li, 2019). We achieved best results on ensemble
bagged trees and worst on RUSboosted trees for all types of spoofing
detection. For replay detection, we obtained the min-tDCF of 0.115 and
0.104 on bagged trees, and 0.512 and 0.601 on RUSboosted trees for
VSDC and ASVspoof PA datasets, respectively. For cloning detection,
we obtained the min-tDCF of 0.068 and 0.0 on bagged trees, and
0.448 and 0.142 on RUSboosted trees for ASVspoof LA and LJ Speech
datasets, respectively. For cloned-replay detection, we obtained the
min-tDCF of 0.032 and 0.097 on bagged- and RUSboosted-trees. The
results on ensemble bagged trees are presented in Table 11.
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Table 11
Comparative Analysis of different classifiers with ATCoP-GTCC features.

Dataset Classifiers Replay Cloning Cloned replay

min-tDCF EER% min-tDCF EER% min-tDCF EER%

VSDC

Decision trees 0.389 17.83 – – – –
Naïve Bayes 0.528 27.00 – – – –
KNN 0.058 0.92 – – – –
Ensemble Models 0.115 1.83 – – – –
BiLSTM 0.313 13.10 – – – –
SVM 0.0576 0.90 – – – –

ASVspoof 2019

Decision trees 0.216 9.00 0.121 5.00 0.048 0.75
Naïve Bayes 0.421 19.75 0.097 2.80 0.067 1.41
KNN 0.137 6.75 0.078 2.00 0.032 0.50
Ensemble Models 0.104 4.50 0.068 1.50 0.032 0.50
BiLSTM 0.308 12.70 0.081 2.20 0.032 0.50
SVM 0.064 1.00 0.05 0.75 0.002 0.03

LJSpeech

Decision trees – – 0.0 0.0 – –
Naïve Bayes – – 0.0 0.0 – –
KNN – – 0.0 0.0 – –
Ensemble Models – – 0.0 0.0 – –
BiLSTM – – 0.0 0.0 – –
SVM – – 0.0 0.0 – –
Table 12
Performance comparison with existing contemporary anti-spoofing methods.

Spoofing Dataset Methods min-tDCF EER%

Replay ASVspoof 2019-PA-Eval

CQCC-GMM baseline (Yamagishi et al., 2019) 0.2454 11.04
LFCC-GMM baseline (Yamagishi et al., 2019) 0.3017 13.54
FBCC-GMM (Kumar & Bharathi, 2021) 0.25 10.36
Stat-SE-Res2Net50 (Li et al., 2021) 0.027 1.00
LFCC+ProdSpec+MGDCC-CNN (Monteiro et al., 2020) 0.07 2.015
CQT+LFCC+DCT-LCNN (Lavrentyeva et al., 2019) 0.0122 0.54
ATCoP+GTCC-SVM (Proposed method) 0.064 1.00

Cloning ASVspoof 2019-LA-Eval

CQCC-GMM baseline (Yamagishi et al., 2019) 0.236 9.87
LFCC-GMM baseline (Yamagishi et al., 2019) 0.212 11.96
FBCC-GMM (Kumar & Bharathi, 2021) 0.155 6.16
Stat-SE-Res2Net50 (Li et al., 2021) 0.068 2.86
LFCC+ProdSpec+MGDCC-CNN (Monteiro et al., 2020) 0.198 9.09
CQT+LFCC+DCT-LCNN (Lavrentyeva et al., 2019) 0.051 1.84
ATCoP+GTCC-SVM (Proposed method) 0.05 0.75
t
W
S
v
o
p
W
a
m
a
t

5.3.5. Deep learning classification
For deep learning, we selected the BiLSTM recurrent deep learning

method (Graves & Schmidhuber, 2005). As recurrent DL models are
better suited to analyze the sequential and time series data, therefore,
we selected the BiLSTM framework among other deep learning models.
For experimentation, we tuned the network on 200 hidden units, tanh
state activation function, sigmoid gate activation function, maximum
epochs of 200, mini-batch size of 64, and 5 hidden layers, as optimal
results were obtained on these settings (Table 11).

5.4. Hybrid dataset evaluation

The objective of this experiment is to assess the performance of pro-
posed anti-spoofing framework on more diverse audio samples. Since
both the ASVspoof 2019 and VSDC datasets have different character-
istics (e.g. sampling rate, speakers, microphone and playback devices,
environments, etc.), therefore, we have created a hybrid dataset com-
prising of bonafide and spoof samples of the ASVspoof and VSDC. Since
the VSDC consists of only the bonafide and replay samples, therefore,
we have also selected the replay collection (PA) of ASVspoof 2019
dataset. For this experiment, we have taken 8000 audio samples from
the training set of ASVspoof PA collection and 8000 bonafide and 1st-
order replay audios from the VSDC. Next, we used 70% audios (11,200)
for training and rest 30% audios (4800) for testing and achieved
the min-tDCF of 0.227 and EER of 9.1%. From the results, we can
observe that our anti-spoofing framework achieves better classification
performance even on more diverse audio samples.
10

n

5.5. Discussion

The proposed ATCoP-GTCC features effectively detect different
kinds of voice spoofing attacks that are evaluated on four different
datasets. We provided the comparative results obtained on different
classifiers for audio spoofing detection in Table 11. From the results, we
found that SVM was the best and Naïve Bayes was the worst performer
for all types of spoofing. More precisely, SVM achieved the lowest min-
tDCF and EER of 0.0 and 0%, 0.0576 and 0.9%, and 0.002 and 0.03%
for cloning, replay, and cloned-replay detection, respectively. Thus, we
argue that SVM can reliably be used with the proposed features to
detect any kind of voice spoofing attack.

We performed one experiment to investigate the effect of com-
pressed replays generation against the bonafide samples. In our dataset,
we first used Bluetooth speakers for voice replays generation then we
obtained the compressed 1st-order and 2nd-order replay audios. For
his, we selected 1269 bonafide, first- and second-order replay audios.

e extracted the proposed features for these samples and trained the
VM for replay attacks detection. We obtained lower min-tDCF and EER
alues on these samples compared to all samples. More specifically, we
btained the lowest min-tDCF and EER of 0.032 and 0.5% for com-
ressed replay samples compared to 0.057 and 0.9% over all samples.
e conclude from this experiment that compressed spoofing samples

re easier to detect than uncompressed samples due to the fact that the
icrophone distortions are relatively weak in compressed samples. This

lso complements our conclusion that cloned replay samples are easier
o detect due to weak microphone distortions.

Additionally, it is also important to understand that microphone
on-linearities do contribute to microphone induced distortions, but it
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is not the only source of distortion. Separation and estimation of each
distortion component, e.g., device non-linearity, material or fabrication
imperfections, etc., for non-Gaussian inputs (e.g., speech signals) is a
challenging task. Intuitively, the replay process amplifies this micro-
phone induced distortions which can be captured via ATCoP-GTCC
features. Moreover, human voice holds dynamically induced vocal-tract
variations as compared to synthetic speech. For example, natural pauses
of the human speech production model are missing from the synthetic
speech generated by voice cloning algorithms (Mwiti, 2019). On the
other hand, cloned voice sounds similar and contains unusual prosody.
The results indicate that our ATCoP-GTCC performs remarkably well
for synthetic speech detection which proves that ATCoP-GTCC is able
to reliably capture the dynamically variant characteristics of bonafide
speech and algorithmic traits of the synthetic speech.

5.6. Comparative analysis with existing methods

To measure the effectiveness of our unified anti-spoofing frame-
work, we compared our system against existing state-of-the-art voice
anti-spoofing methods (Kumar & Bharathi, 2021; Lavrentyeva et al.,
2019; Li et al., 2021; Monteiro et al., 2020; Yamagishi et al., 2019) on
ASVspoof 2019 dataset (Table 12). We employed the ASVspoof 2019-
PA-Train/Eval sets for training/testing the proposed and all the com-
parative methods for replay spoofing and ASVspoof 2019-LA-train/Eval
for training/testing the cloning spoofing detection. The proposed
method outperforms the contemporary voice cloning detection methods
by achieving the lowest min-tDCF of 0.05. Lavrentyeva et al. (2019)
was the second best system for cloning detection with min-tDCF of
0.051. For replay detection, Lavrentyeva et al. (2019) was the top
performer, whereas, the proposed method along-with Li et al. (2021)
was the second best method. Moreover, the LFCC-GMM ASVspoof
baseline model (Yamagishi et al., 2019) was the worst performing
method for both the replay and cloning detection. It is important to
mention that the proposed method performed better over the ASVspoof
baseline model by achieving lower EER of 12.54% and 11.21% for
replay and cloning detection respectively.

5.7. Performance of proposed features for deepfakes detection

The objective of this evaluation is to quantify the effectiveness of
proposed anti-spoofing framework for deepfakes detection. For this
experiment, we used deepfakes detection dataset (Agarwal et al., 2019)
that comprises of YouTube videos of various US politicians. Agarwal
et al. (2019) used this dataset to measure the performance of their
visual features oriented deepfakes detection method. We highlighted
the fact that we can still develop effective deepfakes detection methods
using low-cost audio features. We extracted the audios of the videos
from this dataset (Agarwal et al., 2019) comprising of both the bonafide
and spoof samples as these videos contain both the visual and audio
forgeries. We used our proposed features to train the SVM classifier
and obtained min-tDCF of 0.051 and EER of 0.8%. AUC metric was
used for performance evaluation in Agarwal et al. (2019). Therefore,
we also computed the AUC for this experiment and achieved an AUC
of 1 as compared to average AUC of 0.95 achieved by Agarwal et al.
(2019). From these results, we argue that our method provides superior
classification performance as compared to Agarwal et al. (2019). It is
to be noted that our method achieves better performance with low-
cost audio features as compared to Agarwal et al. (2019), in which the
visual landmark features are employed that are computationally more
intensive compared to the proposed ATCoP-GTCC features.
11
6. Conclusion

This paper has presented a novel unified anti-spoofing framework,
that by employing proposed ATCoP-GTCC features, accurately captures
the non-linearities introduced in the 1st- and 2nd-order spoofing sam-
les, traces of generative models for both speech synthesis and cloned
eplay, and dynamic speech variations of bonafide audios. The absence
f a multi-order replay spoofing dataset motivated us to develop a
iverse voice spoofing detection corpus for multi-order replay and
loned-replay attacks. Additionally, we have presented that hybrid
poofing attacks like cloned-replay can easily be executed in chained
cenarios to exploit the VCSs. This research work lays the founda-
ion of addressing multi-order replay, cloning, and cloned-replay voice
poofing attacks, using the unified framework to protect the ASV and
CSs. Experimental results signify the effectiveness of our anti-spoofing

ramework by achieving optimal results on four datasets having either
eplay or cloning forgery. This verifies our claim that the proposed
eatures effectively capture the dynamic speech variations and micro-
hone fingerprints of bonafide audio, algorithm artifacts in cloned
udio, and non-linear distortions in replay recordings. Additionally,
ur proposed features also perform remarkably well for deepfakes
etection, and this verifies our claim that audio signal analysis is an
ntegral part of deepfakes detection. Based on the fact that the pro-
osed features can effectively capture the traces of manipulated voice
ttributes i.e., frequencies, etc. in the cloned speech, we argue that our
TCoP-GTCC features can provide superior detection performance even

or high-quality synthesized speech samples.
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